ATXMEGA256A3BU-AU [ATMEL]

8/16-bit Atmel XMEGA A3BUMicrocontroller; 8位/ 16位爱特梅尔XMEGA A3BUMicrocontroller
ATXMEGA256A3BU-AU
型号: ATXMEGA256A3BU-AU
厂家: ATMEL    ATMEL
描述:

8/16-bit Atmel XMEGA A3BUMicrocontroller
8位/ 16位爱特梅尔XMEGA A3BUMicrocontroller

微控制器
文件: 总143页 (文件大小:4630K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
8/16-bit Atmel XMEGA A3BUMicrocontroller  
ATxmega256A3BU  
Features  
High-performance, low-power Atmel®AVR®XMEGA® 8/16-bit Microcontroller  
Nonvolatile program and data memories  
256KBytes of in-system self-programmable flash  
8KBytes boot section  
4KBytes EEPROM  
16KBytes internal SRAM  
Peripheral features  
Four-channel DMA controller  
Eight-channel event system  
Seven 16-bit timer/counters  
Four timer/counters with four output compare or input capture channels  
Three timer/counters with two output compare or input capture channels  
High resolution extension on all timer/counters  
Advanced waveform extension (AWeX) on one timer/counter  
One USB device interface  
USB 2.0 full speed (12Mbps) and low speed (1.5Mbps) device compliant  
32 Endpoints with full configuration flexibility  
Six USARTs with IrDA support for one USART  
Two two-wire interfaces with dual address match (I2C and SMBus compatible)  
Two serial peripheral interfaces (SPIs)  
AES and DES crypto engine  
CRC-16 (CRC-CCITT) and CRC-32 (IEEE® 802.3) generator  
32-bit real time counter (RTC) with separate oscillator and battery backup system  
Two sixteen-channel, 12-bit, 2msps Analog to Digital Converters  
One two-channel, 12-bit, 1msps Digital to Analog Converter  
Four Analog Comparators with window compare function, and current sources  
External interrupts on all general purpose I/O pins  
Programmable watchdog timer with separate on-chip ultra low power oscillator  
QTouch® library support  
Capacitive touch buttons, sliders and wheels  
Special microcontroller features  
Power-on reset and programmable brown-out detection  
Internal and external clock options with PLL and prescaler  
Programmable multilevel interrupt controller  
Five sleep modes  
Programming and debug interfaces  
JTAG (IEEE 1149.1 compliant) interface, including boundary scan  
PDI (Program and Debug Interface)  
I/O and packages  
47 programmable I/O pins  
64-lead TQFP  
64-pad QFN  
Operating voltage  
1.6 – 3.6V  
Operating frequency  
0 – 12MHz from 1.6V  
0 – 32MHz from 2.7V  
8362F–AVR–02/2013  
1.  
Ordering Information  
Ordering code  
Flash (bytes)  
EEPROM (bytes)  
SRAM (bytes)  
Speed (MHz)  
Power supply  
Package (1)(2)(3)  
Temp.  
ATxmega256A3BU-AU  
ATxmega256A3BU-AUR (4)  
ATxmega256A3BU-MH  
ATxmega256A3BU-MHR (4)  
256K + 8K  
4K  
16K  
32  
1.6 - 3.6V  
64A  
-40C-85C  
256K + 8K  
4K  
16K  
32  
1.6 - 3.6V  
64M2  
Notes:  
1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information.  
2. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.  
3. For packaging information, see “Packaging information” on page 67.  
4. Tape and reel.  
Package type  
64A  
64-lead, 14 x 14mm body size, 1.0mm body thickness, 0.8mm lead pitch, thin profile plastic quad flat package (TQFP)  
64-pad, 9 x 9 x 1.0mm body, lead pitch 0.50mm, 7.65mm exposed pad, quad flat no-lead package (QFN)  
64M2  
Typical Applications  
Industrial control  
Factory automation  
Building control  
Climate control  
RF and ZigBee®  
USB connectivity  
Sensor control  
Optical  
Low power battery applications  
Power tools  
HVAC  
Board control  
Utility metering  
White goods  
Medical applications  
XMEGA A3BU [DATASHEET]  
2
8362F–AVR–02/2013  
2.  
Pinout/Block Diagram  
Figure 2-1. Block diagram and pinout.  
Power  
Ground  
Digital function  
Analog function / Oscillators  
Programming, debug, test  
External clock / Crystal pins  
General Purpose I /O  
Port R  
XOSC  
PA3  
PA4  
PA5  
PA6  
PA7  
PB0  
PB1  
PB2  
PB3  
PB4  
PB5  
PB6  
PB7  
GND  
VCC  
PC0  
1
2
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
PF2  
PF1  
DATA BUS  
3
PF0  
OSC/CLK  
Control  
Internal  
oscillators  
Watchdog  
oscillator  
Power  
Supervision  
4
VCC  
GND  
TOSC1  
TOSC2  
PE5  
AREF  
ADC  
Sleep  
Controller  
Real Time  
Counter  
Watchdog  
Timer  
Reset  
Controller  
5
AC0:1  
6
Event System  
Controller  
Crypto /  
CRC  
Prog/Debug  
Interface  
OCD  
7
Interrupt  
Controller  
BUS  
matrix  
AREF  
ADC  
8
Internal  
references  
DMA  
Controller  
CPU  
9
PE4  
DAC  
AC0:1  
JTAG  
10  
11  
12  
13  
14  
15  
16  
PE3  
Battery  
Backup  
FLASH  
EEPROM  
SRAM  
PE2  
PE1  
DATA BUS  
EVENT ROUTING NETWORK  
PE0  
VCC  
GND  
PD7  
Port C  
Port D  
Port E  
Port F  
Notes:  
1. For full details on pinout and pin functions refer to “Pinout and Pin Functions” on page 55.  
2. The large center pad underneath the QFN/MLF package should be soldered to ground on the board to ensure good mechanical stability.  
XMEGA A3BU [DATASHEET]  
3
8362F–AVR–02/2013  
3.  
Overview  
The Atmel AVR XMEGA is a family of low power, high performance, and peripheral rich 8/16-bit microcontrollers based  
on the AVR enhanced RISC architecture. By executing instructions in a single clock cycle, the AVR XMEGA device  
achieves CPU throughput approaching one million instructions per second (MIPS) per megahertz, allowing the system  
designer to optimize power consumption versus processing speed.  
The AVR CPU combines a rich instruction set with 32 general purpose working registers. All 32 registers are directly  
connected to the arithmetic logic unit (ALU), allowing two independent registers to be accessed in a single instruction,  
executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs many times  
faster than conventional single-accumulator or CISC based microcontrollers.  
The XMEGA A3BU devices provide the following features: in-system programmable flash with read-while-write  
capabilities; internal EEPROM and SRAM; four-channel DMA controller; eight-channel event system and programmable  
multilevel interrupt controller; 47 general purpose I/O lines; 32-bit real-time counter (RTC) with battery backup system;  
seven flexible 16-bit Timer/Counters with compare modes and PWM; one full speed USB 2.0 interface; six USARTs; two  
two-wire serial interfaces (TWIs); two serial peripheral interfaces (SPIs); AES and DES cryptographic engine; two 16-  
channel, 12-bit ADCs with programmable gain; one 2-channel 12-bit DAC; four analog comparators (ACs) with window  
mode; programmable watchdog timer with separate internal oscillator; accurate internal oscillators with PLL and  
prescaler; and programmable brown-out detection.  
The program and debug interface (PDI), a fast, two-pin interface for programming and debugging, is available. The  
devices also have an IEEE std. 1149.1 compliant JTAG interface, and this can also be used for boundary scan, on-chip  
debug and programming.  
The XMEGA A3BU devices have five software selectable power saving modes. The idle mode stops the CPU while  
allowing the SRAM, DMA controller, event system, interrupt controller, and all peripherals to continue functioning. The  
power-down mode saves the SRAM and register contents, but stops the oscillators, disabling all other functions until the  
next TWI, USB resume, or pin-change interrupt, or reset. In power-save mode, the asynchronous real-time counter  
continues to run, allowing the application to maintain a timer base while the rest of the device is sleeping. In standby  
mode, the external crystal oscillator keeps running while the rest of the device is sleeping. This allows very fast startup  
from the external crystal, combined with low power consumption. In extended standby mode, both the main oscillator and  
the asynchronous timer continue to run. To further reduce power consumption, the peripheral clock to each individual  
peripheral can optionally be stopped in active mode and idle sleep mode.  
Atmel offers a free QTouch library for embedding capacitive touch buttons, sliders and wheels functionality into AVR  
microcontrollers.  
The devices are manufactured using Atmel high-density, nonvolatile memory technology. The program flash memory can  
be reprogrammed in-system through the PDI or JTAG interfaces. A boot loader running in the device can use any  
interface to download the application program to the flash memory. The boot loader software in the boot flash section will  
continue to run while the application flash section is updated, providing true read-while-write operation. By combining an  
8/16-bit RISC CPU with in-system, self-programmable flash, the AVR XMEGA is a powerful microcontroller family that  
provides a highly flexible and cost effective solution for many embedded applications.  
All Atmel AVR XMEGA devices are supported with a full suite of program and system development tools, including C  
compilers, macro assemblers, program debugger/simulators, programmers, and evaluation kits.  
XMEGA A3BU [DATASHEET]  
4
8362F–AVR–02/2013  
3.1  
Block Diagram  
Figure 3-1. XMEGA A3BU block diagram.  
PR[0..1]  
XTAL1  
Digital function  
Analog function  
Programming, debug, test  
Oscillator/Crystal/Clock  
General purpose I/O  
XTAL2  
Oscillator  
Circuits/  
Clock  
Watchdog  
Oscillator  
PORT R (2)  
Generation  
DATA BUS  
SRAM  
Watchdog  
Timer  
PA[0..7]  
PORT A (8)  
Event System  
Controller  
Oscillator  
Control  
VCC  
GND  
Power  
Supervision  
POR/BOD &  
RESET  
ACA  
DMA  
Controller  
Sleep  
Controller  
ADCA  
RESET/  
PDI_CLK  
AREFA  
VCC/10  
Int. Refs.  
Tempref  
AREFB  
PDI  
Prog/Debug  
Controller  
BUS Matrix  
PDI_DATA  
AES  
DES  
CRC  
JTAG  
PORT B  
OCD  
Interrupt  
Controller  
CPU  
ADCB  
ACB  
NVM Controller  
USARTF0  
TCF0  
PB[0..7]/  
JTAG  
PORT B (8)  
DACB  
PF[0..4,6..7]  
Flash  
EEPROM  
IRCOM  
DATA BUS  
EVENT ROUTING NETWORK  
Real Time  
Counter  
Battery Backup  
Controller  
VBAT  
Power  
Supervision  
32.768 kHz  
XOSC  
VBAT  
PORT C (8)  
PORT D (8)  
PORT E (6)  
TOSC1  
TOSC2  
PC[0..7]  
PD[0..7]  
PE[0..5]  
XMEGA A3BU [DATASHEET]  
5
8362F–AVR–02/2013  
4.  
Resources  
A comprehensive set of development tools, application notes and datasheets are available for download on  
http://www.atmel.com/avr.  
4.1  
Recommended reading  
Atmel AVR XMEGA AU manual  
XMEGA application notes  
This device data sheet only contains part specific information with a short description of each peripheral and module. The  
XMEGA AU manual describes the modules and peripherals in depth. The XMEGA application notes contain example  
code and show applied use of the modules and peripherals.  
All documentations are available from www.atmel.com/avr.  
5.  
Capacitive touch sensing  
The Atmel QTouch library provides a simple to use solution to realize touch sensitive interfaces on most Atmel AVR  
microcontrollers. The patented charge-transfer signal acquisition offers robust sensing and includes fully debounced  
reporting of touch keys and includes Adjacent Key Suppression® (AKS®) technology for unambiguous detection of key  
events. The QTouch library includes support for the QTouch and QMatrix acquisition methods.  
