VCA2618YT [BB]

Dual, VARIABLE GAIN AMPLIFIER with Input Buffer; 双可变增益放大器,具有输入缓冲器
VCA2618YT
型号: VCA2618YT
厂家: BURR-BROWN CORPORATION    BURR-BROWN CORPORATION
描述:

Dual, VARIABLE GAIN AMPLIFIER with Input Buffer
双可变增益放大器,具有输入缓冲器

放大器
文件: 总14页 (文件大小:324K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
VCA2618  
VCA2618  
SBOS254B – JULY 2002 – REVISED NOVEMBER 2003  
Dual, VARIABLE GAIN AMPLIFIER  
with Input Buffer  
FEATURES  
z GAIN RANGE: up to 43dB  
DESCRIPTION  
The VCA2618 is a highly integrated, dual receive channel,  
Variable Gain Amplifier (VGA) with analog gain control.  
z 30MHz BANDWIDTH  
The VCA2618’s VGA section consists of two parts: the Volt-  
age Controlled Attenuator (VCA) and the Programmable Gain  
Amplifier (PGA). The gain and gain range of the PGA can be  
digitally programmed. The combination of these two program-  
mable elements results in a variable gain ranging from 0dB up  
to a maximum gain as defined by the user through external  
connections. The single-ended unity gain input buffer provides  
predictable high input impedance. The output of the VGA can  
be used in either a single-ended or differential mode to drive  
high-performance Analog-to-Digital (A/D) converters. A sepa-  
rate power-down pin reduces power consumption.  
z LOW CROSSTALK: 65dB at Max Gain, 5MHz  
z HIGH-SPEED VARIABLE GAIN ADJUST  
z POWER SHUTDOWN MODE  
z HIGH IMPEDANCE INPUT BUFFER  
APPLICATIONS  
z ULTRASOUND SYSTEMS  
z WIRELESS RECEIVERS  
z TEST EQUIPMENT  
z RADAR  
The VCA2618 also features low crosstalk and outstanding  
distortion performance. The combination of low noise  
and gain range programmability make the VCA2618 a versa-  
tile building block in a number of applications where  
noise performance is critical. The VCA2618 is available in a  
TQFP-32 package.  
CP2A  
CP1A  
VCA2618  
(1 of 2 Channels)  
NOUTA  
Voltage  
Control  
Attenuator  
Programmable  
Gain Amplifier  
Buffer  
INA  
POUTA  
MGS1  
Maximum  
Gain Select  
Analog  
Control  
Maximum Gain  
Select  
MGS2  
VCACNTL  
MGS3  
NOUTB  
Voltage  
Control  
Attenuator  
Programmable  
Gain Amplifier  
Buffer  
INB  
POUTB  
CP2B  
CP1B  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
All trademarks are the property of their respective owners.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
Copyright © 2002–2003, Texas Instruments Incorporated  
www.ti.com  
ABSOLUTE MAXIMUM RATINGS(1)  
ELECTROSTATIC  
DISCHARGE SENSITIVITY  
This integrated circuit can be damaged by ESD. Texas  
Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper han-  
dling and installation procedures can cause damage.  
Power Supply (+VS) ............................................................................. +6V  
Analog Input ............................................................. –0.3V to (+VS + 0.3V)  
Logic Input ............................................................... –0.3V to (+VS + 0.3V)  
Case Temperature ......................................................................... +100°C  
