HCPL-2612#500 [AVAGO]

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 10Mbps, 0.300 INCH, SURFACE MOUNT, DIP-8;
HCPL-2612#500
型号: HCPL-2612#500
厂家: AVAGO TECHNOLOGIES LIMITED    AVAGO TECHNOLOGIES LIMITED
描述:

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 10Mbps, 0.300 INCH, SURFACE MOUNT, DIP-8

输出元件 光电
文件: 总16页 (文件大小:463K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HCPL-2602,HCPL-2612  
HighCMRLineReceiverOptocouplers  
DataSheet  
Description  
Features  
TheHCPL-2602/12areopticallycoupledlinereceivers  
that combine a GaAsP light emitting diode, an input  
current regulator and an integrated high gain photo  
detector. The input regulator serves as a line  
termination for line receiver applications. It clamps  
the line voltage and regulates the LED current so line  
reflections do not interfere with circuit performance.  
• 1000 V/ µs minimum Common Mode Rejection (CMR) at  
VCM = 50 V for HCPL-2602 and 3.5 kV/ µs minimum  
CMR at VCM = 300 V for HCPL-2612  
Line termination included – no extra circuitry required  
Accepts a broad range of drive conditions  
LED protection minimizes LED efficiency degradation  
High speed: 10 MBd (limited by transmission line in  
many applications)  
The regulator allows a typical LED current of 8.5 mA  
before it starts to shunt excess current. The output  
ofthedetectorICisanopencollectorSchottkyclamped  
Guaranteed AC and DC performance over temperature:  
0°C to 70°C  
transistor. An enable input gates the detector. The External base lead allows “LED peaking” and LED  
internal detector shield provides a guaranteed  
common mode transient immunity specification of  
1000 V/ms for the 2602, and 3500 V/ms for the 2612.  
current adjustment  
• Safety approval  
UL recognized – 3750 V rms for 1 Minute  
CSA approved  
DC specifications are defined similar to TTL logic.  
The optocoupler ac and dc operational parameters  
are guaranteed from 0°C to 70°C allowing trouble-  
free interfacing with digital logic circuits. An input  
current of 5 mA will sink an eight gate fan-out (TTL)  
at the output.  
• MIL-PRF-38534 hermetic version available (HCPL-1930/ 1)  
Applications  
• Isolated line receiver  
Computer-peripheral interface  
• Microprocessor system interface  
Digital isolation for A/ D, D/ A conversion  
Current sensing  
• Instrument input/ output isolation  
Ground loop elimination  
• Pulse transformer replacement  
• Power transistor isolation in motor drives  
Functional Diagram  
TRUTH TABLE  
(POSITIVE LOGIC)  
V
1
2
8
7
NC  
IN+  
CC  
LED ENABLE OUTPUT  
ON  
OFF  
ON  
OFF  
ON  
OFF  
H
H
L
L
NC  
NC  
L
H
H
H
L
V
E
V
IN–  
3
4
6
5
O
GND  
CATHODE  
H
SHIELD  
A 0.1 µF bypass capacitor must be connected between pins 5 and 8.  
CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to  
prevent damage and/or degradation which may be induced by ESD.  
The HCPL-2602/12 are useful as line receivers in  
high noise environments that conventional line  
receivers cannot tolerate. The higher LED threshold  
voltage provides improved immunity to differential  
noise and the internally shielded detector provides  
orders of magnitude improvement in common mode  
rejection with little or no sacrifice in speed.  
Selection Guide  
Widebody  
Hermetic  
Minimum CMR  
8-Pin DIP (300 Mil)  
Small-Outline SO-8(400 Mil)  
Hermetic  
Input  
On-  
Current  
(mA)  
Single  
Dual  
Single  
Channel  
Package  
Dual  
Channel  
Package  
Single  
Channel  
Package  
Single and  
Dual Channel  
Packages  
dV/ dt  
V
CM  
Output  
Enable  
Channel  
Package  
Channel  
Package  
(V/ µs)  
(V)  
NA  
NA  
5
YES  
NO  
YES  
NO  
YES  
NO  
YES  
YES  
YES  
NO  
YES  
6N137  
HCPL-0600  
HCPL-0601  
HCPL-0611  
HCNW137  
HCNW2601  
HCNW2611  
HCPL-2630  
HCPL-2631  
HCPL-4661  
HCPL-0630  
HCPL-0631  
HCPL-0661  
5,000  
10,000  
50  
HCPL-2601  
HCPL-2611  
1,000  
1,000  
3,500  
1,000  
50  
300  
50  
HCPL-2602[1]  
HCPL-2612[1]  
HCPL-261A  
3
HCPL-061A  
HCPL-061N  
HCPL-263A  
HCPL-263N  
HCPL-063A  
HCPL-063N  
1,000[2]  
1,000  
1,000  
50  
HCPL-261N  
NO  
[3]  
12.5  
HCPL-193X  
HCPL-56XX  
HCPL-66XX  
Notes:  
1. HCPL-2602/ 2612 devices include input current regulator.  
2. 15 kV/ µs with VCM = 1 kV can be achieved using Avago application circuit.  
