HCPL-261A#020 [ETC]

LOGIC-GATE-OUTPUT OPTOCOUPLER ; 逻辑门,输出光电耦合器\n
HCPL-261A#020
型号: HCPL-261A#020
厂家: ETC    ETC
描述:

LOGIC-GATE-OUTPUT OPTOCOUPLER
逻辑门,输出光电耦合器\n

光电 输出元件
文件: 总16页 (文件大小:392K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HCMOS Compatible, High CMR,  
10 MBd Optocouplers  
Technical Data  
HCPL-261A HCPL-061A  
HCPL-263A HCPL-063A  
HCPL-261N HCPL-061N  
HCPL-263N HCPL-063N  
Features  
• HCMOS/LSTTL/TTL  
• Computer-Peripheral  
Interface  
compatible input current. This  
allows direct interface to all  
common circuit topologies without  
additional LED buffer or drive  
components. The AlGaAs LED  
used allows lower drive currents  
and reduces degradation by using  
the latest LED technology. On the  
single channel parts, an enable  
output allows the detector to be  
strobed. The output of the detector  
IC is an open collector schottky-  
clamped transistor. The internal  
shield provides a minimum  
Performance Compatible  
• 1000 V/µs Minimum  
Common Mode Rejection  
(CMR) at VCM = 50 V (HCPL-  
261A Family) and 15 kV/µs  
• Digital Isolation for A/D,  
D/A Conversion  
• Switching Power Supplies  
• Instrumentation  
Input/Output Isolation  
• Ground Loop Elimination  
• Pulse Transformer  
Replacement  
Minimum CMR at VCM  
=
1000 V (HCPL-261N Family)  
• High Speed: 10 MBd Typical  
• AC and DC Performance  
Specified over Industrial  
Temperature Range -40°C to  
+85°C  
• Available in 8 Pin DIP,  
SOIC-8 Packages  
Description  
The HCPL-261A family of optically  
coupled gates shown on this data  
sheet provide all the benefits of the  
industry standard 6N137 family  
with the added benefit of HCMOS  
common mode transient immunity  
of 1000 V/µs for the HCPL-261A  
family and 15000 V/µs for the  
HCPL-261N family.  
• Safety Approval  
UL Recognized per UL1577  
2500 V rms for 1 minute and  
5000 V rms for 1 minute  
(Option 020)  
Functional Diagram  
HCPL-261A/261N  
HCPL-061A/061N  
HCPL-263A/263N  
HCPL-063A/063N  
CSA Approved  
VDE 0884 Approved with  
NC  
ANODE  
CATHODE  
NC  
1
2
V
V
V
ANODE  
CATHODE  
CATHODE  
ANODE  
1
2
V
V
8
7
8
7
CC  
CC  
O1  
O2  
1
1
VIORM = 630 V peak for  
E
HCPL-261A/261N  
Option 060  
V
3
4
6
5
3
4
6
5
O
2
2
GND  
GND  
SHIELD  
SHIELD  
Applications  
• Low Input Current (3.0 mA)  
HCMOS Compatible Version  
of 6N137 Optocoupler  
• Isolated Line Receiver  
• Simplex/Multiplex Data  
Transmission  
TRUTH TABLE  
(POSITIVE LOGIC)  
TRUTH TABLE  
(POSITIVE LOGIC)  
LED ENABLE OUTPUT  
LED OUTPUT  
ON  
OFF  
ON  
OFF  
ON  
OFF  
H
H
L
L
NC  
NC  
L
H
H
H
L
ON  
L
OFF  
H
H
The connection of a 0.1 µF bypass capacitor between pins 5 and 8 is required.  
CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to  
prevent damage and/or degradation which may be induced by ESD.  
2
Selection Guide  
Widebody  
(400 Mil)  
Minimum CMR  
8-Pin DIP (300 Mil)  
Small-Outline SO-8  
Hermetic  
Input  
On-  
Single  
Channel  
Package  
Dual  
Channel  
Package  
Single  
Channel  
Package  
HCPL-0600[1]  
HCPL-0601[1]  
HCPL-0611[1]  
Dual  
Channel  
Package  
Single  
Channel  
Package  
HCNW137[1]  
HCNW2601[1]  
HCNW2611[1]  
Single and  
Dual Channel  
Packages  
dV/dt  
(V/µs)  
VCM  
(V)  
Current Output  
(mA)  
Enable  
YES  
NO  
NA  
NA  
5
6N137[1]  
HCPL-2630[1]  
HCPL-2631[1]  
HCPL-4661[1]  
HCPL-0630[1]  
HCPL-0631[1]  
HCPL-0661[1]  
5,000  
50  
YES  
NO  
HCPL-2601[1]  
HCPL-2611[1]  
10,000 1,000  
YES  
NO  
1,000  
3,500  
1,000  
50  
300  
50  
YES  
YES  
YES  
NO  
HCPL-2602[1]  
HCPL-2612[1]  
HCPL-261A  
3
HCPL-061A  
HCPL-061N  
HCPL-263A  
HCPL-263N  
HCPL-063A  
HCPL-063N  
1,000[2] 1,000  
YES  
HCPL-261N  
NO  
[3]  
1,000  
50  
12.5  
HCPL-193X[1]  
HCPL-56XX[1]  
HCPL-66XX[1]  
Notes:  
1. Technical data are on separate Agilent publications.  
2. 15 kV/µs with VCM = 1 kV can be achieved using Agilent application circuit.  
3. Enable is available for single channel products only, except for HCPL-193X devices.  
Ordering Information  
Specify Part Number followed by Option Number (if desired).  
Example:  
HCPL-261A#XXX  
020 = 5000 V rms/1 minute UL Rating Option*  
060 = VDE 0884 VIORM = 630 Vpeak Option**  
300 = Gull Wing Surface Mount Option***  
500 = Tape and Reel Packaging Option  
Option data sheets available. Contact your Agilent sales representative or authorized distributor for  
information.  
*For HCPL-261A/261N/263A/263N (8-pin DIP products) only.  
**For HCPL-261A/261N only. Combination of Option 020 and Option 060 is not available.  
HCPL-263A/263N  
***Gull wing surface mount option applies to through hole parts only.  
HCPL-063A/063N  
I
CC  
V
V
CC  
Schematic  
8
7
1
+
I
HCPL-261A/261N  
HCPL-061A/061N  
F1  
I
O1  
O1  
I
F
I
CC  
V
V
V
F1  
CC  
8
6
2+  
I
O
2
O
SHIELD  
3
I
F2  
V