Junction Temperature .................................................................... +150°C  
Storage Temperature ...................................................... –40°C to +150°C  
NOTE: (1) Stresses above those listed under “Absolute Maximum Ratings”  
may cause permanent damage to the device. Exposure to absolute maximum  
conditions for extended periods may affect device reliability.  
ESD damage can range from subtle performance degrada-  
tion to complete device failure. Precision integrated circuits  
may be more susceptible to damage because very small  
parametric changes could cause the device not to meet its  
published specifications.  
PACKAGE/ORDERING INFORMATION  
SPECIFIED  
PACKAGE  
DESIGNATOR(1)  
TEMPERATURE  
RANGE  
PACKAGE  
MARKING  
ORDERING  
NUMBER  
TRANSPORT  
MEDIA, QUANTITY  
PRODUCT  
PACKAGE-LEAD  
VCA2618Y  
TQFP-32 Surface-Mount  
PBS  
–40°C to +85°C  
VCA2618Y  
VCA2618YT  
VCA2618YR  
Tape and Reel, 250  
Tape and Reel, 2000  
"
"
"
"
"
NOTE: (1) For the most current specifications and package information, refer to our web site at www.ti.com.  
ELECTRICAL CHARACTERISTICS  
At TA = +25°C, VDD = 5V, load resistance = 500on each output to ground differential output (2VPP), MGS = 111, and fIN = 5MHz, unless otherwise noted.  
VCA2618Y  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
BUFFER  
Input Resistance  
600  
5
kΩ  
pF  
Input Capacitance  
Input Bias Current  
Maximum Input Voltage  
Input Voltage Noise  
Input Current Noise  
Noise Figure  
1
nA  
1
VPP  
PGA Gain = 45dB, RS = 50Ω  
Independent of Gain  
5.4  
350  
13  
100  
nV/Hz  
fA/Hz  
dB  
RF = 550, PGA Gain = 45dB, RS = 75Ω  
Bandwidth  
MHz  
PROGRAMMABLE VARIABLE GAIN AMPLIFIER  
Peak Input Voltage  
1
30  
VPP  
MHz  
V/µs  
V
–3dB Bandwidth  
Slew Rate  
300  
Output Signal Range  
Output Impedance  
Output Short-Circuit Current  
3rd-Harmonic Distortion  
2nd-Harmonic Distortion  
RL > 500Each Side to Ground  
2.5 ±1  
1
±40  
mA  
dBc  
dBc  
dBc  
dB  
VOUT = 2VPP, VCACNTL = 3.0V  
VOUT = 2VPP, VCACNTL = 3.0V  
–45  
–42  
–50  
–50  
2nd-Harmonic Distortion  
Overload Performance (2nd-Harmonic  
Distortion)  
VOUT = 2VPP, VCACNTL = 3.0V, MGS = 011  
Input Signal = 1VPP, VCACNTL = 2V  
–60  
–40 to –45  
Time Delay  
5
ns  
dBc  
dB  
ns  
IMD, 2-Tone  
VOUT = 2VPP, f = 9.95MHz  
–59  
65  
Crosstalk  
Group Delay Variation  
1MHz < f < 10MHz, Full Gain Range  
13  
ACCURACY  
Gain Slope  
Gain Error(1)  
VCACNTL = 0.2V to 3.0V  
VCACNTL = 0.2V to 3.0V  
VCACNTL = 0.4V to 2.9V  
16  
dB/V  
dB  
±2.0  
±1.3  
±50  
±2  
dB  
Output Offset Voltage  
mV  
GAIN CONTROL INTERFACE  
Input Voltage (VCACNTL) Range  
0.2 to 3.0  
V
Input Resistance  
Response Time  
1
MΩ  
µs  
45dB Gain Change  
0.2  
POWER SUPPLY  
Specified Operating Range  
Power Dissipation  
Power-Down  
4.75  
5.0  
120  
9.2  
5.25  
150  
V
mW  
mW  
Operating, Each Channel  
NOTE: (1) Referenced to best fit dB-linear curve.  
VCA2618  
2
SBOS254B  
www.ti.com  
PIN CONFIGURATION  
Top View  
TQFP  
+INA  
NC  
1
2
3
4
5
6
7
8
24 VCACNTL  
23 MGS3  
22 MGS2  
21 MGS1  