3. Enable is available for single channel products only, except for HCPL-193X devices.  
2
Ordering Information  
HCPL-2602/HCPL-2612 is UL Recognized with 3750 Vrms for 1 minute per UL1577.  
Option  
Part  
Number  
RoHS  
non RoHS  
Surface  
Mount  
Gull  
Wing  
Tape  
& Reel  
Compliant Compliant Package  
Quantity  
HCPL-2602 -000E  
HCPL-2612 -300E  
-500E  
no option  
#300  
300 mil DIP-8  
50 per tube  
50 per tube  
1000 per reel  
X
X
X
X
#500  
X
To order, choose a part number from the part number column and combine with the desired option from the  
option column to form an order entry.  
Example 1:  
HCPL-2602-500E to order product of Gull Wing Surface Mount package in Tape and Reel packaging and RoHS  
compliant.  
Example 2:  
HCPL-2612 to order product of 300 mil DIP package in Tube packaging and non RoHS compliant.  
Option datasheets are available. Contact your Avago sales representative or authorized distributor for  
information.  
Remarks: The notation ‘#XXX’ is used for existing products, while (new) products launched since July 15,  
2001 and RoHS compliant will use ‘–XXXE.’  
Schematic  
+
V
V
CC  
I
I
F
I
I
8
6
2
CC  
I
O
O
V
I
90 Ω  
3
GND  
5
SHIELD  
I
E
7
V
E
4
USE OF A 0.1 µF BYPASS CAPACITOR CONNECTED  
BETWEEN PINS 5 AND 8 IS REQUIRED (SEE NOTE 1).  
3
Package Outline Drawings  
8-Pin DIP Package  
7.62 ± 0.25  
(0.300 ± 0.010)  
9.65 ± 0.25  
(0.380 ± 0.010)  
8
7
6
5
6.35 ± 0.25  
(0.250 ± 0.010)  
TYPE NUMBER  
DATE CODE  
A XXXXZ  
YYWW  
U R  
UL  
1
2
3
4
RECOGNITION  
1.78 (0.070) MAX.  
1.19 (0.047) MAX.  
+ 0.076  
- 0.051  
0.254  
5° TYP.  
+ 0.003)  
- 0.002)  
(0.010  
3.56 ± 0.13  
(0.140 ± 0.005)  
4.70 (0.185) MAX.  
0.51 (0.020) MIN.  
2.92 (0.115) MIN.  
DIMENSIONS IN MILLIMETERS AND (INCHES).  
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.  
1.080 ± 0.320  
0.65 (0.025) MAX.  
(0.043 ± 0.013)  
2.54 ± 0.25  
(0.100 ± 0.010)  
8-Pin DIP Package with Gull Wing Surface Mount Option 300  
LAND PATTERN RECOMMENDATION  
1.016 (0.040)  
9.65 ± 0.25  
(0.380 ± 0.010)  
6
5
8
1
7
6.350 ± 0.25  
(0.250 ± 0.010)  
10.9 (0.430)  
2
3
4
2.0 (0.080)  
1.27 (0.050)  
9.65 ± 0.25  
(0.380 ± 0.010)  
1.780  
(0.070)  
MAX.  
1.19  
(0.047)  
MAX.  
7.62 ± 0.25  
(0.300 ± 0.010)  
+ 0.076  
- 0.051  
0.254  
3.56 ± 0.13  
(0.140 ± 0.005)  
+ 0.003)  
- 0.002)  
(0.010  
1.080 ± 0.320  
(0.043 ± 0.013)  
0.635 ± 0.25  
(0.025 ± 0.010)  
12° NOM.  
0.635 ± 0.130  
(0.025 ± 0.005)  
2.54  
(0.100)  
BSC  
DIMENSIONS IN MILLIMETERS (INCHES).  
LEAD COPLANARITY = 0.10 mm (0.004 INCHES).  
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.  
4
Solder Reflow Thermal Profile  
Regulatory Information  
The HCPL-2602/2612 have been  
approved by the following  
organizations:  
300  
PREHEATING RATE 3°C + 1°C/–0.5°C/SEC.  
REFLOW HEATING RATE 2.5°C ± 0.5°C/SEC.  
PEAK  
TEMP.  
245°C  
PEAK  
TEMP.  
240°C  
PEAK  
TEMP.  
230°C  
UL  
200  
100  
0
2.5°C ± 0.5°C/SEC.  
Recognized under UL 1577,  
Component Recognition Program,  
File E55361.  
SOLDERING  
TIME  
200°C  
30  
160°C  
150°C  
140°C  
SEC.  
30  
SEC.  
3°C + 1°C/–0.5°C  
CSA  
PREHEATING TIME  
150°C, 90 + 30 SEC.  
50 SEC.  
Approved under CSA Component  
Acceptance Notice #5, File CA  
88324.  
TIGHT  
TYPICAL  
LOOSE  
ROOM  
TEMPERATURE  
0
50  
100  
150  
200  
250  
TIME (SECONDS)  
Note: Non-halide flux should be used.  
Recommended Pb-Free IR Profile  
TIME WITHIN 5 °C of ACTUAL  
PEAKTEMPERATURE  
t
p
20-40 SEC.  
260 +0/-5 °C  
T
T
p
217 °C  
L
RAMP-UP  
3 °C/SEC. MAX.  
RAMP-DOWN  
6 °C/SEC. MAX.  
150 - 200 °C  
T
smax  
T
smin  
t
s
t
L
60 to 150 SEC.  
PREHEAT  
60 to 180 SEC.  
25  
t 25 °C to PEAK  
TIME  
NOTES:  
THE TIME FROM 25 °C to PEAK TEMPERATURE = 8 MINUTES MAX.  
= 200 °C, T = 150 °C  
T
smax  
smin  
Note: Non-halide flux should be used.  
Insulation and Safety Related Specifications  
Parameter  
Symbol  
Value Units Conditions  
Min. External Air Gap  
(External Clearance)  
L(I01)  
7.1  
mm  
mm  
mm  
Measured from input terminals to output terminals,  
shortest distance through air.  
Min. External Tracking  
Path (External Creepage)  
L(I02)  
CTI  
7.4  
Measured from input terminals to output terminals,  