Touch sensing can be added to any application by linking the appropriate Atmel QTouch library for the AVR  
microcontroller. This is done by using a simple set of APIs to define the touch channels and sensors, and then calling the  
touch sensing API’s to retrieve the channel information and determine the touch sensor states.  
The QTouch library is FREE and downloadable from the Atmel website at the following location:  
www.atmel.com/qtouchlibrary. For implementation details and other information, refer to the QTouch library user guide -  
also available for download from the Atmel website.  
XMEGA A3BU [DATASHEET]  
6
8362F–AVR–02/2013  
6.  
AVR CPU  
6.1  
Features  
8/16-bit, high-performance Atmel AVR RISC CPU  
142 instructions  
Hardware multiplier  
32x8-bit registers directly connected to the ALU  
Stack in RAM  
Stack pointer accessible in I/O memory space  
Direct addressing of up to 16MB of program memory and 16MB of data memory  
True 16/24-bit access to 16/24-bit I/O registers  
Efficient support for 8-, 16-, and 32-bit arithmetic  
Configuration change protection of system-critical features  
6.2  
6.3  
Overview  
All Atmel AVR XMEGA devices use the 8/16-bit AVR CPU. The main function of the CPU is to execute the code and  
perform all calculations. The CPU is able to access memories, perform calculations, control peripherals, and execute the  
program in the flash memory. Interrupt handling is described in a separate section, refer to “Interrupts and Programmable  
Multilevel Interrupt Controller” on page 28.  
Architectural Overview  
In order to maximize performance and parallelism, the AVR CPU uses a Harvard architecture with separate memories  
and buses for program and data. Instructions in the program memory are executed with single-level pipelining. While one  
instruction is being executed, the next instruction is pre-fetched from the program memory. This enables instructions to  
be executed on every clock cycle. For details of all AVR instructions, refer to http://www.atmel.com/avr.  
Figure 6-1. Block diagram of the AVR CPU architecture.  
Program  
Register File  
Counter  
R31 (ZH)  
R29 (YH)  
R27 (XH)  
R25  
R30 (ZL)  
R28 (YL)  
R26 (XL)  
R24  
R23  
R22  
R21  
R20  
R19  
R18  
Flash Program  
Memory  
R17  
R16  
R15  
R14  
R13  
R12  
R11  
R10  
R9  
R8  
R7  
R6  
R5  
R4  
R3  
R2  
Instruction  
Register  
R1  
R0  
Instruction  
Decode  
Data Memory  
Stack  
Pointer  
Status  
Register  
ALU  
XMEGA A3BU [DATASHEET]  
7
8362F–AVR–02/2013  
The arithmetic logic unit (ALU) supports arithmetic and logic operations between registers or between a constant and a  
register. Single-register operations can also be executed in the ALU. After an arithmetic operation, the status register is  
updated to reflect information about the result of the operation.  
The ALU is directly connected to the fast-access register file. The 32 x 8-bit general purpose working registers all have  
single clock cycle access time allowing single-cycle arithmetic logic unit (ALU) operation between registers or between a  
register and an immediate. Six of the 32 registers can be used as three 16-bit address pointers for program and data  
space addressing, enabling efficient address calculations.  
The memory spaces are linear. The data memory space and the program memory space are two different memory  
spaces.  
The data memory space is divided into I/O registers, SRAM, and external RAM. In addition, the EEPROM can be  
memory mapped in the data memory.  
All I/O status and control registers reside in the lowest 4KB addresses of the data memory. This is referred to as the I/O  
memory space. The lowest 64 addresses can be accessed directly, or as the data space locations from 0x00 to 0x3F.  
The rest is the extended I/O memory space, ranging from 0x0040 to 0x0FFF. I/O registers here must be accessed as  
data space locations using load (LD/LDS/LDD) and store (ST/STS/STD) instructions.  
The SRAM holds data. Code execution from SRAM is not supported. It can easily be accessed through the five different  
addressing modes supported in the AVR architecture. The first SRAM address is 0x2000.  
Data addresses 0x1000 to 0x1FFF are reserved for memory mapping of EEPROM.  
The program memory is divided in two sections, the application program section and the boot program section. Both  
sections have dedicated lock bits for write and read/write protection. The SPM instruction that is used for self-  
programming of the application flash memory must reside in the boot program section. The application section contains  
an application table section with separate lock bits for write and read/write protection. The application table section can  
be used for safe storing of nonvolatile data in the program memory.  
6.4  
ALU - Arithmetic Logic Unit  
The arithmetic logic unit (ALU) supports arithmetic and logic operations between registers or between a constant and a  
register. Single-register operations can also be executed. The ALU operates in direct connection with all 32 general  
purpose registers. In a single clock cycle, arithmetic operations between general purpose registers or between a register  
and an immediate are executed and the result is stored in the register file. After an arithmetic or logic operation, the  
status register is updated to reflect information about the result of the operation.  
ALU operations are divided into three main categories – arithmetic, logical, and bit functions. Both 8- and 16-bit  
arithmetic is supported, and the instruction set allows for efficient implementation of 32-bit aritmetic. The hardware  
multiplier supports signed and unsigned multiplication and fractional format.  
6.4.1 Hardware Multiplier  
The multiplier is capable of multiplying two 8-bit numbers into a 16-bit result. The hardware multiplier supports different  
variations of signed and unsigned integer and fractional numbers:  
Multiplication of unsigned integers  
Multiplication of signed integers  
Multiplication of a signed integer with an unsigned integer  
Multiplication of unsigned fractional numbers  
Multiplication of signed fractional numbers  
Multiplication of a signed fractional number with an unsigned one  
A multiplication takes two CPU clock cycles.  
XMEGA A3BU [DATASHEET]  
8
8362F–AVR–02/2013  
6.5  
Program Flow  
After reset, the CPU starts to execute instructions from the lowest address in the flash programmemory ‘0.’ The program  
counter (PC) addresses the next instruction to be fetched.  
Program flow is provided by conditional and unconditional jump and call instructions capable of addressing the whole  
address space directly. Most AVR instructions use a 16-bit word format, while a limited number use a 32-bit format.  
During interrupts and subroutine calls, the return address PC is stored on the stack. The stack is allocated in the general  
data SRAM, and consequently the stack size is only limited by the total SRAM size and the usage of the SRAM. After  
reset, the stack pointer (SP) points to the highest address in the internal SRAM. The SP is read/write accessible in the  
I/O memory space, enabling easy implementation of multiple stacks or stack areas. The data SRAM can easily be  
accessed through the five different addressing modes supported in the AVR CPU.  
6.6  
Status Register  
The status register (SREG) contains information about the result of the most recently executed arithmetic or logic  
instruction. This information can be used for altering program flow in order to perform conditional operations. Note that  
the status register is updated after all ALU operations, as specified in the instruction set reference. This will in many  
cases remove the need for using the dedicated compare instructions, resulting in faster and more compact code.  
The status register is not automatically stored when entering an interrupt routine nor restored when returning from an  
interrupt. This must be handled by software.  
The status register is accessible in the I/O memory space.  
6.7  
Stack and Stack Pointer  
The stack is used for storing return addresses after interrupts and subroutine calls. It can also be used for storing  
temporary data. The stack pointer (SP) register always points to the top of the stack. It is implemented as two 8-bit  
registers that are accessible in the I/O memory space. Data are pushed and popped from the stack using the PUSH and  
POP instructions. The stack grows from a higher memory location to a lower memory location. This implies that pushing  
data onto the stack decreases the SP, and popping data off the stack increases the SP. The SP is automatically loaded  
after reset, and the initial value is the highest address of the internal SRAM. If the SP is changed, it must be set to point  
above address 0x2000, and it must be defined before any subroutine calls are executed or before interrupts are enabled.  
During interrupts or subroutine calls, the return address is automatically pushed on the stack. The return address can be  
two or three bytes, depending on program memory size of the device. For devices with 128KB or less of program  
memory, the return address is two bytes, and hence the stack pointer is decremented/incremented by two. For devices  
with more than 128KB of program memory, the return address is three bytes, and hence the SP is  
decremented/incremented by three. The return address is popped off the stack when returning from interrupts using the  
RETI instruction, and from subroutine calls using the RET instruction.  
The SP is decremented by one when data are pushed on the stack with the PUSH instruction, and incremented by one  
when data is popped off the stack using the POP instruction.  
To prevent corruption when updating the stack pointer from software, a write to SPL will automatically disable interrupts  
for up to four instructions or until the next I/O memory write.  
After reset the stack pointer is initialized to the highest address of the SRAM. See Figure 7-2 on page 13.  
6.8  
Register File  
The register file consists of 32 x 8-bit general purpose working registers with single clock cycle access time. The register  
file supports the following input/output schemes:  
One 8-bit output operand and one 8-bit result input  
Two 8-bit output operands and one 8-bit result input  
Two 8-bit output operands and one 16-bit result input  
One 16-bit output operand and one 16-bit result input  
XMEGA A3BU [DATASHEET]  
9
8362F–AVR–02/2013  
Six of the 32 registers can be used as three 16-bit address register pointers for data space addressing, enabling efficient  
address calculations. One of these address pointers can also be used as an address pointer for lookup tables in flash  
program memory.  
7.  
Memories  
7.1  
Features  
Flash program memory  
One linear address space  
In-system programmable  
Self-programming and boot loader support  
Application section for application code  
Application table section for application code or data storage  
Boot section for application code or boot loader code  
Separate read/write protection lock bits for all sections  
Built in fast CRC check of a selectable flash program memory section  
Data memory  
One linear address space  
Single-cycle access from CPU  
SRAM  
EEPROM  
Byte and page accessible  
Optional memory mapping for direct load and store  
I/O memory  
Configuration and status registers for all peripherals and modules  
16 bit-accessible general purpose registers for global variables or flags  
Bus arbitration  
Deterministic priority handling between CPU, DMA controller, and other bus masters  
Separate buses for SRAM, EEPROM and I/O memory  
Simultaneous bus access for CPU and DMA controller  
Production signature row memory for factory programmed data  
ID for each microcontroller device type  
Serial number for each device  
Calibration bytes for factory calibrated peripherals  
User signature row  
One flash page in size  
Can be read and written from software  
Content is kept after chip erase  
7.2  
Overview  
The Atmel AVR architecture has two main memory spaces, the program memory and the data memory. Executable code  
can reside only in the program memory, while data can be stored in the program memory and the data memory. The data  
memory includes the internal SRAM, and EEPROM for nonvolatile data storage. All memory spaces are linear and  
require no memory bank switching. Nonvolatile memory (NVM) spaces can be locked for further write and read/write  
operations. This prevents unrestricted access to the application software.  
A separate memory section contains the fuse bytes. These are used for configuring important system functions, and can  
only be written by an external programmer.  
The available memory size configurations are shown in “Ordering Information” on page 2. In addition, each device has a  
Flash memory signature row for calibration data, device identification, serial number etc.  
XMEGA A3BU [DATASHEET]  
10  
8362F–AVR–02/2013  
7.3  
Flash Program Memory  
The Atmel AVR XMEGA devices contain on-chip, in-system reprogrammable flash memory for program storage. The  
flash memory can be accessed for read and write from an external programmer through the PDI or from application  
software running in the device.  
All AVR CPU instructions are 16 or 32 bits wide, and each flash location is 16 bits wide. The flash memory is organized  
in two main sections, the application section and the boot loader section. The sizes of the different sections are fixed, but  
device-dependent. These two sections have separate lock bits, and can have different levels of protection. The store  
program memory (SPM) instruction, which is used to write to the flash from the application software, will only operate  
when executed from the boot loader section.  
The application section contains an application table section with separate lock settings. This enables safe storage of  
nonvolatile data in the program memory.  
