VCA2619YR [BB]

Dual, Variable Gain Amplifier with Input Buffer; 双可变增益放大器,具有输入缓冲器
VCA2619YR
型号: VCA2619YR
厂家: BURR-BROWN CORPORATION    BURR-BROWN CORPORATION
描述:

Dual, Variable Gain Amplifier with Input Buffer
双可变增益放大器,具有输入缓冲器

放大器
文件: 总16页 (文件大小:314K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
VCA2619  
SBOS276A − AUGUST 2003 − REVISED AUGUST 2003  
Dual, Variable Gain Amplifier  
with Input Buffer  
FEATURES  
DESCRIPTION  
The VCA2619 is a highly integrated, dual receive channel,  
Variable Gain Amplifier (VGA) with analog gain control.  
D
D
GAIN RANGE: 50dB  
LOW CROSSTALK: - 60dB at Max Gain,  
= 5MHz  
The VCA2619s VGA section consists of two parts: the  
Voltage Controlled Attenuator (VCA) and the Programmable  
Gain Amplifier (PGA). The gain and gain range of the PGA  
can be digitally programmed. The combination of these two  
programmable elements results in a variable gain ranging  
from 0dB up to a maximum gain as defined by the user  
through external connections. The single−ended unity gain  
input buffer provides predictable high input impedance. The  
output of the VGA can be used in either a single−ended or  
differential mode to drive high−performance Analog−to−  
Digital (A/D) converters. A separate power−down pin  
reduces power consumption.  
f
IN  
D
D
D
HIGH−SPEED VARIABLE GAIN ADJUST  
POWER SHUTDOWN MODE  
HIGH IMPEDANCE INPUT BUFFER  
APPLICATIONS  
D
D
D
D
ULTRASOUND SYSTEMS  
WIRELESS RECEIVERS  
TEST EQUIPMENT  
RADAR  
The VCA2619 also features low crosstalk and outstanding  
distortion performance. The combination of low noise and  
gain range programmability make the VCA2619 a versatile  
building block in a number of applications where noise  
performance is critical. The VCA2619 is available in a  
TQFP−32 package.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments  
semiconductor products and disclaimers thereto appears at the end of this data sheet.  
All trademarks are the property of their respective owners.  
ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆꢇ ꢂꢈ ꢃ ꢉꢆꢉ ꢊꢋ ꢌꢍ ꢎ ꢏꢐ ꢑꢊꢍꢋ ꢊꢒ ꢓꢔ ꢎ ꢎ ꢕꢋꢑ ꢐꢒ ꢍꢌ ꢖꢔꢗ ꢘꢊꢓ ꢐꢑꢊ ꢍꢋ ꢙꢐ ꢑꢕꢚ ꢀꢎ ꢍꢙꢔ ꢓꢑꢒ  
ꢓ ꢍꢋ ꢌꢍꢎ ꢏ ꢑꢍ ꢒ ꢖꢕ ꢓ ꢊ ꢌꢊ ꢓ ꢐ ꢑꢊ ꢍꢋꢒ ꢖ ꢕꢎ ꢑꢛꢕ ꢑꢕ ꢎ ꢏꢒ ꢍꢌ ꢆꢕꢜ ꢐꢒ ꢇꢋꢒ ꢑꢎ ꢔꢏ ꢕꢋꢑ ꢒ ꢒꢑ ꢐꢋꢙ ꢐꢎ ꢙ ꢝ ꢐꢎ ꢎ ꢐ ꢋꢑꢞꢚ  
ꢀꢎ ꢍ ꢙꢔꢓ ꢑ ꢊꢍ ꢋ ꢖꢎ ꢍ ꢓ ꢕ ꢒ ꢒ ꢊꢋ ꢟ ꢙꢍ ꢕ ꢒ ꢋꢍꢑ ꢋꢕ ꢓꢕ ꢒꢒ ꢐꢎ ꢊꢘ ꢞ ꢊꢋꢓ ꢘꢔꢙ ꢕ ꢑꢕ ꢒꢑꢊ ꢋꢟ ꢍꢌ ꢐꢘ ꢘ ꢖꢐ ꢎ ꢐꢏ ꢕꢑꢕ ꢎ ꢒꢚ  
Copyright 2003, Texas Instruments Incorporated  
www.ti.com  
ꢠ ꢅꢉꢡ ꢢ ꢣ ꢤ  
www.ti.com  
SBOS276A − AUGUST 2003 − REVISED AUGUST 2003  
This integrated circuit can be damaged by ESD.  
Texas Instruments recommends that all  
integrated circuits be handled with appropriate  
precautions. Failure to observe proper handling and  
installation procedures can cause damage.  
(1)  
ABSOLUTE MAXIMUM RATINGS  
Power Supply (+V )  
S
+6V  
Analog Input  
−0.3V to (+V + 0.3V)  
S
Logic Input  
−0.3V to (+V + 0.3V)  
S