shortest distance path along body.  
Min. Internal Plastic  
Gap (Internal Clearance)  
0.08  
Through insulation distance, conductor to conductor,  
usually the direct distance between the photoemitter  
and photodetector inside the optocoupler cavity.  
Tracking Resistance  
(Comparative Tracking  
Index)  
200  
IIIa  
V
DIN IEC 112/ VDE 0303 Part 1  
Isolation Group  
Material Group (DIN VDE 0110, 1/ 89, Table 1)  
Option 300 - surface mount classification is Class A in accordance with CECC 00802.  
5
Absolute Maximum Ratings (No Derating Required up to 85°C)  
Parameter  
Symbol  
Min.  
-55  
Max.  
125  
85  
Units  
°C  
Storage Temperature  
T
S
Operating Temperature  
T
A
-40  
°C  
Forward Input Current  
I
60  
mA  
mA  
mA  
V
I
Reverse Input Current  
I
IR  
60  
Input Current, Pin 4  
-10  
10  
Supply Voltage (1 Minute Maximum)  
V
CC  
7
Enable Input Voltage (Not to Exceed V by  
V
E
V + 0.5  
CC  
V
CC  
more than 500 mV)  
Output Collector Current  
I
50  
7
mA  
V
O
Output Collector Voltage (Selection for Higher  
Output Voltages up to 20 V is Available.)  
V
O
Output Collector Power Dissipation  
Lead Solder Temperature  
P
40  
mW  
O
T
LS  
260°C for 10 sec., 1.6 mm below  
seating plane  
Solder Reflow Temperature Profile  
See Package Outline Drawings section  
Recommended Operating Conditions  
Parameter  
Symbol  
Min.  
0
Max.  
250  
60  
Units  
µA  
mA  
V
Input Current, Low Level  
Input Current, High Level  
Supply Voltage, Output  
High Level Enable Voltage  
Low Level Enable Voltage  
Fan Out (@ RL = 1 k)  
Output Pull-up Resistor  
Operating Temperature  
I
IL  
IIH  
5*  
4.5  
2.0  
0
V
CC  
5.5  
V
EH  
V
CC  
V
V
EL  
0.8  
5
V
N
TTL Loads  
RL  
330  
0
4 K  
70  
T
A
°C  
*The initial switching threshold is 5 mA or less. It is recommended that an input current between  
6.3 mA and 10 mA be used to obtain best performance and to provide at least 20% LED degradation  
guardband.  
6
Electrical Characteristics  
Over recommended temperature (TA = 0°C to +70°C) unless otherwise specified. See note 1.  
Parameter  
Sym.  
Min.  
Typ.*  
Max.  
Units  
Test Conditions  
Fig.  
Note  
High Level Output  
Current  
IOH  
5.5  
100  
µA  
V = 5.5 V, V = 5.5 V,  
1
CC  
O
I = 250 µA, V = 2.0 V  
I
E
Low Level Output  
Voltage  
V
OL  
0.35  
0.6  
V
V = 5.5 V, II = 5 mA,  
2, 4,  
CC  
V = 2.0 V,  
E
5, 14  
IOL (Sinking) = 13 mA  
High Level Supply  
Current  
ICCH  
ICCL  
IEH  
7.5  
10  
10  
13  
mA  
mA  
mA  
mA  
V
V = 5.5 V, II = 0 mA,  
CC  
V = 0.5 V  
E
Low Level Supply  
Current  
V = 5.5 V, I = 60 mA,  
CC  
I
V = 0.5 V  
E
High Level Enable  
Current  
-0.7  
-0.9  
-1.6  
-1.6  
V = 5.5 V, V = 2.0 V  
CC E  
Low Level Enable  
Current  
IEL  
V = 5.5 V, V = 0.5 V  
CC E  
High Level Enable  
Voltage  
V
EH  
2.0  
10  
Low Level Enable  
Voltage  
V
EL  
0.8  
V
2.0  
2.3  
2.4  
2.7  
I = 5 mA  
I
Input Voltage  
V
V
V
3
I
I = 60 mA  
I
Input Reverse  
Voltage  
V
R
0.75  
0.95  
IR = 5 mA  
Input Capacitance  
C
IN  
90  
pF  
V = 0 V, f = 1 MHz  
I
*All typicals at V = 5 V, TA = 25°C.  
CC  
7
Switching Specifications  
Over recommended temperature (TA = 0°C to +70°C), V = 5 V, I = 7.5 mA, unless otherwise specified.  
CC  
I
Parameter  
Symbol  
Device  
Min.  
Typ.* Max. Units  
Test Conditions  
TA = 25°C  
Fig. Note  
Propagation Delay  
Time to High Output  
Level  
75  
ns  
tPLH  
20  
48  
6,7, 8  
3
100  
75  
ns  
ns  
Propagation Delay  
Time to Low Output  
Level  
TA = 25°C  
tPHL  
25  
50  
6,7, 8  
9
4
100  
35  
ns  
ns  
RL = 350 Ω  
CL = 15 pF  
Pulse Width  
Distortion  
| tPHL-tPLH  
|
3.5  
13  
Propagation Delay  
Skew  
tPSK  
tr  
40  
ns  
ns  
ns  
ns  
12,  
13  
Output Rise Time  
(10-90%)  
24  
10  
30  
12  
12  
Output Fall Time  
(90-10%)  
tf  
Propagation Delay  
Time of Enable from  
tELH  
RL = 350 , CL = 15 pF,  
V = 0 V, VEH = 3 V  
EL  
10, 11  
10, 11  
5
6
V
EH to V  
EL  
Propagation Delay  
Time of Enable from  
V to V  
tEHL  
| CMH|  
| CML|  
20  
ns  
RL = 350 , CL = 15 pF,  
V = 0 V, VEH = 3 V  
EL  
EL  
EH  
Common Mode  
Transient  
Immunity at High  
HCPL-2602  
HCPL-2612  
1000 10,000  
3500 15,000  
V
CM = 50 V  
CM = 300 V  
CM = 50 V  
CM = 300 V  
VO(MIN) = 2 V,  
RL = 350 ,  
II = 0 mA,  
V/ µs  