Figure 7-1. Flash Program Memory (Hexadecimal address).  
Word Address  
0
Application Section  
(256K)  
...  
1EFFF  
1F000  
1FFFF  
20000  
20FFF  
Application Table Section  
(8K)  
Boot Section  
(8K)  
7.3.1 Application Section  
The Application section is the section of the flash that is used for storing the executable application code. The protection  
level for the application section can be selected by the boot lock bits for this section. The application section can not store  
any boot loader code since the SPM instruction cannot be executed from the application section.  
7.3.2 Application Table Section  
The application table section is a part of the application section of the flash memory that can be used for storing data.  
The size is identical to the boot loader section. The protection level for the application table section can be selected by  
the boot lock bits for this section. The possibilities for different protection levels on the application section and the  
application table section enable safe parameter storage in the program memory. If this section is not used for data,  
application code can reside here.  
7.3.3 Boot Loader Section  
While the application section is used for storing the application code, the boot loader software must be located in the boot  
loader section because the SPM instruction can only initiate programming when executing from this section. The SPM  
instruction can access the entire flash, including the boot loader section itself. The protection level for the boot loader  
section can be selected by the boot loader lock bits. If this section is not used for boot loader software, application code  
can be stored here.  
7.3.4 Production Signature Row  
The production signature row is a separate memory section for factory programmed data. It contains calibration data for  
functions such as oscillators and analog modules. Some of the calibration values will be automatically loaded to the  
XMEGA A3BU [DATASHEET]  
11  
8362F–AVR–02/2013  
corresponding module or peripheral unit during reset. Other values must be loaded from the signature row and written to  
the corresponding peripheral registers from software. For details on calibration conditions, refer to “Electrical  
Characteristics” on page 69.  
The production signature row also contains an ID that identifies each microcontroller device type and a serial number for  
each manufactured device. The serial number consists of the production lot number, wafer number, and wafer  
coordinates for the device. The device ID for the available devices is shown in Table 7-1.  
The production signature row cannot be written or erased, but it can be read from application software and external  
programmers.  
Table 7-1. Device ID bytes for Atmel AVR XMEGA A3BU devices.  
Device  
Device ID bytes  
Byte 1  
98  
Byte 2  
43  
Byte 0  
1E  
ATxmega256A3BU  
7.3.5 User Signature Row  
The user signature row is a separate memory section that is fully accessible (read and write) from application software  
and external programmers. It is one flash page in size, and is meant for static user parameter storage, such as calibration  
data, custom serial number, identification numbers, random number seeds, etc. This section is not erased by chip erase  
commands that erase the flash, and requires a dedicated erase command. This ensures parameter storage during  
multiple program/erase operations and on-chip debug sessions.  
7.4  
Fuses and Lock bits  
The fuses are used to configure important system functions, and can only be written from an external programmer. The  
application software can read the fuses. The fuses are used to configure reset sources such as brownout detector and  
watchdog, startup configuration, JTAG enable, and JTAG user ID.  
The lock bits are used to set protection levels for the different flash sections (that is, if read and/or write access should be  
blocked). Lock bits can be written by external programmers and application software, but only to stricter protection levels.  
Chip erase is the only way to erase the lock bits. To ensure that flash contents are protected even during chip erase, the  
lock bits are erased after the rest of the flash memory has been erased.  
An unprogrammed fuse or lock bit will have the value one, while a programmed fuse or lock bit will have the value zero.  
Both fuses and lock bits are reprogrammable like the flash program memory.  
7.5  
Data Memory  
The data memory contains the I/O memory, internal SRAM, optionally memory mapped EEPROM, and external memory  
if available. The data memory is organized as one continuous memory section, see Figure 7-2. To simplify development,  
I/O Memory, EEPROM and SRAM will always have the same start addresses for all Atmel AVR XMEGA devices.  
XMEGA A3BU [DATASHEET]  
12  
8362F–AVR–02/2013  
Figure 7-2. Data memory map (Hexadecimal address).  
Byte Address  
ATxmega256A3BU  
0
FFF  
I/O Registers  
(4K)  
1000  
EEPROM  
(4K)  
1FFF  
2000  
5FFF  
Internal SRAM  
(16K)  
7.6  
7.7  
EEPROM  
XMEGA AU devices have EEPROM for nonvolatile data storage. It is either addressable in a separate data space  
(default) or memory mapped and accessed in normal data space. The EEPROM supports both byte and page access.  
Memory mapped EEPROM allows highly efficient EEPROM reading and EEPROM buffer loading. When doing this,  
EEPROM is accessible using load and store instructions. Memory mapped EEPROM will always start at hexadecimal  
address 0x1000.  
I/O Memory  
The status and configuration registers for peripherals and modules, including the CPU, are addressable through I/O  
memory locations. All I/O locations can be accessed by the load (LD/LDS/LDD) and store (ST/STS/STD) instructions,  
which are used to transfer data between the 32 registers in the register file and the I/O memory. The IN and OUT  
instructions can address I/O memory locations in the range of 0x00 to 0x3F directly. In the address range 0x00 - 0x1F,  
single-cycle instructions for manipulation and checking of individual bits are available.  
The I/O memory address for all peripherals and modules in XMEGA A3BU is shown in the “Peripheral Module Address  
Map” on page 60.  
7.7.1 General Purpose I/O Registers  
The lowest 16 I/O memory addresses are reserved as general purpose I/O registers. These registers can be used for  
storing global variables and flags, as they are directly bit-accessible using the SBI, CBI, SBIS, and SBIC instructions.  
7.8  
7.9  
Data Memory and Bus Arbitration  
Since the data memory is organized as four separate sets of memories, the different bus masters (CPU, DMA controller  
read and DMA controller write, etc.) can access different memory sections at the same time.  
Memory Timing  
Read and write access to the I/O memory takes one CPU clock cycle. A write to SRAM takes one cycle, and a read from  
SRAM takes two cycles. For burst read (DMA), new data are available every cycle. EEPROM page load (write) takes one  
cycle, and three cycles are required for read. For burst read, new data are available every second cycle. Refer to the  
instruction summary for more details on instructions and instruction timing.  
7.10 Device ID and Revision  
Each device has a three-byte device ID. This ID identifies Atmel as the manufacturer of the device and the device type. A  
separate register contains the revision number of the device.  
XMEGA A3BU [DATASHEET]  
13  
8362F–AVR–02/2013  
7.11 JTAG Disable  
It is possible to disable the JTAG interface from the application software. This will prevent all external JTAG access to the  
device until the next device reset or until JTAG is enabled again from the application software. As long as JTAG is  
disabled, the I/O pins required for JTAG can be used as normal I/O pins.  
7.12 I/O Memory Protection  
Some features in the device are regarded as critical for safety in some applications. Due to this, it is possible to lock the  
I/O register related to the clock system, the event system, and the advanced waveform extensions. As long as the lock is  
enabled, all related I/O registers are locked and they can not be written from the application software. The lock registers  
themselves are protected by the configuration change protection mechanism.  
7.13 Flash and EEPROM Page Size  
The flash program memory and EEPROM data memory are organized in pages. The pages are word accessible for the  
flash and byte accessible for the EEPROM.  
Table 7-2 on page 14 shows the Flash Program Memory organization and Program Counter (PC) size. Flash write and  
erase operations are performed on one page at a time, while reading the Flash is done one byte at a time. For Flash  
access the Z-pointer (Z[m:n]) is used for addressing. The most significant bits in the address (FPAGE) give the page  
number and the least significant address bits (FWORD) give the word in the page.  
Table 7-2. Number of words and pages in the flash.  
Devices  
PC size  
Flash size  
Page size  
FWORD  
FPAGE  
Application  
Boot  
No of  
pages  
No of  
pages  
[bits]  
[bytes]  
[words]  
Size  
Size  
8K  
ATxmega256A3B  
U
18  
256K + 8K  
256  
Z[8:1]  
Z[18:9]  
256K  
512  
16  
Table 7-3 on page 14 shows EEPROM memory organization. EEPROM write and erase operations can be performed  
one page or one byte at a time, while reading the EEPROM is done one byte at a time. For EEPROM access the NVM  
address register (ADDR[m:n]) is used for addressing. The most significant bits in the address (E2PAGE) give the page  
number and the least significant address bits (E2BYTE) give the byte in the page.  
Table 7-3. Number of bytes and pages in the EEPROM.  
Devices  
EEPROM  
size  
Page size  
[bytes]  
32  
E2BYTE  
E2PAGE  
No of pages  
ATxmega256A3BU  
4K  
ADDR[4:0]  
ADDR[11:5]  
128  
XMEGA A3BU [DATASHEET]  
14  
8362F–AVR–02/2013  
8.  
DMAC – Direct Memory Access Controller  
8.1  
Features  
Allows high speed data transfers with minimal CPU intervention  
from data memory to data memory  
from data memory to peripheral  
from peripheral to data memory  
from peripheral to peripheral  
Four DMA channels with separate  
transfer triggers  
interrupt vectors  
addressing modes  
Programmable channel priority  
From 1 byte to 16MB of data in a single transaction  
Up to 64KB block transfers with repeat  
1, 2, 4, or 8 byte burst transfers  
Multiple addressing modes  
Static  
Incremental  
Decremental  
Optional reload of source and destination addresses at the end of each  
Burst  
Block  
Transaction  
Optional interrupt on end of transaction  
Optional connection to CRC generator for CRC on DMA data  
8.2  
Overview  
The four-channel direct memory access (DMA) controller can transfer data between memories and peripherals, and thus  
offload these tasks from the CPU. It enables high data transfer rates with minimum CPU intervention, and frees up CPU  
time. The four DMA channels enable up to four independent and parallel transfers.  
The DMA controller can move data between SRAM and peripherals, between SRAM locations and directly between  
peripheral registers. With access to all peripherals, the DMA controller can handle automatic transfer of data to/from  
communication modules. The DMA controller can also read from memory mapped EEPROM.  
Data transfers are done in continuous bursts of 1, 2, 4, or 8 bytes. They build block transfers of configurable size from  
1 byte to 64KB. A repeat counter can be used to repeat each block transfer for single transactions up to 16MB. Source  
and destination addressing can be static, incremental or decremental. Automatic reload of source and/or destination  
addresses can be done after each burst or block transfer, or when a transaction is complete. Application software,  
peripherals, and events can trigger DMA transfers.  
The four DMA channels have individual configuration and control settings. This include source, destination, transfer  
triggers, and transaction sizes. They have individual interrupt settings. Interrupt requests can be generated when a  
transaction is complete or when the DMA controller detects an error on a DMA channel.  
To allow for continuous transfers, two channels can be interlinked so that the second takes over the transfer when the  
first is finished, and vice versa.  
XMEGA A3BU [DATASHEET]  
15  
8362F–AVR–02/2013  
9.  
Event System  
9.1  
Features  
System for direct peripheral-to-peripheral communication and signaling  
Peripherals can directly send, receive, and react to peripheral events  
CPU and DMA controller independent operation  
100% predictable signal timing  
Short and guaranteed response time  
Eight event channels for up to eight different and parallel signal routing configurations  
Events can be sent and/or used by most peripherals, clock system, and software  
Additional functions include  
Quadrature decoders  
Digital filtering of I/O pin state  
Works in active mode and idle sleep mode  
9.2  
Overview  
The event system enables direct peripheral-to-peripheral communication and signaling. It allows a change in one  
peripheral’s state to automatically trigger actions in other peripherals. It is designed to provide a predictable system for  
short and predictable response times between peripherals. It allows for autonomous peripheral control and interaction  
without the use of interrupts, CPU, or DMA controller resources, and is thus a powerful tool for reducing the complexity,  
size and execution time of application code. It also allows for synchronized timing of actions in several peripheral  
modules.  