20 PD  
VDDR  
VBIAS  
VCM  
VCA2618  
GNDR  
NC  
19 NC  
18 NC  
+INB  
17 DNC  
PIN DESCRIPTIONS  
PIN  
DESIGNATOR  
DESCRIPTION  
PIN  
DESIGNATOR  
DESCRIPTION  
1
2
+INA  
NC  
Noninverting Input Channel A  
No Internal Connection  
Internal Reference Supply  
Bias Voltage  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
DNC  
NC  
Do Not Connect  
No Internal Connection  
3
VDDR  
VBIAS  
VCM  
NC  
No Internal Connection  
4
PD  
Power-Down (Active LOW)  
Maximum Gain Select 1 (MSB)  
Maximum Gain Select 2  
Maximum Gain Select 3 (LSB)  
VCA Analog Control  
5
Common-Mode Voltage  
Internal Reference Ground  
Not Connected  
MGS1  
MGS2  
MGS3  
VCACNTL  
NOUTA  
POUTA  
GNDA  
VDDA  
CP1A  
6
GNDR  
NC  
7
8
+INB  
NC  
Noninverting Input Channel B  
No Internal Connection  
Do Not Connect  
9
Negative VCA Output Channel A  
Positive VCA Output Channel A  
Ground Channel A  
10  
11  
12  
13  
14  
15  
16  
DNC  
CP2B  
CP1B  
VDDB  
GNDB  
POUTB  
NOUTB  
Coupling Capacitor Channel B  
Coupling Capacitor Channel B  
+5V Supply Channel B  
Ground Channel B  
+5V Supply Channel A  
Coupling Capacitor Channel A  
Coupling Capacitor Channel A  
Do Not Connect  
CP2A  
Positive Output Channel B  
Negative Output Channel B  
DNC  
NC  
No Internal Connection  
VCA2618  
SBOS254B  
3
www.ti.com  
TYPICAL CHARACTERISTICS  
At TA = +25°C, VDD = 5V, load resistance = 500on each output to ground, differential output (2VPP) MGS = 111, and fIN = 5MHz, unless otherwise noted.  
GAIN vs VCA  
GAIN ERROR vs TEMPERATURE  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
2.0  
1.5  
1.0  
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
0
–5  
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0  
VCACNTL (V)  
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0  
VCACNTL (V)  
GAIN ERROR vs VCACNTL  
GAIN ERROR vs VCACNTL  
2.5  
2.0  
2.5  
2.0  
1.5  
1.5  
1.0  
1.0  
0.5  
0.5  
0
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0  
VCACNTL (V)  
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0  
VCACNTL (V)  
GAIN MATCH: CHA to CHB, VCACNTL = 0.2V  
GAIN MATCH: CHA to CHB, VCACNTL = 3.0V  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
45  
40  
35  
30  
25  
20  
15  
10  
5
0
0
Delta Gain (dB)  
Delta Gain (dB)  
VCA2618  
4
SBOS254B  
www.ti.com  
TYPICAL CHARACTERISTICS (Cont.)  
At TA = +25°C, VDD = 5V, load resistance = 500on each output to ground, differential output (2VPP) MGS = 111, and fIN = 5MHz, unless otherwise noted.  
GAIN vs FREQUENCY  
(VCACNTL = 3.0V)  
GAIN vs FREQUENCY  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
50  
40  
30  
20  
10  
0
VCACNTL = 3.0V  
MGS = 111  
MGS = 011  
VCACNTL = 1.6V  
MGS = 001  
VCACNTL = 0.2V  
0
–10  
100k  
1M  
10M  
100M  
100k  
1M  
10M  
100M  
Frequency (Hz)  
Frequency (Hz)  
INPUT REFERRED NOISE vs VCACNTL  
OUTPUT REFERRED NOISE vs VCACNTL  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
RS= 50  
RS= 50  
MGS = 111  
MGS = 111  
MGS = 011  
MGS = 011  
0
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0  
VCACNTL (V)  