V/ µs  
13  
13  
7, 9,  
10  
V
Output Level  
TA = 25°C  
Common Mode  
Transient  
Immunity at Low  
HCPL-2602  
HCPL-2612  
1000 10,000  
3500 15,000  
V
VO(MAX) = 0.8V,  
RL = 350 ,  
II = 7.5 mA,  
TA = 25°C  
8, 9  
10  
V
Output Level  
*All typicals at V = 5 V, TA = 25°C.  
CC  
Package Characteristics  
All Typicals at T = 25°C  
A
Parameter  
Sym.  
Min.  
Typ. Max. Units  
Test Conditions  
Fig.  
Note  
Input-Output Momentary  
Withstand Voltage*  
V
ISO  
3750  
V rms RH 50%, t = 1 min.,  
2, 11  
T = 25°C  
A
Input-Output Resistance  
Input-Output Capacitance  
R
1012  
0.6  
V = 500 Vdc  
2
2
I-O  
I-O  
C
I-O  
pF  
f = 1 MHz  
*The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous voltage  
rating. For the continuous voltage rating refer to the IEC/ EN/ DIN EN 60747-5-2 Insulation Characteristics Table (if applicable), your equipment level  
safety specification or Avago Application Note 1074 entitled “Optocoupler Input-Output Endurance Voltage.”  
8
Notes:  
1. Bypassing of the power supply line is required, with a 0.1 µF ceramic disc capacitor adjacent to each optocoupler as illustrated in Figure 15. Total  
lead length between both ends of the capacitor and the isolator pins should not exceed 20 mm.  
2. Device considered a two terminal device: pins 1, 2, 3, and 4 shorted together, and pins 5, 6, 7, and 8 shorted together.  
3. The tPLH propagation delay is measured from the 3.75 mA point on the falling edge of the input pulse to the 1.5 V point on the rising edge of the  
output pulse.  
4. The tPHL propagation delay is measured from the 3.75 mA point on the rising edge of the input pulse to the 1.5 V point on the falling edge of the  
output pulse.  
5. The tELH enable propagation delay is measured from the 1.5 V point on the falling edge of the enable input pulse to the 1.5 V point on the rising edge  
of the output pulse.  
6. The tEHL enable propagation delay is measured from the 1.5 V point on the rising edge of the enable input pulse to the 1.5 V point on the falling edge  
of the output pulse.  
7. CMH is the maximum tolerable rate of rise of the common mode voltage to assure that the output will remain in a high logic state (i.e., VOUT > 2.0 V).  
8. CML is the maximum tolerable rate of fall of the common mode voltage to assure that the output will remain in a low logic state (i.e., VOUT < 0.8 V).  
9. For sinusoidal voltages,  
| dvCM  
––––––  
dt max  
10. No external pull up is required for a high logic state on the enable input. If the V pin is not used, tying V to VCC will result in improved CMR  
|
= πfCMVCM (p-p)  
E
E
performance.  
11. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage of 4500 for one second (leakage detection  
current limit, Ii-o 5 µA).  
12. tPSK is equal to the worst case difference in tPHL and/ or tPLH that will be seen between units at any given temperature within the operating condition  
range.  
13. See application section titled “Propagation Delay, Pulse-Width Distortion and Propagation Delay Skew” for more information.  
15  
10  
2.6  
2.4  
0.5  
0.4  
V
V
= 5.5 V  
CC  
= 2 V  
V
V
V
= 5.5 V  
= 5.5 V  
= 2 V  
CC  
O
E
0°C  
E
I = 5 mA  
I
25°C  
70°C  
2.2  
2.0  
1.8  
1.6  
I = 250 µA  
I
I
= 12.8 mA  
O
I
= 16 mA  
= 6.4 mA  
O
0.3  
0.2  
0.1  
5
0
I
O
1.4  
I
= 9.6 mA  
O
1.2  
1.0  
-60 -40 -20  
0
20 40 60 80 100  
-60 -40 -20  
0
20 40 60 80 100  
0
10  
20  
30  
40  
50  
60  
T
– TEMPERATURE – °C  
I – INPUT CURRENT – mA  
A
T
– TEMPERATURE – °C  
I
A
Figure 1. Typical high level output current vs.  
temperature.  
Figure 2. Typical low level output voltage vs.  
temperature.  
Figure 3. Typical input characteristics.  
6
70  
V
T
= 5 V  
V
V
V
= 5 V  
= 2 V  
= 0.6 V  
CC  
= 25 °C  
CC  
E
OL  
A
5
4
3
2
60  
50  
I = 10-15 mA  
I
R
= 350 Ω  
L
R
= 1 KΩ  
L
R
= 4 KΩ  
I = 5.0 mA  
I
L
40  
20  
1
0
0
1
2
3
4
6
5
-60 -40 -20  
0
20 40  
80 100  
60  
I
– FORWARD INPUT CURRENT – mA  
F
T
– TEMPERATURE – °C  
A
Figure 4. Typical output voltage vs. forward  
input current.  
Figure 5. Typical low level output current vs.  
temperature.  
9
+5 V  
I
I
PULSE GEN.  
= 50 Ω  
V
1
2
3
4
8
7
6
5
CC  
Z
O
t
= t = 5 ns  
r
f
0.1µF  
BYPASS  
R
L
100  
80  
OUTPUT V  
MONITORING  
NODE  
INPUT  
MONITORING  