ESD damage can range from subtle performance degradation  
to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small  
parametric changes could cause the device not to meet its  
published specifications.  
Case Temperature  
Junction Temperature  
Storage Temperature  
+100°C  
+150°C  
−40°C to +150°C  
(1)  
Stresses above those listed under “Absolute Maximum Ratings”  
may cause permanent damage to the device. Exposure to  
absolute maximum conditions for extended periods may affect  
device reliability.  
PACKAGE/ORDERING INFORMATION  
SPECIFIED  
TEMPERATURE  
RANGE  
PACKAGE  
DESIGNATOR  
PACKAGE  
MARKING  
TRANSPORT MEDIA,  
QUANTITY  
PRODUCT  
PACKAGE-LEAD  
ORDERING NUMBER  
(1)  
VCA2619YT  
VCA2619YR  
Tape and Reel, 250  
Tape and Reel, 2000  
VCA2619Y  
TQFP−32  
PBS  
−40°C to +85°C  
VCA2619Y  
(1)  
For the most current specification and package information, refer to our web site at www.ti.com.  
2
ꢠ ꢅꢉ ꢡꢢ ꢣꢤ  
www.ti.com  
SBOS276A − AUGUST 2003 − REVISED AUGUST 2003  
ELECTRICAL CHARACTERISTICS  
At T = +25°C, V  
= 5V, load resistance = 500on each output to ground single−ended output (1Vpp), MGS = 111, VCA  
= 2.9V and  
A
DD  
CNTL  
f
IN  
= 5MHz, unless otherwise noted.  
VCA2619  
TYP  
MIN  
MAX  
PARAMETER  
CONDITIONS  
UNIT  
BUFFER  
Input Resistance  
Input Capacitance  
Input Bias Current  
600  
5
kΩ  
pF  
nA  
1
Maximum Input Voltage  
Input Voltage Noise  
Input Current Noise  
Noise Figure  
1
Vpp  
nV/Hz  
fA/Hz  
dB  
PGA Gain = 45dB, R = 50Ω  
Independent of Gain  
5.9  
350  
13  
S
R
= 550, PGA Gain = 45dB, R = 75Ω  
F
S
Bandwidth  
100  
MHz  
PROGRAMMABLE VARIABLE GAIN AMPLIFIER  
Peak Input Voltage  
1
Vpp  
MHz  
V/µs  
V
3dB Bandwidth  
20  
Slew Rate  
300  
Output Signal Range  
Output Impedance  
R
500Each Side to Ground  
2.5 1  
L
1
Output Short−Circuit Current  
3rd-Harmonic Distortion  
2nd-Harmonic Distortion  
2nd-Harmonic Distortion  
Overload Performance (2nd-Harmonic Distortion)  
Time Delay  
40  
mA  
dBc  
dBc  
dBc  
dB  
V
V
= 1Vpp, VCA  
= 1Vpp, VCA  
= 2.9V  
= 2.9V  
−45  
−42  
−60  
−50  
−50  
OUT  
OUT  
CNTL  
CNTL  
Differential, V  
OUT  
= 2Vpp, VCA  
= 3.0V, MGS = 011  
= 2V  
CNTL  
Input Signal = 0.5Vpp, VCA  
CNTL  
40 to 45  
5
ns  
IMD, 2−Tone  
V
= 2Vpp, f = 9.95MHz  
−59  
−60  
dBc  
dB  
OUT  
2Vpp Differential  
Crosstalk  
ACCURACY  
Gain Slope  
VCA  
VCA  
VCA  
= 0.4V to 2.9V  
= 0.2V to 3.0V  
= 0.4V to 2.9V  
20  
dB/V  
dB  
dB  
mV  
dB  
dB  
CNTL  
CNTL  
CNTL  
(1)  
Gain Error  
2.75  
1.50  
50  
52  
50  
2.0  
Output Offset Voltage  
Gain Range  
VCA  
VCA  
= 0.2V to 3.0V  
= 0.4V to 2.9V  
CNTL  
CNTL  
48  
GAIN CONTROL INTERFACE  
Input Voltage (VCA  
) Range  
0 to 3.0  
V
CNTL  
Input Resistance  
Response Time  
1
MΩ  
µs  
45dB Gain Change  
0.2  
POWER SUPPLY  
Specified Operating Range  
Power Dissipation  
Power−Down  
4.75  
5.0  
240  
