ACPL-P343-560E [AVAGO]

4.0 Amp Output Current IGBT Gate Drive Optocoupler; 4.0安培输出电流IGBT栅极驱动光电耦合器
ACPL-P343-560E
型号: ACPL-P343-560E
厂家: AVAGO TECHNOLOGIES LIMITED    AVAGO TECHNOLOGIES LIMITED
描述:

4.0 Amp Output Current IGBT Gate Drive Optocoupler
4.0安培输出电流IGBT栅极驱动光电耦合器

栅极 光电 双极性晶体管 栅极驱动
文件: 总20页 (文件大小:283K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ACPL-P343 and ACPL-W343  
4.0 Amp Output Current IGBT Gate Drive Optocoupler  
with Rail-to-Rail Output Voltage in Stretched SO6  
Data Sheet  
Description  
Features  
The ACPL-P343/W343 contains an AlGaAs LED, which is  4.0 A maximum peak output current  
optically coupled to an integrated circuit with a power  
output stage. This optocoupler is ideally suited for driving  
power IGBTs and MOSFETs used in motor control inverter  
 3.0 A minimum peak output current  
 Rail-to-rail output voltage  
applications. The high operating voltage range of the  200 ns maximum propagation delay  
output stage provides the drive voltages required by gate  
controlled devices. The voltage and high peak output  
current supplied by this optocoupler make it ideally  
 100 ns maximum propagation delay difference  
 LED current input with hysteresis  
suited for direct driving IGBT with ratings up to 1200 V  35 kV/s minimum Common Mode Rejection (CMR) at  
/ 200 A. For IGBTs with higher ratings, this optocoupler  
can be used to drive a discrete power stage which drives  
the IGBT gate. The ACPL-P343 and ACPL-W343 have the  
V
= 1500 V  
CM  
 I = 3.0 mA maximum supply current  
CC  
 Under Voltage Lock-Out protection (UVLO) with  
highest insulation voltage of V  
= 891 V and V  
peak IORM  
IORM  
hysteresis  
= 1140 V  
respectively in the IEC/EN/DIN EN 60747-5-2.  
peak  
 Wide operating V Range: 15 to 30 V  
CC  
Functional Diagram  
 Industrial temperature range: -40° C to 105° C  
 Safety Approval:  
ANODE  
1
6
5
4
VCC  
– UL Recognized 3750/5000 V  
for 1 min.  
RMS  
– CSA  
– IEC/EN/DIN EN 60747-5-2 V  
= 891/1140 V  
IORM  
peak  
NC  
2
3
VOUT  
Applications  
CATHODE  
VEE  
 IGBT/MOSFET gate drive  
 AC and Brushless DC motor drives  
 Renewable energy inverters  
 Industrial inverters  
Note: A 1 F bypass capacitor must be connected between  
pins V and V  
.
CC  
EE  
Truth Table  
 Switching power supplies  
V
– V  
V – V  
CC EE  
CC  
EE  
“POSITIVE GOING”  
(i.e., TURN-ON)  
0 – 30 V  
“NEGATIVE GOING”  
(i.e., TURN-OFF)  
0 – 30 V  
LED  
OFF  
ON  
ON  
ON  
V
O
LOW  
LOW  
0 – 12.1 V  
12.1 – 13.5 V  
13.5 – 30 V  
0 – 11.1 V  
11.1 – 12.4 V  
12.4 – 30 V  
TRANSITION  
HIGH  
CAUTION: It is advised that normal static precautions be taken in handling and assembly  
of this component to prevent damage and/or degradation which may be induced by ESD.  
Ordering Information  
ACPL-P343 is UL Recognized with 3750 V  
ACPL-W343 is UL Recognized with 5000 V  
for 1 minute per UL1577.  
RMS  
for 1 minute per UL1577.  
RMS  
Option  
IEC/EN/DIN  
Part number  
RoHS Compliant  
-000E  
Package  
Surface Mount  
Tape & Reel  
EN 60747-5-2  
Quantity  
ACPL-P343  
ACPL-W343  
Stretched  
SO-6  
X
X
X
X
100 per tube  
1000 per reel  
100 per tube  
1000 per reel  
-500E  
X
X
-060E  
X
X
-560E  
To order, choose a part number from the part number column and combine with the desired option from the option  
column to form an order entry.  
Example 1:  
ACPL-P343-560E to order product of Stretched SO-6 Surface Mount package in Tape and Reel packaging with IEC/EN/  
DIN EN 60747-5-2 Safety Approval in RoHS compliant.  
Example 2:  
ACPL-W343-000E to order product of Stretched SO-6 Surface Mount package in Tube packaging and RoHS compliant.  
Option datasheets are available. Contact your Avago sales representative or authorized distributor for information.  
2
Package Outline Drawings  
ACPL-P343 Stretched SO-6 Package (7 mm clearance)  
4.580 + 0.254  
Land Pattern Recommendation  
0
1.27 (0.050) BSG  
0.381 0.127  
(0.015 0.005)  
0.180 + 0.010  
(
)
0.000  
0.76 (0.03)  
1.27 (0.05)  
2.16  
(0.085)  
10.7  
(0.421)  
7.62 (0.300)  
6.81 (0.268)  
1.590 0.127  
(0.063 0.005)  
3.180 0.127  
(0.125 0.005)  
0.45 (0.018)  
45°  
7°  
7°  
7°  
0.254 0.050  
(0.010 0.002)  
0.20 0.10  
(0.008 0.004)  
7°  
1
0.250  
5° NOM.  
Floating Lead Protusions max. 0.25 (0.01)  
Dimensions in Millimeters (Inches)  
(0.040 0.010)  
9.7 0.250  
(0.382 0.010)  
Lead Coplanarity = 0.1 mm (0.004 Inches)  
ACPL-W343 Stretched SO-6 Package (8 mm clearance)  
4.580 + 0.254  
0
0.180 + 0.010  
(
)
0.000  
Land Pattern Recommendation  
1.27 (0.050) BSG  
0.381 0.127  
0.76 (0.03)  
1.27 (0.05)  
(0.015 0.005)  
1
2
3
6
5
4
1.905  
(0.075)  
7.62 (0.300)  
6.807 + 0.127  
12.65  
(0.5)  
0
0.268 + 0.005  
(
)
0.000  
1.590 0.127  
(0.063 0.005)  
3.180 0.127  
(0.125 0.005)  
45°  
0.45 (0.018)  
7°  
7°  
0.20 0.10  
(0.008 0.004)  
0.254 0.050  
(0.010 0.002)  
0.750 0.250  
(0.0295 0.010)  
35° NOM.  
Floating Lead Protusions max. 0.25 (0.01)  
Dimensions in Millimeters (Inches)  
11.500 0.25  
(0.453 0.010)  
Lead Coplanarity = 0.1 mm (0.004 Inches)  
3
Recommended Pb-Free IR Profile  