NODE  
O
V
I
= 5 V  
CC  
I = 7.5 mA  
*C  
L
t
, R = 4 KΩ  
L
PLH  
R
M
GND  
t
, R = 350 Ω  
L
PHL  
1 KΩ  
4 KΩ  
60  
40  
*C IS APPROXIMATELY 15 pF WHICH INCLUDES  
L
PROBE AND STRAY WIRING CAPACITANCE.  
t
, R = 1 KΩ  
L
PLH  
I
= 7.50 mA  
= 3.75 mA  
I
I
t
, R = 350 Ω  
L
PLH  
INPUT  
20  
0
I
I
I
t
t
PHL  
PLH  
-60 -40 -20  
0
20 40  
80 100  
60  
OUTPUT  
V
O
1.5 V  
T
– TEMPERATURE – °C  
A
Figure 6. Test circuit for tPHL and tPLH  
.
Figure 7. Typical propagation delay vs.  
temperature.  
105  
90  
40  
30  
20  
10  
V
T
= 5 V  
CC  
= 25°C  
R
= 4 kΩ  
L
A
t
, R = 4 KΩ  
L
PLH  
V
I
= 5 V  
CC  
I = 7.5 mA  
75  
60  
t
, R = 350 Ω  
L
R
= 350 kΩ  
PLH  
L
t
, R = 1 KΩ  
L
PLH  
45  
30  
0
t
, R = 350 Ω  
PHL  
L
R
= 1 kΩ  
L
1 KΩ  
4 KΩ  
-10  
5
7
9
11  
13  
15  
-60 -40 -20  
0
20 40  
80 100  
60  
I – PULSE INPUT CURRENT – mA  
T
– TEMPERATURE – °C  
I
A
Figure 8. Typical propagation delay vs. pulse  
input current.  
Figure 9. Typical pulse width distortion vs.  
temperature.  
PULSE GEN.  
Z
= 50 Ω  
r
O
INPUT V  
MONITORING NODE  
E
t
= t = 5 ns  
f
+5 V  
V
CC  
1
8
7
6
5
7.5 mA  
0.1 µF  
BYPASS  
R
L
2
3
4
I
I
120  
OUTPUT V  
MONITORING  
NODE  
O
V
V
V
= 5 V  
= 3 V  
= 0 V  
CC  
EH  
EL  
*C  
L
I = 7.5 mA  
I
90  
60  
GND  
t
, R = 4 kΩ  
L
ELH  
*C IS APPROXIMATELY 15 pF WHICH INCLUDES  
L
PROBE AND STRAY WIRING CAPACITANCE.  
t
, R = 1 kΩ  
ELH  
L
3.0 V  
1.5 V  
INPUT  
30  
0
t
, R = 350 Ω  
ELH  
L
V
E
t
t
EHL  
ELH  
t
, R = 350 Ω, 1 kΩ, 4 kΩ  
L
EHL  
OUTPUT  
-60 -40 -20  
0
20 40 60 80 100  
V
O
1.5 V  
T
– TEMPERATURE – °C  
A
Figure 10. Test circuit for tEHL and tELH  
.
Figure 11. Typical enable propagation delay  
vs. temperature.  
10  
I
I
V
= 5 V  
t
t
CC  
I = 7.5 mA  
RISE  
FALL  
V
1
2
3
4
8
7
6
5
+5 V  
CC  
I
B
A
0.1 µF  
BYPASS  
350 Ω  
OUTPUT V  
R
= 4 kΩ  
= 1 kΩ  
300  
290  
60  
L
O
MONITORING  
NODE  
R
L
GND  
40  
V
CM  
R
R
= 350 Ω  
L
20  
0
+
PULSE  
GENERATOR  
= 50 Ω  
= 350 Ω, 1 k, 4 kΩ  
L
0
-60 -40 -20  
20 40 60 80 100  
Z
O
T
– TEMPERATURE – °C  
A
V
(PEAK)  
CM  
SWITCH AT A: I = 0 mA  
V
CM  
0 V  
5 V  
I
Figure 12. Typical rise and fall time vs.  
temperature.  
CM  
H
V
O
V
(MIN.)  
O
SWITCH AT B: I = 7.5 mA  
I
V
(MAX.)  
O
V
O
0.5 V  
CM  
L
Figure 13. Test circuit for common mode transient immunity and typical waveforms.  
GND BUS (BACK)  
V
BUS (FRONT)  
NC  
CC  
V
V
= 5.0 V  
CC  
= 0.6 V  
5
4
3
O
ENABLE  
(IF USED)  
0.1µF  
R
= 350 Ω  
L
NC  
NC  
OUTPUT 1  
2
1
0
R
R
= 1 kΩ  
= 4 kΩ  
L
L
ENABLE  
(IF USED)  
0.1µF  
-60 -40 -20  
0
20 40 60 80 100  
T
– TEMPERATURE – °C  
A
NC  
OUTPUT 2  
Figure 14. Typical input threshold current vs.  
temperature.  
10 mm MAX.  
(SEE NOTE 1)  
Figure 15. Recommended printed circuit board layout.  
11  
Using the HCPL-2602/ 12 Line  
Receiver Optocouplers  
interfere with circuit perform-  
ance because the regulator  
inputs are then connected in  
ANTI-SERIES; however, because  
of the higher steady-state termina-  
tion voltage, in comparison to the  
single HCPL-2602/12 termination,  
the forward current in the  
substrate diode is lower and  
consequently there is less junction  
charge to deal with when  
clamps the line voltage. At longer  
line lengths, tPLH increases faster  
than tPHL since the switching  
threshold is not exactly halfway  
between asymptotic line  
conditions. If optimum data rate  
is desired, a series resistor and  
peaking capacitor can be used to  
equalize tPLH and tPHL. In general,  
the peaking capacitance should be  
as large as possible; however, if it  
is too large it may keep the  
The primary objectives to fulfill  
when connecting an optocoupler  
to a transmission line are to  
provide a minimum, but not  
excessive, LED current and to  
properly terminate the line. The  
internal regulator in the HCPL-  
2602/12 simplifies this task.  
Excess current from variable  
drive conditions such as line  
length variations, line driver  
differences, and power supply  
fluctuations are shunted by the  
regulator. In fact, with the LED  
current regulated, the line current  
can be increased to improve the  
immunity of the system to  
differential-mode-noise and to  
enhance the data rate capability.  
The designer must keep in mind  
