ACPL-3130-000E [AVAGO]

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 0.300 INCH, ROHS COMPLIANT, DIP-8;
ACPL-3130-000E
型号: ACPL-3130-000E
厂家: AVAGO TECHNOLOGIES LIMITED    AVAGO TECHNOLOGIES LIMITED
描述:

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 0.300 INCH, ROHS COMPLIANT, DIP-8

输出元件 光电
文件: 总20页 (文件大小:422K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢀ 0.5  
                                                        
Vmaximumlowleveloutputvoltageꢀ(V )ꢀeliminatesꢀ  
ACPL-3130/J313, ACNW3130  
Very High CMR 2.5 Amp Output Current IGBT Gate Driver Optocoupler  
Data Sheet  
Lead (Pb) Free  
RoHS 6 fully  
compliant  
RoHS 6 fully compliant options available;  
-xxxE denotes a lead-free product  
Description  
Features  
ꢀ Highꢀspeedꢀresponse.  
ꢀ VeryꢀhighꢀCMR.  
Theꢀ ACPL-3130ꢀ containsꢀ aꢀ GaAsPꢀ LEDꢀ whileꢀ theꢀ ACPL-  
J313ꢀandꢀtheꢀANCW3130ꢀcontainꢀanꢀAlGaAsꢀLED.ꢀTheꢀLEDꢀ  
isꢀopticallyꢀcoupledꢀtoꢀanꢀintegratedꢀcircuitꢀwithꢀaꢀpowerꢀ  
outputꢀ stage.ꢀ Theseꢀ optocouplersꢀ areꢀ ideallyꢀ suitedꢀ forꢀ  
drivingꢀpowerꢀIGBTsꢀandꢀMOSFETsꢀusedꢀinꢀmotorꢀcontrolꢀ  
inverterꢀ applications.Theꢀ highꢀ operatingꢀ voltageꢀ rangeꢀ  
oftheoutputstageprovidesthedrivevoltagesrequiredꢀ  
byꢀ gateꢀ controlledꢀ devices.ꢀ Theꢀ voltageꢀ andꢀ currentꢀ  
suppliedꢀbyꢀtheseꢀoptocouplersꢀmakeꢀthemꢀideallyꢀsuitedꢀ  
forꢀdirectlyꢀdrivingꢀIGBTsꢀwithꢀratingsꢀupꢀtoꢀ1200ꢀV/100ꢀA.ꢀ  
ForꢀIGBTsꢀwithꢀhigherꢀratings,ꢀtheꢀACPL-3130ꢀseriesꢀcanꢀbeꢀ  
usedꢀtoꢀdriveꢀaꢀdiscreteꢀpowerꢀstageꢀwhichꢀdrivesꢀtheꢀIGBTꢀ  
gate.ꢀTheꢀANCW3130ꢀhasꢀtheꢀhighestꢀinsulationꢀvoltageꢀofꢀ  
ꢀ Bootstrappableꢀsupplyꢀcurrent.  
ꢀ SafetyꢀApprovalꢀ(pending):  
ULꢀRecognizedꢀ  
-ꢀ3750ꢀV ꢀforꢀ1ꢀmin.ꢀforꢀACPL-3130/J313.ꢀ  
rms  
-ꢀ5000ꢀV ꢀforꢀ1ꢀmin.ꢀForꢀACNW3130  
rms  
CSAꢀApproval  
IEC/EN/DINꢀENꢀ60747-5-2ꢀApprovedꢀ  
-ꢀV  
-ꢀV  
-ꢀV  
ꢀ=ꢀ630ꢀV  
ꢀ=ꢀ891ꢀV  
ꢀforꢀACPL-3130ꢀ(Optionꢀ060)ꢀ  
ꢀforꢀACPL-J313ꢀ  
IORM  
IORM  
IORM  
peak  
peak  
ꢀ=ꢀ1414ꢀV  
ꢀforꢀACNW3130  
peak  
V
=1414ꢀV  
intheIEC/EN/DINEN60747-5-2.ꢀTheꢀ  
IORM  
peak  
ACPL-J313ꢀhasꢀanꢀinsulationꢀvoltageꢀofꢀV  
andꢀtheꢀV  
ꢀ=ꢀ891ꢀV  
IORM  
peak  
Specifications  
ꢀ 2.5ꢀAꢀmaximumꢀpeakꢀoutputꢀcurrent.  
ꢀ=ꢀ630ꢀV  
ꢀisꢀalsoꢀavailableꢀwithꢀtheꢀACPL-  
IORM  
peak  
3130ꢀ(Optionꢀ060).  
ꢀ 2.0ꢀAꢀminimumꢀpeakꢀoutputꢀcurrent.  
Functional Diagram  
ꢀ 40ꢀkV/µsꢀminimumꢀCommonꢀModeꢀRejectionꢀ(CMR)ꢀatꢀ  
V
ꢀ=ꢀ1500ꢀV  
CM  
N/C  
ANODE  
CATHODE  
N/C  
1
8
V
V
V
V
CC  
O
OL  
needꢀforꢀnegativeꢀgateꢀdrive  
2
3
4
7
6
5
ꢀ I ꢀ=ꢀ5ꢀmAꢀmaximumꢀsupplyꢀcurrent  
CC  
ꢀ Underꢀ Voltageꢀ Lock-Outꢀ protectionꢀ (UVLO)ꢀ withꢀ  
O
hysteresis  
ꢀ WideꢀoperatingꢀV ꢀrange:ꢀ15ꢀtoꢀ30ꢀVolts  
ꢀ 500ꢀnsꢀmaximumꢀswitchingꢀspeeds  
CC  
EE  
SHIELD  
ꢀ Industrialꢀtemperatureꢀrange:ꢀ-40°Cꢀtoꢀ100°C  
ACPL-3130 and ACPL-J313  
Applications  
N/C  
1
8
V
V
CC  
O
ꢀ IGBT/MOSFETꢀgateꢀdrive  
ꢀ AC/BrushlessꢀDCꢀmotorꢀdrives  
ꢀ Industrialꢀinverters  
2
3
4
7
6
5
ANODE  
CATHODE  
N/C  
N/C  
ꢀ SwitchingꢀPowerꢀSuppliesꢀ(SPS)  
V
EE  
SHIELD  
ACNW3130  
Note:ꢀAꢀ0.1ꢀµFꢀbypassꢀcapacitorꢀmustꢀbeꢀconnectedꢀbetweenꢀpinsꢀV ꢀandꢀV  
.
EE  
CC  
CAUTION: It is advised that normal static precautions be taken in handling and assembly  
of this component to prevent damage and/or degradation which may be induced by ESD.  
Truth Table  
VCC – VEE  
“POSITIVE GOING”  
(i.e., TURN-ON)  
VCC – VEE  
“NEGATIVE GOING”  
(i.e., TURN-OFF)  
LED  
OFF  
ON  
ON  
ON  
VO  
LOW  
0ꢀ-ꢀ30ꢀV  
0ꢀ-ꢀ11ꢀV  
0ꢀ-ꢀ30ꢀV  
0ꢀ-ꢀ9.5ꢀV  
9.5ꢀ-ꢀ12ꢀV  
12ꢀ-ꢀ30ꢀV  
LOW  
11ꢀ-ꢀ13.5ꢀV  
13.5ꢀ-ꢀ30ꢀV  
TRANSITION  
HIGH  
Ordering Information  
ACPL-3130ꢀandꢀACPL-J313ꢀareꢀULꢀRecognizedꢀwithꢀ3750ꢀVrmsꢀforꢀ1ꢀminuteꢀperꢀUL1577.ꢀACNW3130ꢀisꢀULꢀRecognizedꢀ  
withꢀ5000Vrmsꢀforꢀ1ꢀminuteꢀperꢀUL1577.  
Option  
Surface  
Mount  
Gull  
Wing  
Tape  
& Reel  
IEC/EN/DIN EN  
60747-5-2  
Part number  
RoHS Compliant  
-000E  
Package  
Quantity  
50ꢀperꢀtube  
50ꢀperꢀtube  
1000ꢀperꢀreel  
50ꢀperꢀtube  
50ꢀperꢀtube  
1000ꢀperꢀreel  
50ꢀperꢀtube  
50ꢀperꢀtube  
1000ꢀperꢀreel  
42ꢀperꢀtube  
42ꢀperꢀtube  
750ꢀperꢀreel  
-300E  
X
X
X
X
-500E  
X
X
X
X
300mil  
DIP-8  
ACPL-3130  
-060E  
X
X
X
X
X
X
X
X
X
-360E  
X
X
X
X
-560E  
-000E  
300mil  
DIP-8  
ACPL-J313  
ACNW3130  
-300E  
X
X
X
X
-500E  
-000E  
400mil  
DIP-8  
-300E  
X
X
X
X
-500E  
Toorder,ꢀchooseꢀaꢀpartꢀnumberꢀfromꢀtheꢀpartꢀnumberꢀcolumnꢀandꢀcombineꢀwithꢀtheꢀdesiredꢀoptionꢀfromꢀtheꢀoptionꢀ  
columnꢀtoꢀformꢀanꢀorderꢀentry.ꢀ  
Exampleꢀ1:ꢀ  
ACPL-3130-560Eꢀtoꢀorderꢀproductꢀofꢀ300milꢀDIPꢀGullꢀWingꢀSurfaceꢀMountꢀpackageꢀinꢀTapeꢀandꢀReelꢀpackagingꢀwithꢀ  
IEC/EN/DINꢀENꢀ60747-5-2ꢀSafetyꢀApprovalꢀinꢀRoHSꢀcompliant.  
Exampleꢀ2:ꢀ  
ACPL-3130-000Eꢀtoꢀorderꢀproductꢀofꢀ300milꢀDIPꢀpackageꢀinꢀtubeꢀpackagingꢀandꢀRoHSꢀcompliant.  
Optionꢀdatasheetsꢀareꢀavailable.ꢀContactꢀyourꢀAvagoꢀsalesꢀrepresentativeꢀorꢀauthorizedꢀdistributorꢀforꢀinformation.  
Remarks:ꢀTheꢀnotation#XXX’ꢀisꢀusedꢀforꢀexistingꢀproducts,ꢀwhileꢀ(new)ꢀproductsꢀlaunchedꢀsinceꢀ15thꢀJulyꢀ2001ꢀandꢀRoHSꢀ  
compliantꢀoptionꢀwillꢀuseꢀ‘-XXXE.  
2
Package Outline Drawings  
ACPL-3130 Outline Drawing (Standard DIP Package / 300mil DIP)  
7.62 ± 0.25  
(0.300 ± 0.010)  
9.65 ± 0.25  
(0.380 ± 0.010)  
8
1
7
6
5
6.35 ± 0.25  
(0.250 ± 0.010)  
TYPE NUMBER  
OPTION CODE*  
DATE CODE  
A XXXXZ  
YYWW  
2
3
4
1.78 (0.070) MAX.  
1.19 (0.047) MAX.  
+ 0.076  
- 0.051  
0.254  
5 TYP.  
+ 0.003)  
- 0.002)  
3.56 ± 0.13  
(0.140 ± 0.005)  
(0.010  
4.70 (0.185) MAX.  
0.51 (0.020) MIN.  
2.92 (0.115) MIN.  
DIMENSIONS IN MILLIMETERS AND (INCHES).  
* MARKING CODE LETTER FOR OPTION NUMBERS.  
"V" = OPTION 060  
1.080 ± 0.320  
(0.043 ± 0.013)  
0.65 (0.025) MAX.  
OPTION NUMBERS 300 AND 500 NOT MARKED.  
2.54 ± 0.25  
(0.100 ± 0.010)  
NOTE: FLOATING LEAD PROTRUSION IS 0.5 mm (20 mils) MAX.  
ACPL-3130 Gull Wing Surface Mount Option 300 Outline Drawing  
LAND PATTERN RECOMMENDATION  
9.65 0.ꢀ5  
(0.380 0.0ꢁ0ꢂ  
ꢁ.0ꢁ6 (0.040ꢂ  
6
5
8
7
6.350 0.ꢀ5  
(0.ꢀ50 0.0ꢁ0ꢂ  
ꢁ0.9 (0.430ꢂ  
3
4
ꢀ.0 (0.080ꢂ  
ꢁ.ꢀ7 (0.050ꢂ  
9.65 0.ꢀ5  
(0.380 0.0ꢁ0ꢂ  
ꢁ.780  
(0.070ꢂ  
MAX.  
ꢁ.ꢁ9  
(0.047ꢂ  
MAX.  
7.6ꢀ 0.ꢀ5  
(0.300 0.0ꢁ0ꢂ  
+ 0.076  
- 0.05ꢁ  
0.ꢀ54  
3.56 0.ꢁ3  
(0.ꢁ40 0.005ꢂ  
+ 0.003ꢂ  
- 0.00ꢀꢂ  
(0.0ꢁ0  
ꢁ.080 0.3ꢀ0  
(0.043 0.0ꢁ3ꢂ  
0.635 0.ꢀ5  
(0.0ꢀ5 0.0ꢁ0ꢂ  
ꢁꢀ ˚ NOM.  
0.635 0.ꢁ30  
(0.0ꢀ5 0.005ꢂ  
ꢀ.54  
(0.ꢁ00ꢂ  
BSC  
DIMENSIONS IN MILLIMETERS (INCHESꢂ.  
LEAD COPLANARITY = 0.ꢁ0 mm (0.004 INCHESꢂ.  
