VCA2614Y/2K [BB]

Dual, VARIABLE GAIN AMPLIFIER with Input Buffer; 双可变增益放大器,具有输入缓冲器
VCA2614Y/2K
型号: VCA2614Y/2K
厂家: BURR-BROWN CORPORATION    BURR-BROWN CORPORATION
描述:

Dual, VARIABLE GAIN AMPLIFIER with Input Buffer
双可变增益放大器,具有输入缓冲器

放大器
文件: 总15页 (文件大小:289K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
VCA2614  
V
C
A
2
6
1
4
SBOS185D JANUARY 2001 REVISED MARCH 2003  
Dual, VARIABLE GAIN AMPLIFIER  
with Input Buffer  
FEATURES  
GAIN RANGE: 40dB  
DESCRIPTION  
The VCA2614 is a highly integrated, dual receive channel,  
Variable Gain Amplifier (VGA) with analog gain control.  
40MHz BANDWIDTH  
The VCA2614’s VGA section consists of two parts: the Volt-  
age Controlled Attenuator (VCA) and the Programmable Gain  
Amplifier (PGA). The gain and gain range of the PGA can be  
digitally programmed. The combination of these two program-  
mable elements results in a variable gain ranging from 0dB up  
to a maximum gain as defined by the user through external  
connections. The single-ended unity gain input buffer provides  
predictable high input impedance. The output of the VGA can  
be used in either a single-ended or differential mode to drive  
high-performance Analog-to-Digital Converters (ADCs). A sepa-  
rate power-down pin reduces power consumption.  
LOW CROSSTALK: 70dB at Max Gain, 5MHz  
HIGH-SPEED VARIABLE GAIN ADJUST  
POWER SHUTDOWN MODE  
HIGH IMPEDANCE INPUT BUFFER  
APPLICATIONS  
ULTRASOUND SYSTEMS  
GAMMA CAMERAS  
WIRELESS RECEIVERS  
TEST EQUIPMENT  
The VCA2614 also features low crosstalk and outstanding  
distortion performance. The combination of low noise and gain  
range programmability makes the VCA2614 a versatile build-  
ing block in a number of applications where noise perfor-  
mance is critical. The VCA2614 is available in a TQFP-32  
package.  
CP2A  
CP1A  
VCA2614  
(1 of 2 Channels)  
NOUTA  
Voltage  
Control  
Attenuator  
Programmable  
Gain Amplifier  
Buffer  
INA  
POUTA  
MGS1  
Maximum  
Gain Select  
MGS3  
Analog  
Control  
Maximum Gain  
MGS2  
VCACNTL  
Select  
NOUTB  
Voltage  
Control  
Attenuator  
Programmable  
Gain Amplifier  
Buffer  
INB  
POUTB  
CP2B  
CP1B  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
Copyright © 2001-2003, Texas Instruments Incorporated  
www.ti.com  
ABSOLUTE MAXIMUM RATINGS(1)  
ELECTROSTATIC  
DISCHARGE SENSITIVITY  
This integrated circuit can be damaged by ESD. Texas Instru-  
ments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling  
and installation procedures can cause damage.  
Power Supply (+VS) ............................................................................. +6V  
Analog Input ............................................................. 0.3V to (+VS + 0.3V)  
Logic Input ............................................................... 0.3V to (+VS + 0.3V)  
Case Temperature ......................................................................... +100°C  
Junction Temperature .................................................................... +150°C  
Storage Temperature ...................................................... 40°C to +150°C  
NOTE: (1) Stresses above those listed under Absolute Maximum Ratings”  