Recommended reflow condition as per JEDEC Standard, J-STD-020 (latest revision). Non- Halide Flux should be used.  
Regulatory Information  
The ACPL-P343/W343 is approved by the following organizations:  
UL  
Recognized under UL 1577, component recognition program up to V = 3750 V  
(ACPL-P343) and V = 5000 V  
ISO RMS  
ISO  
RMS  
(ACPL-W343) expected prior to product release.  
CSA  
CSA Component Acceptance Notice #5, File CA 88324  
IEC/EN/DIN EN 60747-5-2 (Option 060 Only)  
Maximum Working Insulation Voltage V  
= 891 V  
(ACPL-P343) and V  
= 1140 V (ACPL-W343)  
peak  
IORM  
peak  
IORM  
Table 1. IEC/EN/DIN EN 60747-5-2 Insulation Characteristics* (Option 060 – Under Evaluation)  
ACPL-P343  
ACPL-W343  
Option 060  
Description  
Symbol  
Option 060  
Unit  
Installation classification per DIN VDE 0110/1.89, Table 1  
for rated mains voltage ≤ 150 Vrms  
I – IV  
I – IV  
I – III  
I – III  
I – IV  
I – IV  
I – IV  
I – IV  
I – III  
for rated mains voltage ≤ 300 Vrms  
for rated mains voltage ≤ 450 Vrms  
for rated mains voltage ≤ 600 Vrms  
for rated mains voltage ≤ 1000 Vrms  
Climatic Classification  
55/100/21  
55/100/21  
2
Pollution Degree (DIN VDE 0110/1.89)  
Maximum Working Insulation Voltage  
2
VIORM  
VPR  
891  
1671  
1140  
2137  
Vpeak  
Vpeak  
Input to Output Test Voltage, Method b*  
VIORM x 1.875 = VPR, 100% Production Test with tm = 1 sec,  
Partial discharge < 5 pC  
Input to Output Test Voltage, Method a*  
VPR  
1426  
6000  
1824  
8000  
Vpeak  
V
IORM x 1.6 = VPR, Type and Sample Test, tm = 10 sec,  
Partial discharge < 5 pC  
Highest Allowable Overvoltage  
VIOTM  
Vpeak  
(Transient Overvoltage tini = 60 sec)  
Safety-limiting values – maximum values allowed in the event  
of a failure.  
TS  
175  
230  
600  
175  
230  
600  
°C  
mA  
mW  
Case Temperature  
Input Current  
Output Power  
IS, INPUT  
PS, OUTPUT  
Insulation Resistance at TS, VIO = 500 V  
RS  
>109  
>109  
*
Refer to the optocoupler section of the Isolation and Control Components Designer’s Catalog, under Product Safety Regulations section, (IEC/EN/  
DIN EN 60747-5-2) for a detailed description of Method a and Method b partial discharge test profiles.  
Note:  
These optocouplers are suitable for “safe electrical isolation” only within the safety limit data. Maintenance of the safety data shall be ensured by  
means of protective circuits. Surface mount classification is Class A in accordance with CECC 00802.  
4
Table 2. Insulation and Safety Related Specifications  
Parameter  
Symbol  
ACPL-P343  
ACPL-W343  
Units  
Conditions  
Minimum External Air Gap  
(External Clearance)  
L(101)  
7.0  
8.0  
mm  
Measured from input terminals to output  
terminals, shortest distance through air.  
Minimum External Tracking  
(External Creepage)  
L(102)  
CTI  
8.0  
8.0  
mm  
mm  
Measured from input terminals to output  
terminals, shortest distance path along body.  
Minimum Internal Plastic Gap  
(Internal Clearance)  
0.08  
0.08  
Through insulation distance conductor to  
conductor, usually the straight line distance  
thickness between the emitter and detector.  
Tracking Resistance  
(Comparative Tracking Index)  
>175  
IIIa  
>175  
IIIa  
V
DIN IEC 112/VDE 0303 Part 1  
Isolation Group  
Notes:  
Material Group (DIN VDE 0110, 1/89, Table 1)  
1. All Avago data sheets report the creepage and clearance inherent to the optocoupler component itself. These dimensions are needed as a starting  
point for the equipment designer when determining the circuit insulation requirements. However, once mounted on a printed circuit board,  
minimum creepage and clearance requirements must be met as specified for individual equipment standards. For creepage, the shortest distance  
path along the surface of a printed circuit board between the solder fillets of the input and output leads must be considered (the recommended  
Land Pattern does not necessarily meet the minimum creepage of the device). There are recommended techniques such as grooves and ribs which  
may be used on a printed circuit board to achieve desired creepage and clearances. Creepage and clearance distances will also change depending  
on factors such as pollution degree and insulation level.  
Table 3. Absolute Maximum Ratings  
Parameter  
Symbol  
TS  
Min.  
-55  
-40  
Max.  
125  
105  
125  
25  
Units  
°C  
Note  
Storage Temperature  
Operating Temperature  
Output IC Junction Temperature  
Average Input Current  
TA  
°C  
TJ  
°C  
IFꢀAVGꢁ  
IFꢀTRANꢁ  
mA  
A
1
Peak Transient Input Current  
1
(<1 s pulse width, 300 pps)  
Reverse Input Voltage  
VR  
5
V
“HighPeak Output Current  
“LowPeak Output Current  
Total Output Supply Voltage  
Input Current (Rise/Fall Time)  
Output Voltage  
IOH(PEAK)  
IOL(PEAK)  
(VCC - VEE  
4.0  
4.0  
35  
A
2
2
A
)
0
V
tr(IN) / tf(IN)  
VO(PEAK)  
PO  
500  
VCC  
700  
745  
ns  
V
-0.5  
Output IC Power Dissipation  
Total Power Dissipation  
Lead Solder Temperature  
mW  
mW  
3
4
PT  
260° C for 10 sec., 1.6 mm below seating plane  
Table 4. Recommended Operating Conditions  