A change in a peripheral’s state is referred to as an event, and usually corresponds to the peripheral’s interrupt  
conditions. Events can be directly passed to other peripherals using a dedicated routing network called the event routing  
network. How events are routed and used by the peripherals is configured in software.  
Figure 9-1 on page 17 shows a basic diagram of all connected peripherals. The event system can directly connect  
together analog and digital converters, analog comparators, I/O port pins, the real-time counter, timer/counters, IR  
communication module (IRCOM), and USB interface. It can also be used to trigger DMA transactions (DMA controller).  
Events can also be generated from software and the peripheral clock.  
XMEGA A3BU [DATASHEET]  
16  
8362F–AVR–02/2013  
Figure 9-1. Event system overview and connected peripherals.  
CPU /  
Software  
DMA  
Controller  
Event Routing Network  
clkPER  
Prescaler  
ADC  
AC  
Real Time  
Counter  
Event  
System  
Controller  
Timer /  
Counters  
DAC  
USB  
Port pins  
IRCOM  
The event routing network consists of eight software-configurable multiplexers that control how events are routed and  
used. These are called event channels, and allow for up to eight parallel event routing configurations. The maximum  
routing latency is two peripheral clock cycles. The event system works in both active mode and idle sleep mode.  
XMEGA A3BU [DATASHEET]  
17  
8362F–AVR–02/2013  
10. System Clock and Clock options  
10.1 Features  
Fast start-up time  
Safe run-time clock switching  
Internal oscillators:  
32MHz run-time calibrated and tuneable oscillator  
2MHz run-time calibrated oscillator  
32.768kHz calibrated oscillator  
32kHz ultra low power (ULP) oscillator with 1kHz output  
External clock options  
0.4MHz - 16MHz crystal oscillator  
32.768kHz crystal oscillator  
External clock  
PLL with 20MHz - 128MHz output frequency  
Internal and external clock options and 1x to 31x multiplication  
Lock detector  
Clock prescalers with 1x to 2048x division  
Fast peripheral clocks running at two and four times the CPU clock  
Automatic run-time calibration of internal oscillators  
External oscillator and PLL lock failure detection with optional non-maskable interrupt  
10.2 Overview  
Atmel AVR XMEGA A3BU devices have a flexible clock system supporting a large number of clock sources. It  
incorporates both accurate internal oscillators and external crystal oscillator and resonator support. A high-frequency  
phase locked loop (PLL) and clock prescalers can be used to generate a wide range of clock frequencies. A calibration  
feature (DFLL) is available, and can be used for automatic run-time calibration of the internal oscillators to remove  
frequency drift over voltage and temperature. An oscillator failure monitor can be enabled to issue a non-maskable  
interrupt and switch to the internal oscillator if the external oscillator or PLL fails.  
When a reset occurs, all clock sources except the 32kHz ultra low power oscillator are disabled. After reset, the device  
will always start up running from the 2MHz internal oscillator. During normal operation, the system clock source and  
prescalers can be changed from software at any time.  
Figure 10-1 on page 19 presents the principal clock system in the XMEGA A3BU family of devices. Not all of the clocks  
need to be active at a given time. The clocks for the CPU and peripherals can be stopped using sleep modes and power  
reduction registers, as described in “Power Management and Sleep Modes” on page 21  
XMEGA A3BU [DATASHEET]  
18  
8362F–AVR–02/2013  
Figure 10-1. The clock system, clock sources and clock distribution.  
Real Time  
Counter  
Non-Volatile  
Memory  
Peripherals  
RAM  
AVR CPU  
clkPER  
clkPER2  
clkPER4  
clkCPU  
USB  
clkUSB  
System Clock Prescalers  
clkSYS  
Brown-out  
Detector  
Watchdog  
Timer  
Prescaler  
clkRTC  
System Clock Multiplexer  
(SCLKSEL)  
USBSRC  
PLL  
PLLSRC  
XOSCSEL  
32kHz  
Int. ULP  
32.768kHz  
Int. OSC  
32.768kHz  
TOSC  
0.4 – 16MHz  
XTAL  
32MHz  
Int. Osc  
2MHz  
Int. Osc  
10.3 Clock Sources  
The clock sources are divided in two main groups: internal oscillators and external clock sources. Most of the clock  
sources can be directly enabled and disabled from software, while others are automatically enabled or disabled,  
depending on peripheral settings. After reset, the device starts up running from the 2MHz internal oscillator. The other  
clock sources, DFLLs and PLL, are turned off by default.  
The internal oscillators do not require any external components to run. For details on characteristics and accuracy of the  
internal oscillators, refer to the device datasheet.  
XMEGA A3BU [DATASHEET]  
19  
8362F–AVR–02/2013  
10.3.1 32kHz Ultra Low Power Internal Oscillator  
This oscillator provides an approximate 32kHz clock. The 32kHz ultra low power (ULP) internal oscillator is a very low  
power clock source, and it is not designed for high accuracy. The oscillator employs a built-in prescaler that provides a  
1kHz output. The oscillator is automatically enabled/disabled when it is used as clock source for any part of the device.  
10.3.2 32.768kHz Calibrated Internal Oscillator  
This oscillator provides an approximate 32.768kHz clock. It is calibrated during production to provide a default frequency  
close to its nominal frequency. The calibration register can also be written from software for run-time calibration of the  
oscillator frequency. The oscillator employs a built-in prescaler, which provides both a 32.768kHz output and a 1.024kHz  
output.  
10.3.3 32.768kHz Crystal Oscillator  
A 32.768kHz crystal oscillator can be connected between the TOSC1 and TOSC2 pins and enables a dedicated low  
frequency oscillator input circuit. A low power mode with reduced voltage swing on TOSC2 is available. This oscillator  
can be used as a clock source for the system clock and RTC, and as the DFLL reference clock.  
10.3.4 0.4 - 16MHz Crystal Oscillator  
This oscillator can operate in four different modes optimized for different frequency ranges, all within 0.4 - 16MHz.  
10.3.5 2MHz Run-time Calibrated Internal Oscillator  
The 2MHz run-time calibrated internal oscillator is the default system clock source after reset. It is calibrated during  
production to provide a default frequency close to its nominal frequency. A DFLL can be enabled for automatic run-time  
calibration of the oscillator to compensate for temperature and voltage drift and optimize the oscillator accuracy.  
10.3.6 32MHz Run-time Calibrated Internal Oscillator  
The 32MHz run-time calibrated internal oscillator is a high-frequency oscillator. It is calibrated during production to  
provide a default frequency close to its nominal frequency. A digital frequency looked loop (DFLL) can be enabled for  
automatic run-time calibration of the oscillator to compensate for temperature and voltage drift and optimize the oscillator  
accuracy. This oscillator can also be adjusted and calibrated to any frequency between 30MHz and 55MHz. The  
production signature row contains 48MHz calibration values intended used when the oscillator is used a full-speed USB  
clock source.  
10.3.7 External Clock Sources  
The XTAL1 and XTAL2 pins can be used to drive an external oscillator, either a quartz crystal or a ceramic resonator.  
XTAL1 can be used as input for an external clock signal. The TOSC1 and TOSC2 pins is dedicated to driving a  
32.768kHz crystal oscillator.  
10.3.8 PLL with 1x-31x Multiplication Factor  
The built-in phase locked loop (PLL) can be used to generate a high-frequency system clock. The PLL has a user-  
selectable multiplication factor of from 1 to 31. In combination with the prescalers, this gives a wide range of output  
frequencies from all clock sources.  
XMEGA A3BU [DATASHEET]  
20  
8362F–AVR–02/2013  
11. Power Management and Sleep Modes  
11.1 Features  
Power management for adjusting power consumption and functions  
Five sleep modes  
Idle  
Power down  
Power save  
Standby  
Extended standby  
Power reduction register to disable clock and turn off unused peripherals in active and idle modes  
11.2 Overview  
Various sleep modes and clock gating are provided in order to tailor power consumption to application requirements.  
This enables the Atmel AVR XMEGA microcontroller to stop unused modules to save power.  
All sleep modes are available and can be entered from active mode. In active mode, the CPU is executing application  
code. When the device enters sleep mode, program execution is stopped and interrupts or a reset is used to wake the  
device again. The application code decides which sleep mode to enter and when. Interrupts from enabled peripherals  
and all enabled reset sources can restore the microcontroller from sleep to active mode.  
In addition, power reduction registers provide a method to stop the clock to individual peripherals from software. When  
this is done, the current state of the peripheral is frozen, and there is no power consumption from that peripheral. This  
reduces the power consumption in active mode and idle sleep modes and enables much more fine-tuned power  
management than sleep modes alone.  
11.3 Sleep Modes  
Sleep modes are used to shut down modules and clock domains in the microcontroller in order to save power. XMEGA  
microcontrollers have five different sleep modes tuned to match the typical functional stages during application  
execution. A dedicated sleep instruction (SLEEP) is available to enter sleep mode. Interrupts are used to wake the  
device from sleep, and the available interrupt wake-up sources are dependent on the configured sleep mode. When an  
enabled interrupt occurs, the device will wake up and execute the interrupt service routine before continuing normal  
program execution from the first instruction after the SLEEP instruction. If other, higher priority interrupts are pending  
when the wake-up occurs, their interrupt service routines will be executed according to their priority before the interrupt  
service routine for the wake-up interrupt is executed. After wake-up, the CPU is halted for four cycles before execution  
starts.  
The content of the register file, SRAM and registers are kept during sleep. If a reset occurs during sleep, the device will  
reset, start up, and execute from the reset vector.  
11.3.1 Idle Mode  
In idle mode the CPU and nonvolatile memory are stopped (note that any ongoing programming will be completed), but  
all peripherals, including the interrupt controller, event system and DMA controller are kept running. Any enabled  
interrupt will wake the device.  
11.3.2 Power-down Mode  
In power-down mode, all clocks, including the real-time counter clock source, are stopped. This allows operation only of  
asynchronous modules that do not require a running clock. The only interrupts that can wake up the MCU are the two-  
wire interface address match interrupt, asynchronous port interrupts, and the USB resume interrupt.  
XMEGA A3BU [DATASHEET]  
21  
8362F–AVR–02/2013  
11.3.3 Power-save Mode  
Power-save mode is identical to power down, with one exception. If the real-time counter (RTC) is enabled, it will keep  
running during sleep, and the device can also wake up from either an RTC overflow or compare match interrupt.  
11.3.4 Standby Mode  
Standby mode is identical to power down, with the exception that the enabled system clock sources are kept running  
while the CPU, peripheral, and RTC clocks are stopped. This reduces the wake-up time.  
11.3.5 Extended Standby Mode  
Extended standby mode is identical to power-save mode, with the exception that the enabled system clock sources are  
kept running while the CPU and peripheral clocks are stopped. This reduces the wake-up time.  
XMEGA A3BU [DATASHEET]  
22  
8362F–AVR–02/2013  
12. System Control and Reset  
12.1 Features  
Reset the microcontroller and set it to initial state when a reset source goes active  
Multiple reset sources that cover different situations  
Power-on reset  
External reset  
Watchdog reset  
Brownout reset  
PDI reset  
Software reset  
Asynchronous operation  
No running system clock in the device is required for reset  
Reset status register for reading the reset source from the application code  
12.2 Overview  
The reset system issues a microcontroller reset and sets the device to its initial state. This is for situations where  
operation should not start or continue, such as when the microcontroller operates below its power supply rating. If a reset  
source goes active, the device enters and is kept in reset until all reset sources have released their reset. The I/O pins  
are immediately tri-stated. The program counter is set to the reset vector location, and all I/O registers are set to their  
initial values. The SRAM content is kept. However, if the device accesses the SRAM when a reset occurs, the content of  
the accessed location can not be guaranteed.  
After reset is released from all reset sources, the default oscillator is started and calibrated before the device starts  
running from the reset vector address. By default, this is the lowest program memory address, 0, but it is possible to  
move the reset vector to the lowest address in the boot section.  