NOTE: FLOATING LEAD PROTRUSION IS 0.ꢀ5 mm (ꢁ0 milsꢂ MAX.  
ACPL-J313 Outline Drawing (300mil DIP)  
7.62 ± 0.25  
(0.300 ± 0.010)  
9.80 ± 0.25  
(0.386 ± 0.010)  
8
1
7
6
5
6.35 ± 0.25  
(0.250 ± 0.010)  
TYPE NUMBER  
DATE CODE  
A XXXX  
YYWW  
2
3
4
1.78 (0.070) MAX.  
1.19 (0.047) MAX.  
+ 0.076  
- 0.051  
0.254  
5 TYP.  
+ 0.003)  
- 0.002)  
3.56 ± 0.13  
(0.140 ± 0.005)  
(0.010  
4.70 (0.185) MAX.  
0.51 (0.020) MIN.  
2.92 (0.115) MIN.  
DIMENSIONS IN MILLIMETERS AND (INCHES).  
OPTION NUMBERS 300 AND 500 NOT MARKED.  
1.080 ± 0.320  
0.65 (0.025) MAX.  
(0.043 ± 0.013)  
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.  
2.54 ± 0.25  
(0.100 ± 0.010)  
ACPL-J313 Gull Wing Surface Mount Option 300 Outline Drawing  
LAND PATTERN RECOMMENDATION  
9.80 0.ꢀ5  
(0.386 0.0ꢁ0ꢂ  
ꢁ.0ꢁ6 (0.040ꢂ  
6
5
8
7
6.350 0.ꢀ5  
(0.ꢀ50 0.0ꢁ0ꢂ  
ꢁ0.9 (0.430ꢂ  
3
4
ꢀ.0 (0.080ꢂ  
ꢁ.ꢀ7 (0.050ꢂ  
9.65 0.ꢀ5  
(0.380 0.0ꢁ0ꢂ  
ꢁ.780  
(0.070ꢂ  
MAX.  
ꢁ.ꢁ9  
(0.047ꢂ  
MAX.  
7.6ꢀ 0.ꢀ5  
(0.300 0.0ꢁ0ꢂ  
+ 0.076  
- 0.05ꢁ  
0.ꢀ54  
3.56 0.ꢁ3  
(0.ꢁ40 0.005ꢂ  
+ 0.003ꢂ  
- 0.00ꢀꢂ  
(0.0ꢁ0  
ꢁ.080 0.3ꢀ0  
(0.043 0.0ꢁ3ꢂ  
0.635 0.ꢀ5  
(0.0ꢀ5 0.0ꢁ0ꢂ  
ꢁꢀ ˚ NOM.  
0.635 0.ꢁ30  
(0.0ꢀ5 0.005ꢂ  
ꢀ.54  
(0.ꢁ00ꢂ  
BSC  
DIMENSIONS IN MILLIMETERS (INCHESꢂ.  
LEAD COPLANARITY = 0.ꢁ0 mm (0.004 INCHESꢂ.  
NOTE: FLOATING LEAD PROTRUSION IS 0.5 mm (ꢀ0 milsꢂ MAX.  
ACNW3130 Outline Drawing (8-Pin Wide Body Package / 400mil DIP)  
11.00  
(0.433)  
11.15 ± 0.15  
(0.442 ± 0.006)  
MAX.  
9.00 ± 0.15  
(0.354 ± 0.006)  
7
6
5
8
TYPE NUMBER  
DATE CODE  
A
ACNWXXXX  
YYWW  
1
3
2
4
10.16 (0.400)  
TYP.  
1.55  
(0.061)  
MAX.  
7 TYP.  
+ 0.076  
- 0.0051  
0.254  
+ 0.003)  
- 0.002)  
(0.010  
5.10  
(0.201)  
MAX.  
3.10 (0.122)  
3.90 (0.154)  
0.51 (0.021) MIN.  
2.54 (0.100)  
TYP.  
DIMENSIONS IN MILLIMETERS (INCHES).  
1.78 ± 0.15  
(0.070 ± 0.006)  
0.40 (0.016)  
0.56 (0.022)  
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.  
ACNW3130 Gull Wing Surface Mount Option 300 Outline Drawing  
11.15 ± 0.15  
(0.442 ± 0.006)  
LAND PATTERN RECOMMENDATION  
6
7
5
8
9.00 ± 0.15  
(0.354 ± 0.006)  
13.56  
(0.534)  
1
3
2
4
2.29  
(0.09)  
1.3  
(0.051)  
12.30 ± 0.30  
1.55  
(0.061)  
MAX.  
(0.484 ± 0.012)  
11.00  
MAX.  
(0.433)  
4.00  
(0.158)  
MAX.  
1.78 ± 0.15  
(0.070 ± 0.006)  
1.00 ± 0.15  
(0.039 ± 0.006)  
0.75 ± 0.25  
(0.030 ± 0.010)  
+ 0.076  
- 0.0051  
2.54  
(0.100)  
BSC  
0.254  
+ 0.003)  
- 0.002)  
(0.010  
DIMENSIONS IN MILLIMETERS (INCHES).  
7 NOM.  
LEAD COPLANARITY = 0.10 mm (0.004 INCHES).  
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.  
5
Recommended Solder Reflow Temperature Profile  
300  
PREHEATING RATE 3 °C + 1 °C/–0.5 °C/SEC.  
REFLOW HEATING RATE 2.5 °C 0.5 °C/SEC.  
PEAK  
TEMP.  
245 °C  
PEAK  
TEMP.  
240 °C  
PEAK  
TEMP.  
230 °C  
200  
2.5 C 0.5 °C/SEC.  
SOLDERING  
30  
SEC.  
TIME  
160 °C  
150 °C  
140 °C  
200 °C  
30  
SEC.  
3 °C + 1 °C/–0.5 °C  
100  
PREHEATING TIME  
150 °C, 90 + 30 SEC.  
50 SEC.  
TIGHT  
TYPICAL  
LOOSE  
ROOM  
TEMPERATURE  
0
0
50  
100  
150  
200  
250  
TIME (SECONDS)  
NOTE: NON-HALIDE FLUX SHOULD BE USED.  
Recommended Pb-Free IR Profile  
TIMEWITHIN 5 °C of ACTUAL  
PEAKTEMPERATURE  
tp  
15 SEC.  
* 260 +0/-5 °C  
RAMP-UP  
Tp  
217 °C  
TL  
RAMP-DOWN  
6 °C/SEC. MAX.  
3 °C/SEC. MAX.  
150 - 200 °C  
Tsmax  
Tsmin  
ts  
tL  
PREHEAT  
60 to 150 SEC.  
60 to 180 SEC.  
25  
t 25 °C to PEAK  
TIME  
NOTES:  
THETIME FROM 25 °C to PEAKTEMPERATURE = 8 MINUTES MAX.  
Tsmax = 200 °C, Tsmin = 150 °C  
NOTE: NON-HALIDE FLUX SHOULD BE USED.  
* RECOMMENDED PEAKTEMPERATURE FORWIDEBODY 400mils PACKAGETO BE 245 °C  
Regulatory Information  
TheꢀACPL-3130/J313ꢀandꢀACNW3130ꢀareꢀpendingꢀapprovalꢀbyꢀtheꢀfollowingꢀorganizations:  
ULꢀ  
IEC/EN/DIN EN 60747-5-2 (ACPL-3130 Option 060  
only, ACPL-J313 and ACNW3130)ꢀ  
Approvalꢀunder:ꢀ  
ApprovalꢀunderꢀULꢀ1577,ꢀcomponentꢀrecognitionꢀ  
program,ꢀFileꢀE55361.  
IECꢀ60747-5-2ꢀ:1997ꢀ+ꢀA1:2002ꢀ  
CSAꢀ  
ENꢀ60747-5-2:2001ꢀ+ꢀA1:2002ꢀ  
DINꢀENꢀ60747-5-2ꢀ(VDEꢀ0884ꢀTeilꢀ2):2003-01  
ApprovalꢀunderꢀCSAꢀComponentꢀAcceptanceꢀNoticeꢀ#5,ꢀ  
FileꢀCAꢀ88324.  
Table 1. IEC/EN/DIN EN 60747-5-2 Insulation Characteristics*  
ACPL-3130  
Option 060  
Description  
Symbol  
ACPL-J313 ACNW3130 Unit  
InstallationꢀclassificationꢀperꢀDINꢀVDEꢀ0110/1.89,ꢀTableꢀ1  
ꢀꢀꢀꢀꢀꢀforꢀratedꢀmainsꢀvoltageꢀꢀ150ꢀVrms  
ꢀꢀꢀꢀꢀꢀforꢀratedꢀmainsꢀvoltageꢀꢀ300ꢀVrms  
ꢀꢀꢀꢀꢀꢀforꢀratedꢀmainsꢀvoltageꢀꢀ450ꢀVrms  
ꢀꢀꢀꢀꢀꢀforꢀratedꢀmainsꢀvoltageꢀꢀ600ꢀVrms  
ꢀꢀꢀꢀꢀꢀforꢀratedꢀmainsꢀvoltageꢀꢀ1000ꢀVrms  
Iꢀ–ꢀIV  
Iꢀ–ꢀIV  
Iꢀ–ꢀIII  
Iꢀ–ꢀIV  
Iꢀ–ꢀIV  
Iꢀ–ꢀIII  
Iꢀ–ꢀIII  
Iꢀ–ꢀIV  
Iꢀ–ꢀIV  
Iꢀ–ꢀIV  
Iꢀ–ꢀIV  
Iꢀ–ꢀIII  
ClimaticꢀClassification  
55/100/21 55/100/21 55/100/21  
PollutionꢀDegreeꢀ(DINꢀVDEꢀ0110/1.89)  
MaximumꢀWorkingꢀInsulationꢀVoltage  
2
2
2
VIORM  
VPR  
630  
1181  
891  
1670  
1414  
2652  
Vpeak  
Vpeak  
InputꢀtoꢀOutputꢀTestꢀVoltage,ꢀMethodꢀb*ꢀꢀVIORMꢀxꢀ1.875=VPR,ꢀ  
100%ꢀProductionꢀTestꢀwithꢀtm=1ꢀsec,ꢀPartialꢀdischargeꢀ<ꢀ5ꢀpC  
InputꢀtoꢀOutputꢀTestꢀVoltage,ꢀMethodꢀa*ꢀꢀVIORMꢀxꢀ1.5=VPR,ꢀ  
TypeꢀandꢀSampleꢀTest,ꢀtm=60ꢀsec,ꢀPartialꢀdischargeꢀ<ꢀ5ꢀpC  
VPR  
945  
1336  
6000  
2121  
8000  
Vpeak  
Vpeak  
HighestꢀAllowableꢀOvervoltageꢀꢀ  
VIOTM  
6000  
(TransientꢀOvervoltageꢀtiniꢀ=ꢀ10ꢀsec)  
Safety-limitingꢀvaluesꢀ–ꢀmaximumꢀvaluesꢀallowedꢀinꢀtheꢀeventꢀofꢀaꢀ  
failure,ꢀalsoꢀseeꢀFigureꢀ41ꢀandꢀ42.  
ꢀꢀꢀꢀꢀꢀꢀCaseꢀTemperature  
ꢀꢀꢀꢀꢀꢀꢀInputꢀCurrent  
ꢀꢀꢀꢀꢀꢀꢀOutputꢀPower  
TS  
175  
230  
600  
175  
400  
600  
150  
400  
700  
°C  
mA  
mW  
IS,ꢀINPUT  
PS,ꢀOUTPUT  
InsulationꢀResistanceꢀatꢀTS,ꢀVIOꢀ=ꢀ500ꢀV  
RS  
>109  
>109  
>109  
W
*ꢀReferꢀtoꢀtheꢀoptocouplerꢀsectionꢀofꢀtheꢀIsolationꢀandꢀControlꢀComponentsꢀDesigner’sꢀCatalog,ꢀunderꢀProductꢀSafetyꢀRegulationsꢀsection,ꢀ(IEC/EN/DINꢀ  
ENꢀ60747-5-2)ꢀforꢀaꢀdetailedꢀdescriptionꢀofꢀMethodꢀaꢀandꢀMethodꢀbꢀpartialꢀdischargeꢀtestꢀprofiles.  
Note:ꢀTheseꢀoptocouplersꢀareꢀsuitableꢀfor“safeꢀelectricalꢀisolation”ꢀonlyꢀwithinꢀtheꢀsafetyꢀlimitꢀdata.ꢀMaintenanceꢀofꢀtheꢀsafetyꢀdataꢀshallꢀbeꢀensuredꢀbyꢀ  
meansꢀofꢀprotectiveꢀcircuits.ꢀSurfaceꢀmountꢀclassificationꢀisꢀClassꢀAꢀinꢀaccordanceꢀwithꢀCECCꢀ00802.  
Table 2. Insulation and Safety Related Specifications  
Parameter  
Symbol ACPL-3130 ACPL-J313 ACNW3130 Units  
Conditions  
MinimumꢀExternalꢀAirꢀ L(101) 7.1  
Gapꢀ(Clearance)  
7.4  
8.0  
0.5  
9.6  
mm  
mm  
mm  