Parameter  
Symbol  
TA  
Min.  
-40  
15  
Max.  
105  
30  
Units  
°C  
Note  
Operating Temperature  
Output Supply Voltage  
Input Current (ON)  
Input Voltage (OFF)  
(VCC - VEE  
IF(ON)  
)
V
7
16  
mA  
V
VF(OFF)  
-3.6  
0.8  
5
Table 5. Electrical Specifications (DC)  
Unless otherwise noted, all typical values are at T = 25° C, V - V = 30 V, V = Ground; all minimum and maximum  
A
CC  
EE  
EE  
specifications are at recommended operating conditions (T = -40 to 105° C, I  
= 7 to 16 mA, V  
= -3.6 to 0.8 V,  
A
F(ON)  
F(OFF)  
V
= Ground, V = 15 to 30 V).  
EE  
CC  
Parameter  
Symbol  
Min.  
-1.0  
-3.0  
1.0  
Typ.  
Max.  
Units  
A
Test Conditions  
VO = VCC – 4 V  
VCC - VO ≤ 15 V  
VO = VEE + 2.5 V  
VO - VEE ≤ 15 V  
IOH = -3.0 A  
Fig.  
Note  
High Level Peak Output  
Current  
IOH  
-2.8  
3, 4, 20  
5
6
5
7
8
A
Low Level Peak Output  
Current  
IOL  
3.5  
A
6, 7, 21  
3.0  
A
High Output Transistor  
RDS(ON)  
RDS,OH  
RDS,OL  
1.4  
0.6  
2.5  
1.5  
8
9
Low Output Transistor  
RDS(ON)  
IOL = 3.0 A  
8
High Level Output Voltage  
High Level Output Voltage  
Low Level Output Voltage  
High Level Supply Current  
VOH  
VOH  
VOL  
ICCH  
Vcc – 0.3 Vcc – 0.2  
V
IO = -100 mA  
2, 4, 22  
1
9, 10  
Vcc  
0.1  
1.9  
V
IO = 0 mA, IF = 10 mA  
IO = 100 mA  
0.2  
3.0  
V
5, 7, 23  
10, 11  
mA  
Rg = 10 ,  
Cg = 25 nF, IF = 10 mA  
Low Level Supply Current  
ICCL  
IFLH  
VFHL  
1.9  
3.0  
4.0  
mA  
mA  
V
Rg = 10 ,  
Cg = 25 nF, VF = 0 V  
Threshold Input Current  
Low to High  
1.5  
Rg = 10 ,  
Cg = 25 nF, VO > 5 V  
12, 13, 24  
19  
Threshold Input Voltage  
High to Low  
0.8  
Input Forward Voltage  
VF  
1.2  
1.55  
-1.7  
1.95  
V
IF = 10 mA  
Temperature Coefficient  
of Input Forward Voltage  
VF/TA  
mV/°C IF = 10 mA  
Input Reverse Breakdown  
Voltage  
BVR  
5
V
IR = 100 A  
Input Capacitance  
UVLO Threshold  
CIN  
70  
pF  
V
f = 1 MHz, VF = 0 V  
VO > 5 V, IF = 10 mA  
VUVLO+  
VUVLO-  
12.1  
11.1  
12.8  
11.8  
13.5  
12.4  
25  
UVLO Hysteresis  
UVLOHYS  
1.0  
V
6
Table 6. Switching Specifications (AC)  
Unless otherwise noted, all typical values are at T = 25° C, V - V = 30 V, V = Ground; all minimum and maximum  
A
CC  
EE  
EE  
specifications are at recommended operating conditions (T = -40 to 105° C, I  
= 7 to 16 mA, V  
= -3.6 to 0.8 V,  
A
F(ON)  
F(OFF)  
V
= Ground, V = 15 to 30 V).  
EE  
CC  
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Units  
Test Conditions  
Fig.  
Note  
Propagation Delay Time to  
High Output Level  
tPLH  
50  
98  
200  
ns  
Rg = 10 , Cg = 25 nF,  
f = 20 kHz,  
Duty Cycle = 50%,  
IF = 7 mA to 16 mA,  
VCC = 15 V to 30 V  
14, 15,  
16, 17,  
18, 26  
Propagation Delay Time to  
Low Output Level  
tPHL  
50  
95  
22  
200  
ns  
Pulse Width Distortion  
PWD  
70  
ns  
ns  
11  
12  
Propagation Delay Difference  
Between Any Two Parts  
PDD  
(tPHL - tPLH  
-100  
100  
33, 34  
26  
)
Rise Time  
Fall Time  
tR  
43  
40  
50  
ns  
Vcc = 30 V  
tF  
ns  
Output High Level Common  
Mode Transient Immunity  
|CMH|  
35  
35  
kV/s  
TA = 25° C, IF = 10 mA,  
VCC = 30 V, VCM = 1500 V  
with split resistors  
27  
13, 14  
13, 15  
Output Low Level Common  
Mode Transient Immunity  
|CML|  
50  
kV/s  
TA = 25° C, VF = 0 V,  
VCC = 30 V, VCM = 1500 V  
with split resistors  
Table 7. Package Characteristics  
Unless otherwise noted, all typical values are at T = 25° C; all minimum/maximum specifications are at recommended  
A
operating conditions.  
Parameter  
Symbol  
Device  
Min. Typ.  
Max. Units Test Conditions  
Fig.  
Note  
Input-Output Momentary  
Withstand Voltage*  
VISO  
ACPL-P343 3750  
VRMS RH < 50%, t = 1 min.,  
TA = 25° C  
16,18  
ACPL-W343 5000  
VRMS RH < 50%, t = 1 min.,  
TA = 25° C  
17,18  
18  
Input-Output Resistance  
Input-Output Capacitance  
RI-O  
CI-O  
R11  
>5012  
0.6  
V
I-O = 500 VDC  
pF  
f =1 MHz  
LED-to-Ambient Thermal  
Resistance  
135  
°C/W  
19  
LED-to-Detector Thermal  
Resistance  
R12  
R21  
R22  
27  
39  
47  
Detector-to-LED Thermal  
Resistance  
Detector-to-Ambient  
Thermal Resistance  
*
The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous  
voltage rating. For the continuous voltage rating, refer to your equipment level safety specification or Avago Technologies Application Note 1074  
entitled “Optocoupler Input-Output Endurance Voltage.”  
7
Notes:  
1. Derate linearly above 70° C free-air temperature at a rate of 0.3 mA/°C.  
2. Maximum pulse width = 10 s.This value is intended to allow for component tolerances for designs with I peak minimum = 3.0 A. See applications  
O
section for additional details on limiting I peak.  
OH  
3. Derate linearly above 85° C free-air temperature at a rate of 16.9 mW/°C .  
4. Derate linearly above 85° C free-air temperature at a rate of 15.3 mW/°C . The maximum LED junction temperature should not exceed 125° C.  
5. Maximum pulse width = 50 s.  
6. Output is sourced at -3.0 A with a maximum pulse width = 10 s. V -V is measured to ensure 15 V or below.  
CC  
O