The reset functionality is asynchronous, and so no running system clock is required to reset the device. The software  
reset feature makes it possible to issue a controlled system reset from the user software.  
The reset status register has individual status flags for each reset source. It is cleared at power-on reset, and shows  
which sources have issued a reset since the last power-on.  
12.3 Reset Sequence  
A reset request from any reset source will immediately reset the device and keep it in reset as long as the request is  
active. When all reset requests are released, the device will go through three stages before the device starts running  
again:  
Reset counter delay  
Oscillator startup  
Oscillator calibration  
If another reset requests occurs during this process, the reset sequence will start over again.  
12.4 Reset Sources  
12.4.1 Power-on Reset  
A power-on reset (POR) is generated by an on-chip detection circuit. The POR is activated when the VCC rises and  
reaches the POR threshold voltage (VPOT), and this will start the reset sequence.  
The POR is also activated to power down the device properly when the VCC falls and drops below the VPOT level.  
The VPOT level is higher for falling VCC than for rising VCC. Consult the datasheet for POR characteristics data.  
XMEGA A3BU [DATASHEET]  
23  
8362F–AVR–02/2013  
12.4.2 Brownout Detection  
The on-chip brownout detection (BOD) circuit monitors the VCC level during operation by comparing it to a fixed,  
programmable level that is selected by the BODLEVEL fuses. If disabled, BOD is forced on at the lowest level during chip  
erase and when the PDI is enabled.  
12.4.3 External Reset  
The external reset circuit is connected to the external RESET pin. The external reset will trigger when the RESET pin is  
driven below the RESET pin threshold voltage, VRST, for longer than the minimum pulse period, tEXT. The reset will be  
held as long as the pin is kept low. The RESET pin includes an internal pull-up resistor.  
12.4.4 Watchdog Reset  
The watchdog timer (WDT) is a system function for monitoring correct program operation. If the WDT is not reset from  
the software within a programmable timeout period, a watchdog reset will be given. The watchdog reset is active for one  
to two clock cycles of the 2MHz internal oscillator. For more details see “WDT – Watchdog Timer” on page 25.  
12.4.5 Software Reset  
The software reset makes it possible to issue a system reset from software by writing to the software reset bit in the reset  
control register.The reset will be issued within two CPU clock cycles after writing the bit. It is not possible to execute any  
instruction from when a software reset is requested until it is issued.  
12.4.6 Program and Debug Interface Reset  
The program and debug interface reset contains a separate reset source that is used to reset the device during external  
programming and debugging. This reset source is accessible only from external debuggers and programmers.  
XMEGA A3BU [DATASHEET]  
24  
8362F–AVR–02/2013  
13. WDT – Watchdog Timer  
13.1 Features  
Issues a device reset if the timer is not reset before its timeout period  
Asynchronous operation from dedicated oscillator  
1kHz output of the 32kHz ultra low power oscillator  
11 selectable timeout periods, from 8ms to 8s  
Two operation modes:  
Normal mode  
Window mode  
Configuration lock to prevent unwanted changes  
13.2 Overview  
The watchdog timer (WDT) is a system function for monitoring correct program operation. It makes it possible to recover  
from error situations such as runaway or deadlocked code. The WDT is a timer, configured to a predefined timeout  
period, and is constantly running when enabled. If the WDT is not reset within the timeout period, it will issue a  
microcontroller reset. The WDT is reset by executing the WDR (watchdog timer reset) instruction from the application  
code.  
The window mode makes it possible to define a time slot or window inside the total timeout period during which WDT  
must be reset. If the WDT is reset outside this window, either too early or too late, a system reset will be issued.  
Compared to the normal mode, this can also catch situations where a code error causes constant WDR execution.  
The WDT will run in active mode and all sleep modes, if enabled. It is asynchronous, runs from a CPU-independent clock  
source, and will continue to operate to issue a system reset even if the main clocks fail.  
The configuration change protection mechanism ensures that the WDT settings cannot be changed by accident. For  
increased safety, a fuse for locking the WDT settings is also available.  
XMEGA A3BU [DATASHEET]  
25  
8362F–AVR–02/2013  
14. Battery Backup System  
14.1 Features  
Battery Backup voltage supply from dedicated VBAT power pin for:  
One Ultra Low-power 32-bit Real Time Counter (RTC)  
One 32.768kHz crystal oscillator with failure detection monitor  
Two Backup Registers  
Typical power consumption of 500nA with Real Time Counter running  
Automatic switching from main power to battery backup power at:  
Brown-Out Detection (BOD) reset  
Automatic switching from battery backup power to main power:  
Device reset after Brown-Out Reset (BOR) is released  
Device reset after Power-On Reset (POR) and BOR is released  
14.2 Overview  
Atmel AVR XMEGA family is already running in an ultra low leakage process with power-save current consumption below  
2µA with RTC, BOD and watchdog enabled. Still, for some applications where time keeping is important, the system  
would have one main battery or power source used for day to day tasks, and one backup battery power for the time  
keeping functionality. The Battery Backup System includes functionality that enable automatic power switching between  
main power and a battery backup power. Figure 14-1 on page 27 shows an overview of the system.  
The Battery Backup Module support connection of a backup battery to the dedicated VBAT power pin. This will ensure  
power to the 32-bit Real Time Counter, a 32.768kHz crystal oscillator with failure detection monitor and two backup  
registers, when the main battery or power source is unavailable.  
Upon main power loss the device will automatically detect this and the Battery Backup Module will switch to be powered  
from the VBAT pin. After main power has been restored and both main POR and BOR are released, the Battery Backup  
Module will automatically switch back to be powered from main power again.  
The 32-bit real time counter (RTC) must be clocked from the 1Hz output of a 32.768kHz crystal oscillator connected  
between the TOSC1 and TOSC2 pins when running from VBAT. For more details on the 32-bit RTC refer to the “RTC32 –  
32-bit Real-Time Counter” on page 39“.  
XMEGA A3BU [DATASHEET]  
26  
8362F–AVR–02/2013  
Figure 14-1. Battery Backup Module and its power domain implementation.  
Power  
switch  
Main  
power  
supervision  
VBAT  
power  
supervisor  
VBAT  
VDD  
Watchdog w/  
Oscillator  
XTAL1  
OCD &  
Programming  
Interface  
Oscillator &  
sleep  
controller  
XTAL2  
Failure  
monitor  
CPU  
GPIO  
TOSC1  
TOSC2  
&
Peripherals  
Crystal  
Oscillator  
RTC  
FLASH,  
EEPROM  
& Fuses  
Internal  
RAM  
Backup  
Registers  
XMEGA A3BU [DATASHEET]  
27  
8362F–AVR–02/2013  
15. Interrupts and Programmable Multilevel Interrupt Controller  
15.1 Features  
Short and predictable interrupt response time  
Separate interrupt configuration and vector address for each interrupt  
Programmable multilevel interrupt controller  
Interrupt prioritizing according to level and vector address  
Three selectable interrupt levels for all interrupts: low, medium and high  
Selectable, round-robin priority scheme within low-level interrupts  
Non-maskable interrupts for critical functions  
Interrupt vectors optionally placed in the application section or the boot loader section  
15.2 Overview  
Interrupts signal a change of state in peripherals, and this can be used to alter program execution. Peripherals can have  
one or more interrupts, and all are individually enabled and configured. When an interrupt is enabled and configured, it  
will generate an interrupt request when the interrupt condition is present. The programmable multilevel interrupt  
controller (PMIC) controls the handling and prioritizing of interrupt requests. When an interrupt request is acknowledged  
by the PMIC, the program counter is set to point to the interrupt vector, and the interrupt handler can be executed.  
All peripherals can select between three different priority levels for their interrupts: low, medium, and high. Interrupts are  
prioritized according to their level and their interrupt vector address. Medium-level interrupts will interrupt low-level  
interrupt handlers. High-level interrupts will interrupt both medium- and low-level interrupt handlers. Within each level, the  
interrupt priority is decided from the interrupt vector address, where the lowest interrupt vector address has the highest  
interrupt priority. Low-level interrupts have an optional round-robin scheduling scheme to ensure that all interrupts are  
serviced within a certain amount of time.  
Non-maskable interrupts (NMI) are also supported, and can be used for system critical functions.  
15.3 Interrupt vectors  
The interrupt vector is the sum of the peripheral’s base interrupt address and the offset address for specific interrupts in  
each peripheral. The base addresses for the Atmel AVR XMEGA A3BU devices are shown in Table 15-1. Offset  
addresses for each interrupt available in the peripheral are described for each peripheral in the XMEGA AU manual. For  
peripherals or modules that have only one interrupt, the interrupt vector is shown in Table 15-1. The program address is  
the word address.  
Table 15-1. Reset and interrupt vectors.  
Program address  
(base address)  
Source  
Interrupt description  
0x000  
RESET  
0x002  
OSCF_INT_vect  
PORTC_INT_base  
PORTR_INT_base  
DMA_INT_base  
RTC32_INT_base  
TWIC_INT_base  
TCC0_INT_base  
Crystal oscillator failure interrupt vector (NMI)  
Port C interrupt base  
0x004  
0x008  
Port R interrupt base  
0x00C  
DMA controller interrupt base  
0x014  
32-bit Real Time Counter interrupt base  
Two-Wire Interface on Port C interrupt base  
Timer/Counter 0 on Port C interrupt base  
0x018  
0x01C  
XMEGA A3BU [DATASHEET]  
28  
8362F–AVR–02/2013  
Program address  
(base address)  
Source  
Interrupt description  
0x028  
0x030  
0x032  
0x038  
0x03E  
0x040  
0x044  
0x048  
0x04E  
0x056  
0x05A  
0x05E  
0x06A  
0x074  
0x080  
0x084  
0x088  
0x08E  
0x09A  
0x0A6  
0x0AE  
0x0B0  
0x0B6  
0x0D0  
0x0D8  
0x0EE  
0x0FA  
TCC1_INT_base  
SPIC_INT_vect  
Timer/Counter 1 on Port C interrupt base  
SPI on Port C interrupt vector  
USARTC0_INT_base  
USARTC1_INT_base  
AES_INT_vect  
USART 0 on Port C interrupt base  
USART 1 on Port C interrupt base  
AES interrupt vector  
NVM_INT_base  
PORTB_INT_base  
ACB_INT_base  
Non-Volatile Memory interrupt base  
Port B interrupt base  
Analog Comparator on Port B interrupt base  
Analog to Digital Converter on Port B interrupt base  
Port E interrupt base  
ADCB_INT_base  
PORTE_INT_base  
TWIE_INT_base  
TCE0_INT_base  
TCE1_INT_base  
USARTE0_INT_base  
PORTD_INT_base  
PORTA_INT_base  
ACA_INT_base  
Two-Wire Interface on Port E interrupt base  
Timer/Counter 0 on Port E interrupt base  
Timer/Counter 1 on Port E interrupt base  
USART 0 on Port E interrupt base  
Port D interrupt base  
Port A interrupt base  
Analog Comparator on Port A interrupt base  
Analog to Digital Converter on Port A interrupt base  
Timer/Counter 0 on Port D interrupt base  
Timer/Counter 1 on Port D interrupt base  
SPI on Port D interrupt vector  
ADCA_INT_base  
TCD0_INT_base  
TCD1_INT_base  
SPID_INT_vector  
USARTD0_INT_base  
USARTD1_INT_base  
PORTF_INT_base  
TCF0_INT_base  
USARTF0_INT_base  
USB_INT_base  
USART 0 on Port D interrupt base  
USART 1 on Port D interrupt base  
Port F interrupt base  
Timer/Counter 0 on Port F interrupt base  
USART 0 on Port F interrupt base  
USB on Port D interrupt base  
XMEGA A3BU [DATASHEET]  
29  
8362F–AVR–02/2013  
16. I/O Ports  
16.1 Features  
47 general purpose input and output pins with individual configuration  
Output driver with configurable driver and pull settings:  
Totem-pole  
Wired-AND  
Wired-OR  
Bus-keeper  
Inverted I/O  
Input with synchronous and/or asynchronous sensing with interrupts and events  
Sense both edges  
Sense rising edges  
Sense falling edges  
Sense low level  
Optional pull-up and pull-down resistor on input and Wired-OR/AND configurations  
Optional slew rate control  
Asynchronous pin change sensing that can wake the device from all sleep modes  
Two port interrupts with pin masking per I/O port  
Efficient and safe access to port pins  
Hardware read-modify-write through dedicated toggle/clear/set registers  
Configuration of multiple pins in a single operation  
Mapping of port registers into bit-accessible I/O memory space  
Peripheral clocks output on port pin  
Real-time counter clock output to port pin  
Event channels can be output on port pin  
Remapping of digital peripheral pin functions  
Selectable USART, SPI, and timer/counter input/output pin locations  
16.2 Overview  
One port consists of up to eight port pins: pin 0 to 7. Each port pin can be configured as input or output with configurable  
driver and pull settings. They also implement synchronous and asynchronous input sensing with interrupts and events for  
selectable pin change conditions. Asynchronous pin-change sensing means that a pin change can wake the device from  
all sleep modes, included the modes where no clocks are running.  