F
I
O2  
V
3
O2  
6
5
GND  
5
SHIELD  
V
F2  
I
E
7
E
V
+
4
USE OF A 0.1 µF BYPASS CAPACITOR CONNECTED  
BETWEEN PINS 5 AND 8 IS RECOMMENDED (SEE NOTE 16).  
GND  
SHIELD  
3
HCPL-261A/261N/263A/263N Outline Drawing  
Pin Location (for reference only)  
9.40 (0.370)  
9.90 (0.390)  
8
1
7
6
5
TYPE NUMBER  
0.20 (0.008)  
0.33 (0.013)  
OPTION CODE*  
DATE CODE  
6.10 (0.240)  
6.60 (0.260)  
A XXXXZ  
YYWW  
7.36 (0.290)  
7.88 (0.310)  
5° TYP.  
2
3
4
PIN ONE  
1.78 (0.070) MAX.  
1.19 (0.047) MAX.  
DIMENSIONS IN MILLIMETERS AND (INCHES).  
4.70 (0.185) MAX.  
0.51 (0.020) MIN.  
* MARKING CODE LETTER FOR OPTION NUMBERS.  
"L" = OPTION 020  
"V" = OPTION 060  
OPTION NUMBERS 300 AND 500 NOT MARKED.  
2.92 (0.115) MIN.  
0.76 (0.030)  
1.40 (0.056)  
0.65 (0.025) MAX.  
2.28 (0.090)  
2.80 (0.110)  
Figure 1. 8-Pin Dual In-Line Package Device Outline Drawing.  
PIN LOCATION (FOR REFERENCE ONLY)  
9.65 ± 0.25  
(0.380 ± 0.010)  
1.02 (0.040)  
1.19 (0.047)  
7
6
5
8
1
4.83  
(0.190)  
TYP.  
6.350 ± 0.25  
(0.250 ± 0.010)  
9.65 ± 0.25  
(0.380 ± 0.010)  
2
3
4
0.38 (0.015)  
0.64 (0.025)  
1.19 (0.05)  
1.78 (0.07)  
9.65 ± 0.25  
(0.380 ± 0.010)  
1.780  
(0.070)  
MAX.  
1.19  
(0.047)  
MAX.  
7.62 ± 0.25  
(0.300 ± 0.010)  
0.20 (0.008)  
0.33 (0.013)  
4.19  
MAX.  
(0.165)  
0.635 ± 0.25  
(0.025 ± 0.010)  
1.080 ± 0.320  
(0.043 ± 0.013)  
0.635 ± 0.130  
(0.025 ± 0.005)  
12° NOM.  
2.540  
(0.100)  
BSC  
DIMENSIONS IN MILLIMETERS (INCHES).  
TOLERANCES (UNLESS OTHERWISE SPECIFIED): xx.xx = 0.01  
xx.xxx = 0.005  
LEAD COPLANARITY  
MAXIMUM: 0.102 (0.004)  
Figure 2. Gull Wing Surface Mount Option #300.  
4
HCPL-061A/061N/063A/063N Outline Drawing  
8
7
6
5
5.994 ± 0.203  
(0.236 ± 0.008)  
XXX  
3.937 ± 0.127  
(0.155 ± 0.005)  
YWW  
TYPE NUMBER  
(LAST 3 DIGITS)  
DATE CODE  
1
2
3
4
PIN ONE  
0.406 ± 0.076  
(0.016 ± 0.003)  
1.270  
(0.050)  
BSG  
0.432  
(0.017)  
*
7°  
5.080 ± 0.127  
(0.200 ± 0.005)  
45° X  
3.175 ± 0.127  
(0.125 ± 0.005)  
0 ~ 7°  
0.228 ± 0.025  
(0.009 ± 0.001)  
1.524  
(0.060)  
0.203 ± 0.102  
(0.008 ± 0.004)  
TOTAL PACKAGE LENGTH (INCLUSIVE OF MOLD FLASH)  
5.207 ± 0.254 (0.205 ± 0.010)  
*
0.305  
(0.012)  
MIN.  
DIMENSIONS IN MILLIMETERS (INCHES).  
LEAD COPLANARITY = 0.10 mm (0.004 INCHES) MAX.  
Figure 3. 8-Pin Small Outline Package Device Drawing.  
Solder Reflow Temperature Profile (HCPL-06XX and Gull Wing Surface Mount  
Option 300 Parts)  
260  
240  
T = 145°C, 1°C/SEC  
220  
T = 115°C, 0.3°C/SEC  
200  
180  
160  
140  
120  
100  
80  
T = 100°C, 1.5°C/SEC  
60  
40  
20  
0
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
TIME – MINUTES  
Note: Use of Nonchlorine Activated Fluxes is Recommended.  
Regulatory Information  
CSA  
The HCPL-261A and HCPL-261N  
families have been approved by  
the following organizations:  
Approved under CSA Component  
Acceptance Notice #5, File CA  
88324.  
UL  
VDE  
Recognized under UL 1577,  
Component Recognition  
Program, File E55361.  
Approved according to VDE  
0884/06.92. (HCPL-261A/261N  
Option 060 only)  
5
Insulation and Safety Related Specifications  
8-Pin DIP  
(300 Mil) SO-8  
Parameter  
Symbol  
Value  
Value Units  
Conditions  
Minimum External Air  
Gap (External  
Clearance)  
Minimum External  
Tracking (External  
Creepage)  
Minimum Internal Plastic  
Gap (Internal Clearance)  
L(101)  
7.1  
4.9  
mm  
mm  
mm  
Measured from input terminals to  
output terminals, shortest distance  
through air.  
Measured from input terminals to  
output terminals, shortest distance  
path along body.  
Through insulation distance, conductor  
to conductor, usually the direct  
distance between the photoemitter and  
photodetector inside the optocoupler  
cavity.  
L(102)  
7.4  
4.8  
0.08  
0.08  
Tracking Resistance  
(Comparative Tracking  
Index)  
CTI  
200  
IIIa  
200  
IIIa  
Volts DIN IEC 112/ VDE 0303 Part 1  
Isolation Group  
Material Group (DIN VDE 0110, 1/89,  
Table 1)  
Option 300 – surface mount classification is Class A in accordance with CECC 00802.  
VDE 0884 Insulation Related Characteristics  
(HCPL-261A/261N Option 060 ONLY)  
Description  
Symbol  
Characteristic  
Units  
Installation classification per DIN VDE 0110/1.89, Table 1  
for rated mains voltage 300 V rms  
for rated mains voltage 450 V rms  
I-IV  
I-III  
Climatic Classification  
55/85/21  
2
Pollution Degree (DIN VDE 0110/1.89)  
Maximum Working Insulation Voltage  
Input to Output Test Voltage, Method b*  
V
IORM  
630  
Vpeak  
Vpeak  
V
IORM x 1.875 = VPR, 100% Production Test with tm = 1 sec,  
VPR  
VPR  
1181  
945  
Partial Discharge < 5 pC  
Input to Output Test Voltage, Method a*  
VIORM x 1.5 = VPR, Type and sample test, tm = 60 sec,  
Vpeak  
Partial Discharge < 5 pC  
Highest Allowable Overvoltage*  