7. Output is sourced at 3.0 A with a maximum pulse width = 10 s. V -V is measured to ensure 15 V or below.  
O
EE  
8. Output is sourced at -3.0 A/3.0 A with a maximum pulse width = 10 s.  
9. In this test V is measured with a DC load current. When driving capacitive loads, V will approach V as I approaches zero amps.  
OH  
OH  
CC  
OH  
10. Maximum pulse width = 1 ms.  
11. Pulse Width Distortion (PWD) is defined as |t -t | for any given device.  
PHL PLH  
12. The difference between t  
and t  
between any two ACPL-P343 parts under the same test condition.  
PHL  
PLH  
13. Pin 2 needs to be connected to LED common.  
14. Common mode transient immunity in the high state is the maximum tolerable dV /dt of the common mode pulse, V , to assure that the  
CM  
CM  
output will remain in the high state (i.e., V > 15.0 V).  
O
15. Common mode transient immunity in a low state is the maximum tolerable dV /dt of the common mode pulse, V , to assure that the output  
CM  
CM  
will remain in a low state (i.e., V < 1.0 V).  
16. In accordance with UL1577, each optocoupler is proof tested by applying an insulation test voltage ≤ 4500 V  
O
for 1 second (leakage detection  
RMS  
current limit, I < 5 A).  
I-O  
17. In accordance with UL1577, each optocoupler is proof tested by applying an insulation test voltage ≤ 6000 V  
for 1 second (leakage detection  
RMS  
current limit, I < 5 A).  
I-O  
18. Device considered a two-terminal device: pins 1, 2, and 3 shorted together and pins 4, 5 and 6 shorted together.  
19. The device was mounted on a high conductivity test board as per JEDEC 51-7  
8
29.84  
29.83  
29.82  
29.81  
29.8  
0
-0.05  
-0.1  
IF = 7 to 16 mA  
IOUT = -100 mA  
VCC = 15 to 30 V  
VEE = 0 V  
IF = 10 mA  
IOUT = 0 mA  
VCC = 30 V  
VEE = 0 V  
-0.15  
-0.2  
29.79  
29.78  
29.77  
-0.25  
-40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100  
TA - TEMPERATURE - °C  
-40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100  
TA - TEMPERATURE - °C  
Figure 1. High output rail voltage vs. temperature  
Figure 2. VOH vs. temperature  
0.5  
0
-0.5  
-1  
0
-0.5  
-1  
IF = 7 to 16 mA  
VOUT = VCC  4 V  
VCC = 15 to 30 V  
VEE = 0 V  
IF = 7 to 16 mA  
VCC = 15 to 30 V  
VEE = 0 V  
TA = 25° C  
-1.5  
-2  
-1.5  
-2  
-2.5  
-3  
-2.5  
-3  
-3.5  
-4  
-3.5  
-4  
-4.5  
-40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100  
TA - TEMPERATURE - °C  
0
1
2
3
4
5
6
(VOH-VCC) - HIGH OUTPUT VOLTAGE DROP - V  
Figure 3. IOH vs. temperature  
Figure 4. IOH vs. VOH  
0.14  
0.12  
0.1  
4.5  
4
3.5  
3
0.08  
0.06  
0.04  
0.02  
0
2.5  
2
1.5  
1
VF (OFF) = 0 V  
VF (OFF) = 0 V  
IOUT = 100 mA  
VCC = 15 to 30 V  
VEE = 0 V  
VOUT = 2.5 V  
VCC = 15 to 30 V  
VEE = 0 V  
0.5  
0
-40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90 100  
TA - TEMPERATURE - °C  
TA - TEMPERATURE - °C  
Figure 5.VOL vs. temperature  
Figure 6. IOL vs. temperature  
9
5
4.5  
4
2.5  
2
3.5  
3
1.5  
1
2.5  
2
IF = 7 to 16 mA  
IOUT = -3 A  
VF (OFF) = 0 V  
VCC = 15 to 30 V  
VEE = 0 V  
1.5  
1
0.5  
0
VCC = 15 to 30 V  
VEE = 0 V  
0.5  
0
TA = 25° C  
0
0.5  
1
1.5  
2
2.5  
3
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90 100  
TA - TEMPERATURE - °C  
VOL - OUTPUT LOW VOLTAGE - V  
Figure 7. IOL vs. VOL  
Figure 8. RDS,OH vs. temperature  
2.5  
2
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.5  
1
VF (OFF) = 0 V  
IOUT = 3 A  
IF = 10 mA for ICCH  
VF = 0 V for ICCL  
0.5  
ICCH  
ICCL  
VCC = 15 to 30 V  
VEE = 0 V  
VCC = 30 V  
VEE = 0 V  
0
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90 100  
TA - TEMPERATURE - °C  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90 100  
TA - TEMPERATURE - °C  
Figure 9. RDS,OL vs. temperature  
Figure 10. ICC vs. temperature  
2.5  
2
34  
TA = 25° C  
VCC = 30 V  
VEE = 0 V  
29  
24  
19  
14  
9
1.5  
1
IF = 10 mA for ICCH  
VF = 0 V for ICCL  
0.5  
IFLH ON  
IFLH OFF  
ICCL  
ICCH  
TA = 25° C  
VEE = 0 V  
4
0
-1  
15  
20  
25  
30  
0
0.5  
1
1.5  
2
2.5  
3
V
CC - SUPPLY VOLTAGE - V  
I
FLH - LOW TO HIGH CURRENT THRESHOLD - mA  
Figure 11. ICC vs. VCC  
Figure 12. IFLH hysteresis  
10  
2.4  
2.2  
2
1.8  
1.6  
1.4  
1.2  
1
120  
110  
100  
90  
IF = 7 mA  
0.8  
0.6  
0.4  
0.2  
0
80  
TA = 25° C  
Rg = 10 7, Cg = 25 nF  
DUTY CYCLE = 50%  
f = 20 kHz  
TPLH  
TPHL  
IFLH ON  
IFLH OFF  
70  
VCC = 15 to 30 V  
VEE = 0 V  
60  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90 100  
TA - TEMPERATURE - °C  
15  
20  
25  
30  
VCC - SUPPLY VOLTAGE - V  
Figure 13. IFLH vs. temperature  
Figure 14. Propagation delays vs. VCC  
120  
110  
100  
90  
120  
110  
100  
90  
IF = 7 mA  
80  
VCC = 30 V, VEE = 0 V  
80  
VCC = 30 V, VEE = 0 V  
TA = 25° C  
Rg = 10 7, Cg = 25 nF  
Rg = 10 7, Cg = 25 nF  
TPLH  
TPHL  
TPLH  
TPHL  
70  
70  
DUTY CYCLE = 50%  
f = 20 kHz  
DUTY CYCLE = 50%  
f = 20 kHz  
60  
60  
6
8
10  
12  
14  
16  
-40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100  
TA - TEMPERATURE - °C  
IF - FORWARD LED CURRENT - mA  
Figure 15. Propagation delays vs. IF  
Figure 16. Propagation delays vs. temperature  
105  
100  