All functions are individual and configurable per pin, but several pins can be configured in a single operation. The pins  
have hardware read-modify-write (RMW) functionality for safe and correct change of drive value and/or pull resistor  
configuration. The direction of one port pin can be changed without unintentionally changing the direction of any other  
pin.  
The port pin configuration also controls input and output selection of other device functions. It is possible to have both the  
peripheral clock and the real-time clock output to a port pin, and available for external use. The same applies to events  
from the event system that can be used to synchronize and control external functions. Other digital peripherals, such as  
USART, SPI, and timer/counters, can be remapped to selectable pin locations in order to optimize pin-out versus  
application needs.  
The notation of the ports are PORTA, PORTB, PORTC, PORTD, PORTE, PORTF and PORTR.  
16.3 Output Driver  
All port pins (Pn) have programmable output configuration. The port pins also have configurable slew rate limitation to  
reduce electromagnetic emission.  
XMEGA A3BU [DATASHEET]  
30  
8362F–AVR–02/2013  
16.3.1 Push-pull  
Figure 16-1. I/O configuration - Totem-pole.  
DIRn  
OUTn  
INn  
Pn  
16.3.2 Pull-down  
Figure 16-2. I/O configuration - Totem-pole with pull-down (on input).  
DIRn  
OUTn  
INn  
Pn  
16.3.3 Pull-up  
Figure 16-3. I/O configuration - Totem-pole with pull-up (on input).  
DIRn  
OUTn  
INn  
Pn  
16.3.4 Bus-keeper  
The bus-keeper’s weak output produces the same logical level as the last output level. It acts as a pull-up if the last level  
was ‘1’, and pull-down if the last level was ‘0’.  
XMEGA A3BU [DATASHEET]  
31  
8362F–AVR–02/2013  
Figure 16-4. I/O configuration - Totem-pole with bus-keeper.  
DIRn  
OUTn  
INn  
Pn  
16.3.5 Others  
Figure 16-5. Output configuration - Wired-OR with optional pull-down.  
OUTn  
Pn  
INn  
Figure 16-6. I/O configuration - Wired-AND with optional pull-up.  
INn  
Pn  
OUTn  
16.4 Input sensing  
Input sensing is synchronous or asynchronous depending on the enabled clock for the ports, and the configuration is  
shown in Figure 16-7 on page 33.  
XMEGA A3BU [DATASHEET]  
32  
8362F–AVR–02/2013  
Figure 16-7. Input sensing system overview.  
Asynchronous sensing  
EDGE  
DETECT  
Interrupt  
Control  
IRQ  
Synchronous sensing  
Pxn  
Synchronizer  
INn  
EDGE  
DETECT  
Synchronous  
Events  
D
Q
D
Q
R
R
INVERTED I/O  
Asynchronous  
Events  
When a pin is configured with inverted I/O, the pin value is inverted before the input sensing.  
16.5 Alternate Port Functions  
Most port pins have alternate pin functions in addition to being a general purpose I/O pin. When an alternate function is  
enabled, it might override the normal port pin function or pin value. This happens when other peripherals that require pins  
are enabled or configured to use pins. If and how a peripheral will override and use pins is described in the section for  
that peripheral. “Pinout and Pin Functions” on page 55 shows which modules on peripherals that enable alternate  
functions on a pin, and which alternate functions that are available on a pin.  
XMEGA A3BU [DATASHEET]  
33  
8362F–AVR–02/2013  
17. TC0/1 – 16-bit Timer/Counter Type 0 and 1  
17.1 Features  
Seven 16-bit timer/counters  
Four timer/counters of type 0  
Three timer/counters of type 1  
Split-mode enabling two 8-bit timer/counter from each timer/counter type 0  
32-bit Timer/Counter support by cascading two timer/counters  
Up to four compare or capture (CC) channels  
Four CC channels for timer/counters of type 0  
Two CC channels for timer/counters of type 1  
Double buffered timer period setting  
Double buffered capture or compare channels  
Waveform generation:  
Frequency generation  
Single-slope pulse width modulation  
Dual-slope pulse width modulation  
Input capture:  
Input capture with noise cancelling  
Frequency capture  
Pulse width capture  
32-bit input capture  
Timer overflow and error interrupts/events  
One compare match or input capture interrupt/event per CC channel  
Can be used with event system for:  
Quadrature decoding  
Count and direction control  
Capture  
Can be used with DMA and to trigger DMA transactions  
High-resolution extension  
Increases frequency and waveform resolution by 4x (2-bit) or 8x (3-bit)  
Advanced waveform extension:  
Low- and high-side output with programmable dead-time insertion (DTI)  
Event controlled fault protection for safe disabling of drivers  
17.2 Overview  
Atmel AVR XMEGA devices have a set of seven flexible 16-bit Timer/Counters (TC). Their capabilities include accurate  
program execution timing, frequency and waveform generation, and input capture with time and frequency measurement  
of digital signals. Two timer/counters can be cascaded to create a 32-bit timer/counter with optional 32-bit capture.  
A timer/counter consists of a base counter and a set of compare or capture (CC) channels. The base counter can be  
used to count clock cycles or events. It has direction control and period setting that can be used for timing. The CC  
channels can be used together with the base counter to do compare match control, frequency generation, and pulse  
width waveform modulation, as well as various input capture operations. A timer/counter can be configured for either  
capture or compare functions, but cannot perform both at the same time.  
A timer/counter can be clocked and timed from the peripheral clock with optional prescaling or from the event system.  
The event system can also be used for direction control and capture trigger or to synchronize operations.  
There are two differences between timer/counter type 0 and type 1. Timer/counter 0 has four CC channels, and  
timer/counter 1 has two CC channels. All information related to CC channels 3 and 4 is valid only for timer/counter 0.  
XMEGA A3BU [DATASHEET]  
34  
8362F–AVR–02/2013  
Only Timer/Counter 0 has the split mode feature that split it into two 8-bit Timer/Counters with four compare channels  
each.  
Some timer/counters have extensions to enable more specialized waveform and frequency generation. The advanced  
waveform extension (AWeX) is intended for motor control and other power control applications. It enables low- and high-  
side output with dead-time insertion, as well as fault protection for disabling and shutting down external drivers. It can  
also generate a synchronized bit pattern across the port pins.  
The advanced waveform extension can be enabled to provide extra and more advanced features for the Timer/Counter.  
This are only available for Timer/Counter 0. See “AWeX – Advanced Waveform Extension” on page 37 for more details.  
The high-resolution (hi-res) extension can be used to increase the waveform output resolution by four or eight times by  
using an internal clock source running up to four times faster than the peripheral clock. See “Hi-Res – High Resolution  
Extension” on page 38 for more details.  
Figure 17-1. Overview of a Timer/Counter and closely related peripherals.  
Timer/Counter  
Base Counter  
Prescaler  
clkPER  
Timer Period  
Counter  
Control Logic  
Event  
System  
clkPER4  
Compare/Capture Channel D  
Compare/Capture Channel C  
Compare/Capture Channel B  
Compare/Capture Channel A  
AWeX  
DTI  
Pattern  
Generation  
Fault  
Dead-Time  
Insertion  
Capture  
Comparator  
Control  
Protection  
Waveform  
Generation  
Buffer  
PORTC, PORTD and PORTE each has one Timer/Counter 0 and one Timer/Counter1. PORTF has one Timer/Counter  
0. Notation of these are TCC0 (Time/Counter C0), TCC1, TCD0, TCD1, TCE0, TCE1 and TCF0, respectively.  
XMEGA A3BU [DATASHEET]  
35  
8362F–AVR–02/2013  
18. TC2 – Timer/Counter Type 2  
18.1 Features  
Eight eight-bit timer/counters  
Four Low-byte timer/counter  
Four High-byte timer/counter  
Up to eight compare channels in each Timer/Counter 2  
Four compare channels for the low-byte timer/counter  
Four compare channels for the high-byte timer/counter  
Waveform generation  
Single slope pulse width modulation  
Timer underflow interrupts/events  
One compare match interrupt/event per compare channel for the low-byte timer/counter  
Can be used with the event system for count control  
Can be used to trigger DMA transactions  
18.2 Overview  
There are four Timer/Counter 2. These are realized when a Timer/Counter 0 is set in split mode. It is then a system of  
two eight-bit timer/counters, each with four compare channels. This results in eight configurable pulse width modulation  
(PWM) channels with individually controlled duty cycles, and is intended for applications that require a high number of  
PWM channels.  
The two eight-bit timer/counters in this system are referred to as the low-byte timer/counter and high-byte timer/counter,  
respectively. The difference between them is that only the low-byte timer/counter can be used to generate compare  
match interrupts, events and DMA triggers. The two eight-bit timer/counters have a shared clock source and separate  
period and compare settings. They can be clocked and timed from the peripheral clock, with optional prescaling, or from  
the event system. The counters are always counting down.  
PORTC, PORTD, PORTE and PORTF each has one Timer/Counter 2. Notation of these are TCC2 (Time/Counter C2),  
TCD2, TCE2 and TCF2, respectively.  
XMEGA A3BU [DATASHEET]  
36  
8362F–AVR–02/2013  
19. AWeX – Advanced Waveform Extension  
19.1 Features  
Waveform output with complementary output from each compare channel  
Four dead-time insertion (DTI) units  
8-bit resolution  
Separate high and low side dead-time setting  
Double buffered dead time  
Optionally halts timer during dead-time insertion  
Pattern generation unit creating synchronised bit pattern across the port pins  
Double buffered pattern generation  
Optional distribution of one compare channel output across the port pins  
Event controlled fault protection for instant and predictable fault triggering  
19.2 Overview  
The advanced waveform extension (AWeX) provides extra functions to the timer/counter in waveform generation (WG)  
modes. It is primarily intended for use with different types of motor control and other power control applications. It  
enables low- and high side output with dead-time insertion and fault protection for disabling and shutting down external  
drivers. It can also generate a synchronized bit pattern across the port pins.  
Each of the waveform generator outputs from the timer/counter 0 are split into a complimentary pair of outputs when any  
AWeX features are enabled. These output pairs go through a dead-time insertion (DTI) unit that generates the non-  
inverted low side (LS) and inverted high side (HS) of the WG output with dead-time insertion between LS and HS  
switching. The DTI output will override the normal port value according to the port override setting.  
The pattern generation unit can be used to generate a synchronized bit pattern on the port it is connected to. In addition,  
the WG output from compare channel A can be distributed to and override all the port pins. When the pattern generator  
unit is enabled, the DTI unit is bypassed.  