(Transient Overvoltage, tini = 10 sec)  
V
IOTM  
6000  
Vpeak  
Safety Limiting Values  
(Maximum values allowed in the event of a failure,  
also see Figure 18, Thermal Derating curve.)  
Case Temperature  
Input Current  
Output Power  
TS  
IS,INPUT  
PS,OUTPUT  
175  
230  
600  
109  
°C  
mA  
mW  
Insulation Resistance at TS, V = 500 V  
RS  
IO  
*Refer to the front of the optocoupler section of the current catalog, under Product Safety Regulations section (VDE 0884), for a  
detailed description.  
Note: Isolation characteristics are guaranteed only within the safety maximum ratings which must be ensured by protective circuits in  
application.  
6
Absolute Maximum Ratings  
Parameter  
Storage Temperature  
Operating Temperature  
Average Input Current  
Reverse Input Voltage  
Supply Voltage  
Enable Input Voltage  
Output Collector Current (Each Channel)  
Output Power Dissipation (Each Channel)  
Output Voltage (Each channel)  
Symbol  
Min.  
-55  
-40  
Max.  
125  
+85  
10  
3
7
5.5  
50  
60  
Units  
°C  
°C  
Note  
TS  
T
A
IF(AVG)  
VR  
VCC  
VE  
IO  
PO  
mA  
1
2
Volts  
Volts  
Volts  
mA  
mW  
Volts  
-0.5  
-0.5  
3
VO  
-0.5  
7
Lead Solder Temperature  
(Through Hole Parts Only)  
260°C for 10 s, 1.6 mm Below Seating Plane  
Solder Reflow Temperature Profile  
(Surface Mount Parts Only)  
See Package Outline Drawings section  
Recommended Operating Conditions  
Parameter  
Symbol  
VFL  
IFH  
Min.  
-3  
3.0  
4.5  
2.0  
0
Max.  
0.8  
10  
5.5  
VCC  
0.8  
5
Units  
V
mA  
Input Voltage, Low Level  
Input Current, High Level  
Power Supply Voltage  
High Level Enable Voltage  
Low Level Enable Voltage  
Fan Out (at RL = 1 k)  
Output Pull-up Resistor  
Operating Temperature  
VCC  
VEH  
VEL  
N
RL  
TA  
Volts  
Volts  
Volts  
TTL Loads  
330  
-40  
4k  
85  
°C  
7
Electrical Specifications  
Over recommended operating temperature (T = -40°C to +85°C) unless otherwise specified.  
A
Parameter  
High Level Output  
Current  
Symbol Min. Typ.* Max. Units  
Test Conditions  
VCC = 5.5 V, VO = 5.5 V,  
VF = 0.8 V, VE = 2.0 V  
Fig. Note  
18  
IOH  
3.1  
100  
µA  
4
Low Level Output  
Voltage  
VOL  
0.4  
0.6  
V
VCC = 5.5 V, IOL = 13 mA  
(sinking), IF = 3.0 mA,  
VE = 2.0 V  
5, 8 4, 18  
High Level Supply  
Current  
ICCH  
7
9
10  
15  
mA VE = 0.5 V**  
VCC = 5.5 V  
IF = 0 mA  
4
Dual Channel  
Products***  
Low Level Supply  
Current  
ICCL  
8
12  
13  
21  
mA  
VE = 0.5 V**  
Dual Channel  
Products***  
VCC = 5.5 V  
IF = 3.0 mA  
High Level Enable  
Current**  
Low Level Enable  
Current**  
Input Forward  
Voltage  
Temperature Co-  
efficient of Forward  
Voltage  
IEH  
IEL  
-0.6  
-0.9  
1.3  
-1.6  
-1.6  
1.6  
mA VCC = 5.5 V, VE = 2.0 V  
mA VCC = 5.5 V, VE = 0.5 V  
VF  
1.0  
3
V
IF = 4 mA  
6
4
4
VF/T  
-1.25  
mV/°C IF = 4 mA  
A
Input Reverse  
Breakdown Voltage  
Input Capacitance  
BVR  
CIN  
5
V
IR = 100 µA  
4
60  
pF  
f = 1 MHz, VF = 0 V  
*All typical values at TA = 25°C, VCC = 5 V  
**Single Channel Products only (HCPL-261A/261N/061A/061N)  
***Dual Channel Products only (HCPL-263A/263N/063A/063N)  
8
Switching Specifications  
Over recommended operating temperature (T = -40°C to +85°C) unless otherwise specified  
A
Parameter  
Symbol Min. Typ.* Max. Units  
Test Conditions  
Fig. Note  
Input Current Threshold  
High to Low  
ITHL  
1.5  
3.0  
mA VCC = 5.5 V, VO = 0.6 V, 7, 10 18  
IO >13 mA (Sinking)  
Propagation Delay  
Time to High Output  
Level  
Propagation Delay  
Time to Low Output  
Level  
tPLH  
52  
100  
ns  
ns  
ns  
IF = 3.5 mA  
VCC = 5.0 V,  
VE = Open,  
CL = 15 pF,  
RL = 350 Ω  
9, 11, 4, 9,  
12 18  
tPHL  
53  
11  
100  
9, 11, 4, 10,  
12 18  
Pulse Width Distortion  
PWD  
|tPHL - tPLH  
45  
60  
9, 13 17, 18  
|
Propagation Delay Skew  
Output Rise Time  
Output Fall Time  
Propagation Delay  
Time of Enable  
from VEH to VEL  
Propagation Delay  
Time of Enable  
from VEL to VEH  
tPSK  
tR  
tF  
ns  
ns  
ns  
ns  
24 11, 18  
9, 14 4, 18  
9, 14 4, 18  
42  
12  
19  
tEHL  
IF = 3.5 mA  
VCC = 5.0 V,  
VEL = 0 V, VEH = 3 V,  
CL = 15 pF,  
15,  
16  
12  
tELH  
30  
ns  
15,  
16  
12  
RL = 350 Ω  
*All typical values at TA = 25°C, VCC = 5 V.  
Common Mode Transient Immunity Specifications, All values at T = 25°C  
A
Parameter  
Device  
Symbol Min. Typ. Max. Units  
Test Conditions  
Fig. Note  
Output High  
Level Common HCPL-061A  
Mode Transient HCPL-263A  
HCPL-261A |CMH|  
1
5
kV/µs VCM = 50 V  
V
CC = 5.0 V,  
17 4, 13,  
15, 18  
RL = 350 ,  
IF = 0 mA,  
TA = 25°C  
VO(MIN) = 2 V  
Immunity  
HCPL-063A  
HCPL-261N  
HCPL-061N  
1
15  
1
5
25  
5
kV/µs VCM = 1000 V  
kV/µs  
HCPL-263N  
HCPL-063N  
Using Agilent  
App Circuit  
20 4, 13,  
15  
Output Low  
Level Common HCPL-061A  