Measuredꢀfromꢀinputꢀterminalsꢀtoꢀoutputꢀ  
terminals,ꢀshortestꢀdistanceꢀthroughꢀair.  
MinimumꢀExternalꢀꢀ  
Trackingꢀ(Creepage)  
L(102) 7.4  
10.0  
1.0  
Measuredꢀfromꢀinputꢀterminalsꢀtoꢀoutputꢀ  
terminals,ꢀshortestꢀdistanceꢀpathꢀalongꢀbody.  
MinimumꢀInternalꢀ  
PlasticꢀGapꢀ(Internalꢀ  
Clearance)  
0.08  
Throughꢀinsulationꢀdistanceꢀconductorꢀtoꢀ  
conductor,ꢀusuallyꢀtheꢀstraightꢀlineꢀdistanceꢀ  
thicknessꢀbetweenꢀtheꢀemitterꢀandꢀdetector.  
TrackingꢀResistanceꢀꢀ  
(ComparativeꢀTrackingꢀ  
Index)  
CTI  
>ꢀ175  
IIIa  
>ꢀ175  
IIIa  
>ꢀ200  
IIIa  
V
DINꢀIECꢀ112/VDEꢀ0303ꢀPartꢀ1  
IsolationꢀGroup  
MaterialꢀGroupꢀ(DINꢀVDEꢀ0110,ꢀ1/89,ꢀTableꢀ1)  
AllꢀAvagoꢀdataꢀsheetsꢀreportꢀtheꢀcreepageꢀandꢀclearanceꢀinherentꢀtoꢀtheꢀoptocouplerꢀcomponentꢀitself.ꢀTheseꢀdimensionsꢀareꢀneededꢀasꢀaꢀstartingꢀ  
pointꢀforꢀtheꢀequipmentꢀdesignerꢀwhenꢀdeterminingꢀtheꢀcircuitꢀinsulationꢀrequirements.ꢀHowever,ꢀonceꢀmountedꢀonꢀaꢀprintedꢀcircuitꢀboard,ꢀminimumꢀ  
creepageꢀandꢀclearanceꢀrequirementsꢀmustꢀbeꢀmetꢀasꢀspecifiedꢀforꢀindividualꢀequipmentꢀstandards.ꢀForꢀcreepage,ꢀtheꢀshortestꢀdistanceꢀpathꢀalongꢀ  
theꢀsurfaceꢀofꢀaꢀprintedꢀcircuitꢀboardꢀbetweenꢀtheꢀsolderꢀfilletsꢀofꢀtheꢀinputꢀandꢀoutputꢀleadsꢀmustꢀbeꢀconsidered.ꢀThereꢀareꢀrecommendedꢀtechniquesꢀ  
suchꢀasꢀgroovesꢀandꢀribsꢀwhichꢀmayꢀbeꢀusedꢀonꢀaꢀprintedꢀcircuitꢀboardꢀtoꢀachieveꢀdesiredꢀcreepageꢀandꢀclearances.ꢀCreepageꢀandꢀclearanceꢀdistancesꢀ  
willꢀalsoꢀchangeꢀdependingꢀonꢀfactorsꢀsuchꢀasꢀpollutionꢀdegreeꢀandꢀinsulationꢀlevel.  
Table 3. Absolute Maximum Ratings  
Parameter  
Symbol  
TS  
Min.  
-55  
-40  
Max.  
125  
100  
25  
Units  
°C  
Note  
StorageꢀTemperature  
OperatingꢀTemperature  
AverageꢀInputꢀCurrent  
TA  
°C  
IF(AVG)  
IF(TRAN)  
mA  
A
1
PeakꢀTransientꢀInputꢀCurrent  
(<1ꢀµsꢀpulseꢀwidth,ꢀ300pps)  
1.0  
ReverseꢀInputꢀVoltage  
ACPL-3130  
VR  
5
V
ACPL-J313  
ACNW3130  
5
V
5
V
“High”ꢀPeakꢀOutputꢀCurrent  
“Low”ꢀPeakꢀOutputꢀCurrent  
SupplyꢀVoltage  
IOH(PEAK)  
IOL(PEAK)  
VCCꢀ–ꢀVEE  
tr(IN)ꢀ/tf(IN)  
VO(PEAK)  
PO  
2.5  
2.5  
35  
500  
VCC  
250  
295  
A
2
2
A
0
0
V
InputꢀCurrentꢀ(Rise/FallꢀTime)  
OutputꢀVoltage  
ns  
V
OutputꢀPowerꢀDissipation  
TotalꢀPowerꢀDissipation  
LeadꢀSolderꢀTemperature  
mW  
mW  
3
4
PT  
ACPL-3130  
ACPL-J313  
ACNW3130  
260°Cꢀforꢀ10ꢀsec.,ꢀ1.6ꢀmmꢀbelowꢀseatingꢀplane  
260°Cꢀforꢀ10ꢀsec.,ꢀupꢀtoꢀseatingꢀplane  
SeeꢀPackageꢀOutlineꢀDrawingsꢀsection  
SolderꢀReflowꢀTemperatureꢀ  
Profile  
Table 4. Recommended Operating Conditions  
Parameter  
Symbol  
VCCꢀ-ꢀVEE  
IF(ON)  
Min.  
15  
7
Max.  
30  
Units  
V
Note  
PowerꢀSupply  
InputꢀCurrentꢀ(ON)  
ACPL-3130  
ACPL-J313  
ACNW3130  
16  
mA  
10  
16  
mA  
V
InputꢀVoltageꢀ(OFF)  
VF(OFF)  
TA  
-ꢀ3.6  
-ꢀ40  
0.8  
100  
OperatingꢀTemperature  
°C  
Table 5. Electrical Specifications (DC)  
Overꢀrecommendedꢀoperatingꢀconditionsꢀ(T ꢀ=ꢀ-40ꢀtoꢀ100°C,ꢀforꢀACPL-3130,ACPL-J313ꢀI  
ꢀ=ꢀ7ꢀtoꢀ16mA,ꢀforꢀACNW3130ꢀ  
F(ON)  
A
I
ꢀ=ꢀ10ꢀtoꢀ16mA,ꢀV  
ꢀ=ꢀ-3.6ꢀtoꢀ0.8ꢀV,ꢀV ꢀ=ꢀ15ꢀtoꢀ30ꢀV,ꢀV ꢀ=ꢀGround)ꢀunlessꢀotherwiseꢀspecified.ꢀAllꢀtypicalꢀvaluesꢀatꢀ  
F(ON)  
F(OFF) CC EE  
T ꢀ=ꢀ25°CꢀandꢀV ꢀ-ꢀV ꢀ=ꢀ30ꢀV,ꢀunlessꢀotherwiseꢀnoted.  
A
CC  
EE  
Parameter  
Symbol  
Device  
Min.  
0.5  
Typ.  
Max.  
Units  
A
Test Conditions  
VOꢀ=ꢀVCCꢀ–ꢀ4  
VOꢀ=ꢀVCCꢀ–ꢀ15  
VOꢀ=ꢀVEEꢀ+ꢀ2.5  
VOꢀ=ꢀVEEꢀ+ꢀ15  
IOꢀ=ꢀ-100ꢀmA  
Fig.  
Note  
5
HighꢀLevel  
OutputꢀCurrent  
IOH  
1.5  
2,ꢀ3,ꢀ21  
2.0  
A
2
LowꢀLevel  
OutputꢀCurrent  
IOL  
0.5  
2.0  
A
5,ꢀ6,ꢀ22  
5
2.0  
A
2
HighꢀLevel  
OutputꢀVoltage  
VOH  
VOL  
ICCH  
ICCL  
IFLH  
VCC-4  
VCC-3  
0.1  
V
1,ꢀ3,ꢀ23  
4,ꢀ6,ꢀ24  
7,ꢀ8  
6,ꢀ7  
LowꢀLevel  
OutputꢀVoltage  
0.5  
5.0  
5.0  
V
IOꢀ=ꢀ100ꢀmA  
HighꢀLevel  
SupplyꢀCurrent  
2.5  
mA  
mA  
Outputꢀopen,  
IFꢀ=ꢀ7ꢀtoꢀ16ꢀmA  
LowꢀLevel  
SupplyꢀCurrent  
2.5  
Outputꢀopen,  
VFꢀ=ꢀ-3.0ꢀtoꢀ+0.8ꢀV  
ThresholdꢀInput  
Current  
LowꢀtoꢀHigh  
ACPL-3130  
ACPL-J313  
ACNW3130  
2.3  
1.0  
2.3  
5.0  
5.0  
8.0  
mA  
mA  
mA  
V
IOꢀ=ꢀ0ꢀmA,ꢀVOꢀ>ꢀ5ꢀV  
IOꢀ=ꢀ0ꢀmA,ꢀVOꢀ>ꢀ5ꢀV  
IOꢀ=ꢀ0ꢀmA,ꢀVOꢀ>ꢀ5ꢀV  
IOꢀ=ꢀ0ꢀmA,ꢀVOꢀ>ꢀ5ꢀV  
9,ꢀ17,ꢀ25  
10,ꢀ18,ꢀ25  
11,ꢀ17,ꢀ25  
ThresholdꢀInput  
Voltageꢀ  
VFHL  
0.8  
HighꢀtoꢀLow  
InputꢀForward  
Voltage  
VF  
ACPL-3130  
ACPL-J313  
1.2  
1.2  
1.5  
1.8  
V
V
V
IFꢀ=ꢀ10ꢀmA  
IFꢀ=ꢀ10ꢀmA  
IFꢀ=ꢀ10ꢀmA  
19  
20  
20  
1.6  
1.95  
1.95  
ACNW3130 1.2  
1.6  
Temperature  
Coefficientꢀofꢀ  
InputꢀForward  
Voltage  
DVF/DTA ACPL-3130  
ACPL-J313  
-1.6  
-1.3  
-1.3  
mV/°C IFꢀ=ꢀ10ꢀmA  
mV/°C IFꢀ=ꢀ10ꢀmA  
mV/°C IFꢀ=ꢀ10ꢀmA  
ACNW3130  
InputꢀReverseꢀ  
BreakdownꢀVoltage  
BVR  
CIN  
ACPL-3130  
ACPL-J313  
ACNW3130  
ACPL-3130  
ACPL-J313  
ACNW3130  
5
3
3
V
IRꢀ=ꢀ10ꢀµA  
V
IRꢀ=ꢀ100ꢀµA  
V
IRꢀ=ꢀ100ꢀµA  
InputꢀCapacitance  
60  
pF  
pF  
pF  
V
fꢀ=ꢀ1ꢀMHz,ꢀVFꢀ=ꢀ0ꢀV  
fꢀ=ꢀ1ꢀMHz,ꢀVFꢀ=ꢀ0ꢀV  
fꢀ=ꢀ1ꢀMHz,ꢀVFꢀ=ꢀ0ꢀV  
IFꢀ=ꢀ10ꢀmA,ꢀVOꢀ>ꢀ5ꢀV  
IFꢀ=ꢀ10ꢀmA,ꢀVOꢀ>ꢀ5ꢀV  
IFꢀ=ꢀ10ꢀmA,ꢀVOꢀ>ꢀ5ꢀV  
70  
70  
UVLOꢀThreshold  
UVLOꢀHysteresis  
VUVLO+  
VUVLO–  
11.0  
9.5  
12.3  
10.7  
1.6  
13.5  
12.0  
26,ꢀ38  
26,ꢀ38  
26,ꢀ38  
V
UVLOHYS  
V
Table 6. Switching Specifications (AC)  
Overꢀrecommendedꢀoperatingꢀconditionsꢀ(T ꢀ=ꢀ-40ꢀtoꢀ100°C,ꢀforꢀACPL-3130,ACPL-J313ꢀI  
ꢀ=ꢀ7ꢀtoꢀ16mA,ꢀforꢀACNW3130ꢀ  
F(ON)  
A
I
ꢀ=ꢀ10ꢀtoꢀ16mA,ꢀV  
ꢀ=ꢀ-3.6ꢀtoꢀ0.8ꢀV,ꢀV ꢀ=ꢀ15ꢀtoꢀ30ꢀV,ꢀV ꢀ=ꢀGround)ꢀunlessꢀotherwiseꢀspecified.ꢀAllꢀtypicalꢀvaluesꢀatꢀ  
F(ON)  
F(OFF)  
CC  
EE  
T ꢀ=ꢀ25°CꢀandꢀV ꢀ-ꢀV ꢀ=ꢀ30ꢀV,ꢀunlessꢀotherwiseꢀnoted.  
A
CC  
EE  
Parameter  
Symbol  
Min.  
Typ. Max. Units Test Conditions  
Fig.  
Note  
PropagationꢀDelayꢀTime  
toꢀHighꢀOutputꢀLevel  
tPLH  
0.10  
0.30 0.50 µs  
Rgꢀ=ꢀ10ꢀW,  
12,13,ꢀ 16  
14,ꢀ15,ꢀ  
16,ꢀ27  
Cgꢀ=ꢀ10ꢀnF,  
fꢀ=ꢀ10ꢀkHz,  
DutyꢀCycleꢀ=ꢀ50%  
PropagationꢀDelayꢀTime  
toꢀLowꢀOutputꢀLevel  
tPHL  
0.10  
0.30 0.50 µs  
PulseꢀWidthꢀDistortion  
PWD  
0.3  
µs  
17  
PropagationꢀDelay  
PDD  
DifferenceꢀBetweenꢀAny  
TwoꢀPartsꢀorꢀChannels  
(tPHLꢀ–ꢀtPLH  
)
-0.35  
0.35 µs  
39,ꢀ40  
27  
12  
RiseꢀTime  
tR  
0.1  
0.1  
0.8  
0.6  
50  
µs  
µs  
µs  
µs  
FallꢀTime  
tF  
UVLOꢀTurnꢀOnꢀDelay  
UVLOꢀTurnꢀOffꢀDelay  
tUVLOꢀON  
tUVLOꢀOFF  
|CMH|  
IFꢀ=ꢀ10ꢀmA,ꢀVOꢀ>ꢀ5ꢀV  
IFꢀ=ꢀ10ꢀmA,ꢀVOꢀ>ꢀ5ꢀV  
26  
26  
27  
OutputꢀHighꢀLevel  
CommonꢀMode  
TransientꢀImmunity  
40  
40  
kV/  
µs  
TAꢀ=ꢀ25°C,  
IFꢀ=ꢀ10ꢀtoꢀ16ꢀmA,  
VCMꢀ=ꢀ1500ꢀV,ꢀVCCꢀ=ꢀ30ꢀV  
13,ꢀ14  
13,ꢀ15  
OutputꢀLowꢀLevel  
CommonꢀMode  
TransientꢀImmunity  
|CML|  
50  
kV/  
µs  
TAꢀ=ꢀ25°C,ꢀVFꢀ=ꢀ0ꢀV,  
VCMꢀ=ꢀ1500ꢀV  
VCCꢀ=ꢀ30ꢀV  
27  