9.2  
5.25  
300  
V
mW  
mW  
(1)  
Referenced to best fit dB−linear curve.  
3
ꢠ ꢅꢉꢡ ꢢ ꢣ ꢤ  
www.ti.com  
SBOS276A − AUGUST 2003 − REVISED AUGUST 2003  
PIN CONFIGURATION  
+INA  
NC  
1
2
3
4
5
6
7
8
24 VCACNTL  
23 MGS3  
22  
21  
VDDR  
VBIAS  
VCM  
MGS2  
MGS1  
VCA2619  
20 PD  
19 NC  
GNDR  
NC  
18  
17  
NC  
+INB  
DNC  
PIN CONFIGURATION  
PIN  
DESIGNATOR  
DESCRIPTION  
PIN  
DESIGNATOR  
DNC  
DESCRIPTION  
Do Not Connect  
1
+IN  
NoninvertingInput Channel A  
No Internal Connection  
17  
A
2
NC  
18  
19  
20  
23  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
NC  
NC  
PD  
No Internal Connection  
3
4
V
DDR  
Internal Reference Supply  
Bias Voltage  
No Internal Connection  
V
BIAS  
Power-Down (Active LOW)  
Maximum Gain Select 1 (MSB)  
Maximum Gain Select 2  
Maximum Gain Select 3 (LSB)  
VCA Analog Control  
5
V
CM  
Common−Mode Voltage  
Internal Reference Ground  
No Internal Connection  
Noninverting Input Channel B  
No Internal Connection  
No Internal Connection  
Coupling Capacitor Channel B  
Coupling Capacitor Channel B  
+5V Supply Channel B  
Ground Channel B  
MGS  
1
6
GND  
MGS  
2
R
7
NC  
MGS  
3
8
+IN  
VCA  
CNTL  
B
9
NC  
NC  
N
OUTA  
Negative VCA Output Channel A  
Positive VCA Output Channel A  
Ground Channel A  
10  
11  
12  
13  
14  
15  
16  
P
OUTA  
C
C
GND  
P2B  
P1B  
DDB  
A
V
DDA  
+5V Supply Channel A  
V
C
Coupling Capacitor Channel A  
Coupling Capacitor Channel A  
No Internal Connection  
P1A  
P2A  
GND  
C
B
P
Positive Output Channel B  
Negative Output Channel B  
NC  
NC  
OUTB  
N
OUTB  
No Internal Connection  
4
ꢠ ꢅꢉ ꢡꢢ ꢣꢤ  
www.ti.com  
SBOS276A − AUGUST 2003 − REVISED AUGUST 2003  
TYPICAL CHARACTERISTICS  
At T = 25°C and V  
otherwise noted.  
= 5V, load resistance = 500on each output to ground, differential output (2V ) MGS = 111, and f = 5MHz, unless  
DD PP IN  
A
GAIN vs VCA  
GAIN ERROR vs TEMPERATURE  
46  
42  
38  
34  
30  
26  
22  
18  
14  
10  
6
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
MGS = 111  
MGS = 110  
MGS = 101  
_
+85 C  
_
+25 C  
MGS = 010  
MGS = 011  
MGS = 100  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
2
2
6
_
40 C  
10  
14  
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0  
VCACNTL (V)  
0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8  
0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9  
VCACNTL (V)  
GAIN ERROR vs VCACNTL  
GAIN ERROR vs VCACNTL  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
MGS = 010  
10MHz  
1MHz  
MGS = 100  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
5MHz  
MGS = 111  
0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8  
0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9  
0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8  
0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9  
VCACNTL (V)  
VCACNTL (V)  