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0  
VCACNTL (V)  
NOISE FIGURE vs RS  
INPUT REFERRED NOISE vs RS  
24  
22  
20  
18  
16  
14  
12  
10  
8
100  
10  
1
6
4
2
10  
100  
1k  
1
10  
100  
1k  
RS ()  
RS ()  
VCA2618  
SBOS254B  
5
www.ti.com  
TYPICAL CHARACTERISTICS (Cont.)  
At TA = +25°C, VDD = 5V, load resistance = 500on each output to ground, differential output (2VPP) MGS = 111, and fIN = 5MHz, unless otherwise noted.  
HARMONIC DISTORTION vs FREQUENCY  
(Differential, 2Vp-p, MGS = 001)  
NOISE FIGURE vs VCACNTL  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
VCA  
VCA  
VCA  
VCA  
= 0.2V, H2  
CNTL  
= 0.2V, H3  
CNTL  
= 3.0V, H2  
CNTL  
= 3.0V, H3  
CNTL  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0  
VCACNTL (V)  
100k  
1M  
10M  
Frequency (Hz)  
HARMONIC DISTORTION vs FREQUENCY  
(Differential, 2Vp-p, MGS = 011)  
HARMONIC DISTORTION vs FREQUENCY  
(Differential, 2Vp-p, MGS = 111)  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
VCA  
VCA  
VCA  
VCA  
= 0.2V, H2  
= 0.2V, H3  
= 3.0V, H2  
= 3.0V, H3  
CNTL  
CNTL  
CNTL  
CNTL  
VCACNTL = 0.2V, H2  
VCACNTL = 0.2V, H3  
VCACNTL = 3.0V, H2  
VCACNTL = 3.0V, H3  
100k  
1M  
10M  
100k  
1M  
Frequency (MHz)  
10M  
Frequency (Hz)  
HARMONIC DISTORTION vs FREQUENCY  
(Single-Ended, 1Vp-p, MGS = 001)  
HARMONIC DISTORTION vs FREQUENCY  
(Single-Ended, 1Vp-p, MGS = 011)  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
VCACNTL = 0.2V, H2  
VCA  
VCA  
VCA  
VCA  
= 0.2V, H2  
= 0.2V, H3  
= 3.0V, H2  
= 3.0V, H3  
CNTL  
CNTL  
CNTL  
CNTL  
VCACNTL = 0.2V, H3  
VCACNTL = 3.0V, H2  
VCACNTL = 3.0V, H3  
100k  
1M  
10M  
100k  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
VCA2618  
6
SBOS254B  
www.ti.com  
TYPICAL CHARACTERISTICS (Cont.)  
At TA = +25°C, VDD = 5V, load resistance = 500on each output to ground, differential output (2VPP) MGS = 111, and fIN = 5MHz, unless otherwise noted.  
HARMONIC DISTORTION vs FREQUENCY  
(Single-Ended, 1Vp-p, MGS = 111)  
HARMONIC DISTORTION vs VCACNTL  
(Differential, 2Vp-p)  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
0
–5  
MGS = 001, H2  
MGS = 011, H2  
MGS = 111, H2  
MGS = 001, H3  
MGS = 011, H3  
MGS = 111, H3  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
VCA  
VCA  
VCA  
VCA  
= 0.2V, H2  
CNTL  
CNTL  
CNTL  
CNTL  
= 0.2V, H3  
= 3.0V, H2  
= 3.0V, H3  
100k  
1M  
10M  
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0  
VCACNTL (V)  
Frequency (Hz)  
INTERMODULATION DISTORTION  
(Single-Ended, 1Vp-p, fIN = 10MHz, VCACNTL = 3.0V)  
HARMONIC DISTORTION vs VCACNTL  
(Single-Ended, 1Vp-p)  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
–5  
MGS = 001, H2  
MGS = 011, H2  
MGS = 111, H2  
MGS = 001, H3  
MGS = 011, H3  
MGS = 111, H3  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
9.5 9.6 9.7 9.8 9.9 10.0 10.1 10.2 10.3 10.4 10.5  
Frequency (MHz)  
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0  
VCACNTL (V)  
INTERMODULATION DISTORTION  
(Differential, 2Vp-p, fIN = 10MHz, VCACNTL = 3.0V)  
CROSS TALK vs FREQUENCY  