Table 7. Package Characteristics  
Overꢀrecommendedꢀtemperatureꢀ(T ꢀ=ꢀ-40ꢀtoꢀ100°C)ꢀunlessꢀotherwiseꢀspecified.ꢀAllꢀtypicalsꢀatꢀT ꢀ=ꢀ25°C.  
A
A
Parameter  
Symbol Device  
Min.  
Typ.  
Max. Units  
Test Conditions  
Fig. Note  
8,ꢀ11  
Input-Output  
Momentary  
WithstandꢀVoltage**  
VISO  
ACPL-3130  
3750  
3750  
5000  
Vrms  
Vrms  
Vrms  
W
RHꢀ<ꢀ50%,  
tꢀ=ꢀ1ꢀmin.,  
TAꢀ=ꢀ25°C  
ACPL-J313  
ACNW3130  
ACPL-3130  
ACPL-J313  
ACNW3130  
9,ꢀ11  
10,ꢀ11  
11  
Resistance  
(Input-Output)  
RI-O  
1012  
1012  
1013  
VI-Oꢀ=ꢀ500ꢀV  
VI-Oꢀ=ꢀ500ꢀV  
W
1012  
1011  
W
VI-Oꢀ=ꢀ500ꢀV,  
TAꢀ=ꢀ25°C  
W
VI-Oꢀ=ꢀ500ꢀV,  
TAꢀ=ꢀ100°C  
Capacitance  
(Input-Output)  
CI-O  
ACPL-3130  
ACPL-J313  
ACNW3130  
0.6  
0.8  
0.5  
467  
pF  
pF  
Freq=1ꢀMHz  
Freq=1ꢀMHz  
Freq=1ꢀMHz  
0.6  
pF  
LED-to-Case  
ThermalꢀResistance  
qLC  
qLD  
qDC  
°C/W  
Thermocoupleꢀ  
locatedꢀatꢀcenterꢀ  
undersideꢀofꢀpackage  
32  
32  
32  
LED-to-Detector  
ThermalꢀResistance  
442  
126  
°C/W  
°C/W  
Detector-to-Case  
ThermalꢀResistance  
**ꢀTheꢀInput-OutputꢀMomentaryꢀWithstandꢀVoltageꢀisꢀaꢀdielectricꢀvoltageꢀratingꢀthatꢀshouldꢀnotꢀbeꢀinterpretedꢀasꢀanꢀinput-outputꢀ  
continuousꢀvoltageꢀrating.ꢀForꢀtheꢀcontinuousꢀvoltageꢀratingꢀreferꢀtoꢀyourꢀequipmentꢀlevelꢀsafetyꢀspecificationꢀorꢀAvagoꢀApplicationꢀ  
Noteꢀ1074ꢀentitledꢀ“OptocouplerꢀInput-OutputꢀEnduranceꢀVoltage.”  
ꢀ0  
Notes:  
1.ꢀ Derateꢀlinearlyꢀaboveꢀ70°ꢀCꢀfree-airꢀtemperatureꢀatꢀaꢀrateꢀofꢀ0.3ꢀmA/°C.  
2.ꢀ Maximumꢀpulseꢀwidthꢀ=ꢀ10ꢀµs,ꢀmaximumꢀdutyꢀcycleꢀ=ꢀ0.2%.ꢀThisꢀvalueꢀisꢀintendedꢀtoꢀallowꢀforꢀcomponentꢀtolerancesꢀforꢀdesignsꢀwithꢀI  
Oꢀpeakꢀ  
minimumꢀ=ꢀ2.0ꢀA.ꢀSeeꢀApplicationsꢀsectionꢀforꢀadditionalꢀdetailsꢀonꢀlimitingꢀI ꢀpeak.  
OH  
3.ꢀ Derateꢀlinearlyꢀaboveꢀ70°ꢀCꢀfree-airꢀtemperatureꢀatꢀaꢀrateꢀofꢀ4.8ꢀmW/°C.  
4.ꢀ Derateꢀlinearlyꢀaboveꢀ70°ꢀCꢀfree-airꢀtemperatureꢀatꢀaꢀrateꢀofꢀ5.4ꢀmW/°C.ꢀTheꢀmaximumꢀLEDꢀjunctionꢀtemperatureꢀshouldꢀnotꢀexceedꢀ125°C.  
5.ꢀ Maximumꢀpulseꢀwidthꢀ=ꢀ50ꢀµs,ꢀmaximumꢀdutyꢀcycleꢀ=ꢀ0.5%.  
6.ꢀ InꢀthisꢀtestꢀV ꢀisꢀmeasuredꢀwithꢀaꢀdcꢀloadꢀcurrent.ꢀWhenꢀdrivingꢀcapacitiveꢀloadsꢀV ꢀwillꢀapproachꢀV ꢀasꢀI ꢀapproachesꢀzeroꢀamps.  
OH  
OH  
CC  
OH  
7.ꢀ Maximumꢀpulseꢀwidthꢀ=ꢀ1ꢀms,ꢀmaximumꢀdutyꢀcycleꢀ=ꢀ20%.  
8.ꢀ InꢀaccordanceꢀwithꢀUL1577,ꢀeachꢀoptocouplerꢀisꢀproofꢀtestedꢀbyꢀapplyingꢀanꢀinsulationꢀtestꢀvoltageꢀꢁꢀ4500ꢀV ꢀforꢀ1ꢀsecondꢀ(leakageꢀdetectionꢀ  
rms  
currentꢀlimit,ꢀI ꢀꢀ5ꢀµA).  
I-O  
9.ꢀ InꢀaccordanceꢀwithꢀUL1577,ꢀeachꢀoptocouplerꢀisꢀproofꢀtestedꢀbyꢀapplyingꢀanꢀinsulationꢀtestꢀvoltageꢀꢁꢀ4500ꢀV ꢀforꢀ1ꢀsecondꢀ(leakageꢀdetectionꢀ  
rms  
currentꢀlimit,ꢀI ꢀꢀ5ꢀµA).  
I-O  
10.ꢀInꢀaccordanceꢀwithꢀUL1577,ꢀeachꢀoptocouplerꢀisꢀproofꢀtestedꢀbyꢀapplyingꢀanꢀinsulationꢀtestꢀvoltageꢀꢁꢀ6000ꢀV ꢀforꢀ1ꢀsecondꢀ(leakageꢀdetectionꢀ  
rms  
currentꢀlimit,ꢀI ꢀꢀꢀ5ꢀµA).  
I-O  
11.ꢀDeviceꢀconsideredꢀaꢀtwo-terminalꢀdevice:ꢀpinsꢀ1,ꢀ2,ꢀ3,ꢀandꢀ4ꢀshortedꢀtogetherꢀandꢀpinsꢀ5,ꢀ6,ꢀ7,ꢀandꢀ8ꢀshortedꢀtogether.  
12.ꢀTheꢀdifferenceꢀbetweenꢀt ꢀandꢀt ꢀbetweenꢀanyꢀtwoꢀACPL-3130,ꢀACPL-J313ꢀorꢀACNW3130ꢀpartsꢀunderꢀtheꢀsameꢀtestꢀcondition.  
PHL  
PLH  
13.ꢀPinsꢀ1ꢀandꢀ4ꢀneedꢀtoꢀbeꢀconnectedꢀtoꢀLEDꢀcommon.  
14.ꢀCommonꢀmodeꢀtransientꢀimmunityꢀinꢀtheꢀhighꢀstateꢀisꢀtheꢀmaximumꢀtolerableꢀdV /dtꢀofꢀtheꢀcommonꢀmodeꢀpulse,ꢀV ,ꢀtoꢀassureꢀthatꢀtheꢀoutputꢀ  
CM  
CM  
willꢀremainꢀinꢀtheꢀhighꢀstateꢀ(i.e.,ꢀV ꢀ>ꢀ15.0ꢀV).  
O
15.ꢀCommonꢀmodeꢀtransientꢀimmunityꢀinꢀaꢀlowꢀstateꢀisꢀtheꢀmaximumꢀtolerableꢀdV /dtꢀofꢀtheꢀcommonꢀmodeꢀpulse,ꢀV ,ꢀtoꢀassureꢀthatꢀtheꢀoutputꢀ  
CM  
CM  
willꢀremainꢀinꢀaꢀlowꢀstateꢀ(i.e.,ꢀV ꢀ<ꢀ1.0ꢀV).  
O
16.ꢀThisꢀloadꢀconditionꢀapproximatesꢀtheꢀgateꢀloadꢀofꢀaꢀ1200ꢀV/75AꢀIGBT.  
17.ꢀPulseꢀWidthꢀDistortionꢀ(PWD)ꢀisꢀdefinedꢀasꢀ|t ꢀ-ꢀt |ꢀforꢀanyꢀgivenꢀdevice.  
PHL PLH  
-1  
-2  
-3  
-4  
0
-1  
-2  
2.0  
1.8  
1.6  
1.4  
I
I
V
V
= 7 to 16 mA  
I = 7 to 16 mA  
F
F
= -100 mA  
= 15 to 30 V  
= 0 V  
V
V
V
= (V  
- 4 V)  
OUT  
CC  
EE  
OUT  
CC  
100  
25  
-40 °C  
°C  
C
= 15 to 30 V  
CC  
°
= 0 V  
EE  
I
V
V
= 7 to 16 mA  
= 15 to 30 V  
F
CC  
-3  
-4  
-5  
-6  
1.2  
1.0  
= 0 V  
EE  
0
0.5  
1.0  
1.5  
2.0  
2.5  
-40 -20  
0
2 0  
40  
60  
80 100  
-40 -20  
0
2 0  
40  
60  
80 100  
I
- OUTPUT HIGH CURRENT - A  
T
- TEMPERATURE - °C  
T
- TEMPERATURE - °C  
A
OH  
A
Figure 1. V vs. Temperature.  
Figure 2. I vs. Temperature.  
Figure 3. V vs. I  
.
OH  
OH  
OH  
OH  
0.25  
4
4
V
V
V
= -3.0 to 0.8 V  
= 15 to 30 V  
= 0 V  
F(OFF)  
CC  
EE  
V
(OFF) = -3.0 TO 0.8 V  
V
V
V
V
(OFF) = -3.0 TO 0.8 V  
F
F
I
= 100 mA  
= 15 TO 30 V  
= 0 V  
= 2.5 V  
= 15 TO 30 V  
OUT  
OUT  
CC  
0.20  
0.15  
0.10  
0.05  
V
V
3
CC  
EE  
3
2
= 0 V  
EE  
2
1
0
1
0
100  
25  
°C  
C
°
-40 °C  
0
-40 -20  
0
2 0  
40  
60  
80 100  
-40 -20  
0
2 0  
40  
60  
80 100  
0
0.5  
1.0  
1.5  
2.0  
2.5  
T
- TEMPERATURE - °C  
T
- TEMPERATURE - °C  
I
- OUTPUT LOW CURRENT - A  
OL  
A
A
Figure 4. V vs. Temperature.  
Figure 5. I vs. Temperature.  
Figure 6. V vs. I .  
OL OL  
OL  
OL  
ꢀꢀ  
3.5  
3.0  
2.5  
3.5  
3.0  
2.5  
5
4
3
2
V
V
= 15 TO 30 V  
= 0 V  
I
I
I
I
CC  
EE  
CCH  
CCL  
CCH  
CCL  
OUTPUT = OPEN  
V
V
= 30 V  
= 0 V  
= 10 mA for I  
CC  
EE  
I
I
T
V
= 10 mA for I  
CCH  
F
F
2.0  
1.5  
2.0  
1.5  
= 0 mA for I  
CCL  
1
0
I
I
F
F
CCH  
CCL  
= 25 °C  
A
EE  
= 0 mA for I  
= 0 V  
-40 -20  
0
2 0  
40  
60  
80 100  
15  
20  
25  
30  
-40 -20  
0
2 0  
40  
60  
80 100  
T
- TEMPERATURE - °C  
V
CC  
- SUPPLY VOLTAGE - V  
T
- TEMPERATURE - °C  
A
A
Figure 7. I vs. Temperature.  
Figure 8. I vs. V  
.
Figure 9. I vs. Temperature. (ACPL-3130)  
CC  
CC  
CC  
FLH  
5
5
500  
I
T
= 10 mA  
F
V
V
= 15 TO 30 V  
= 0 V  
T
T
V
V
= 15 TO 30 V  
= 0 V  
CC  
EE  
PLH  
PHL  
CC  
= 25 °C  
A
EE  
OUTPUT = OPEN  
4
3
Rg = 10   
Cg = 10 nF  
DUTY CYCLE = 50%  
f = 10 kHz  
4
3
OUTPUT = OPEN  
400  
300  
2
1
0
2
1
0
200  
100  
-40 -20  
0
2 0  
40  
60  
80 100  
-40 -20  
0
2 0  
40  
60  
80 100  
15  
20  
25  
30  
T
- TEMPERATURE - °C  
T
- TEMPERATURE - ° C  
A
V
- SUPPLY VOLTAGE - V  
CC  
A
Figure 10. I vs. Temperature. (ACPL-J313)  
Figure 11. I vs. Temperature. (ACNW3130)  
Figure 12. Propagation Delay vs. V .  
CC  
FLH  
FLH  
500  
500  
500  
I
= 10 mA  
V
T
I
= 30 V, V  
= 0 V  
EE  
V
= 30 V, V  
= 0 V  
EE  
F
CC  
= 25 °C  
CC  
Rg = 10 , Cg = 10 nF  
= 25 °C  
VCC = 30 V, V EE = 0 V  
Rg = 10, Cg = 10 nF  
DUTY CYCLE = 50%  
f = 10 kHz  
A
= 10 mA  
T
F
A
400  
300  
400  