may cause permanent damage to the device. Exposure to absolute maximum  
conditions for extended periods may affect device reliability.  
ESD damage can range from subtle performance degrada-  
tion to complete device failure. Precision integrated circuits  
may be more susceptible to damage because very small  
parametric changes could cause the device not to meet its  
published specifications.  
PACKAGE/ORDERING INFORMATION  
SPECIFIED  
PACKAGE  
DESIGNATOR(1)  
TEMPERATURE  
RANGE  
PACKAGE  
MARKING  
ORDERING  
NUMBER  
TRANSPORT  
MEDIA, QUANTITY  
PRODUCT  
PACKAGE-LEAD  
VCA2614Y  
TQFP-32 Surface-Mount  
PBS  
40°C to +85°C  
VCA2614Y  
VCA2614Y/250  
VCA2614Y/2K  
Tape and Reel, 250  
Tape and Reel, 2000  
"
"
"
"
"
NOTE: (1) For the most current specifications and package information, refer to our web site at www.ti.com.  
ELECTRICAL CHARACTERISTICS  
At TA = +25°C, VDD = 5V, load resistance = 500on each output to ground differential output (2Vp-p), MGS = 011, and fIN = 5MHz, unless otherwise noted.  
VCA2614Y  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
BUFFER  
Input Resistance  
600  
5
kΩ  
pF  
Input Capacitance  
Input Bias Current  
Maximum Input Voltage  
Input Voltage Noise  
Input Current Noise  
Noise Figure  
1
nA  
1
Vp-p  
Hz  
MGS = 111, PGA Gain = 44.2dB, RS = 50Ω  
Independent of Gain  
4.8  
350  
13  
100  
nV/  
Hz  
fA/  
dB  
RF = 550, PGA Gain = 44.2dB, RS = 75Ω  
Bandwidth  
MHz  
PROGRAMMABLE VARIABLE GAIN AMPLIFIER  
Peak Input Voltage  
1
40  
Vp-p  
MHz  
V/µs  
V
3dB Bandwidth  
Slew Rate  
300  
Output Signal Range  
RL 500Each Side to Ground  
2.5 ±1  
1
Output Impedance  
f = 5MHz  
Output Short-Circuit Current  
±40  
mA  
dBc  
dBc  
dB  
3rd-Harmonic Distortion  
2nd-Harmonic Distortion  
Overload Performance (2nd-Harmonic  
Distortion)  
f = 5MHz, VOUT = 2Vp-p, VCACNTL = 3.0V  
f = 5MHz, VOUT = 2Vp-p, VCACNTL = 3.0V  
Input Signal = 1Vp-p, MGS = 111, VCACNTL = 2V  
45  
45  
60  
50  
40 to 45  
Time Delay  
5
ns  
dBc  
dB  
IMD, 2-Tone  
VOUT = 2Vp-p, f = 9.95MHz  
59  
70  
Crosstalk  
Group Delay Variation  
1MHz < f < 10MHz, Full Gain Range  
13  
ns  
ACCURACY  
Gain Slope  
10.5  
dB/V  
dB  
Gain Error  
±2(1)  
Output Offset Voltage  
±50  
mV  
GAIN CONTROL INTERFACE  
Input Voltage (VCACNTL) Range  
Input Resistance  
0.2 to 3.0  
V
1
MΩ  
µs  
Response Time  
40dB Gain Change, MGS = 111  
Operating, Each Channel  
0.2  
POWER SUPPLY  
Specified Operating Range  
Power Dissipation  
Power-Down  
4.75  
5.0  
120  
9.2  
5.25  
150  
V
mW  
mW  
NOTE: (1) Referenced to best fit dB-linear curve.  
VCA2614  
2
www.ti.com  
SBOS185D  
PIN CONFIGURATION  
Top View  
TQFP  
+INA  
NC  
1
2
3
4
5
6
7
8
24 VCACNTL  
23 MGS3  
22 MGS2  
21 MGS1  
20 PD  
VDDR  
VBIAS  
VCM  
VCA2614  
GNDR  
NC  
19 NC  
18 NC  
+INB  
17 DNC  
PIN DESCRIPTIONS  
PIN  
DESIGNATOR  
DESCRIPTION  
PIN  
DESIGNATOR  
DESCRIPTION  
1
2
+INA  
NC  
Input Channel A  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
DNC  
NC  
Do Not Connect  
No Internal Connection  
Internal Reference Supply  
Bias Voltage  
No Internal Connection  
3
VDDR  
VBIAS  
VCM  
NC  
No Internal Connection  