GAIN MATCH: CHA to CHB, VCACNTL = 0.4V  
GAIN MATCH: CHA to CHB, VCACNTL = 2.9V  
45  
40  
35  
30  
25  
20  
15  
10  
5
45  
40  
35  
30  
25  
20  
15  
10  
5
0
0
Delta Gain (dB)  
Delta Gain (dB)  
5
ꢠ ꢅꢉꢡ ꢢ ꢣ ꢤ  
www.ti.com  
SBOS276A − AUGUST 2003 − REVISED AUGUST 2003  
TYPICAL CHARACTERISTICS (continued)  
At T = 25°C and V  
otherwise noted.  
= 5V, load resistance = 500on each output to ground, differential output (2V ) MGS = 111, and f = 5MHz, unless  
DD PP IN  
A
GAIN vs FREQUENCY  
(VCACNTL = 2.9V)  
GAIN vs FREQUENCY  
(MGS = 111)  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
50  
40  
30  
20  
10  
0
VCACNTL = 2.9V  
MGS = 111  
MGS = 100  
VCACNTL = 1.9V  
VCACNTL = 0.9V  
MGS = 010  
10  
20  
0
100k  
1M  
10M  
100M  
100k  
1M  
10M  
100M  
Frequency (MHz)  
Frequency (MHz)  
INPUT REFERRED NOISE vs VCACNTL  
RS= 50  
OUTPUT REFERRED NOISE vs VCACNTL  
1500  
1400  
1300  
1200  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
1100  
RS= 50  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
MGS = 111  
MGS = 111  
MGS = 100  
MGS = 100  
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0  
VCACNTL (V)  
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0  
VCACNTL (V)  
NOISE FIGURE vs RS  
INPUT REFERRED NOISE vs RS  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
100  
10  
1
8
7
6
5
4
3
2
1
0
1
10  
100  
1k  
10  
100  
1k  
( )  
RS  
( )  
RS  
6
ꢠ ꢅꢉ ꢡꢢ ꢣꢤ  
www.ti.com  
SBOS276A − AUGUST 2003 − REVISED AUGUST 2003  
TYPICAL CHARACTERISTICS (continued)  
At T = 25°C and V  
otherwise noted.  
= 5V, load resistance = 500on each output to ground, differential output (2V ) MGS = 111, and f = 5MHz, unless  
DD PP IN  
A
NOISE FIGURE vs VCACNTL  
HARMONIC DISTORTION vs FREQUENCY  
(Differential, 2VPP, MGS = 010)  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
30  
35  
40  
45  
50  
55  
60  
65  
70  
VCA  
VCA  
VCA  
VCA  
= 0.9V, H2  
= 0.9V, H3  
= 2.9V, H2  
= 2.9V, H3  
CNTL  
CNTL  
CNTL  
CNTL  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0  
VCACNTL (V)  
100k  
1M  
Frequency (Hz)  
10M  
10M  
10M  
HARMONIC DISTORTION vs FREQUENCY  
(Differential, 2VPP, MGS = 100)  
HARMONIC DISTORTION vs FREQUENCY  
(Differential, 2VPP, MGS = 111)  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
90  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
VCA  
VCA  
VCA  
VCA  
= 0.9V, H2  
= 0.9V, H3  
= 2.9V, H2  
= 2.9V, H3  
C NTL  
C NTL  
C NTL  
C NTL  
VCA  
VCA  
VCA  
VCA  
= 0.9V, H2  
= 0.9V, H3  
= 2.9V, H2  
= 2.9V, H3  
CNTL  
CNTL  
CNTL  
CNTL  
100k  
1M  
10M  
100k  
1M  
Frequency (Hz)  
Frequency (Hz)  
HARMONIC DISTORTION vs FREQUENCY  
(SingleEnded, 1VPP, MGS = 010)  
HARMONIC DISTORTION vs FREQUENCY  
(SingleEnded, 1VPP, MGS = 100)  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
90  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