300  
400  
300  
Cg = 10 nF  
DUTY CYCLE = 50%  
f = 10 kHz  
DUTY CYCLE = 50%  
f = 10 kHz  
200  
100  
200  
100  
200  
100  
T
T
T
T
TPLH  
TPHL  
PLH  
PHL  
PLH  
PHL  
6
8
10  
12  
14  
16  
0
10  
20  
30  
40  
50  
-40 -20  
0
2 0  
40  
60  
80 100  
I
- FORWARD LED CURRENT - mA  
Rg - SERIES LOAD RESISTANCE -  
T
- TEMPERATURE - °C  
F
A
Figure 13. Propagation Delay vs. I .  
Figure 14. Propagation Delay vs. Temperature.  
Figure 15. Propagation Delay vs. Rg.  
F
ꢀ2  
35  
30  
500  
400  
300  
V
T
= 30 V, V  
= 0 V  
EE  
CC  
= 25 °C  
A
30  
25  
20  
15  
10  
5
25  
20  
15  
10  
I
= 10 mA  
F
Rg = 10  
DUTY CYCLE = 50%  
f = 10 kHz  
200  
100  
5
0
T
T
PLH  
PHL  
0
0
1
2
3
4
5
0
1
2
3
4
5
0
20  
40  
60  
80  
100  
I
- FORWARD LED CURRENT - mA  
F
I
- FORWARD LED CURRENT - mA  
Cg - LOAD CAPACITANCE - nF  
F
Figure 16. Propagation Delay vs. Cg.  
Figure 17. Transfer Characteristics (ACPL-3130 / Figure 18. Transfer Characteristics (ACPL-J313)  
ACNW3130)  
1000  
1000  
T
= 25°C  
A
T
= 25°C  
A
100  
10  
100  
10  
I
F
I
F
+
+
V
V
F
F
-
-
1.0  
1.0  
0.1  
0.1  
0.01  
0.01  
0.001  
0.001  
1.10  
1.20  
1.30  
1.40  
1.50  
1.60  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
V
- FORWARD VOLTAGE - VOLTS  
V
- FORWARD VOLTAGE - VOLTS  
F
F
Figure 19. I vs. V . (ACPL-3130)  
Figure 20. I vs. V . (ACPL-J313 / ACNW3130)  
F
F
F
F
1
2
3
4
8
0.1 µF  
+
4 V  
7
6
5
I
= 7 to  
F
V
= 15  
+
CC  
to 30 V  
16 mA  
I
OH  
Figure 21. I Test Circuit.  
OH  
1
2
3
4
8
0.1 µF  
I
OL  
7
6
5
V
= 15  
+
CC  
to 30 V  
-
2.5 V  
+
-
Figure 22. I Test Circuit.  
OL  
ꢀꢁ  
1
2
3
4
8
1
2
3
4
8
0.1 µF  
0.1 µF  
100 mA  
V
OH  
7
6
5
7
6
5
I
= 7 to  
F
V
= 15  
V
= 15  
+
+
-
CC  
to 30 V  
CC  
to 30 V  
16 mA  
Ð
V
OL  
100 mA  
Figure 24. V Test Circuit.  
Figure 23. V Test Circuit.  
OL  
OH  
1
2
8
1
2
8
0.1 µF  
0.1 µF  
7
7
6
5
V
= 15  
+
-
+
CC  
I
I
= 10 mA  
F
V
F
CC  
-
V
> 5 V  
to 30 V  
V
> 5 V  
O
O
3
4
6
5
3
4
Figure 26. UVLO Test Circuit.  
Figure 25. I Test Circuit.  
FLH  
1
8
7
6
5
I
0.1 µF  
F
I
= 7 to 16 mA  
F
V
= 15  
CC  
+
-
to 30 V  
2
3
4
t
t
f
r
500  
+
-
V
O
90%  
10 KHz  
50% DUTY  
CYCLE  
10  
50%  
10%  
V
10 nF  
OUT  
t
t
PHL  
PLH  
Figure 27. t , t , t , and t Test Circuit and Waveforms.  
PLH PHL  
r
f
V
CM  
V  
t  
V
CM  
1
2
3
4
8
7
6
5
=
t  
I
F
0.1 µF  
A
B
0 V  
t  
+
+
-
V
5 V  
O
-
V
= 30 V  
CC  
V
OH  
OL  
V
O
SWITCH AT A: I = 10 mA  
F
V
O
V
SWITCH AT B: I = 0 mA  
F
+
V
= 1500 V  
CM  
Figure 28. CMR Test Circuit and Waveforms.  
ꢀꢂ  
Applications Information  
Selecting the Gate Resistor (R ) to Minimize IGBT Switching  
g
Losses. (Discussion applies to ACPL-3130, ACPL-J313 and  
ACNW3130)  
Eliminating Negative IGBT Gate Drive (Discussion applies to  
ACPL-3130, ACPL-J313, and ACNW3130)  
Step 1: Calculate Rg minimum from the I peak specification. The  
OL  
Toꢀ keepꢀ theꢀ IGBTꢀ firmlyꢀ off,ꢀ theꢀ ACPL-3130ꢀ hasꢀ aꢀ veryꢀ  
lowmaximumꢀVOLspecificationof0.5ꢀV.ꢀTheACPL-3130ꢀ  
IGBT and R in Figure 30 can be analyzed as a simple RC circuit  
g
with a voltage supplied by the ACPL-3130.  
realizesꢀ thisꢀ veryꢀ lowꢀ V ꢀ byꢀ usingꢀ aꢀ DMOSꢀ transistorꢀ  
OL  
withꢀ 1ꢀ Wꢀ (typical)ꢀ onꢀ resistanceꢀ inꢀ itsꢀ pullꢀ downꢀ circuit.ꢀ  
WhentheꢀACPL-3130ꢀisꢀinꢀtheꢀlowꢀstate,ꢀtheꢀIGBTꢀgateꢀisꢀ  
shortedꢀ toꢀ theꢀ emitterꢀ byꢀ R ꢀ +ꢀ 1ꢀ W.ꢀ Minimizingꢀ R ꢀ andꢀ  
VCC VEE VOL  
Rg ≥  
IOLPEAK  
g
g
theꢀleadꢀinductanceꢀfromꢀtheꢀACPL-3130ꢀtoꢀtheꢀIGBTꢀgateꢀ  
andꢀ emitterꢀ (possiblyꢀ byꢀ mountingꢀ theꢀ ACPL-3130ꢀ onꢀ aꢀ  
smallꢀPCꢀboardꢀdirectlyꢀaboveꢀtheꢀIGBT)ꢀcanꢀeliminateꢀtheꢀ  
needꢀforꢀnegativeꢀIGBTꢀgateꢀdriveꢀinꢀmanyꢀapplicationsꢀasꢀ  
shownꢀinꢀFigureꢀ29.ꢀCareꢀshouldꢀbeꢀtakenꢀwithꢀsuchꢀaꢀPCꢀ  
boardꢀdesignꢀtoꢀavoidꢀroutingꢀtheꢀIGBTꢀcollectorꢀorꢀemitterꢀ  
tracesclosetotheACPL-3130inputasthiscanresultinꢀ  
unwantedꢀ couplingꢀ ofꢀ transientꢀ signalsꢀ intoꢀ theꢀ ACPL-  
3130anddegradeperformance.(IftheIGBTdrainmustꢀ  
beꢀroutedꢀnearꢀtheꢀACPL-3130ꢀinput,ꢀthenꢀtheꢀLEDꢀshouldꢀ  
beꢀ reverse-biasedꢀ whenꢀ inꢀ theꢀ offꢀ state,ꢀ toꢀ preventꢀ theꢀ  
transientꢀsignalsꢀcoupledꢀfromꢀtheꢀIGBTꢀdrainꢀfromꢀturningꢀ  
onꢀtheꢀACPL-3130.)  
15 + 5 2  
=
2.5  
= 7.2Ω = 8Ω  
Theꢀ V ꢀ valueꢀ ofꢀ 2ꢀ Vꢀ inꢀ theꢀ previousꢀ equationꢀ isꢀ aꢀ  
OL  
conservativeꢀvalueꢀofꢀV ꢀatꢀtheꢀpeakꢀcurrentꢀofꢀ2.5Aꢀ(seeꢀ  
OL  
Figureꢀ6).ꢀAtꢀlowerꢀR ꢀvaluesꢀtheꢀvoltageꢀsuppliedꢀbyꢀtheꢀ  
g
ACPL-3130ꢀ isꢀ notꢀ anꢀ idealꢀ voltageꢀ step.ꢀ Thisꢀ resultsꢀ inꢀ  
lowerꢀpeakꢀcurrentsꢀ(moreꢀmargin)ꢀthanꢀpredictedꢀbyꢀthisꢀ  
analysis.ꢀWhenꢀnegativeꢀgateꢀdriveꢀisꢀnotꢀusedꢀV ꢀinꢀtheꢀ  
EE  
previousꢀequationꢀisꢀequalꢀtoꢀzeroꢀvolts.  
+5 V  
1
2
3
4
8
V
= 18 V  
CC  
+ HVDC  
270  
0.1 µF  
+
-
7
6
5
Rg  
Q1  
Q2  
3-PHASE  
AC  
CONTROL  
INPUT  
74XXX  
OPEN  
COLLECTOR  
- HVDC  
Figure 29. Recommended LED Drive and Application Circuit.  
+5 V  
1
8
V
= 15 V  
CC  
+ HVDC  
270  
0.1 µF  
+
-
2
7
Rg  
Q1  
Q2  
3-PHASE  
AC  
CONTROL  
3
6
5
INPUT  
V
= -5 V  
EE  
+
-
74XXX  
4
OPEN  
COLLECTOR  
- HVDC  
Figure 30. ACPL-3130 Typical Application Circuit with Negative IGBT Gate Drive.  
ꢀ5  
Step 2: Check the ACPL-3130 Power Dissipation and Increase R if  
g
Necessary. The ACPL-3130 total power dissipation (P ) is equal to  
T
the sum of the emitter power (P ) and the output power (P ):  
E
O
P = P +PO  
T
E
P = I V  
DutyCycle  
E
F
F
PO = PO(BIAS) +PO(SWITCHING) = ICC V +E  
(
Rg ;Qg  
)
f
CC  
SW  
PE Parameter  
Description  
IF  
LEDꢀCurrent  
LEDꢀOnꢀVoltage  
VF  
DutyꢀCycle  
PO Parameter  
ICC  
MaximumꢀLEDꢀDutyꢀCycle  
Description  
SupplyꢀCurrent  
VCC  
PositiveꢀSupplyꢀVoltage  
NegativeꢀSupplyꢀVoltage  
VEE  
ESW(Rg,Qg)  
EnergyꢀDissipatedꢀinꢀtheꢀACPL-3130ꢀforꢀ  
eachꢀIGBTꢀSwitchingꢀCycleꢀ(SeeꢀFigureꢀ31)  
f
SwitchingꢀFrequency  
ForꢀtheꢀcircuitꢀinꢀFigureꢀ30ꢀwithꢀI ꢀ(worstꢀcase)ꢀ=ꢀ16ꢀmA,ꢀR ꢀ  
F
g
=ꢀ8ꢀW,ꢀMaxꢀDutyꢀCycleꢀ=ꢀ80%,ꢀQ ꢀ=ꢀ500ꢀnC,ꢀfꢀ=ꢀ20ꢀkHzꢀandꢀ  
SinceꢀP ꢀforꢀthisꢀcaseꢀisꢀgreaterꢀthanꢀP  
,ꢀR ꢀmustꢀbeꢀ  
g
g
O
O(MAX)  
T ꢀmaxꢀ=ꢀ85˚C:  
A
increasedꢀtoꢀreduceꢀtheꢀACPL-3130ꢀpowerꢀdissipation.  
ForꢀQ ꢀ=ꢀ500ꢀnC,ꢀfromꢀFigureꢀ31,ꢀaꢀvalueꢀofꢀE ꢀ=ꢀ4.65ꢀµWꢀ  
g
SW  
givesꢀaꢀR ꢀ=ꢀ10.3ꢀΩ.  
P = 16mA 1.8V 0.8 = 23mW  
g
E
P = 4.25mA 20V + 5.2µJ20kHz  
14  
12  
10  
O
Qg = 100 nC  
Qg = 500 nC  
Qg = 1000 nC  
= 85mW + 104mW  
= 189mW  
V
V
= 19 V  
= -9 V  
> 178mW(PO( @85°C = 250mW -15°C 4.8mW/°C  
)
CC  
EE  