The fault protection unit is connected to the event system, enabling any event to trigger a fault condition that will disable  
the AWeX output. The event system ensures predictable and instant fault reaction, and gives flexibility in the selection of  
fault triggers.  
The AWeX is available for TCC0. The notation of this is AWEXC.  
XMEGA A3BU [DATASHEET]  
37  
8362F–AVR–02/2013  
20. Hi-Res – High Resolution Extension  
20.1 Features  
Increases waveform generator resolution up to 8x (three bits)  
Supports frequency, single-slope PWM, and dual-slope PWM generation  
Supports the AWeX when this is used for the same timer/counter  
20.2 Overview  
The high-resolution (hi-res) extension can be used to increase the resolution of the waveform generation output  
from a timer/counter by four or eight. It can be used for a timer/counter doing frequency, single-slope PWM, or  
dual-slope PWM generation. It can also be used with the AWeX if this is used for the same timer/counter.  
The hi-res extension uses the peripheral 4x clock (ClkPER4). The system clock prescalers must be configured so the  
peripheral 4x clock frequency is four times higher than the peripheral and CPU clock frequency when the hi-res extension  
is enabled.  
There are four hi-res extensions that each can be enabled for each timer/counters pair on PORTC, PORTD, PORTE and  
PORTF. The notation of these are HIRESC, HIRESD, HIRESE and HIRESF, respectively.  
XMEGA A3BU [DATASHEET]  
38  
8362F–AVR–02/2013  
21. RTC32 – 32-bit Real-Time Counter  
21.1 Features  
32-bit resolution  
One 32-bit Compare register  
One 32-bit Period register  
Clear Timer on overflow  
Optional Interrupt/ Event on overflow and compare match  
Selectable clock reference  
1.024kHz  
1Hz  
Isolated VBAT power domain with dynamic switch over from/to VCC power domain’  
21.1.1 Overview  
The 32-bit real-time counter (RTC) is a counter that typically runs continuously, including in low-power sleep modes, to  
keep track of time. It can wake up the device from sleep modes and/or interrupt the device at regular intervals.  
The reference clock is generated from a high accuracy 32.768kHz crystal, and the design is optimized for low power  
consumption. The RTC typically operate in low power sleep modes, keeping track of time and waking up the device at  
regular intervals.  
The RTC input clock can be taken from a 1.024kHz or 1Hz prescaled output from the 32.768kHz reference clock. The  
RTC will give a compare interrupt request and/or event when the counter value equals the Compare register value. The  
RTC will give an overflow interrupt request and/or event when the counter value equals the Period register value.  
Counter overflow will also reset the counter value to zero.  
The 32-bit Real Time Counter (RTC) must be clocked from the 1Hz output of a 32.768kHz crystal oscillator connected  
between the TOSC1 and TOSC2 pins when running from VBAT  
.
Figure 21-1. Real Time Counter overview.  
PER  
CNT  
=
=
Overflow  
1.024kHz  
TOSC1  
TOSC2  
32.768kHz  
Crystal Osc  
DIV32  
DIV1024  
Compare  
Match  
COMP  
XMEGA A3BU [DATASHEET]  
39  
8362F–AVR–02/2013  
22. USB – Universal Serial Bus Interface  
22.1 Features  
One USB 2.0 full speed (12Mbps) and low speed (1.5Mbps) device compliant interface  
Integrated on-chip USB transceiver, no external components needed  
16 endpoint addresses with full endpoint flexibility for up to 31 endpoints  
One input endpoint per endpoint address  
One output endpoint per endpoint address  
Endpoint address transfer type selectable to  
Control transfers  
Interrupt transfers  
Bulk transfers  
Isochronous transfers  
Configurable data payload size per endpoint, up to 1023 bytes  
Endpoint configuration and data buffers located in internal SRAM  
Configurable location for endpoint configuration data  
Configurable location for each endpoint's data buffer  
Built-in direct memory access (DMA) to internal SRAM for:  
Endpoint configurations  
Reading and writing endpoint data  
Ping-pong operation for higher throughput and double buffered operation  
Input and output endpoint data buffers used in a single direction  
CPU/DMA controller can update data buffer during transfer  
Multipacket transfer for reduced interrupt load and software intervention  
Data payload exceeding maximum packet size is transferred in one continuous transfer  
No interrupts or software interaction on packet transaction level  
Transaction complete FIFO for workflow management when using multiple endpoints  
Tracks all completed transactions in a first-come, first-served work queue  
Clock selection independent of system clock source and selection  
Minimum 1.5MHz CPU clock required for low speed USB operation  
Minimum 12MHz CPU clock required for full speed operation  
Connection to event system  
On chip debug possibilities during USB transactions  
22.2 Overview  
The USB module is a USB 2.0 full speed (12Mbps) and low speed (1.5Mbps) device compliant interface.  
The USB supports 16 endpoint addresses. All endpoint addresses have one input and one output endpoint, for a total of  
31 configurable endpoints and one control endpoint. Each endpoint address is fully configurable and can be configured  
for any of the four transfer types; control, interrupt, bulk, or isochronous. The data payload size is also selectable, and it  
supports data payloads up to 1023 bytes.  
No dedicated memory is allocated for or included in the USB module. Internal SRAM is used to keep the configuration for  
each endpoint address and the data buffer for each endpoint. The memory locations used for endpoint configurations  
and data buffers are fully configurable. The amount of memory allocated is fully dynamic, according to the number of  
endpoints in use and the configuration of these. The USB module has built-in direct memory access (DMA), and will  
read/write data from/to the SRAM when a USB transaction takes place.  
To maximize throughput, an endpoint address can be configured for ping-pong operation. When done, the input and  
output endpoints are both used in the same direction. The CPU or DMA controller can then read/write one data buffer  
while the USB module writes/reads the others, and vice versa. This gives double buffered communication.  
XMEGA A3BU [DATASHEET]  
40  
8362F–AVR–02/2013  
Multipacket transfer enables a data payload exceeding the maximum packet size of an endpoint to be transferred as  
multiple packets without software intervention. This reduces the CPU intervention and the interrupts needed for USB  
transfers.  
For low-power operation, the USB module can put the microcontroller into any sleep mode when the USB bus is idle and  
a suspend condition is given. Upon bus resumes, the USB module can wake up the microcontroller from any sleep  
mode.  
PORTD has one USB. Notation of this is USB.  
XMEGA A3BU [DATASHEET]  
41  
8362F–AVR–02/2013  
23. TWI – Two-Wire Interface  
23.1 Features  
Two Identical two-wire interface peripherals  
Bidirectional, two-wire communication interface  
Phillips I2C compatible  
System Management Bus (SMBus) compatible  
Bus master and slave operation supported  
Slave operation  
Single bus master operation  
Bus master in multi-master bus environment  
Multi-master arbitration  
Flexible slave address match functions  
7-bit and general call address recognition in hardware  
10-bit addressing supported  
Address mask register for dual address match or address range masking  
Optional software address recognition for unlimited number of addresses  
Slave can operate in all sleep modes, including power-down  
Slave address match can wake device from all sleep modes  
100kHz and 400kHz bus frequency support  
Slew-rate limited output drivers  
Input filter for bus noise and spike suppression  
Support arbitration between start/repeated start and data bit (SMBus)  
Slave arbitration allows support for address resolve protocol (ARP) (SMBus)  
23.2 Overview  
The two-wire interface (TWI) is a bidirectional, two-wire communication interface. It is I2C and System Management Bus  
(SMBus) compatible. The only external hardware needed to implement the bus is one pull-up resistor on each bus line.  
A device connected to the bus must act as a master or a slave. The master initiates a data transaction by addressing a  
slave on the bus and telling whether it wants to transmit or receive data. One bus can have many slaves and one or  
several masters that can take control of the bus. An arbitration process handles priority if more than one master tries to  
transmit data at the same time. Mechanisms for resolving bus contention are inherent in the protocol.  
The TWI module supports master and slave functionality. The master and slave functionality are separated from each  
other, and can be enabled and configured separately. The master module supports multi-master bus operation and  
arbitration. It contains the baud rate generator. Both 100kHz and 400kHz bus frequency is supported. Quick command  
and smart mode can be enabled to auto-trigger operations and reduce software complexity.  
The slave module implements 7-bit address match and general address call recognition in hardware. 10-bit addressing is  
also supported. A dedicated address mask register can act as a second address match register or as a register for  
address range masking. The slave continues to operate in all sleep modes, including power-down mode. This enables  
the slave to wake up the device from all sleep modes on TWI address match. It is possible to disable the address  
matching to let this be handled in software instead.  
The TWI module will detect START and STOP conditions, bus collisions, and bus errors. Arbitration lost, errors, collision,  
and clock hold on the bus are also detected and indicated in separate status flags available in both master and slave  
modes.  
It is possible to disable the TWI drivers in the device, and enable a four-wire digital interface for connecting to an external  
TWI bus driver. This can be used for applications where the device operates from a different VCC voltage than used by  
the TWI bus.  
PORTC and PORTE each has one TWI. Notation of these peripherals are TWIC and TWIE.  
XMEGA A3BU [DATASHEET]  
42  
8362F–AVR–02/2013  
24. SPI – Serial Peripheral Interface  
24.1 Features  
Two identical SPI peripherals  
Full-duplex, three-wire synchronous data transfer  
Master or slave operation  
Lsb first or msb first data transfer  
Eight programmable bit rates  
Interrupt flag at the end of transmission  
Write collision flag to indicate data collision  
Wake up from idle sleep mode  
Double speed master mode  
24.2 Overview  
The Serial Peripheral Interface (SPI) is a high-speed synchronous data transfer interface using three or four pins. It  
allows fast communication between an Atmel AVR XMEGA device and peripheral devices or between several  
microcontrollers. The SPI supports full-duplex communication.  
A device connected to the bus must act as a master or slave. The master initiates and controls all data transactions.  
PORTC and PORTD each has one SPI. Notation of these peripherals are SPIC and SPID.  
XMEGA A3BU [DATASHEET]  
43  
8362F–AVR–02/2013  
25. USART  
25.1 Features  
Six identical USART peripherals  
Full-duplex operation  
Asynchronous or synchronous operation  
Synchronous clock rates up to 1/2 of the device clock frequency  
Asynchronous clock rates up to 1/8 of the device clock frequency  
Supports serial frames with 5, 6, 7, 8, or 9 data bits and one or two stop bits  
Fractional baud rate generator  
Can generate desired baud rate from any system clock frequency  
No need for external oscillator with certain frequencies  
Built-in error detection and correction schemes  
Odd or even parity generation and parity check  
Data overrun and framing error detection  
Noise filtering includes false start bit detection and digital low-pass filter  
Separate interrupts for  
Transmit complete  
Transmit data register empty  
Receive complete  
Multiprocessor communication mode  
Addressing scheme to address a specific devices on a multidevice bus  
Enable unaddressed devices to automatically ignore all frames  
Master SPI mode  
Double buffered operation  
Operation up to 1/2 of the peripheral clock frequency  
IRCOM module for IrDA compliant pulse modulation/demodulation  
25.2 Overview  
The universal synchronous and asynchronous serial receiver and transmitter (USART) is a fast and flexible serial  
communication module. The USART supports full-duplex communication and asynchronous and synchronous operation.  
The USART can be configured to operate in SPI master mode and used for SPI communication.  
Communication is frame based, and the frame format can be customized to support a wide range of standards. The  
USART is buffered in both directions, enabling continued data transmission without any delay between frames. Separate  
interrupts for receive and transmit complete enable fully interrupt driven communication. Frame error and buffer overflow  
are detected in hardware and indicated with separate status flags. Even or odd parity generation and parity check can  
also be enabled.  
The clock generator includes a fractional baud rate generator that is able to generate a wide range of USART baud rates  
from any system clock frequencies. This removes the need to use an external crystal oscillator with a specific frequency  
to achieve a required baud rate. It also supports external clock input in synchronous slave operation.  