4
PD  
Power Down (Active LOW)  
Maximum Gain Select 1 (MSB)  
Maximum Gain Select 2  
Maximum Gain Select 3 (LSB)  
VCA Analog Control  
5
Common-Mode Voltage  
Internal Reference Ground  
No Internal Connection  
Input Channel B  
MGS1  
MGS2  
MGS3  
VCACNTL  
NOUTA  
POUTA  
GNDA  
VDDA  
CP1A  
6
GNDR  
NC  
7
8
+INB  
NC  
9
No Internal Connection  
Do Not Connect  
Negative VCA Output Channel A  
Positive VCA Output Channel A  
Ground Channel A  
10  
11  
12  
13  
14  
15  
16  
DNC  
CP2B  
CP1B  
VDDB  
GNDB  
POUTB  
NOUTB  
Coupling Capacitor Channel B  
Coupling Capacitor Channel B  
+5V Supply Channel B  
Ground Channel B  
+5V Supply Channel A  
Coupling Capacitor Channel A  
Coupling Capacitor Channel A  
Do Not Connect  
CP2A  
Positive Output Channel B  
Negative Output Channel B  
DNC  
NC  
No Internal Connection  
VCA2614  
SBOS185D  
3
www.ti.com  
TYPICAL CHARACTERISTICS  
At TA = +25°C, VDD = 5V, load resistance = 500on each output to ground, differential output (2Vp-p) MGS = 011, and fIN = 5MHz, unless otherwise noted.  
GAIN vs VCACNTL  
GAIN ERROR vs TEMPERATURE  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
2.0  
1.5  
1.0  
0.5  
0
0.5  
1.0  
1.5  
2.0  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0  
VCACNTL (V)  
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0  
VCACNTL (V)  
GAIN ERROR vs VCACNTL  
GAIN ERROR vs VCACNTL  
2.0  
1.5  
2.0  
1.5  
1.0  
1.0  
0.5  
0.5  
0
0
0.5  
1.0  
1.5  
2.0  
0.5  
1.0  
1.5  
2.0  
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0  
VCACNTL (V)  
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0  
VCACNTL (V)  
GAIN MATCH: CHA to CHB, VCACNTL = 0.2V  
GAIN MATCH: CHA to CHB, VCACNTL = 3.0V  
120  
100  
80  
60  
40  
20  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
Delta Gain (dB)  
Delta Gain (dB)  
VCA2614  
4
www.ti.com  
SBOS185D  
TYPICAL CHARACTERISTICS (Cont.)  
At TA = +25°C, VDD = 5V, load resistance = 500on each output to ground, differential output (2Vp-p) MGS = 011, and fIN = 5MHz, unless otherwise noted.  
GAIN vs FREQUENCY  
(VCACNTL = 3.0V)  
GAIN vs FREQUENCY  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
35  
30  
25  
20  
15  
10  
5
VCACNTL = 3.0V  
MGS = 111  
MGS = 011  
VCACNTL = 1.6V  
VCACNTL = 0.2V  
0
MGS = 001  
5  
10  
15  
0
100k  
1M  
10M  
100M  
100k  
1M  
10M  
100M  
Frequency (Hz)  
Frequency (Hz)  
INPUT REFERRED NOISE vs VCACNTL  
OUTPUT REFERRED NOISE vs VCACNTL  
220  
200  
180  
160  
140  
120  
100  
80  
450  
400  
350  
300  
250  
200  
150  
100  
50  
60  
40  
20  
0
0
0
0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0  
VCACNTL (V)  
0
0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0  
VCACNTL (V)  
NOISE FIGURE vs RS  
INPUT REFERRED NOISE vs RS  
24  
22  
20  
18  
16  
14  
12  
10  
8
100  
10  
1
6
4
2
10  
100  
1k  
1
10  
100  
1k  
RS ()  
RS ()  
VCA2614  
SBOS185D  
5
www.ti.com  
TYPICAL CHARACTERISTICS (Cont.)  
At TA = +25°C, VDD = 5V, load resistance = 500on each output to ground, differential output (2Vp-p) MGS = 011, and fIN = 5MHz, unless otherwise noted.  
HARMONIC DISTORTION vs FREQUENCY  
(Differential, 2Vp-p, MGS = 001)  