MAX  
)
8
6
4
ꢀTheꢀvalueꢀofꢀ4.25ꢀmAꢀforꢀI ꢀinꢀtheꢀpreviousꢀequationꢀwasꢀ  
CC  
obtainedꢀbyꢀderatingꢀtheꢀI ꢀmaxꢀofꢀ5ꢀmAꢀ(whichꢀoccursꢀatꢀ  
CC  
-40°C)ꢀtoꢀI ꢀmaxꢀatꢀ85˚Cꢀ(seeꢀFigureꢀ7).  
CC  
2
0
PO  
= PO  
- PO  
) (  
(
SWITCHINGMAX  
)
(
MAX  
BIAS)  
-
= 178mW 85mW  
0
10  
20  
30  
40  
50  
Rg - GATE RESISTANCE - Ω  
= 93mW  
PO  
Figure 31. Energy Dissipated in the ACPL-3130 for Each IGBT Switching  
Cycle.  
(
SWITCHINGMAX  
)
ESW  
=
MAX  
)
(
f
93mW  
20kHz  
=
= 4.65µW  
ꢀꢃ  
Insertingthevaluesforq andq showninFigure32ꢀ  
Thermal Model  
(Discussion applies to ACPL-3130, ACPL-J313 and ACNW3130)  
LC  
DC  
gives:  
T = P  
(
256°C/W +θ  
)
+ P  
(
57°C/W +θCA  
)
)
+ TA  
+ TA  
θ
JE  
E
CA  
D
= 442 °C/W  
LD  
T
T
JD  
JE  
T = P  
(
57°C/W +θ  
)
+ P  
(
111°C/W +θCA  
JD  
E
CA  
D
θ
= 467 °C/W  
θ
= 126 °C/W  
LC  
DC  
Forꢀexample,ꢀgivenꢀP ꢀ=ꢀ45ꢀmW,ꢀP ꢀ=ꢀ250ꢀmW,ꢀT ꢀ=ꢀ70°Cꢀ  
andꢀq ꢀ=ꢀ83°C/W:  
E
O
A
T
C
CA  
θ
= 83 °C/W*  
CA  
T = P 339°C/W + P 140°C/W + T  
D
JE  
E
A
= 45mW 339°C/W + 250mW 140°C/W + 70°C = 120°C  
T
A
TJD = P 140°C/W + P 194°C/W + T  
E
D
A
T ꢀ=ꢀLEDꢀjunctionꢀtemperature  
JE  
= 45mW140°C/W + 250mW 194°C/W + 70°C  
T ꢀ=ꢀdetectorꢀICꢀjunctionꢀtemperature  
JD  
T ꢀ andꢀ T ꢀ shouldꢀ beꢀ limitedꢀ toꢀ 125°Cꢀ basedꢀ onꢀ theꢀ  
T ꢀ =ꢀ caseꢀ temperatureꢀ measuredꢀ atꢀ theꢀ centerꢀ ofꢀ theꢀ  
JE  
JD  
C
boardꢀ layoutꢀ andꢀ partꢀ placementꢀ (q )ꢀ specificꢀ toꢀ theꢀ  
packageꢀbottom  
CA  
application  
q ꢀ=ꢀLED-to-caseꢀthermalꢀresistance  
LC  
q
q
q
ꢀ=ꢀLED-to-detectorꢀthermalꢀresistance  
ꢀ=ꢀdetector-to-caseꢀthermalꢀresistance  
LD  
DC  
CA  
ꢀ=ꢀcase-to-ambientꢀthermalꢀresistance  
*q ꢀwillꢀdependꢀonꢀtheꢀboardꢀdesignꢀandꢀtheꢀplacementꢀ  
CA  
ofꢀtheꢀpart.  
Figure 32. Thermal Model.  
Theꢀ steadyꢀ stateꢀ thermalꢀ modelꢀ forꢀ theꢀ ACPL-3130ꢀ isꢀ  
showninFigure32.ꢀThethermalresistancevaluesgivenꢀ  
inthismodelcanbeusedtocalculatethetemperaturesꢀ  
ateachnodeforagivenoperatingcondition.Asshownꢀ  
byꢀtheꢀmodel,ꢀallꢀheatꢀgeneratedꢀflowsꢀthroughꢀq ꢀwhichꢀ  
CA  
raisesthecasetemperatureꢀT accordingly.Thevalueofꢀ  
C
q
ꢀdependsꢀonꢀtheꢀconditionsꢀofꢀtheꢀboardꢀdesignꢀandꢀis,ꢀ  
therefore,ꢀdeterminedꢀbyꢀtheꢀdesigner.ꢀTheꢀvalueꢀofꢀq ꢀ=ꢀ  
CA  
CA  
83°C/Wꢀwasꢀobtainedꢀfromꢀthermalꢀmeasurementsꢀusingꢀaꢀ  
2.5ꢀxꢀ2.5ꢀinchꢀPCꢀboard,ꢀwithꢀsmallꢀtracesꢀ(noꢀgroundꢀplane),ꢀ  
aꢀsingleꢀACPL-3130ꢀsolderedꢀintoꢀtheꢀcenterꢀofꢀtheꢀboardꢀ  
andꢀ stillꢀ air.ꢀ Theꢀ absoluteꢀ maximumꢀ powerꢀ dissipationꢀ  
deratingꢀspecificationsꢀassumeꢀaꢀq ꢀvalueꢀofꢀ83°C/W.  
CA  
FromꢀtheꢀthermalꢀmodeꢀinꢀFigureꢀ32ꢀtheꢀLEDꢀandꢀdetectorꢀ  
ICꢀjunctionꢀtemperaturesꢀcanꢀbeꢀexpressedꢀas:  
θLC  
θ
DC  
T = P  
(
θ ||  
(
θLD +θDC  
)
+θCA  
)
+ P  
+ θCA + TA  
JE  
E
LC  
D
(
)
θLC +θDC +θLD  
θ
θ LC  
θ +θ +θ  
DC  
T = P  
+θCA + P θ || θ +θ +θCA + TA  
(
) )  
(
JD  
E
D
DC  
LD  
LC  
(
)
LC  
DC  
LD  
ꢀꢄ  
LED Drive Circuit Considerations for Ultra High CMR Per-  
formance. (Discussion applies to ACPL-3130, ACPL-J313,  
and ACNW3130)  
CMR with the LED On (CMR )  
H
AꢀhighꢀCMRꢀLEDꢀdriveꢀcircuitꢀmustꢀkeepꢀtheꢀLEDꢀonꢀduringꢀ  
commonꢀmodeꢀtransients.ꢀThisꢀisꢀachievedꢀbyꢀoverdrivingꢀ  
theꢀLEDꢀcurrentꢀbeyondꢀtheꢀinputꢀthresholdꢀsoꢀthatꢀitꢀisꢀnotꢀ  
pulledꢀbelowꢀtheꢀthresholdꢀduringꢀaꢀtransient.ꢀAꢀminimumꢀ  
LEDꢀcurrentꢀofꢀ10ꢀmAꢀprovidesꢀadequateꢀmarginꢀoverꢀtheꢀ  
Withoutꢀ aꢀ detectorꢀ shield,ꢀ theꢀ dominantꢀ causeꢀ ofꢀ  
optocouplerCMRfailureiscapacitivecouplingfromtheꢀ  
inputꢀsideꢀofꢀtheꢀoptocoupler,ꢀthroughꢀtheꢀpackage,ꢀtoꢀtheꢀ  
detectorꢀICꢀasꢀshownꢀinꢀFigureꢀ33.ꢀTheꢀACPL-3130ꢀimprovesꢀ  
CMRꢀperformanceꢀbyꢀusingꢀaꢀdetectorꢀICꢀwithꢀanꢀopticallyꢀ  
transparentꢀFaradayꢀshield,ꢀwhichꢀdivertsꢀtheꢀcapacitivelyꢀ  
coupledꢀ currentꢀ awayꢀ fromꢀ theꢀ sensitiveꢀ ICꢀ circuitry.ꢀ  
However,ꢀ thisꢀ shieldꢀ doesꢀ notꢀ eliminateꢀ theꢀ capacitiveꢀ  
couplingꢀ betweenꢀ theꢀ LEDꢀ andꢀ optocouplerꢀ pinsꢀ 5-8ꢀ  
asꢀ shownꢀ inꢀ Figureꢀ 34.ꢀ Thisꢀ capacitiveꢀ couplingꢀ causesꢀ  
perturbationsintheLEDcurrentduringcommonmodeꢀ  
transientsꢀandꢀbecomesꢀtheꢀmajorꢀsourceꢀofꢀCMRꢀfailuresꢀ  
forꢀaꢀshieldedꢀoptocoupler.ꢀTheꢀmainꢀdesignꢀobjectiveꢀofꢀaꢀ  
highꢀCMRꢀLEDꢀdriveꢀcircuitꢀbecomesꢀkeepingꢀtheꢀLEDꢀinꢀtheꢀ  
properꢀstateꢀ(onꢀorꢀo)ꢀduringꢀcommonꢀmodeꢀtransients.ꢀ  
Forꢀ example,ꢀ theꢀ recommendedꢀ applicationꢀ circuitꢀ  
(Figure29),canachieve40kV/µsCMRwhileminimizingꢀ  
componentꢀcomplexity.  
maximumꢀI ꢀofꢀ5ꢀmAꢀtoꢀachieveꢀ40ꢀkV/μsꢀCMR.  
FLH  
CMR with the LED Off (CMR )  
L
AhighCMRLEDdrivecircuitmustkeeptheLEDo(V ꢀ  
F
ꢀV  
)ꢀduringꢀcommonꢀmodeꢀtransients.ꢀForꢀexample,ꢀ  
F(OFF)  
duringꢀ aꢀ -dV /dtꢀ transientꢀ inꢀ Figureꢀ 35,ꢀ theꢀ currentꢀ  
cm  
flowingꢀ throughꢀ C  
ꢀ alsoꢀ flowsꢀ throughꢀ theꢀ R ꢀ andꢀ  
SAT  
LEDP  
V
ꢀ ofꢀ theꢀ logicꢀ gate.ꢀ Asꢀ longꢀ asꢀ theꢀ lowꢀ stateꢀ voltageꢀ  
SAT  
developedꢀacrossꢀtheꢀlogicꢀgateꢀisꢀlessꢀthanꢀV  
,ꢀtheꢀLEDꢀ  
F(OFF)  
willꢀremainꢀoffꢀandꢀnoꢀcommonꢀmodeꢀfailureꢀwillꢀoccur.  
+5 V  
1
2
3
4
8
7
6
5
0.1  
µF  
+
-
C
I
LEDP  
V
= 18 V  
CC  
+
Techniques to keep the LED in the proper state are dis-  
cussed in the next two sections.  
LEDP  
V
SAT  
-
¥ ¥ ¥  
¥ ¥ ¥  
C
LEDN  
Rg  
1
2
3
4
8
7
6
5
SHIELD  
C
C
LEDP  
LEDN  
* THE ARROWS INDICATE THE DIRECTION  
OF CURRENT FLOW DURING - dV  
/dt.  
CM  
+
-
V
CM  
Figure 35. Equivalent Circuit for Figure 29 During Common Mode Tran-  
sient.  
Theꢀ openꢀ collectorꢀ driveꢀ circuit,ꢀ shownꢀ inꢀ Figureꢀ 36,ꢀ  
cannotꢀkeepꢀtheꢀLEDꢀoffꢀduringꢀaꢀ+dV /dtꢀtransient,ꢀsinceꢀ  
Figure 33. Optocoupler Input to Output Capacitance Model for Unshield-  
ed Optocouplers.  
cm  
allthecurrentowingthroughC  
mustbesuppliedꢀ  
LEDN  
bytheLED,anditisnotrecommendedforapplicationsꢀ  
requiringꢀ ultraꢀ highꢀ CMR ꢀ performance.ꢀ Figureꢀ 37ꢀ isꢀ anꢀ  
L
C
1
2
3
4
8
7
6
5
LEDO1  
alternativeꢀ driveꢀ circuitꢀ which,ꢀ likeꢀ theꢀ recommendedꢀ  
applicationꢀcircuitꢀ(Figureꢀ29),ꢀdoesꢀachieveꢀultraꢀhighꢀCMRꢀ  
performanceꢀbyꢀshuntingꢀtheꢀLEDꢀinꢀtheꢀoffꢀstate.  
C
C
LEDP  
LEDN  
C
LEDO2  
1
2
3
4
8
7
6
5
+5 V  
C
LEDP  
SHIELD  
C
I
Figure 34. Optocoupler Input to Output Capacitance Model for Shielded  
Optocouplers.  
LEDN  
Q1  
LEDN  
SHIELD  
Figure 36. Not Recommended Open Collector Drive Circuit.  
ꢀꢅ  
35.  
isꢀequalꢀtoꢀtheꢀmaximumꢀvalueꢀofꢀtheꢀpropagationꢀdelayꢀ  
differenceꢀspecification,ꢀPDD ,ꢀwhichꢀisꢀspecifiedꢀtoꢀbeꢀ  
                                                      