(Differential, 2Vp-p, MGS = 011)  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
VCACNTRL = 0V  
VCACNTRL = 1.5V  
VCACNTRL = 3.0V  
9.5 9.6 9.7 9.8 9.9 10 10.1 10.2 10.3 10.4 10.5  
Frequency (MHz)  
1
6
11  
16  
21  
Frequency (MHz)  
VCA2618  
SBOS254B  
7
www.ti.com  
TYPICAL CHARACTERISTICS (Cont.)  
At TA = +25°C, VDD = 5V, load resistance = 500on each output to ground, differential output (2Vp-p) MGS = 111, and fIN = 5MHz, unless otherwise noted.  
OVERLOAD DISTORTION vs FREQUENCY  
I
CC vs TEMPERATURE  
0
–10  
–20  
–30  
–40  
–50  
–60  
59  
57  
55  
53  
51  
49  
47  
45  
0.1V  
0.25V  
0.5V  
1V  
1M  
10M  
–40  
–25  
–10  
5
20  
35  
50  
65  
80  
95  
Frequency (Hz)  
Temperature (°C)  
GROUP DELAY  
(1MHz Aperture)  
15  
14  
13  
12  
11  
10  
9
VCACNTL = 3.0V  
8
7
6
VCACNTL = 0.2V  
5
4
3
2
1
0
1M  
10M  
100M  
Frequency (Hz)  
VCA2618  
8
SBOS254B  
www.ti.com  
power-on time of the VCA2618 would be increased. If a  
decrease in the power-on time is needed, the value can be  
decreased to no less than 100pF.  
OVERVIEW  
The VCA2618 is a dual-channel, VGA consisting of three  
primary blocks, an Input Buffer, a VCA, and a PGA. All  
stages are AC coupled, with the coupling into the PGA stage  
being made variable by placing an external capacitor be-  
tween the CP1 and CP2 pins. This will be discussed further in  
the PGA section. By using the internal coupling into the PGA,  
the result is a high-pass filter characteristic with cutoff at  
approximately 75kHz. The output PGA naturally rolls off at  
around 30MHz, making the usable bandwidth of the VCA2618  
between 75kHz and 30MHz.  
VOLTAGE-CONTROLLED ATTENUATOR  
The magnitude of the VCA input signal from the input buffer  
is reduced by a programmable attenuation factor, set by the  
analog VCA Control Voltage (VCACNTL) at pin 24. The maxi-  
mum attenuation is programmable by using the three MGS  
bits (pins 21, 22, and 23). Figure 2 illustrates this dual-adjust  
characteristic.  
0
Minimum Attenuation  
Channel A  
Output  
Channel A  
Input  
Buffer  
VCA  
PGA  
–25  
Maximum  
Gain  
Select  
Analog  
Control  
VCA  
Control  
MGS  
Channel B  
Output  
Channel B  
Input  
Buffer  
VCA  
PGA  
Maximum Attenuation  
–43  
0
3.0V  
Control Voltage  
FIGURE 2. Swept Attenuator Characteristic.  
FIGURE 1. Simplified Block Diagram of the VCA2618.  
The MGS bits adjust the overall range of attenuation and  
maximum gain while the VCACNTL voltage adjusts the actual  
attenuation factor. At any given maximum gain setting, the  
analog variable gain characteristic is linear in dB as a  
function of the control voltage, and is created as a piecewise  
approximation of an ideal dB-linear transfer function. The  
VCA control circuitry is common to both channels of the  
VCA2618. The range for the VCACNTL input spans from 0V to  
3V. Although overdriving the VCACNTL input above the rec-  
ommended 3V maximum will not damage the part, this  
condition should be avoided.  
INPUT BUFFER  
The input buffer is a unity gain amplifier (gain of +1) with a  