Mode Transient HCPL-263A  
HCPL-261A |CML|  
kV/µs VCM = 50 V  
VCC = 5.0 V,  
17 4, 14,  
15, 18  
RL = 350 ,  
IF = 3.5 mA,  
Immunity  
HCPL-063A  
VO(MAX) = 0.8 V  
TA = 25°C  
HCPL-261N  
HCPL-061N  
1
5
kV/µs VCM = 1000 V  
kV/µs  
HCPL-263N  
HCPL-063N  
15  
25  
Using Agilent  
App Circuit  
20 4, 14,  
15  
9
Package Characteristics  
All Typicals at TA = 25°C  
Parameter  
Sym.  
Package*  
Min. Typ. Max. Units Test Conditions Fig. Note  
Input-Output  
Momentary With-  
stand Voltage**  
Input-Output  
Resistance  
Input-Output  
Capacitance  
Input-Input  
Insulation  
Leakage Current  
Resistance  
V
2500  
V rms RH 50%,  
5, 6  
5, 7  
4, 8  
ISO  
t = 1 min.,  
OPT 020†  
5000  
T = 25°C  
A
RI-O  
CI-O  
II-I  
1012  
0.6  
VI-O = 500 Vdc  
pF  
µA  
f = 1 MHz,  
4, 8  
19  
T = 25°C  
A
Dual Channel  
Dual Channel  
0.005  
RH 45%,  
t = 5 s,  
V = 500 V  
I-I  
RI-I  
1011  
19  
19  
(Input-Input)  
Capacitance  
(Input-Input)  
CI-I Dual 8-pin DIP  
Dual SO-8  
0.03  
0.25  
pF  
f = 1 MHz  
*Ratings apply to all devices except otherwise noted in the Package column.  
**The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output  
continuous voltage rating. For the continuous voltage rating refer to the VDE 0884 Insulation Characteristics Table (if applicable),  
your equipment level safety specification or Agilent Application Note 1074 entitled “Optocoupler Input-Output Endurance Voltage.”  
†For 8-pin DIP package devices (HCPL-261A/261N/263A/263N) only.  
Notes:  
14. Common mode transient immunity in  
a Logic Low level is the maximum  
tolerable |dVCM/dt| of the common  
mode pulse, VCM, to assure that the  
output will remain in a Logic Low  
state (i.e., VO < 0.8 V).  
8. Measured between the LED anode and  
cathode shorted together and pins 5  
through 8 shorted together.  
9. The tPLH propagation delay is  
measured from the 1.75 mA point on  
the falling edge of the input pulse to  
the 1.5 V point on the rising edge of  
the output pulse.  
10. The tPHL propagation delay is  
measured from the 1.75 mA point on  
the rising edge of the input pulse to  
the 1.5 V point on the falling edge of  
the output pulse.  
11. Propagation delay skew (tPSK) is  
equal to the worst case difference in  
tPLH and/or tPHL that will be seen  
between any two units under the  
same test conditions and operating  
temperature.  
1. Peaking circuits may be used which  
produce transient input currents up  
to 30 mA, 50 ns maximum pulse  
width, provided the average current  
does not exceed 10 mA.  
2. 1 minute maximum.  
15. For sinusoidal voltages  
3. Derate linearly above 80°C free-air  
temperature at a rate of 2.7 mW/°C  
for the SOIC-8 package.  
(|dVCM/dt|)max = πfCM VCM(P-P)  
.
16. Bypassing of the power supply line is  
required with a 0.1 µF ceramic disc  
capacitor adjacent to each optocoup-  
ler as shown in Figure 19. Total lead  
length between both ends of the  
capacitor and the isolator pins should  
not exceed 10 mm.  
17. Pulse Width Distortion (PWD) is  
defined as the difference between  
tPLH and tPHL for any given device.  
18. No external pull up is required for a  
high logic state on the enable input of  
a single channel product. If the VE pin  
is not used, tying VE to VCC will result  
in improved CMR performance.  
19. Measured between pins 1 and 2  
shorted together, and pins 3 and 4  
shorted together. For dual channel  
parts only.  
4. Each channel.  
5. Device considered a two-terminal  
device: Pins 1, 2, 3, and 4 shorted  
together and Pins 5, 6, 7, and 8  
shorted together.  
6. In accordance with UL1577, each  
optocoupler is proof tested by  
applying an insulation test voltage  
3000 VRMS for 1 second (leakage  
detection current limit, II-O 5 µA).  
This test is performed before the  
100% production test for partial  
discharge (method b) shown in the  
VDE 0884 Insulation Characteristics  
Table, if applicable.  
7. In accordance with UL1577, each  
optocoupler is proof tested by  
applying an insulation test voltage  
6000 VRMS for 1 second (leakage  
detection current limit, II-O 5 µA).  
12. Single channel products only (HCPL-  
261A/261N/061A/061N).  
13. Common mode transient immunity in  
a Logic High level is the maximum  
tolerable |dVCM/dt| of the common  
mode pulse, VCM, to assure that the  
output will remain in a Logic High  
state (i.e., Vo > 2.0 V).  
10  
15  
10  
80  
100.0  
V
V
V
V
= 5.5 V  
= 5.5 V  
= 2 V  
V
V
V
I
= 5 V  
= 2 V  
= 0.6 V  
= 3.5 mA  
CC  
CC  
E
OL  
F
O
E
F
= 0.8 V  
60  
40  
10.0  
1.0  
T
= 85 °C  
A
T
T
= 40 °C  
= 25 °C  
A
A
5
0
20  
0
0.1  
I
+
F
V
F
0.01  
-60 -40 -20  
0
20 40 60 80 100  
-60 -40 -20  
0
20 40 60 80 100  
1.0  
1.1  
V – FORWARD VOLTAGE – V  
F
1.2  
1.3  
1.4  
1.5  
T
– TEMPERATURE – °C  