95  
110  
105  
100  
95  
90  
85  
80  
75  
70  
65  
60  
90  
85  
80  
IF = 7 mA, TA = 25° C  
IF = 7 mA, TA = 25° C  
VCC = 30 V, VEE = 0 V  
75  
VCC = 30 V, VEE = 0 V  
Cg = 25 nF  
R
g = 10 7  
70  
TPLH  
TPHL  
TPLH  
TPHL  
DUTY CYCLE = 50%  
DUTY CYCLE = 50%  
f = 20 kHz  
65  
f = 20 kHz  
60  
10  
15  
20  
25  
30  
35  
40  
45  
50  
10  
15  
20  
25  
30  
35  
40  
45  
50  
Cg - SERIES LOAD CAPACITANCE - nF  
R
g - SERIES LOAD RESISTANCE - 7  
Figure 17. Propagation delay vs. Rg  
Figure 18. Propagation delay vs. Cg  
11  
100  
10  
1
0.1  
1.4  
1.45  
1.5  
1.55  
1.6  
1.65  
VF - FORWARD VOLTAGE - V  
Figure 19. Input current vs. forward voltage  
4 V Pulsed  
1
6
5
4
+
_
IF = 7 to 16 mA  
1 MF  
V
CC = 15 to 30 V  
+
2
_
IOH  
3
Figure 20. IOH test circuit  
1
6
5
4
1 MF  
VCC = 15 to 30 V  
+
_
2
3
IOL  
+
_
2.5 V Pulsed  
Figure 21. IOL test circuit  
12  
1
6
5
4
IF = 7 to 16 mA  
1 MF  
VCC = 15 to 30 V  
VOH  
+
2
3
_
100 mA  
Figure 22. VOH test circuit  
1
6
5
4
100 mA  
1 MF  
VCC = 15 to 30 V  
+
2
3
_
VOL  
Figure 23. VOL test circuit  
1
6
5
4
1 MF  
VCC = 15 to 30 V  
VO > 5 V  
IF  
+
2
_
10 7  
25 nF  
3
Figure 24. IFLH test circuit  
13  
1
6
5
4
IF = 7 to 16 mA  
1 MF  
VCC  
VO > 5 V  
+
2
3
_
Figure 25. UVLO test circuit  
1
6
5
4
1 MF  
VCC = 15 to 30 V  
IF = 7 to 16 mA,  
20 kHz, 50% Duty Cycle  
VO  
+
2
3
_
10 7  
25 nF  
Figure 26. tPHL, tPHL, tr and tf test circuit and waveforms  
205 7  
1
6
+
1 MF  
5 V  
VCC = 30 V  
_
VO  
+
2
3
5
4
_
137 7  
10 mA  
VCM = 1500 V  
Figure 27. CMR test circuit with split resistors network and waveforms  
14  
Application Information  
Product Overview Description  
Recommended Application Circuit  
The recommended application circuit shown in Figure 28  
illustrates a typical gate drive implementation using the  
ACPL-P343. The following describes about driving IGBT.  
However, it is also applicable to MOSFET. Designers will  
The ACPL-P343/W343 is an optically isolated power output  
stage capable of driving IGBTs of up to 200 A and 1200 V.  
Based on BCDMOS technology, this gate drive optocou-  
pler delivers higher peak output current, better rail-to-rail  
output voltage performance and two times faster speed  
than the previous generation products.  
need to adjust the V supply voltage, depending on the  
CC  
MOSFET or IGBT gate threshold requirements (Recom-  
mended V = 15 V for IGBT and 12 V for MOSFET).  
CC  
The high peak output current and short propagation delay  
are needed for fast IGBT switching to reduce dead time  
and improve system overall efficiency. Rail-to-rail output  
voltage ensures that the IGBT’s gate voltage is driven to  
the optimum intended level with no power loss across  
IGBT. This helps the designer lower the system power  
which is suitable for bootstrap power supply operation.  
The supply bypass capacitors (1 F) provide the large  
transient currents necessary during a switching transition.  
Because of the transient nature of the charging currents, a  
low current (3.0 mA) power supply will be enough to power  
the device. The split resistors (in the ratio of 1.5:1) across  
the LED will provide a high CMR response by providing a  
balanced resistance network across the LED.  
It has very high CMR(common mode rejection) rating  
which allows the microcontroller and the IGBT to operate  
at very large common mode noise found in industrial  
motor drives and other power switching applications. The  
input is driven by direct LED current and has a hysteresis  
that prevents output oscillation if insufficient LED driving  
current is applied. This will eliminates the need of addi-  
tional Schmitt trigger circuit at the input LED.  
The gate resistor RG serves to limit gate charge current  
and controls the IGBT collector voltage rise and fall times.  
In PC board design, care should be taken to avoid routing  
the IGBT collector or emitter traces close to the ACPL-P343  
input as this can result in unwanted coupling of transient  
signals into ACPL-P343 and degrade performance.  
The stretched SO6 package which is up to 50% smaller  
than conventional DIP package facilitates smaller more  
compact design. These stretched packages are compliant  
to many industrial safety standards such as IEC/EN/DIN EN  
60747-5-2, UL 1577 and CSA.  
ANODE  
1
VCC  
6
R
VCC = 15 V  
+
1 MF  
Rg  
_
+ HVDC  
NC  
2
VOUT  
5
+
+
_
VCE  
_
Q1  
Q2  
3-HVDC  
AC  
+
_
CATHODE  
3
VEE  
4
R
VEE = 5 V  
+
VCE  
_
-HVDC  
Figure 28. Recommended application circuit with split resistors LED drive  
15  
Rail-to-Rail Output  
Figure 29 shows a typical gate driver’s high current output ACPL-P343 uses a power PMOS to deliver the large current  
stage with 3 bipolar transistors in darlington configuration. and pull it to V to achieve rail-to-rail output voltage  
CC  
During the output high transition, the output voltage rises  
rapidly to within 3 diode drops of V . To ensure the V  
as shown in Figure 30. This ensures that the IGBT’s gate  
voltage is driven to the optimum intended level with no  
CC  