NOISE FIGURE vs VCACNTL  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
VCACNTL = 0.2V, H2  
VCACNTL = 0.2V, H3  
VCACNTL = 3.0V, H2  
VCACNTL = 3.0V, H3  
0
100k  
1M  
10M  
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0  
VCACNTL (V)  
Frequency (Hz)  
HARMONIC DISTORTION vs FREQUENCY  
(Differential, 2Vp-p, MGS = 011)  
HARMONIC DISTORTION vs FREQUENCY  
(Differential, 2Vp-p, MGS = 111)  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
90  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
VCACNTL = 0.2V, H2  
VCACNTL = 0.2V, H3  
VCACNTL = 3.0V, H2  
VCACNTL = 3.0V, H3  
VCA  
VCA  
VCA  
VCA  
= 0.2V, H2  
= 0.2V, H3  
= 3.0V, H2  
= 3.0V, H3  
CNTL  
CNTL  
CNTL  
CNTL  
100k  
1M  
10M  
100k  
1M  
Frequency (MHz)  
10M  
Frequency (Hz)  
HARMONIC DISTORTION vs FREQUENCY  
(Single-Ended, 1Vp-p, MGS = 001)  
HARMONIC DISTORTION vs FREQUENCY  
(Single-Ended, 1Vp-p, MGS = 011)  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
90  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
90  
VCACNTL = 0.2V, H2  
VCA  
VCA  
VCA  
VCA  
= 0.2V, H2  
= 0.2V, H3  
= 3.0V, H2  
= 3.0V, H3  
CNTL  
CNTL  
CNTL  
CNTL  
VCACNTL = 0.2V, H3  
VCACNTL = 3.0V, H2  
VCACNTL = 3.0V, H3  
100k  
1M  
10M  
100k  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
VCA2614  
6
www.ti.com  
SBOS185D  
TYPICAL CHARACTERISTICS (Cont.)  
At TA = +25°C, VDD = 5V, load resistance = 500on each output to ground, differential output (2Vp-p) MGS = 011, and fIN = 5MHz, unless otherwise noted.  
HARMONIC DISTORTION vs VCACNTL  
(Differential, 2Vp-p, 5MHz)  
HARMONIC DISTORTION vs FREQUENCY  
(Single-Ended, 1Vp-p, MGS = 111)  
0
5  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
90  
MGS = 001, H2  
MGS = 011, H2  
MGS = 111, H2  
MGS = 001, H3  
MGS = 011, H3  
MGS = 111, H3  
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
VCA  
VCA  
VCA  
VCA  
= 0.2V, H2  
CNTL  
CNTL  
CNTL  
CNTL  
= 0.2V, H3  
= 3.0V, H2  
= 3.0V, H3  
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0  
VCACNTL (V)  
100k  
1M  
10M  
Frequency (Hz)  
INTERMODULATION DISTORTION  
(Single-Ended, 1Vp-p, f = 10MHz, VCACNTRL = 3.0V)  
HARMONIC DISTORTION vs VCACNTL  
(Single-Ended, 1Vp-p, 5MHz)  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
0
5  
MGS = 001, H2  
MGS = 011, H2  
MGS = 111, H2  
MGS = 001, H3  
MGS = 011, H3  
MGS = 111, H3  
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0  
VCACNTL (V)  
9.6  
9.8  
10  
10.2  
10.4  
Frequency (MHz)  
CROSSTALK vs FREQUENCY  
(Differential, 2Vp-p, MGS = 011)  
INTERMODULATION DISTORTION  
(Differential, 2Vp-p, f = 10MHz, VCACNTL = 3.0V)  
10  
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
10  
20  
30  
40  
50  
60  
70  
80  
90  
VCACNTRL = 0V  
VCACNTRL = 1.5V  
VCACNTRL = 3.0V  
9.6  
9.8  
10  
10.2  
10.4  
1
10  
Frequency (MHz)  
100  
Frequency (MHz)  
VCA2614  
SBOS185D  
7
www.ti.com  
TYPICAL CHARACTERISTICS (Cont.)  
At TA = +25°C, VDD = 5V, load resistance = 500on each output to ground, differential output (2Vp-p) MGS = 011, and fIN = 5MHz, unless otherwise noted.  
OVERLOAD DISTORTION vs FREQUENCY  
ICC vs TEMPERATURE  
52  
50  
48  
46  