T
– TEMPERATURE – °C  
A
A
Figure 4. Typical High Level Output  
Current vs. Temperature.  
Figure 5. Low Level Output Current  
vs. Temperature.  
Figure 6. Typical Diode Input  
Forward Current Characteristic.  
HCPL-261A fig 5  
0.6  
5.0  
4.0  
V
V
I
= 5.5 V  
CC  
= 2 V  
E
= 3.0 mA  
F
0.5  
R
= 350 Ω  
L
I
I
= 16 mA  
O
O
3.0  
2.0  
= 12.8 mA  
R
= 1 kΩ  
L
0.4  
0.3  
0.2  
R
= 4 kΩ  
L
I
I
= 9.6 mA  
= 6.4 mA  
1.0  
0
O
O
-60 -40 -20  
0
20 40 60 80 100  
0
I
0.5  
1.0  
1.5  
2.0  
T
– TEMPERATURE – °C  
– FORWARD INPUT CURRENT – mA  
A
F
Figure 7. Typical Output Voltage vs.  
Forward Input Current.  
Figure 8. Typical Low Level Output  
Voltage vs. Temperature.  
HCPL-261A/261N  
+5 V  
I
F
PULSE GEN.  
= 50 Ω  
1
2
3
4
V
8
CC  
Z
O
t
= t = 5 ns  
r
f
0.1 µF  
BYPASS  
R
7
6
5
L
OUTPUT V  
INPUT  
MONITORING  
NODE  
O
MONITORING  
NODE  
*C  
L
R
M
GND  
*C IS APPROXIMATELY 15 pF WHICH INCLUDES  
L
PROBE AND STRAY WIRING CAPACITANCE.  
V
OH  
I
= 3.5 mA  
F
90%  
90%  
INPUT  
I
= 1.75 mA  
I
F
F
10%  
10%  
t
t
PHL  
PLH  
V
OL  
OUTPUT  
V
O
t
rise  
t
fall  
1.5 V  
Figure 9. Test Circuit for tPHL and tPLH  
.
11  
2.0  
1.5  
120  
120  
TPLH  
= 4 k  
TPLH  
R = 4 kΩ  
L
R
L
100  
80  
100  
80  
R
R
= 350 Ω  
= 1 kΩ  
L
TPLH  
= 1 kΩ  
L
R
TPLH  
= 1 k  
L
60  
1.0  
0.5  
0
60  
R
L
TPLH  
= 350 Ω  
TPHL  
= 350 , 1 k, 4 kΩ  
R
40  
R
= 4 kΩ  
40  
L
L
TPHL  
= 350 , 1 k, 4 kΩ  
R
L
R
L
TPLH  
= 350 k  
V
V
= 5 V  
20  
0
20  
0
CC  
= 0.6 V  
R
L
V
I
= 5 V  
V
T
= 5 V  
= 25 °C  
CC  
= 3.5 mA  
CC  
A
O
F
-60 -40 -20  
0
20 40 60 80 100  
-60 -40 -20  
0
20 40 60 80 100  
0
2
4
6
8
10  
12  
T
– TEMPERATURE – °C  
T
– TEMPERATURE – °C  
I
– PULSE INPUT CURRENT – mA  
A
A
F
Figure 12. Typical Propagation Delay  
vs. Pulse Input Current.  
Figure 10. Typical Input Threshold  
Current vs. Temperature.  
Figure 11. Typical Propagation Delay  
vs. Temperature.  
60  
160  
V
I
= 5 V  
t
t
CC  
= 3.5 mA  
rise  
fall  
R
= 4 kΩ  
L
F
50  
40  
30  
20  
140  
120  
60  
V
= 5 V  
= 3.5 mA  
CC  
R
= 4 kΩ  
L
I
F
R
R
= 1 kΩ  
L
40  
= 350 Ω  
L
R
= 1 kΩ  
L
10  
0
20  
0
R
= 350 Ω  
L
R
= 350 Ω, 1 k, 4 kΩ  
L
0
-60 -40 -20  
0
20 40 60 80 100  
-60 -40 -20  
20 40 60 80 100  
T
– TEMPERATURE – °C  
T – TEMPERATURE – °C  
A
A
Figure 13. Typical Pulse Width  
Distortion vs. Temperature.  
Figure 14. Typical Rise and Fall Time  
vs. Temperature.  
12  
120  
PULSE GEN.  
= 50 Ω  
V
V
V
I
= 5 V  
= 3 V  
= 0 V  
CC  
EH  
EL  
Z
O
t
= t = 5 ns  
r
f
INPUT  
V
E
= 3.5 mA  
MONITORING NODE  
HCPL-261A/261N  
V
F
90  
60  
t
, R = 4 kΩ  
L
ELH  
+5 V  
1
2
3
4
8
7
6
5
CC  
t
, R = 1 kΩ  
ELH  
L
3.5 mA  
0.1 µF  
BYPASS  
R
L
I
F
30  
0
t
, R = 350 Ω  
ELH  
L
OUTPUT V  
MONITORING  
NODE  
O
t
, R = 350 Ω, 1k Ω, 4 kΩ  
L
EHL  
*C  
L
-60 -40 -20  
0
20 40 60 80 100  
GND  
T
– TEMPERATURE – °C  
A
*C IS APPROXIMATELY 15 pF WHICH INCLUDES  
L
Figure 16. Typical Enable Propaga-  
tion Delay vs. Temperature. HCPL-  
261A/-261N/-061A/-061N Only.  
PROBE AND STRAY WIRING CAPACITANCE.  
3.0 V  
1.5 V  
INPUT  
V
E
t
t
EHL  
ELH  
OUTPUT  
V
O
1.5 V  
Figure 15. Test Circuit for tEHL and tELH  
.
HCPL-261A/261N OPTION 060 ONLY  
800  
P
(mW)  
S
700  
600  
500  
400  
300  
200  
100  
0
I
(mA)  
S
HCPL-261A/261N  
1
2
3
4
V
8
+5 V  
CC  
V
0.1 µF  
BYPASS  
CM  
350 Ω  
OUTPUT V  
7
6
5
I
F
O
MONITORING  
NODE  
A
B
V
GND  
FF  
0
25 50 75 100 125 150 175 200  
– CASE TEMPERATURE – °C  
T
S
_
+
PULSE GEN.  
Z
= 50 Ω  
O
Figure 18. Thermal Derating Curve,  
Dependence of Safety Limiting Value  
with Case Temperature per  
VDE 0884.  
V
(PEAK)  
CM  
V
CM  
0 V  
5 V  
SWITCH AT A:  
SWITCH AT B:  
I
= 0 mA  
F
CM  
CM  
H
V
O
V
(min.)  
(max.)  
O
I
= 3.5 mA  
F
V
O
V
O
0.5 V  
L
Figure 17. Test Circuit for Common Mode Transient Immunity and  
Typical Waveforms.  
13  
SINGLE CHANNEL PRODUCTS  
Application Information  
Common-Mode Rejection for  
HCPL-261A/HCPL-261N  
Families:  
Figure 20 shows the recom-  
mended drive circuit for the  
HCPL-261N/-261A for optimal  
common-mode rejection  
performance. Two main points to  
note are:  
GND BUS (BACK)  
V
BUS (FRONT)  
N.C.  
CC  
ENABLE  
(IF USED)  
0.1µF  
OUTPUT 1  
N.C.  
N.C.  
1. The enable pin is tied to VCC  
rather than floating (this  
applies to single-channel parts  
only).  
ENABLE  
(IF USED)  
0.1µF  
2. Two LED-current setting  
resistors are used instead of  
one. This is to balance ILED  
variation during common-  
mode transients.  
N.C.  
OUTPUT 2  
10 mm MAX. (SEE NOTE 16)  
DUAL CHANNEL PRODUCTS  
If the enable pin is left floating, it  
is possible for common-mode  
transients to couple to the enable  
pin, resulting in common-mode  
failure. This failure mechanism  
only occurs when the LED is on  
and the output is in the Low  