OUT  
is at V in order to achieve IGBT rated V  
voltage. The power loss across IGBT even when an unstable power  
CC  
CE(ON)  
level of V will be need to be raised to beyond V +3(V )  
supply is used.  
CC  
CC  
BE  
to account for the diode drops. And to limit the output  
voltage to V , a pull-down resistor, R between  
CC  
PULL-DOWN  
the output andV is recommended to sink a static current  
EE  
while the output is high.  
VCC  
1
2
8
7
ANODE  
NC  
RG  
VOUT  
RPULL-DOWN  
CATHODE  
NC  
3
4
6
5
VEE  
Figure 29. Typical gate driver with output stage in darlington configuration  
ANODE  
NC  
1
6
5
4
VCC  
2
3
VOUT  
CATHODE  
VEE  
Figure 30. ACPL-P343/W343 with PMOS and NMOS output stage for rail-to-rail output voltage  
16  
Selecting the Gate Resistor (Rg)  
Step 1: Calculate Rg minimum from the I peak specification. The IGBT and Rg in Figure 28 can be analyzed as a simple  
OL  
RC circuit with a voltage supplied by ACPL-P343/W343.  
V
I
– V – V  
OL  
CC  
EE  
Rg ≥  
OLPEAK  
15 V + 5 V – 2.9 V  
4A  
=
= 4.3   5   
The V value of 2.9 V in the previous equation is the V at the peak current of 4.0 A (see Figure 7).  
OL  
OL  
Step 1: Check the ACPL-P343/W343 power dissipation and increase Rg if necessary. The ACPL-P343/W343 total power  
dissipation (P ) is equal to the sum of the emitter power (P ) and the output power (P ).  
T
E
O
P
P
P
= P + P  
E O  
T
= I • V • Duty Cycle  
E
F
F
= P  
+ P  
O(SWITCHING)  
O
O(BIAS)  
= I • (V -V ) + E (Rg;Cg) • f  
CC  
CC EE  
SW  
Using I (worst case) = 16 mA, Rg = 5 , Max Duty Cycle = 80%, Cg = 25 nF, f = 25 kHz and T max = 85° C:  
F
A
P
P
= 16 mA • 1.95 V • 0.8 = 25 mW  
= 3 mA • 20 V + 5 J • 25 kHz  
= 60 mW + 125 mW  
E
O
= 185 mW < 700 mW (P  
@ 85° C)  
O(MAX)  
The value of 3 mA for I in the previous equation is the maximum I over the entire operating temperature range.  
CC  
CC  
Since P is less than P  
, Rg = 5 is alright for the power dissipation.  
O(MAX)  
O
3.0E-05  
2.5E-05  
2.0E-05  
1.5E-05  
1.0E-05  
5.0E-06  
0.0E+00  
VCC = 30 V  
VCC = 20 V  
VCC = 15 V  
0
2
4
6
8
10  
Rg - Gate Resistance - 7  
Figure 31. Energy Dissipated in the ACPL-P343/W343 for each IGBT switching  
cycle  
17  
LED Drive Circuit Considerations for High CMR Performance  
Figure 32 shows the recommended drive circuit for the if an imbalance between I and I results in a transient  
LP  
LN  
ACPL-P343/W343 that gives optimum common-mode I equal to or greater than the switching threshold of the  
F
rejection. The two current setting resistors balance the optocoupler, the transient “signal” may cause the output  
common mode impedances at the LED’s anode and to spike above 1 V, which constitutes a CM failure. The  
L
cathode. Common-mode transients can be capacitive balanced I -setting resistors help equalize the common  
LED  
coupled from the LED anode, through C (or cathode mode voltage change at the anode and cathode. The  
LA  
through C ) to the output-side ground causing current shunt drive input circuit will also help to achieve high CM  
LC  
L
to be shunted away from the LED (which is not wanted performance by shunting the LED in the off state.  
when the LED should be on) or conversely cause current  
to be injected into the LED (which is not wanted when the  
LED should be o).  
VDD = 5.0 V:  
R1 = 205 7 1%  
R2 = 137 7 1%  
R1/R2 ≈ 1.5  
+5 V  
Table 8 shows the directions of I and I depend on the  
LP  
LN  
R1  
ILP  
ANODE  
1
polarity of the common-mode transient. For transients  
occurring when the LED is on, common-mode rejection  
6
5
4
VCC  
CLA  
(CM , since the output is at “high” state) depends on  
H
LED current (I ). For conditions where I is close to the  
F
F
2
3
VOUT  
switching threshold (I ), CM also depends on the  
FLH  
H
extent to which I and I balance each other. In other  
LP  
LN  
ILN  
CLC  
R2  
words, any condition where a common-mode transient  
causes a momentary decrease in I (i.e. when dV /dt > 0  
VEE  
F
CM  
CATHODE  
and |I | > |I |, referring to Table 8) will cause a common-  
LP  
LN  
mode failure for transients which are fast enough.  
Likewise for a common-mode transient that occurs when  
Figure 32. Recommended high-CMR drive circuit for the ACPL-P343/W343  
the LED is off (i.e. CM , since the output is at “low” state),  
L
Table 8. Common Mode Pulse Polarity and LED current Transients  
If |I | < |I |,  
I is momentarily  
F
If |I | > |I |,  
LP LN  
I is momentarily  
F
LP  
LN  
dV /dt  
CM  
I
Direction  
I
Direction  
LP  
LP  
Positive (>0)  
Away from LED anode  
through CLA  
Away from LED cathode  
through CLC  
Increase  
Decrease  
Negative(<0)  
Toward LED anode  
through CLA  
Toward LED cathode  
through CLC  
Decrease  
Increase  
18  
Dead Time and Propagation Delay Specifications  
The ACPL-P343/W343 includes a Propagation Delay Dif-  
ference (PDD) specification intended to help designers  
minimize“dead time”in their power inverter designs. Dead  
time is the time period during which both the high and  
low side power transistors (Q1 and Q2 in Figure 28) are off.  