the 60 mA input current  
maximum rating of the HCPL-  
2602/12 in such cases, and may  
need to use series limiting or  
shunting to prevent overstress.  
switching.  
Closing switch B with A open is  
done mainly to enhance common  
mode rejection, but also reduces  
propagation delay slightly because  
line-to-line capacitance offers a  
slight peaking effect. With  
switches A and B both CLOSED,  
the shield acts as a current return  
path which prevents either input  
substrate diode from becoming  
reversed biased. Thus the data  
rate is optimized as shown in  
Figure (c).  
regulator from achieving turn-off  
during the negative (or zero)  
excursions of the input signal. A  
safe rule:  
make C 16t  
where:  
C = peaking capacitance in  
picofarads  
t = data bit interval in  
nanoseconds  
Improved Noise Rejection  
Use of additional logic at the  
output of two HCPL-2602/12s,  
operated in the split phase  
termination, will greatly improve  
system noise rejection in addition  
to balancing propagation delays  
as discussed earlier.  
Polarity Reversing Drive  
Design of the termination circuit  
is also simplified; in most cases  
the transmission line can simply  
be connected directly to the input  
terminals of the HCPL-2602/12  
without the need for additional  
series or shunt resistors. If  
reversing line drive is used it may  
be desirable to use two HCPL-  
2602/12 or an external Schottky  
diode to optimize data rate.  
A single HCPL-2602/12 can also  
be used with polarity reversing  
drive (Figure b). Current reversal  
is obtained by way of the  
substrate isolation diode  
(substrate to collector). Some  
reduction of data rate occurs,  
however, because the substrate  
diode stores charge, which must  
be removed when the current  
changes to the forward direction.  
A NAND flip-flop offers infinite  
common mode rejection (CMR)  
for NEGATIVELY sloped common  
mode transients but requires tPHL  
> tPLH for proper operation. A NOR  
flip-flop has infinite CMR for  
The effect of this is a longer tPHL  
.
Polarity Non-Reversing Drive  
This effect can be eliminated and  
data rate improved considerably  
by use of a Schottky diode on the  
input of the HCPL-2602/12.  
POSITIVELY sloped transients  
but requires tPHL < tPLH for proper  
operation. An exclusive-OR flip-  
flop has infinite CMR for common  
mode transients of EITHER  
High data rates can be obtained  
with the HCPL-2602/12 with  
polarity non-reversing drive.  
Figure (a) illustrates how a  
74S140 line driver can be used  
with the HCPL-2602/12 and  
shielded, twisted pair or coax  
cable without any additional  
components. There are some  
reflections due to the “active  
termination,” but they do not  
For optimum noise rejection as  
well as balanced delays, a split-  
phase termination should be used  
along with a flip-flop at the output  
(Figure c). The result of current  
reversal in split-phase operation  
is seen in Figure (c) with switches  
A and B both OPEN. The coupler  
polarity and operates with either  
tPHL > tPLH or tPHL < tPLH  
.
With the line driver and  
transmission line shown in Figure  
(c), tPHL > tPLH, so NAND gates are  
preferred in the R-S flip-flop. A  
higher drive amplitude or  
12  
Figure a. Polarity non-reversing.  
Figure b. Polarity reversing, single ended.  
< 1  
< 1  
Figure c. Polarity reversing, split phase.  
Figure d. Flip-flop configurations.  
13  
different circuit configuration  
could make tPHL < tPLH, in which  
case NOR gates would be pre-  
ferred. If it is not known whether  
tPHL > tPLH or tPHL < tPLH, or if the  
drive conditions may vary over the the exact figure depends on the  
boundary for these conditions, the particular application (RS232,  
exclusive-OR flip-flop of Figure (d) RS422, T-1, etc.).  
should be used.  
the PWD (in ns) by the minimum  
pulse width (in ns) being  
transmitted. Typically, PWD on  
the order of 20-30% of the  
both the clock and the data lines  
being sent through optocouplers.  
The figure shows data and clock  
signals at the inputs and outputs  
of the optocouplers. To obtain the  
maximum data transmission rate,  
both edges of the clock signal are  
being used to clock the data; if  
only one edge were used, the  