90  
VCA  
VCA  
VCA  
VCA  
= 0.9V, H2  
VCA  
VCA  
VCA  
VCA  
= 0.9V, H2  
CNTL  
CNTL  
CNTL  
CNTL  
CNTL  
= 0.9V, H3  
= 0.9V, H3  
= 2.9V, H2  
= 2.9V, H3  
CNTL  
CNTL  
CNTL  
= 2.9V, H2  
= 2.9V, H3  
100k  
1M  
10M  
100k  
1M  
Frequency (Hz)  
Frequency (Hz)  
7
ꢠ ꢅꢉꢡ ꢢ ꢣ ꢤ  
www.ti.com  
SBOS276A − AUGUST 2003 − REVISED AUGUST 2003  
TYPICAL CHARACTERISTICS (continued)  
At T = 25°C and V  
otherwise noted.  
= 5V, load resistance = 500on each output to ground, differential output (2V ) MGS = 111, and f = 5MHz, unless  
DD PP IN  
A
HARMONIC DISTORTION vs FREQUENCY  
(SingleEnded, 1VPP, MGS = 111)  
HARMONIC DISTORTION vs VCACNTL  
(Differential, 2VPP, 5MHz)  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
90  
0
5
MGS = 010, H2  
MGS = 100, H2  
MGS = 111, H2  
MGS = 010, H3  
MGS = 100, H3  
MGS = 111, H3  
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
VCA  
VCA  
VCA  
VCA  
= 0.9V, H2  
CNTL  
CNTL  
CNTL  
CNTL  
= 0.9V, H3  
= 2.9V, H2  
= 2.9V, H3  
0.9  
1.1  
1.3  
1.5  
1.7  
1.9  
2.1  
2.3  
2.5  
2.7  
2.9  
100k  
1M  
10M  
VCACNTL (V)  
Frequency (Hz)  
HARMONIC DISTORTION vs VCACNTL  
(SingleEnded, 1VPP, 5MHz)  
INTERMODULATION DISTORTION  
(SingleEnded, 1VPP, fIN = 10MHz)  
30  
35  
40  
45  
50  
55  
60  
65  
0
MGS = 010, H2  
MGS = 100, H2  
MGS = 111, H2  
MGS = 010, H3  
MGS = 100, H3  
MGS = 111, H3  
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
0.9  
1.1  
1.3  
1.5  
1.7  
1.9  
2.1  
2.3  
2.5  
2.7  
2.9  
9.5 9.6 9.7 9.8 9.9 10.0 10.1 10.2 10.3 10.4 10.5  
Frequency (MHz)  
VCACNTL (V)  
CROSS TALK vs FREQUENCY  
(Differential, 2VPP, MGS = 011)  
INTERMODULATION DISTORTION  
(Differential, 2 VPP, fIN = 10MHz)  
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
10  
20  
30  
40  
50  
60  
70  
VCACNTL = 0.9V  
VCACNTL = 1.9V  
VCACNTL = 2.9V  
10M  
100  
1M  
20M  
9.5 9.6 9.7 9.8 9.9 10.0 10.1 10.2 10.3 10.4 10.5  
Frequency (MHz)  
Frequency (Hz)  
8
ꢠ ꢅꢉ ꢡꢢ ꢣꢤ  
www.ti.com  
SBOS276A − AUGUST 2003 − REVISED AUGUST 2003  
TYPICAL CHARACTERISTICS (continued)  
At T = 25°C and V  
otherwise noted.  
= 5V, load resistance = 500on each output to ground, differential output (2V ) MGS = 111, and f = 5MHz, unless  
DD PP IN  
A
ICC (CHA and CHB) vs TEMPERATURE  
OVERLOAD DISTORTION vs FREQUENCY  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
0
10  
20  
30  
40  
50  
60  
0.2V  
0.3V  
0.5V  
1V  
40 30 20 10  
0
10 20 30 40 50 60 70 80 90  
1M  
10M  
_
Temperature ( C)  
Frequency (Hz)  
OVERVIEW  
The VCA2619 is a dual-channel, VGA consisting of three  
primary blocks: an Input Buffer, a VCA, and a PGA. All  
stages are ac coupled, with the coupling into the PGA  
stage being made variable by placing an external capaci-  
tor between the CP1 and CP2 pins. This will be discussed  
further in the PGA section. By using the internal coupling  