44  
42  
40  
0
10  
20  
30  
40  
50  
60  
0.5V  
0.1  
1V  
0.25V  
40  
25  
10  
5
20  
35  
50  
65  
80  
95  
1
100  
Temperature (°C)  
Frequency (Hz)  
GROUP DELAY vs FREQUENCY  
VCACNTL = 3.0V  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
VCACNTL = 0.2V  
2
1
0
1
10  
100  
Frequency (MHz)  
VCA2614  
8
www.ti.com  
SBOS185D  
power-on time of the VCA2614 would be increased. If a  
decrease in the power-on time is needed, the value can be  
decreased to no less than 100pF.  
OVERVIEW  
The VCA2614 is a dual-channel, VGA consisting of three  
primary blocks: an Input Buffer, a VCA, and a PGA (as  
shown in Figure 1). All stages are AC-coupled with the  
coupling into the PGA stage being made variable by placing  
an external capacitor between the CP1 and CP2 pins. This will  
be discussed further in the PGA section. By using the internal  
coupling into the PGA, the result is a high-pass filter charac-  
teristic with cutoff at approximately 75kHz. The output PGA  
naturally rolls off at around 40MHz, making the usable  
bandwidth of the VCA2614 between 75kHz and 40MHz.  
VOLTAGE-CONTROLLED ATTENUATOR  
The magnitude of the VCA input signal from the input buffer  
is reduced by a programmable attenuation factor, set by the  
analog VCA Control Voltage (VCACNTL) at pin 24. The maxi-  
mum attenuation is programmable by using the three MGS  
bits (pins 21, 22, and 23). Figure 2 illustrates this dual-adjust  
characteristic.  
The MGS bits adjust the overall range of attenuation and  
maximum gain while the VCACNTL voltage adjusts the actual  
attenuation factor. At any given maximum gain setting, the  
analog variable gain characteristic is linear in dB as a  
function of the control voltage, and is created as a piecewise  
approximation of an ideal dB-linear transfer function, see  
Figure 4. The VCA control circuitry is common to both  
channels of the VCA2614. The range for the VCACNTL input  
spans from 0V to 3V. Although overdriving the VCACNTL input  
above the recommended 3V maximum will not damage the  
part, this condition should be avoided.  
Channel A  
Output  
Channel A  
Input  
Buffer  
VCA  
PGA  
Maximum  
Gain  
Select  
Analog  
Control  
VCA  
Control  
MGS  
Channel B  
Output  
Channel B  
Input  
Buffer  
VCA  
PGA  
0
Minimum Attenuation  
FIGURE 1. Simplified Block Diagram of the VCA2614.  
24.1  
INPUT BUFFER  
The input buffer is a unity gain amplifier (gain of +1) with a  
bandwidth of 100MHz with an input resistance of approxi-  
mately 600k. The input buffer isolates the circuit driving the  
VCA2614 inputs from the internal VCA block, which would  
present a varying impedance to the input circuitry. To allow  
symmetrical operation of the input buffer, the input to the  
buffer must be AC-coupled through an external capacitor.  
The recommended value of the capacitor is 0.01µF. It should  
be noted that if the capacitor value were increased, the  
Maximum Attenuation  
40  
0
3.0V  
Control Voltage  
FIGURE 2. Swept Attenuator Characteristic.  
RS  
OUTPUT  
INPUT  
Q1A  
Q1B  
Q2A  
Q2B  
Q3A  
Q3B  
Q4A  
Q4B  
Q5A  
Q5B  
VCM  
A1  
A2  
A3  
A4  
A5  
B1  
B2  