Theꢀamountꢀofꢀdelayꢀnecessaryꢀtoꢀachieveꢀthisꢀconditionꢀ  
supplyvoltageꢀrisesꢀaboveꢀtheꢀACPL-3130  
                                      
V
Dead Time and Propagation Delay Specifications. (Discus-  
sion applies to ACPL-3130, ACPL-J313, and ACNW3130)  
1
2
3
4
8
7
6
5
+5 V  
Theꢀ ACPL-3130ꢀ includesꢀ aꢀ Propagationꢀ Delayꢀ Differenceꢀ  
(PDD)specificationintendedtohelpdesignersminimizeꢀ  
“deadꢀ time”ꢀ inꢀ theirꢀ powerꢀ inverterꢀ designs.ꢀ Deadꢀ timeꢀ  
isthetimeperiodduringwhichboththehighandlowꢀ  
sideꢀ powerꢀ transistorsꢀ (Q1ꢀ andꢀ Q2ꢀ inꢀ Figureꢀ 29)ꢀ areꢀ off.ꢀ  
AnyoverlapꢀinꢀQ1ꢀandꢀQ2ꢀconductionꢀwillꢀresultꢀinꢀlargeꢀ  
currentsꢀflowingꢀthroughꢀtheꢀpowerꢀdevicesꢀbetweenꢀtheꢀ  
highꢀandꢀlowꢀvoltageꢀmotorꢀrails.ꢀ  
C
C
LEDP  
LEDN  
SHIELD  
I
Figure 37. Recommended LED Drive Circuit for Ultra-High CMR.  
LED1  
V
Under Voltage Lockout Feature. (Discussion applies to  
ACPL-3130, ACPL-J313, and ACNW3130)  
OUT1  
Q1 ON  
Q1 OFF  
TheꢀACPL-3130ꢀcontainsꢀanꢀunderꢀvoltageꢀlockoutꢀ(UVLO)ꢀ  
featurethatisdesignedtoprotecttheIGBTunderfaultꢀ  
conditionsꢀ whichꢀ causeꢀ theꢀ ACPL-3130ꢀ supplyꢀ voltageꢀ  
(equivalentꢀ toꢀ theꢀ fully-chargedꢀ IGBTꢀ gateꢀ voltage)ꢀ toꢀ  
dropbelowalevelnecessarytokeeptheIGBTinalowꢀ  
resistanceꢀstate.ꢀWhenꢀtheꢀACPL-3130ꢀoutputꢀisꢀinꢀtheꢀhighꢀ  
stateꢀandꢀtheꢀsupplyꢀvoltageꢀdropsꢀbelowꢀtheꢀACPL-3130ꢀ  
Q2 ON  
Q2 OFF  
V
OUT2  
I
LED2  
t
PHL MAX  
t
PLH MIN  
- t  
PDD* MAX = (t  
)
= t  
- t  
PHL MAX PLH MIN  
PHL PLH MAX  
V
threshold(9.5<V  
<12.0)theoptocouplerꢀ  
UVLO  
UVLO  
outputꢀwillꢀgoꢀintoꢀtheꢀlowꢀstateꢀwithꢀaꢀtypicalꢀdelay,ꢀUVLOꢀ  
TurnꢀOffꢀDelay,ꢀofꢀ0.6ꢀµs.  
*PDD = PROPAGATION DELAY DIFFERENCE  
NOTE: FOR PDD CALCULATIONS THE PROPAGATION DELAYS  
ARE TAKEN AT THE SAME TEMPERATURE AND TEST CONDITIONS.  
WhentheACPL-3130outputisinthelowstateandtheꢀ  
Figure 39. Minimum LED Skew for Zero Dead Time.  
+thresholdꢀ  
UVLO  
(11.0ꢀ<ꢀV  
+ꢀ<ꢀ13.5)ꢀtheꢀoptocouplerꢀoutputꢀwillꢀgoꢀintoꢀ  
UVLO  
Tominimizedeadtimeinagivendesign,theturnonofꢀ  
LED2ꢀshouldꢀbeꢀdelayedꢀ(relativeꢀtoꢀtheꢀturnꢀoffꢀofꢀLED1)ꢀ  
soꢀthatꢀunderꢀworst-caseꢀconditions,ꢀtransistorꢀQ1ꢀhasꢀjustꢀ  
turnedꢀoffꢀwhenꢀtransistorꢀQ2ꢀturnsꢀon,ꢀasꢀshownꢀinꢀFigureꢀ  
theꢀhighꢀstateꢀ(assumesꢀLEDꢀisꢀ“ON”)ꢀwithꢀaꢀtypicalꢀdelay,ꢀ  
UVLOꢀTurnꢀOnꢀDelayꢀofꢀ0.8ꢀµs.  
14  
12  
(12.3, 10.8)  
MAX  
10  
(10.7, 9.2)  
350ꢀnsꢀoverꢀtheꢀoperatingꢀtemperatureꢀrangeꢀofꢀ-40°Cꢀtoꢀ  
100°C.  
8
6
4
2
Delayingꢀ theꢀ LEDꢀ signalꢀ byꢀ theꢀ maximumꢀ propagationꢀ  
delaydifferenceensuresthattheminimumdeadtimeisꢀ  
zero,butitdoesnottelladesignerwhatthemaximumꢀ  
deadꢀtimeꢀwillꢀbe.ꢀTheꢀmaximumꢀdeadꢀtimeꢀisꢀequivalentꢀ  
toꢀ theꢀ differenceꢀ betweenꢀ theꢀ maximumꢀ andꢀ minimumꢀ  
propagationꢀ delayꢀ differenceꢀ specificationsꢀ asꢀ shownꢀ inꢀ  
Figure40.ꢀTheꢀmaximumꢀdeadꢀtimeꢀforꢀtheꢀACPL-3130ꢀisꢀ  
700ꢀnsꢀ(=ꢀ350ꢀnsꢀ-ꢀ(-350ꢀns))ꢀoverꢀanꢀoperatingꢀtemperatureꢀ  
rangeꢀofꢀ-ꢀ40°Cꢀtoꢀ100°C.  
(10.7, 0.1)  
5
(12.3, 0.1)  
15  
0
0
10  
20  
(V  
- V  
) - SUPPLY VOLTAGE - V  
EE  
CC  
Figure 38. Under Voltage Lock Out.  
NotethatthepropagationdelaysusedtocalculatePDDꢀ  
anddeadtimearetakenatequaltemperaturesandtestꢀ  
conditionsꢀ sinceꢀ theꢀ optocouplersꢀ underꢀ considerationꢀ  
areꢀtypicallyꢀmountedꢀinꢀcloseꢀproximityꢀtoꢀeachꢀotherꢀandꢀ  
areꢀswitchingꢀidenticalꢀIGBTs.  
ꢀꢆ  
800  
700  
600  
500  
400  
300  
I
LED1  
P
(mW)  
S
I
(mA) FOR ACPL-3130  
S
OPTION 060  
V
OUT1  
Q1 ON  
I
(mA) FOR ACPL-J313  
S
Q1 OFF  
Q2 ON  
Q2 OFF  
V
OUT2  
200  
100  
I
LED2  
t
PHL MIN  
0
t
PHL MAX  
0
25 50 75 100 125 150 175 200  
- CASE TEMPERATURE - °C  
t
PLH  
MIN  
T
S
t
PLH MAX  
Figure 41. Thermal Derating Curve, Dependence of Safety Limiting Value  
with Case Temperature per IEC/EN/DIN EN 60747-5-2 for ACPL-3130 (op-  
tion 060) and ACPL-J313.  
(t  
t
)
PHL- PLH MAX  
PDD* MAX  
MAXIMUM DEAD TIME  
(DUE TO OPTOCOUPLER)  
1000  
= (t  
= (t  
- t  
) + (t  
) - (t  
- t  
PLH MIN  
)
)
PHL MAX PHL MIN  
PLH MAX  
P
I
(mW)  
(mA)  
- t  
- t  
S
S
PHL MAX PLH MIN  
PHL MIN PLH MAX  
900  
800  
700  
600  
500  
400  
300  
200  
100  
= PDD* MAX - PDD* MIN  
*PDD = PROPAGATION DELAY DIFFERENCE  
NOTE: FOR DEAD TIME AND PDD CALCULATIONS ALL PROPAGATION  
DELAYS ARE TAKEN AT THE SAME TEMPERATURE AND TEST CONDITIONS.  
Figure 40. Waveforms for Dead Time.  
0
0
25  
50  
75 100 125 150 175  
T
- CASE TEMPERATURE - °C  
S
Figure 42. Thermal Derating Curve, Dependence of Safety Limiting Value  
with Case Temperature per IEC/EN/DIN EN 60747-5-2 for ACNW3130.  
For product information and a complete list of distributors, please go to our web site: www.avagotech.com  
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies Limited in the United States and other countries.  
Data subject to change. Copyright © 2005-200ꢅ Avago Technologies, Limited. All rights reserved. Obsoletes AV0ꢀ-0ꢃꢁ0EN  
AV02-0ꢀ5ꢃEN - June ꢀꢅ, 200ꢅ  