Any overlap in Q1 and Q2 conduction will result in large  
currents flowing through the power devices between the  
high and low voltage motor rails.  
Delaying the LED signal by the maximum propagation  
delay difference ensures that the minimum dead time is  
zero, but it does not tell a designer what the maximum  
dead time will be. The maximum dead time is equivalent  
to the difference between the maximum and minimum  
propagation delay difference specifications as shown in  
Figure 34. The maximum dead time for the ACPL-P343/  
W343 is 200 ns (= 100 ns – (-100 ns)) over an operating  
temperature range of -40° C to 105° C.  
To minimize dead time in a given design, the turn on of  
LED2 should be delayed (relative to the turn off of LED1)  
so that under worst-case conditions, transistor Q1 has  
just turned off when transistor Q2 turns on, as shown in  
Figure 33. The amount of delay necessary to achieve this  
condition is equal to the maximum value of the propa-  
Note that the propagation delays used to calculate PDD  
and dead time are taken at equal temperatures and test  
conditions since the optocouplers under consideration  
are typically mounted in close proximity to each other and  
are switching identical IGBTs.  
gation delay difference specification, PDD  
, which is  
MAX  
specified to be 100 ns over the operating temperature  
range of 40° C to 105° C.  
Figure 33. Minimum LED skew for zero dead time  
Figure 34. Waveforms for dead time  
19  
Ambient Temperature: Junction to Ambient Thermal Re-  
sistances were measured approximately 1.25 cm above  
optocoupler at ~23° C in still air  
LED Current Input with Hysteresis  
The detector has optical receiver input stage with built in  
Schmitt trigger to provide logic compatible waveforms,  
eliminating the need for additional wave shaping. The  
hysteresis (Figure 12) provides differential mode noise  
immunity and minimizes the potential for output signal  
chatter.  
Thermal Resistance  
°C/W  
135  
27  
R11  
R12  
R21  
R22  
39  
Under Voltage Lockout  
47  
The ACPL-P343/W343 Under Voltage Lockout (UVLO)  
feature is designed to prevent the application of insuffi-  
cient gate voltage to the IGBT by forcing the ACPL-P343/  
W343 output low during power-up. IGBTs typically require  
This thermal model assumes that an 6-pin single-channel  
plastic package optocoupler is soldered into a 7.62 cm x  
7.62 cm printed circuit board (PCB) per JEDEC standards.  
The temperature at the LED and Detector junctions of  
the optocoupler can be calculated using the equations  
below.  
gate voltages of 15 V to achieve their rated V  
At gate voltages below 13 V typically, the V  
voltage.  
voltage  
CE(ON)  
CE(ON)  
increases dramatically, especially at higher currents. At  
very low gate voltages (below 10 V), the IGBT may operate  
in the linear region and quickly overheat. The UVLO  
function causes the output to be clamped whenever  
T = (R * P + R * P ) + Ta  
(1)  
(2)  
1
11  
1
12  
2
T = (R * P + R * P ) + Ta  
2
21  
1
22  
2
insufficient operating supply (V ) is applied. Once V  
CC  
CC  
Using the given thermal resistances and thermal model  
formula in this datasheet, we can calculate the junction  
temperature for both LED and the output detector. Both  
junction temperature should be within the absolute  
maximum rating.  
exceeds V  
(the positive-going UVLO threshold), the  
UVLO+  
UVLO clamp is released to allow the device output to turn  
on in response to input signals.  
Thermal Model for ACPL-P343/W343 Stretched SO6  
Package Optocoupler  
For example, given P = 25 mW, P = 185 mW, Ta = 85° C:  
1
2
Definitions:  
LED junction temperature,  
T = (R * P + R * P ) + Ta  
= (135 * 0.025 + 27 * 0.185) + 85  
= 93.4° C  
R
: Junction to Ambient Thermal Resistance of LED due  
1
11  
1
12  
2
11  
to heating of LED  
R
: Junction to Ambient Thermal Resistance of LED due  
12  
to heating of Detector (Output IC)  
Output IC junction temperature,  
T = (R * P + R * P ) + Ta  
= (39 *0.025 + 47 * 0.185) + 85  
= 94.7° C  
2
21  
1
22  
2
R
: Junction to Ambient Thermal Resistance of Detector  
21  
(Output IC) due to heating of LED.  
R
22  
: Junction to Ambient Thermal Resistance of Detector  
T and T should be limited to 125° C based on the board  
(Output IC) due to heating of Detector (Output IC).  
1
2
layout and part placement.  
P : Power dissipation of LED (W).  
1
Related Application Noted  
P : Power dissipation of Detector / Output IC (W).  
2
AN5336 – Gate Drive Optocoupler Basic Design for IGBT/  
MOSFET  
T : Junction temperature of LED (°C).  
1
T : Junction temperature of Detector (°C).  
2
AN1043 – Common-Mode Noise: Sources and Solutions  
Ta: Ambient temperature.  
AV02-0310EN – Plastics Optocouplers Product ESD and  
Moisture Sensitivity  
For product information and a complete list of distributors, please go to our web site: www.avagotech.com  
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.  
Data subject to change. Copyright © 2005-2011 Avago Technologies. All rights reserved.  
AV02-2928EN - November 14, 2011  