State. It is identified as occurring  
when the transient output voltage  
rises above 0.8 V. Therefore, the  
enable pin should be connected  
to either VCC or logic-level high  
for best common-mode  
GND BUS (BACK)  
V
BUS (FRONT)  
CC  
OUTPUT 1  
OUTPUT 2  
0.1µF  
10 mm MAX. (SEE NOTE 16)  
performance with the output low  
(CMRL). This failure mechanism  
is only present in single-channel  
parts (HCPL-261N, -261A,  
-061N, -061A) which have the  
enable function.  
Figure 19. Recommended Printed Circuit Board Layout.  
HCPL-261A/261N  
*
1
8
7
V
V
V
CC  
CC+  
0.01 µF  
357 Ω  
(MAX.)  
350 Ω  
2
3
4
Also, common-mode transients  
can capacitively couple from the  
LED anode (or cathode) to the  
output-side ground causing  
current to be shunted away from  
the LED (which can be bad if the  
LED is on) or conversely cause  
current to be injected into the  
LED (bad if the LED is meant to  
be off). Figure 21 shows the  
parasitic capacitances which  
exists between LED  
357 Ω  
(MAX.)  
6
5
O
74LS04  
OR ANY TOTEM-POLE  
OUTPUT LOGIC GATE  
GND  
SHIELD  
*
GND1  
GND2  
*
HIGHER CMR MAY BE OBTAINABLE BY CONNECTING PINS 1, 4 TO INPUT GROUND (GND1).  
Figure 20. Recommended Drive Circuit for HCPL-261A/-261N Families for High-  
CMR (Similar for HCPL-263A/-263N).  
*Higher CMR May Be Obtainable by Connecting Pins 1, 4 to Input Ground (Gnd1).  
14  
anode/cathode and output ground  
(CLA and CLC). Also shown in  
Figure 21 on the input side is an  
AC-equivalent circuit. Table 1  
indicates the directions of ILP and  
ILN flow depending on the  
direction of the common-mode  
transient.  
CMR with Other Drive  
Circuits  
CMR performance with drive  
circuits other than that shown in  
Figure 20 may be enhanced by  
following these guidelines:  
circuit which can be used with  
any totem-pole-output TTL/  
LSTTL/HCMOS logic gate. The  
buffer PNP transistor allows the  
circuit to be used with logic  
devices which have low current-  
sinking capability. It also helps  
maintain the driving-gate power-  
supply current at a constant level  
to minimize ground shifting for  
other devices connected to the  
input-supply ground.  
1. Use of drive circuits where  
current is shunted from the  
LED in the LED “off” state (as  
shown in Figures 22 and 23).  
This is beneficial for good  
CMRH.  
For transients occurring when the  
LED is on, common-mode rejec-  
tion (CMRL, since the output is in  
the “low” state) depends upon the  
amount of LED current drive (IF).  
For conditions where IF is close  
to the switching threshold (ITH),  
CMRL also depends on the extent  
which ILP and ILN balance each  
other. In other words, any  
condition where common-mode  
transients cause a momentary  
decrease in IF (i.e. when  
dVCM/dt>0 and |IFP| > |IFN|,  
referring to Table 1) will cause  
common-mode failure for  
2. Use of IFH > 3.5 mA. This is  
good for high CMRL.  
When using an open-collector  
TTL or open-drain CMOS logic  
gate, the circuit in Figure 23 may  
be used. When using a CMOS  
gate to drive the optocoupler, the  
circuit shown in Figure 24 may  
be used. The diode in parallel  
with the RLED speeds the turn-off  
of the optocoupler LED.  
Using any one of the drive  
circuits in Figures 22-24 with  
IF = 10 mA will result in a typical  
CMR of 8 kV/µs for the HCPL-  
261N family, as long as the PC  
board layout practices are  
followed. Figure 22 shows a  
1
2
8
7
V
+
CC  
transients which are fast enough.  
1/2 R  
1/2 R  
0.01 µF  
LED  
350 Ω  
Likewise for common-mode  
transients which occur when the  
LED is off (i.e. CMRH, since the  
output is “high”), if an imbalance  
between ILP and ILN results in a  
transient IF equal to or greater  
than the switching threshold of  
the optocoupler, the transient  
“signal” may cause the output to  
spike below 2 V (which consti-  
tutes a CMRH failure).  
I
LP  
LED  
C
I
LA  
LN  
3
4
6
5
V
O
15 pF  
C
LC  
GND  
SHIELD  
+
V
CM  
Figure 21. AC Equivalent Circuit for HCPL-261X.  
V
CC  
By using the recommended  
circuit in Figure 20, good CMR  
can be achieved. (In the case of  
the -261N families, a minimum  
CMR of 15 kV/µs is guaranteed  
using this circuit.) The balanced  
ILED-setting resistors help equalize  
ILP and ILN to reduce the amount  
by which ILED is modulated from  
transient coupling through CLA  
and CLC.  
HCPL-261X  
1
2
420 Ω  
(MAX)  
2N3906  
(ANY PNP)  
74L504  
(ANY  
TTL/CMOS  
GATE)  
LED  
3
4
Figure 22. TTL Interface Circuit for the HCPL-261A/-  
261N Families.  
15  
V
CC  
V
CC  
HCPL-261X  
HCPL-261A/261N  
1
2
1N4148  
1
2
820 Ω  
750 Ω  
74HC00  
(OR ANY  
74HC04  
(OR ANY  
LED  
LED  
OPEN-COLLECTOR/  
OPEN-DRAIN  
TOTEM-POLE  
OUTPUT LOGIC  
GATE)  
3
4
3
4
LOGIC GATE)  