into the PGA, the result is a high-pass filter characteristic  
with cutoff at approximately 75kHz. The output PGA natu-  
rally rolls off at around 30MHz, making the usable band-  
width of the VCA2619 between 75kHz and 30MHz.  
INPUT BUFFER  
The input buffer is a unity gain amplifier (gain of +1) with  
a bandwidth of 100MHz with an input resistance of approx-  
imately 600k. The input buffer isolates the circuit driving  
the VCA2619 inputs from the internal VCA block, which  
would present a varying impedance to the input circuitry.  
To allow symmetrical operation of the input buffer, the input  
to the buffer must be ac coupled through an external ca-  
pacitor. The recommended value of the capacitor is  
0.01µF. It should be noted that if the capacitor value were  
increased, the power-on time of the VCA2619 would be in-  
creased. If a decrease in the power-on time is needed, the  
value can be decreased to no less than 100pF.  
Channel A  
Input  
Channel A  
Output  
Buffer  
VCA  
PGA  
Maximum  
Gain  
Select  
Analog  
Control  
VCA  
Control  
MGS  
Channel B  
Input  
Channel B  
Output  
Buffer  
VCA  
PGA  
Figure 1. Simplified Block Diagram of the  
VCA2619.  
9
ꢠ ꢅꢉꢡ ꢢ ꢣ ꢤ  
www.ti.com  
SBOS276A − AUGUST 2003 − REVISED AUGUST 2003  
The MGS bits adjust the overall range of attenuation and  
maximum gain while the VCACNTL voltage adjusts the  
actual attenuation factor. Figure 3 is a simplified version of  
the voltage control attenuator. Figure 4 illustrates the  
piecewise approximation to the logarithmic control  
characteristics. At any given maximum gain setting, the  
analog variable gain characteristic is linear in dB as a  
function of the control voltage, and is created as a  
piecewise approximation of an ideal dB-linear transfer  
function. The VCA control circuitry is common to both  
channels of the VCA2619. The range for the VCACNTL  
input spans from 0V to 3V. Although overdriving the  
VCACNTL input above the recommended 3V maximum will  
not damage the part, this condition should be avoided.  
VOLTAGE-CONTROLLED ATTENUATOR  
The magnitude of the VCA input signal from the input  
buffer is reduced by a programmable attenuation factor,  
set by the analog VCA Control Voltage (VCACNTL) at pin  
24. The maximum attenuation is programmable by using  
the three MGS bits (pins 21, 22, and 23). Figure 2  
illustrates this dual-adjust characteristic.  
0
Minimum Attenuation  
41  
Maximum Attenuation  
52.3  
0
3.0V  
Control Voltage  
Figure 2. Swept Attenuator Characteristic.  
RS  
Input  
VCM  
Output  
Q1A  
Q1B  
Q2A  
Q2B  
Q3A  
Q3B  
Q4A  
Q4B  
Q5A  
Q5B  
A1  
A2  
A3  
A4  
A5  
B1  
B2  
Figure 3. Simplified Attenuator Diagram.  
10  
ꢠ ꢅꢉ ꢡꢢ ꢣꢤ  
www.ti.com  
SBOS276A − AUGUST 2003 − REVISED AUGUST 2003  
Attenuator  
Input  
A1 to A10 Attenuator Stages  
QS  
Attenuator  
Output  
RS  
Q
1
Q
2
Q
3
Q
4
Q