相关型号:

ACPL-P345

1.0 Amp Output Current Power & SiC MOSFET Gate Drive Optocoupler with Rail-to-Rail Output Voltage in Stretched SO6
AVAGO

ACPL-P345

1.0A maximum peak output current
BOARDCOM

ACPL-P346

2.5-Amp Output Current Power, GaN and SiC MOSFET Gate Drive Optocoupler with Rail-to-Rail Output
BOARDCOM

ACPL-P346

Rail-to-rail output voltage
AVAGO

ACPL-P347

1.0 Amp Output Current SiC/GaN MOSFET and IGBT Gate Drive Optocoupler in Stretched SO6
AVAGO

ACPL-P349

2.5-Amp Output Current SiC/GaN MOSFET and IGBT Gate Drive Optocoupler in Stretched SO6
BOARDCOM

ACPL-P454

High CMR High Speed Optocoupler Surface Mountable in 6-pin stretched SO6
AVAGO

ACPL-P454

Optocoupler Option 020 for 5000 V rms/1 Minute Requirement
BOARDCOM

ACPL-P454-000E

High CMR High Speed Optocoupler Surface Mountable in 6-pin stretched SO6
AVAGO

ACPL-P454-060E

High CMR High Speed Optocoupler Surface Mountable in 6-pin stretched SO6
AVAGO

ACPL-P454-500E

High CMR High Speed Optocoupler Surface Mountable in 6-pin stretched SO6
AVAGO

ACPL-P454-560E

High CMR High Speed Optocoupler Surface Mountable in 6-pin stretched SO6
AVAGO