Figure 23. TTL Open-Collector/Open Drain Gate Drive Circuit  
for HCPL-261A/-261N Families.  
Figure 24. CMOS Gate Drive Circuit for HCPL-261A/-  
261N Families.  
Table 1. Effects of Common Mode Pulse Direction on Transient ILED  
If |ILP| < |ILN|,  
LED IF Current  
Is Momentarily:  
If |ILP| > |ILN|,  
LED IF Current  
Is Momentarily:  
If dVCM/dt Is:  
then ILP Flows:  
and ILN Flows:  
positive (>0)  
away from LED  
away from LED  
increased  
decreased  
anode through CLA  
cathode through CLC  
negative (<0)  
toward LED  
toward LED  
decreased  
increased  
anode through CLA  
cathode through CLC  
Propagation Delay, Pulse-  
Width Distortion and  
Propagation Delay Skew  
maximum data rate capability of  
a transmission system. PWD can  
be expressed in percent by  
maximum rate at which parallel  
data can be sent through the  
optocouplers.  
dividing the PWD (in ns) by the  
minimum pulse width (in ns)  
being transmitted. Typically,  
PWD on the order of 20-30% of  
the minimum pulse width is  
tolerable; the exact figure  
Propagation delay is a figure of  
merit which describes how  
quickly a logic signal propagates  
through a system. The propaga-  
Propagation delay skew is defined  
as the difference between the  
minimum and maximum propaga-  
tion delays, either tPLH or tPHL, for  
any given group of optocouplers  
which are operating under the  
same conditions (i.e., the same  
drive current, supply voltage,  
output load, and operating  
temperature). As illustrated in  
Figure 25, if the inputs of a group  
of optocouplers are switched  
either ON or OFF at the same  
time, tPSK is the difference  
tion delay from low to high (tPLH  
is the amount of time required for  
an input signal to propagate to  
the output, causing the output to  
change from low to high.  
Similarly, the propagation delay  
from high to low (tPHL) is the  
amount of time required for the  
input signal to propagate to the  
output, causing the output to  
change from high to low (see  
Figure 9).  
)
depends on the particular appli-  
cation (RS232, RS422, T-1, etc.).  
Propagation delay skew, tPSK, is  
an important parameter to con-  
sider in parallel data applications  
where synchronization of signals  
on parallel data lines is a con-  
cern. If the parallel data is being  
sent through a group of opto-  
couplers, differences in propaga-  
tion delays will cause the data to  
arrive at the outputs of the opto-  
couplers at different times. If this  
difference in propagation delay is  
large enough it will determine the  
between the shortest propagation  
delay, either tPLH or tPHL, and the  
longest propagation delay, either  
Pulse-width distortion (PWD)  
results when tPLH and tPHL differ  
in value. PWD is defined as the  
difference between tPLH and tPHL  
and often determines the  
tPLH or tPHL  
.
As mentioned earlier, tPSK can  
determine the maximum parallel  
data transmission rate. Figure 26  
is the timing diagram of a typical  
parallel data application with both  
the clock and the data lines being  
sent through optocouplers. The  
figure shows data and clock  
signals at the inputs and outputs  
of the optocouplers. To obtain the  
maximum data transmission rate,  
both edges of the clock signal are  
being used to clock the data; if  
only one edge were used, the  
clock signal would need to be  
twice as fast.  
I
F
50%  
50%  
1.5 V  
V
O
TPHL  
TPLH  
I
F
V
1.5 V  
O
t
PSK  
Figure 25. Illustration of Propagation Delay Skew – tPSK  
.
Propagation delay skew repre-  
sents the uncertainty of where an  
edge might be after being sent  
through an optocoupler. Figure  
26 shows that there will be  
uncertainty in both the data and  
the clock lines. It is important  
that these two areas of uncer-  
tainty not overlap, otherwise the  
clock signal might arrive before  
all of the data outputs have  
settled, or some of the data  
outputs may start to change  
before the clock signal has  
DATA  
INPUTS  
CLOCK  
DATA  
OUTPUTS  
t
PSK  
CLOCK  
t
PSK  
arrived. From these considera-  
tions, the absolute minimum  
pulse width that can be sent  
through optocouplers in a parallel  
application is twice tPSK. A  
Figure 26. Parallel Data Transmission Example.  
cautious design should use a  
slightly longer pulse width to  
ensure that any additional  
uncertainty in the rest of the  
circuit does not cause a problem.  
The tPSK specified optocouplers  
offer the advantages of guaran-  
teed specifications for propaga-  
tion delays, pulse-width  
distortion, and propagation delay  
skew over the recommended  
temperature, input current, and  
power supply ranges.  
www.semiconductor.agilent.com  
Data subject to change.  
Copyright © 1999 Agilent Technologies  
Obsoletes 5965-3593E  
5968-1087E (11/99)  