bandwidth of 100MHz with an input resistance of approxi-  
mately 600k. The input buffer isolates the circuit driving the  
VCA2618 inputs from the internal VCA block, which would  
present a varying impedance to the input circuitry. To allow  
symmetrical operation of the input buffer, the input to the  
buffer must be AC coupled through an external capacitor.  
The recommended value of the capacitor is 0.01µF. It should  
be noted that if the capacitor value were increased, the  
RS  
Input  
Output  
Q1A  
Q1B  
Q2A  
Q2B  
Q3A  
Q3B  
Q4A  
Q4B  
Q5A  
Q5B  
VCM  
A1  
A2  
A3  
A4  
A5  
B1  
B2  
FIGURE 3. Programmable Attenuator Section.  
VCA2618  
SBOS254B  
9
www.ti.com  
Attenuator  
Input  
A1 to A10 Attenuator Stages  
QS  
Attenuator  
Output  
RS  
Q1  
Q2  
Q3  
Q4  
Q5  
Q6  
Q7  
Q8  
Q9  
Q10  
VCM  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
A10  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
C10  
V1  
V2  
V3  
V4  
V5  
V6  
V7  
V8  
V9  
V10  
Control  
Input  
C1 to C10 Clipping Amplifiers  
0dB  
4.3dB  
Attenuation Characteristic of Individual FETs  
VCM VT  
0
V1  
V2  
V3  
V4  
V5  
V6  
V7  
V8  
V9  
V10  
Characteristic of Attenuator Control Stage Output  
OVERALL CONTROL CHARACTERISTICS OF ATTENUATOR  
0dB  
43dB  
0.3V  
3V  
Control Signal  
FIGURE 4. Piecewise Approximation to Logarithmic Control Characteristics.  
VCA2618  
10  
SBOS254B  
www.ti.com  
PGA POST-AMPLIFIER  
MGS  
SETTING  
ATTENUATOR GAIN  
VCACNTL = 0V to 3V  
ATTENUATOR +  
DIFFERENTIAL PGA GAIN  
Figure 5 shows a simplified circuit diagram of the PGA block.  
As stated before, the input to the PGA is AC coupled by an  
internal capacitor. Provisions are made so that an external  
capacitor can be placed in parallel with the internal capacitor,  
thus lowering the usable low-frequency bandwidth. The low-  
frequency bandwidth is set by the following equation:  
000  
001  
010  
011  
100  
101  
110  
111  
Not Valid  
Not Valid  
–25dB to 0dB  
–28dB to 0dB  
–31dB to 0dB  
–34dB to 0dB  
–37dB to 0dB  
–40dB to 0dB  
–43dB to 0dB  
0dB to 25dB  
0dB to 28dB  
0dB to 31dB  
0dB to 34dB  
0dB to 37dB  
0dB to 40dB  
0dB to 43dB  
1
2 π • 500k220pF + C  
(
(
EXTERNAL))  
TABLE I. MGS Settings.  
where CEXTERNAL is the external capacitor value in farads.  
Care should be taken to avoid using too large a value of  
capacitor, as this can increase the power-on delay time.  
input buffer noise dominates; at maximum VCA attenuation  
(large input signals), the PGA noise dominates. Note that if  
the PGA output is used single-ended, the apparent gain will  
be 6dB lower.  
As described previously, the PGA gain is programmed with  
the same MGS bits that control the VCA maximum attenua-  
tion factor. Specifically, the maximum PGA gain at each  
MGS setting is the inverse (reciprocal) of the maximum VCA  
attenuation at that setting. Therefore, the VCA + PGA overall  
gain will always be 0dB (unity) when the analog VCACNTL  
input is set to 0V (the maximum attenuation for VCA). For  