PROGRAMMABLE ATTENUATOR SECTION  
FIGURE 3. Programmable Attenuator Section.  
VCA2614  
SBOS185D  
9
www.ti.com  
Attenuator  
Input  
A1 to A10 Attenuator Stages  
QS  
Attenuator  
Output  
RS  
Q1  
Q2  
Q3  
Q4  
Q5  
Q6  
Q7  
Q8  
Q9  
Q10  
VCM  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
A10  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
C10  
V1  
V2  
V3  
V4  
V5  
V6  
V7  
V8  
V9  
V10  
Control  
Input  
C1 to C10 Clipping Amplifiers  
0dB  
4.4dB  
Attenuation Characteristic of Individual FETs  
VCM VT  
0
V1  
V2  
V3  
V4  
V5  
V6  
V7  
V8  
V9  
V10  
Characteristic of Attenuator Control Stage Output  
OVERALL CONTROL CHARACTERISTICS OF ATTENUATOR  
0dB  
44dB  
0.3V  
3V  
Control Signal  
FIGURE 4. Piecewise Approximation to Logarithmic Control Characteristics.  
VCA2614  
10  
www.ti.com  
SBOS185D  
PGA POST-AMPLIFIER  
MGS  
SETTING  
ATTENUATOR GAIN  
VCACNTL = 0.02V to 3V  
ATTENUATOR +  
DIFFERENTIAL PGA GAIN  
Figure 5 shows a simplified circuit diagram of the PGA block.  
As stated before, the input to the PGA is AC-coupled by an  
internal capacitor. Provisions are made so that an external  
capacitor can be placed in parallel with the internal capacitor,  
thus lowering the usable low-frequency bandwidth. The low-  
frequency bandwidth is set by the following equation:  
000  
001  
010  
011  
100  
101  
110  
111  
Not Valid  
Not Valid  
24.1dB to 0dB  
26.9dB to 0dB  
29.5dB to 0dB  
32.4dB to 0dB  
34.8dB to 0dB  
37.3dB to 0dB  
40.0dB to 0dB  
2.6dB to 26.7dB  
2.6dB to 29.5dB  
3.0dB to 35.6dB  
3.1dB to 35.5dB  
3.4dB to 38.3dB  
3.7dB to 44.1dB  
4.1dB to 44.2dB  
1
2• π • 500kΩ • 220pF + C  
(
)
)
(
EXTERNAL  
TABLE I. MGS Settings.  
where CEXTERNAL is the external capacitor value in picofarads.  
Care should be taken to avoid using too large a value of  
capacitor, as this can increase the power-on delay time.  
input buffer noise dominates; at maximum VCA attenuation  
(large input signals), the PGA noise dominates. Note that if  
the PGA output is used single-ended, the apparent gain will  
be 6dB lower.  
As described previously, the PGA gain is programmed with  
the same MGS bits that control the VCA maximum attenua-  
tion factor. Specifically, the maximum PGA gain at each  
MGS setting is the inverse (reciprocal) of the maximum VCA  
attenuation at that setting. Therefore, the VCA + PGA overall  
gain will always be 0dB (unity) when the analog VCACNTL  
input is set to 0V (the maximum attenuation for VCA). For  
VCACNTL = 3V (no attenuation), the VCA + PGA gain will be  
controlled by the programmed PGA gain. For clarity, the gain  
and attenuation factors are detailed in Table I.  
LAYOUT CONSIDERATIONS  
The VCA2614 is an analog amplifier capable of high gain.  
When working on a PCB layout for the VCA2614, it is  
recommended to utilize a solid ground plane that is con-  
nected to analog ground. This helps to maximize the noise  
performance of the VCA2614.  
Adequate power-supply decoupling must be used in order to  
achieve the best possible performance. Decoupling capaci-  
tors on the VCACNTL voltage should also be used to help  
minimize noise. Recommended values can be obtained from  