clock signal would need to be  
twice as fast.  
minimum pulse width is tolerable;  
Propagation delay skew, tPSK, is an  
RS-422 and RS-423  
important parameter to consider  
in parallel data applications  
where synchronization of signals  
on parallel data lines is a concern.  
If the parallel data is being sent  
through a group of optocouplers,  
differences in propagation delays  
will cause the data to arrive at the  
outputs of the optocouplers at  
different times. If this difference  
in propagation delays is large  
enough, it will determine the  
maximum rate at which parallel  
data can be sent through the  
optocouplers.  
Line drivers designed for RS-422  
and RS-423 generally provide  
adequate voltage and current for  
operating the HCPL-2602/12. Most  
drivers also have characteristics  
allowing the HCPL-2602/12 to be  
connected directly to the driver  
terminals. Worst case drive  
conditions, however, would  
require current shunting to  
prevent overstress of the HCPL-  
2602/12.  
Propagation delay skew  
represents the uncertainty of  
where an edge might be after  
being sent through an  
optocoupler. Figure 17 shows that  
there will be uncertainty in both  
the data and the clock lines. It is  
important that these two areas of  
uncertainty not overlap,  
otherwise the clock signal might  
arrive before all of the data  
outputs have settled, or some of  
the data outputs may start to  
change before the clock signal has  
arrived. From these  
considerations, the absolute  
minimum pulse width that can be  
sent through optocouplers in a  
parallel application is twice tPSK. A  
cautious design should use a  
slightly longer pulse width to  
ensure that any additional  
Propagation Delay, Pulse-Width  
Distortion and Propagation Delay Skew  
Propagation delay is a figure of  
merit which describes how quickly  
a logic signal propagates through a  
system. The propagation delay  
from low to high (tPLH) is the  
amount of time required for an  
input signal to propagate to the  
output, causing the output to  
change from low to high. Similarly,  
the propagation delay from high to  
low (tPHL) is the amount of time  
required for the input signal to  
propagate to the output, causing  
the output to change from high to  
low (see Figure 6).  
Propagation delay skew is defined  
as the difference between the  
minimum and maximum  
propagation delays, either tPLH or  
tPHL, for any given group of  
optocouplers which are operating  
under the same conditions (i.e.,  
the same drive current, supply  
voltage, output load, and  
uncertainty in the rest of the  
circuit does not cause a problem.  
operating temperature). As  
illustrated in Figure 16, if the  
inputs of a group of optocouplers  
are switched either ON or OFF at  
the same time, tPSK is the  
difference between the shortest  
propagation delay, either tPHL or  
tPHL, and the longest propagation  
The tPSK specified optocouplers  
offer the advantages of  
guaranteed specifications for  
propagation delays, pulse-width  
distortion and propagation delay  
skew over the recommended  
temperature, input current, and  
power supply ranges.  
Pulse-width distortion (PWD)  
results when tPLH and tPHL differ in  
value. PWD is defined as the  
difference between tPLH and tPHL  
and often determines the  
maximum data rate capability of a  
transmission system. PWD can be  
expressed in percent by dividing  
delay, either tPLH or tPHL  
.
As mentioned earlier, tPSK can  
determine the maximum parallel  
data transmission rate. Figure 17  
is the timing diagram of a typical  
parallel data application with  
14  
DATA  
INPUTS  
I
I
50%  
50%  
CLOCK  
1.5 V  
V
O
DATA  
I
I
OUTPUTS  
CLOCK  
t
PSK  
V
1.5 V  
O
t
PSK  
t
PSK  
Figure 17. Parallel data transmission example.  
Figure 16. Illustration of propagation delay skew - tPSK  
.
15  
For product information and a complete list of distributors, please go to our website: www.avagotech.com  
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies Limited in the United States and other countries.  
Data subject to change. Copyright © 2007 Avago Technologies Limited. All rights reserved. Obsoletes 5989-2154EN  
AV01-0568EN July 18, 2007  