相关型号:

ACPL-3130-060

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER
AVAGO

ACPL-3130-060E

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 0.300 INCH, ROHS COMPLIANT, DIP-8
AVAGO

ACPL-3130-300

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER
AVAGO

ACPL-3130-300E

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 0.300 INCH, ROHS COMPLIANT, SURFACE MOUNT, DIP-8
AVAGO

ACPL-3130-500

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER
AVAGO

ACPL-3130-560E

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, 0.300 INCH, ROHS COMPLIANT, SURFACE MOUNT, DIP-8
AVAGO

ACPL-331J-000E

1.5 Amp Output Current IGBT Gate Driver Optocoupler
AVAGO

ACPL-331J-500E

1.5 Amp Output Current IGBT Gate Driver Optocoupler with Integrated (VCE) Desaturation Detection, UVLO, Fault Status Feedback and Active Miller Clamping
AVAGO

ACPL-332J

2.5 Amp Output Current IGBT Gate Driver Optocoupler with Integrated (VCE) Desaturation Detection, UVLO Fault Status Feedback and Active Miller Clamping
AVAGO

ACPL-332J-000E

2.5 Amp Output Current IGBT Gate Driver Optocoupler
AVAGO

ACPL-332J-500E

2.5 Amp Output Current IGBT Gate Driver Optocoupler
AVAGO