the layout diagram of Figure 6.  
The PGA architecture converts the single-ended signal from  
the VCA into a differential signal. Low input noise was also  
a requirement of the PGA design due to the large amount of  
signal attenuation that can be asserted before the PGA. At  
minimum VCA attenuation (used for small input signals), the  
VDD  
To Bias  
Circuitry  
Q1  
Q11  
Q12  
Q9  
RL  
RL  
VCAOUT  
P
VCAOUTN  
Q3  
Q8  
VCM  
VCM  
RS1  
RS2  
Q13  
Q4  
Q7  
+In  
In  
Q14  
Q2  
Q10  
Q5  
Q6  
To Bias  
Circuitry  
FIGURE 5. Simplified Block Diagram of the PGA Section with the VCA2614.  
VCA2614  
SBOS185D  
11  
www.ti.com  
+5V  
0.1µF  
1µF  
+5V  
0.1µF  
0.1µF  
1µF  
1µF  
28  
3
5
0.01µF  
0.01µF  
0.01µF  
V
DDA VDDR VCM  
1
25  
26  
NOUTA  
INA  
INA  
NOUTA  
POUTA  
POUTA  
VCA2614  
0.01µF  
0.01µF  
16  
15  
NOUTB  
POUTB  
24  
NOUTB  
0.01µF  
8
INB  
INB  
POUTB  
VDDB  
13  
VBIAS VCNTL  
4
1µF  
0.1µF  
0.1µF  
+5V  
1µF  
0.1µF  
VCACNTL  
FIGURE 6. VCA2614 Layout.  
VCA2614  
12  
www.ti.com  
SBOS185D  
PACKAGE DRAWING  
PBS (S-PQFP-G32)  
PLASTIC QUAD FLATPACK  
0,23  
0,17  
M
0,50  
0,08  
24  
17  
25  
32  
16  
9
0,13 NOM  
1
8
3,50 TYP  
Gage Plane  
5,05  
SQ  
4,95  
0,25  
7,10  
SQ  
0,10 MIN  
6,90  
0°7°  
0,70  
0,40  
1,05  
0,95  
Seating Plane  
0,08  
1,20 MAX  
4087735/A 11/95  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
VCA2614  
SBOS185D  
13  
www.ti.com  
PACKAGE OPTION ADDENDUM  
www.ti.com  
9-Dec-2004  
PACKAGING INFORMATION  
Orderable Device  
Status (1)  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
TQFP  
TQFP  
Drawing  
VCA2614Y/250  
VCA2614Y/2K  
ACTIVE  
ACTIVE  
PBS  
32  
32  
250  
None  
None  
CU SNPB  
CU SNPB  
Level-3-220C-168 HR  
Level-3-220C-168 HR  
PBS  
2000  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - May not be currently available - please check http://www.ti.com/productcontent for the latest availability information and additional  
product content details.  
None: Not yet available Lead (Pb-Free).  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean "Pb-Free" and in addition, uses package materials that do not contain halogens,  
including bromine (Br) or antimony (Sb) above 0.1% of total product weight.  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDECindustry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2004, Texas Instruments Incorporated  

相关型号:

VCA2615

Dual, Low-Noise Variable-Gain Amplifier with Preamp
TI

VCA2615

Dual, Variable Gain Amplifier
BB

VCA2615PFBR

Dual, Low-Noise
TI

VCA2615PFBT

Dual, Low-Noise
TI

VCA2615RGZR

Dual, Low-Noise Variable-Gain Amplifier with Preamp
TI

VCA2615RGZT

Dual, Low-Noise Variable-Gain Amplifier with Preamp
TI

VCA2616

Dual, Variable-Gain Amplifier with Low-Noise Preamp
BB

VCA2616

High Gain Adjust Range, Wideband, VARIABLE GAIN AMPLIFIER
TI

VCA2616

Dual, Variable-Gain Amplifier with Low-Noise Preamp
TAOS

VCA2616YR

Dual, Variable-Gain Amplifier with Low-Noise Preamp
TAOS

VCA2616YT

Dual, Variable-Gain Amplifier with Low-Noise Preamp
TAOS

VCA2617

Wideband, > 40dB Gain Adjust Range, Linear in V/V VARIABLE GAIN AMPLIFIER
TI