相关型号:

HCPL-2612-000E

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 10Mbps, 0.300 INCH, DIP-8
AVAGO

HCPL-2612-500

Logic IC Output Optocoupler, 1-Element, 3750V Isolation, 0.300 INCH, SURFACE MOUNT, DIP-8
AGILENT

HCPL-2612-500

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 10Mbps, 0.300 INCH, SURFACE MOUNT, DIP-8
AVAGO

HCPL-2612-500E

Logic IC Output Optocoupler, 1-Element, 3750V Isolation, 0.300 INCH, LEAD FREE, SURFACE MOUNT, DIP-8
AGILENT

HCPL-2612-500E

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 10Mbps, 0.300 INCH, ROHS COMPLIANT, SURFACE MOUNT, DIP-8
AVAGO

HCPL-261A

HCMOS Compatible, High CMR, 10 MBd Optocouplers
AGILENT

HCPL-261A

HCMOS Compatible, High CMR, 10 MBd Optocouplers
AVAGO

HCPL-261A

High CMR Line Receiver Optocouplers
HP

HCPL-261A

Optocoupler Option 020 for 5000 V rms/1 Minute Requirement
BOARDCOM

HCPL-261A#020

LOGIC-GATE-OUTPUT OPTOCOUPLER
ETC

HCPL-261A#060

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 10 Mbps, 0.300 INCH, DIP-8
AGILENT

HCPL-261A#360

Logic IC Output Optocoupler, 1-Element, 3750V Isolation, 10MBps, 0.300 INCH, DIP-8
AVAGO