VCACNTL = 3V (no attenuation), the VCA + PGA gain will be  
controlled by the programmed PGA gain (25dB to 43dB in  
3dB steps). For clarity, the gain and attenuation factors are  
detailed in Table I.  
LAYOUT CONSIDERATIONS  
The VCA2618 is an analog amplifier capable of high gain.  
When working on a PCB layout for the VCA2618, it is  
recommended to utilize a solid ground plane that is con-  
nected to analog ground. This helps to maximize the noise  
performance of the VCA2618.  
Adequate power-supply decoupling must be used in order to  
achieve the best possible performance. Decoupling capaci-  
tors on the VCACNTL voltage should also be used to help  
minimize noise. Recommended values can be obtained from  
the layout diagram of Figure 6.  
The PGA architecture converts the single-ended signal from  
the VCA into a differential signal. Low input noise was also  
a requirement of the PGA design due to the large amount of  
signal attenuation that can be asserted before the PGA. At  
minimum VCA attenuation (used for small input signals), the  
VDD  
To Bias  
Circuitry  
Q1  
Q11  
Q12  
Q9  
RL  
RL  
VCAOUT  
P
VCAOUTN  
Q3  
Q8  
VCM  
VCM  
RS1  
RS2  
Q13  
Q4  
Q7  
+In  
–In  
Q14  
Q2  
Q10  
Q5  
Q6  
To Bias  
Circuitry  
FIGURE 5. Simplified Block Diagram of the PGA Section with the VCA2618.  
VCA2618  
SBOS254B  
11  
www.ti.com  
+5V  
0.1µF  
1µF  
+5V  
0.1µF  
0.1µF  
1µF  
1µF  
28  
3
5
0.01µF  
0.01µF  
0.01µF  
VDDA VDDR VCM  
1
25  
26  
–OUTA  
INA  
INA  
–OUTA  
+OUTA  
+OUTA  
VCA2618  
0.01µF  
0.01µF  
16  
15  
–OUTB  
+OUTB  
24  
–OUTB  
+OUTB  
0.01µF  
8
INB  
INB  
VDDB VBIAS VCNTL  
13  
4
1µF  
0.1µF  
0.1µF  
+5V  
1µF  
0.1µF  
VCACNTL  
FIGURE 6. VCA2618 Layout.  
VCA2618  
12  
SBOS254B  
www.ti.com  
PACKAGE DRAWING  
PBS (S-PQFP-G32)  
PLASTIC QUAD FLATPACK  
0,23  
0,17  
M
0,50  
0,08  
24  
17  
25  
32  
16  
9
0,13 NOM  
1
8
3,50 TYP  
Gage Plane  
5,05  
SQ  
4,95  
0,25  
7,10  
SQ  
0,10 MIN  
6,90  
0°7°  
0,70  
0,40  
1,05  
0,95  
Seating Plane  
0,08  
1,20 MAX  
4087735/A 11/95  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
VCA2618  
SBOS254B  
13  
www.ti.com  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, maskworkright, orotherTIintellectualpropertyrightrelatingtoanycombination, machine, orprocess  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2003, Texas Instruments Incorporated  

相关型号:

VCA2619

Dual, Variable Gain Amplifier with Input Buffer
BB

VCA2619YR

Dual, Variable Gain Amplifier with Input Buffer
BB

VCA2619YT

Dual, Variable Gain Amplifier with Input Buffer
BB

VCA3

3.3, 5.0 volt CMOS Oscillator
VECTRON

VCA3-103

VCA3-103, 105 Pin Crystal Oscillators
VECTRON

VCA3-203

VCA3-203, 205 14 Pin Dip Crystal Oscillators
VECTRON

VCA3-A0A-25M00

3.3, 5.0 volt CMOS Oscillator
VECTRON

VCA3-A0B-25M00

3.3, 5.0 volt CMOS Oscillator
VECTRON

VCA3-A0C-25M00

3.3, 5.0 volt CMOS Oscillator
VECTRON

VCA3-A0D-25M00

3.3, 5.0 volt CMOS Oscillator
VECTRON

VCA3-A0E-25M00

3.3, 5.0 volt CMOS Oscillator
VECTRON

VCA3-A0F-25M00

3.3, 5.0 volt CMOS Oscillator
VECTRON