相关型号:

HCPL-261A#060

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 10 Mbps, 0.300 INCH, DIP-8
AGILENT

HCPL-261A#360

Logic IC Output Optocoupler, 1-Element, 3750V Isolation, 10MBps, 0.300 INCH, DIP-8
AVAGO

HCPL-261A#560

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 10Mbps, 0.300 INCH, DIP-8
AVAGO

HCPL-261A-000E

HCMOS Compatible, High CMR, 10 MBd Optocouplers
AVAGO

HCPL-261A-020

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 0.300 INCH, DIP-8
AVAGO

HCPL-261A-020E

HCMOS Compatible, High CMR, 10 MBd Optocouplers
AVAGO

HCPL-261A-020E

Logic IC Output Optocoupler, 1-Element, 5000V Isolation, 0.300 INCH, LEAD FREE, DIP-8
AGILENT

HCPL-261A-060E

HCMOS Compatible, High CMR, 10 MBd Optocouplers
AVAGO

HCPL-261A-300

暂无描述
AVAGO

HCPL-261A-300

Logic IC Output Optocoupler, 1-Element, 3750V Isolation, 0.300 INCH, SURFACE MOUNT, DIP-8
AGILENT

HCPL-261A-300E

HCMOS Compatible, High CMR, 10 MBd Optocouplers
AVAGO

HCPL-261A-300E

Logic IC Output Optocoupler, 1-Element, 3750V Isolation, 0.300 INCH, LEAD FREE, SURFACE MOUNT, DIP-8
AGILENT