5
Q6  
Q
7
Q
8
Q9  
A10  
Q
10  
VCM  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
C10  
V1  
V2  
V3  
V4  
V5  
V6  
V7  
V8  
V9  
V10  
Control  
Input  
C1 to C10 Clipping Amplifiers  
0dB  
5.2dB  
Attenuation Characteristic of Individual FETs  
VCM  
V
T
0
V1  
V2  
V3  
V4  
V5  
V6  
V7  
V8  
V9  
V10  
Characteristic of Attenuator Control Stage Output  
OVERALL CONTROL CHARACTERISTICS OF ATTENUATOR  
0dB  
52.3dB  
0.2V  
3V  
Control Signal  
Figure 4. Piecewise Approximation to Logarithmic Control Characteristics.  
11  
ꢠ ꢅꢉꢡ ꢢ ꢣ ꢤ  
www.ti.com  
SBOS276A − AUGUST 2003 − REVISED AUGUST 2003  
Table 1. MGS Settings.  
PGA POST-AMPLIFIER  
Figure 5 shows a simplified circuit diagram of the PGA  
block. As stated before, the input to the PGA is ac coupled  
with an internal capacitor. Provisions are made so that an  
external capacitor can be placed in parallel with the inter-  
nal capacitor, thus lowering the usable low-frequency  
bandwidth. The low-frequency bandwidth is set by the fol-  
lowing equation:  
ATTENUATOR +  
DIFFERENTIAL PGA  
GAIN  
MGS  
SETTING  
ATTENUATOR GAIN  
VCA = 0.2V TO 3V  
CNTL  
Not Valid  
000  
001  
010  
011  
100  
101  
110  
111  
Not Valid  
Not Valid  
Not Valid  
−41.0dB to 0dB  
43.3dB to 0dB  
46.4dB to 0dB  
48.2dB to 0dB  
50.2dB to 0dB  
52.3dB to 0dB  
12dB to 29dB  
11.5dB to 31.8dB  
11.5dB to 34.9dB  
10.6dB to 37.6dB  
9.8dB to 40.4dB  
9.3dB to 43.3dB  
1
(
(
))  
2 @ p @ 500kW @ 220pF ) CEXTERNAL  
(1)  
where CEXTERNAL is the external capacitor value in farads.  
The PGA architecture converts the single−ended signal  
from the VCA into a differential signal. Low input noise was  
also a requirement of the PGA design due to the large  
amount of signal attenuation that can be asserted before  
the PGA. At minimum VCA attenuation (used for small in-  
put signals), the input buffer noise dominates; at maximum  
VCA attenuation (large input signals), the PGA noise dom-  
inates. Note that if the PGA output is single−ended, the ap-  
parent gain will be 6dB lower.  
Care should be taken to avoid using too large a value of  
capacitor, as this can increase the power-on delay time.  
The PGA gain is programmed with the same MGS bits that  
control the VCA maximum attenuation factor. For VCA-  
= 3V (no attenuation), the VCA + PGA gain will be  
CNTL  
controlled by the programmed PGA gain (29dB to 43dB in  
approximately 3dB steps). For clarity, the gain and attenu-  
ation factors are detailed in Table I.  
VDD  
To Bias  
Circuitry  
Q1  
Q11  
Q12  
Q9  
RL  
RL  
VCAOUT  
P
VCAOUTN  
Q3  
Q4  
Q8  
VCM  
VCM  
RS1  
RS2  
Q13  
Q7  
+In  
In  
Q14  
Q2  
Q10  
Q5  
Q6  
To Bias  
Circuitry  
Figure 5. Simplified Block Diagram of PGA.  
12  
ꢠ ꢅꢉ ꢡꢢ ꢣꢤ  
www.ti.com  
SBOS276A − AUGUST 2003 − REVISED AUGUST 2003  
Adequate power−supply decoupling must be used in order  
to achieve the best possible performance. Decoupling ca-  
pacitors on the VCACNTL voltage should also be used to  
help minimize noise. Recommended values can be ob-  
tained from the layout diagram of Figure 6.  
LAYOUT CONSIDERATIONS  
The VCA2619 is an analog amplifier capable of high gain.  
When working on a PCB layout for the VCA2619, it is rec-  
ommended to utilize a solid ground plane that is connected  
to analog ground. This helps to maximize the noise perfor-  
mance of the VCA2619.  
+5V  
0.1µF  
1µF  
+5V  
0.1µF  
0.1µF  
1µF  
1µF  
28  
3
5
0.01µF  
0.01µF  
VDDA VDDR VCM  
1
25  
OUT  
INA  
INA  
OUTA  
A
0.01µF  
26  
+OUTA  
+OUTA  
VCA2619  
0.01µF  
0.01µF  
16  
15  
OUTB  
+OUTB  
24  
OUTB  
0.01µF  
8
INB  
INB  
+OUTB  
VDDB VBIAS VCNTL  
13  
4
1 F  
µ
0.1 F  
µ
0.1 F  
µ
+5V  
1 F  
µ
0.1µF  
VCACNTL  
Figure 6. VCA2619 Layout.  
13  
PACKAGE OPTION ADDENDUM  
www.ti.com  
9-Dec-2004  
PACKAGING INFORMATION  
Orderable Device  
Status (1)  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
TQFP  
TQFP  
Drawing  
VCA2619YR  
VCA2619YT  
ACTIVE  
ACTIVE  
PBS  
32  
32  
2000  
250  
None  
None  
Call TI  
Call TI  
Call TI  
Call TI  
PBS  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - May not be currently available - please check http://www.ti.com/productcontent for the latest availability information and additional  
product content details.  
None: Not yet available Lead (Pb-Free).  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean "Pb-Free" and in addition, uses package materials that do not contain halogens,  
including bromine (Br) or antimony (Sb) above 0.1% of total product weight.  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDECindustry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
MECHANICAL DATA  
MPQF027 – NOVEMBER 1995  
PBS (S-PQFP-G32)  
PLASTIC QUAD FLATPACK  
0,23  
0,17  
M
0,50  
0,08  
24  
17  
25  
32  
16  
9
0,13 NOM  
1
8
3,50 TYP  
Gage Plane  
5,05  
SQ  
4,95  
0,25  
7,10  
SQ  
0,10 MIN  
6,90  
0°7°  
0,70  
0,40  
1,05  
0,95  
Seating Plane  
0,08  
1,20 MAX  
4087735/A 11/95  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2004, Texas Instruments Incorporated  

相关型号:

VCA2619YT

Dual, Variable Gain Amplifier with Input Buffer
BB

VCA3

3.3, 5.0 volt CMOS Oscillator
VECTRON

VCA3-103

VCA3-103, 105 Pin Crystal Oscillators
VECTRON

VCA3-203

VCA3-203, 205 14 Pin Dip Crystal Oscillators
VECTRON

VCA3-A0A-25M00

3.3, 5.0 volt CMOS Oscillator
VECTRON

VCA3-A0B-25M00

3.3, 5.0 volt CMOS Oscillator
VECTRON

VCA3-A0C-25M00

3.3, 5.0 volt CMOS Oscillator
VECTRON

VCA3-A0D-25M00

3.3, 5.0 volt CMOS Oscillator
VECTRON

VCA3-A0E-25M00

3.3, 5.0 volt CMOS Oscillator
VECTRON

VCA3-A0F-25M00

3.3, 5.0 volt CMOS Oscillator
VECTRON

VCA3-A0G-25M00

3.3, 5.0 volt CMOS Oscillator
VECTRON

VCA3-A0H-25M00

3.3, 5.0 volt CMOS Oscillator
VECTRON