When the USART is set in master SPI mode, all USART-specific logic is disabled, leaving the transmit and receive  
buffers, shift registers, and baud rate generator enabled. Pin control and interrupt generation are identical in both modes.  
The registers are used in both modes, but their functionality differs for some control settings.  
An IRCOM module can be enabled for one USART to support IrDA 1.4 physical compliant pulse modulation and  
demodulation for baud rates up to 115.2Kbps.  
PORTC, PORTD, and PORTE each has two USARTs, while PORTF has one USART only. Notation of these peripherals  
are USARTC0, USARTC1, USARTD0, USARTD1, USARTE0 and USARTF0, respectively.  
XMEGA A3BU [DATASHEET]  
44  
8362F–AVR–02/2013  
26. IRCOM – IR Communication Module  
26.1 Features  
Pulse modulation/demodulation for infrared communication  
IrDA compatible for baud rates up to 115.2Kbps  
Selectable pulse modulation scheme  
3/16 of the baud rate period  
Fixed pulse period, 8-bit programmable  
Pulse modulation disabled  
Built-in filtering  
Can be connected to and used by any USART  
26.2 Overview  
Atmel AVR XMEGA devices contain an infrared communication module (IRCOM) that is IrDA compatible for baud rates  
up to 115.2Kbps. It can be connected to any USART to enable infrared pulse encoding/decoding for that USART.  
XMEGA A3BU [DATASHEET]  
45  
8362F–AVR–02/2013  
27. AES and DES Crypto Engine  
27.1 Features  
Data Encryption Standard (DES) CPU instruction  
Advanced Encryption Standard (AES) crypto module  
DES Instruction  
Encryption and decryption  
DES supported  
Encryption/decryption in 16 CPU clock cycles per 8-byte block  
AES crypto module  
Encryption and decryption  
Supports 128-bit keys  
Supports XOR data load mode to the state memory  
Encryption/decryption in 375 clock cycles per 16-byte block  
27.2 Overview  
The Advanced Encryption Standard (AES) and Data Encryption Standard (DES) are two commonly used standards for  
cryptography. These are supported through an AES peripheral module and a DES CPU instruction, and the  
communication interfaces and the CPU can use these for fast, encrypted communication and secure data storage.  
DES is supported by an instruction in the AVR CPU. The 8-byte key and 8-byte data blocks must be loaded into the  
register file, and then the DES instruction must be executed 16 times to encrypt/decrypt the data block.  
The AES crypto module encrypts and decrypts 128-bit data blocks with the use of a 128-bit key. The key and data must  
be loaded into the key and state memory in the module before encryption/decryption is started. It takes 375 peripheral  
clock cycles before the encryption/decryption is done. The encrypted/encrypted data can then be read out, and an  
optional interrupt can be generated. The AES crypto module also has DMA support with transfer triggers when  
encryption/decryption is done and optional auto-start of encryption/decryption when the state memory is fully loaded.  
XMEGA A3BU [DATASHEET]  
46  
8362F–AVR–02/2013  
28. CRC – Cyclic Redundancy Check Generator  
28.1 Features  
Cyclic redundancy check (CRC) generation and checking for  
Communication data  
Program or data in flash memory  
Data in SRAM and I/O memory space  
Integrated with flash memory, DMA controller and CPU  
Continuous CRC on data going through a DMA channel  
Automatic CRC of the complete or a selectable range of the flash memory  
CPU can load data to the CRC generator through the I/O interface  
CRC polynomial software selectable to  
CRC-16 (CRC-CCITT)  
CRC-32 (IEEE 802.3)  
Zero remainder detection  
28.2 Overview  
A cyclic redundancy check (CRC) is an error detection technique test algorithm used to find accidental errors in data, and  
it is commonly used to determine the correctness of a data transmission, and data present in the data and program  
memories. A CRC takes a data stream or a block of data as input and generates a 16- or 32-bit output that can be  
appended to the data and used as a checksum. When the same data are later received or read, the device or application  
repeats the calculation. If the new CRC result does not match the one calculated earlier, the block contains a data error.  
The application will then detect this and may take a corrective action, such as requesting the data to be sent again or  
simply not using the incorrect data.  
Typically, an n-bit CRC applied to a data block of arbitrary length will detect any single error burst not longer than n bits  
(any single alteration that spans no more than n bits of the data), and will detect the fraction 1-2-n of all longer error  
bursts. The CRC module in Atmel AVR XMEGA devices supports two commonly used CRC polynomials; CRC-16 (CRC-  
CCITT) and CRC-32 (IEEE 802.3).  
CRC-16:  
Polynomial:  
Hex value:  
x16+x12+x5+1  
0x1021  
CRC-32:  
Polynomial:  
Hex value:  
x32+x26+x23+x22+x16+x12+x11+x10+x8+x7+x5+x4+x2+x+1  
0x04C11DB7  
XMEGA A3BU [DATASHEET]  
47  
8362F–AVR–02/2013  
29. ADC – 12-bit Analog to Digital Converter  
29.1 Features  
Two Analog to Digital Converters (ADCs)  
12-bit resolution  
Up to two million samples per second  
Two inputs can be sampled simultaneously using ADC and 1x gain stage  
Four inputs can be sampled within 1.5µs  
Down to 2.5µs conversion time with 8-bit resolution  
Down to 3.5µs conversion time with 12-bit resolution  
Differential and single-ended input  
Up to 16 single-ended inputs  
16x4 differential inputs without gain  
8x4 differential input with gain  
Built-in differential gain stage  
1/2x, 1x, 2x, 4x, 8x, 16x, 32x, and 64x gain options  
Single, continuous and scan conversion options  
Four internal inputs  
Internal temperature sensor  
DAC output  
VCC voltage divided by 10  
1.1V bandgap voltage  
Four conversion channels with individual input control and result registers  
Enable four parallel configurations and results  
Internal and external reference options  
Compare function for accurate monitoring of user defined thresholds  
Optional event triggered conversion for accurate timing  
Optional DMA transfer of conversion results  
Optional interrupt/event on compare result  
29.2 Overview  
The ADC converts analog signals to digital values. The ADC has 12-bit resolution and is capable of converting up to two  
million samples per second (msps). The input selection is flexible, and both single-ended and differential measurements  
can be done. For differential measurements, an optional gain stage is available to increase the dynamic range. In  
addition, several internal signal inputs are available. The ADC can provide both signed and unsigned results.  
This is a pipelined ADC that consists of several consecutive stages. The pipelined design allows a high sample rate at a  
low system clock frequency. It also means that a new input can be sampled and a new ADC conversion started while  
other ADC conversions are still ongoing. This removes dependencies between sample rate and propagation delay.  
The ADC has four conversion channels (0-3) with individual input selection, result registers, and conversion start control.  
The ADC can then keep and use four parallel configurations and results, and this will ease use for applications with high  
data throughput or for multiple modules using the ADC independently. It is possible to use DMA to move ADC results  
directly to memory or peripherals when conversions are done.  
Both internal and external reference voltages can be used. An integrated temperature sensor is available for use with the  
ADC. The output from the DAC, VCC/10 and the bandgap voltage can also be measured by the ADC.  
The ADC has a compare function for accurate monitoring of user defined thresholds with minimum software intervention  
required.  
XMEGA A3BU [DATASHEET]  
48  
8362F–AVR–02/2013  
Figure 29-1. ADC overview.  
ADC0  
Compare  
ADC15  
Internal  
<
>
VINP  
signals  
ADC0  
CH0 Result  
CH1 Result  
CH2 Result  
CH3 Result  
Threshold  
(Int Req)  
ADC7  
½x - 64x  
ADC  
ADC4  
ADC7  
Int. signals  
Internal  
signals  
VINN  
ADC0  
Internal 1.00V  
Internal VCC/1.6V  
Internal VCC/2  
AREFA  
Reference  
Voltage  
ADC3  
Int. signals  
AREFB  
Two inputs can be sampled simultaneously as both the ADC and the gain stage include sample and hold circuits, and the  
gain stage has 1x gain setting.  
Four inputs can be sampled within 1.5µs without any intervention by the application.  
The ADC may be configured for 8- or 12-bit result, reducing the minimum conversion time (propagation delay) from 3.5µs  
for 12-bit to 2.5µs for 8-bit result.  
ADC conversion results are provided left- or right adjusted with optional ‘1’ or ‘0’ padding. This eases calculation when  
the result is represented as a signed integer (signed 16-bit number).  
PORTA and PORTB each has one ADC. Notation of these peripherals are ADCA and ADCB, respectively.  
XMEGA A3BU [DATASHEET]  
49  
8362F–AVR–02/2013  
30. DAC – 12-bit Digital to Analog Converter  
30.1 Features  
One Digital to Analog Converter (DAC)  
12-bit resolution  
Two independent, continuous-drive output channels  
Up to one million samples per second conversion rate per DAC channel  
Built-in calibration that removes:  
Offset error  
Gain error  
Multiple conversion trigger sources  
On new available data  
Events from the event system  
High drive capabilities and support for  
Resistive loads  
Capacitive loads  
Combined resistive and capacitive loads  
Internal and external reference options  
DAC output available as input to analog comparator and ADC  
Low-power mode, with reduced drive strength  
Optional DMA transfer of data  
30.2 Overview  
The digital-to-analog converter (DAC) converts digital values to voltages. The DAC has two channels, each with 12-bit  
resolution, and is capable of converting up to one million samples per second (msps) on each channel. The built-in  
calibration system can remove offset and gain error when loaded with calibration values from software.  
Figure 30-1. DAC overview.  
DMA req  
(Data Empty)  
D
A
T
Output  
Driver  
12  
CH0DATA  
DAC0  
A
Int.  
To  
AC/ADC  
Trigger  
Select  
Enable  
CTRLA  
Enable  
driver  
Reference  
voltage  
AVCC  
Internal 1.00V  
AREFA  
CTRLB  
Internal Output  
enable  
AREFB  
Trigger  
Select  
D
A
Output  
Driver  
12  
CH1DATA  
DAC1  
T
A
DMA req  
(Data Empty)  
XMEGA A3BU [DATASHEET]  
50  
8362F–AVR–02/2013  
A DAC conversion is automatically started when new data to be converted are available. Events from the event system  
can also be used to trigger a conversion, and this enables synchronized and timed conversions between the DAC and  
other peripherals, such as a timer/counter. The DMA controller can be used to transfer data to the DAC.  
The DAC has high drive strength, and is capable of driving both resistive and capacitive loads, as well as loads which  
combine both. A low-power mode is available, which will reduce the drive strength of the output. Internal and external  
voltage references can be used. The DAC output is also internally available for use as input to the analog comparator or  
ADC.  
PORTB has one DAC. Notation of this peripheral is DACB.  
XMEGA A3BU [DATASHEET]  
51  
8362F–AVR–02/2013  
31. AC – Analog Comparator  
31.1 Features  
Four Analog Comparators (AC)  
Selectable propagation delay versus current consumption  
Selectable hysteresis  
No  
Small  
Large  
Analog comparator output available on pin  
Flexible input selection  
All pins on the port  
Output from the DAC  
Bandgap reference voltage  
A 64-level programmable voltage scaler of the internal VCC voltage  
Interrupt and event generation on:  
Rising edge  
Falling edge  
Toggle  
Window function interrupt and event generation on:  
Signal above window  
Signal inside window  
Signal below window  
Constant current source with configurable output pin selection  
31.2 Overview  
The analog comparator (AC) compares the voltage levels on two inputs and gives a digital output based on this  
comparison. The analog comparator may be configured to generate interrupt requests and/or events upon several  
different combinations of input change.  
Two important properties of the analog comparator’s dynamic behavior are: hysteresis and propagation delay. Both of  
these parameters may be adjusted in order to achieve the optimal operation for each application.  
The input selection includes analog port pins, several internal signals, and a 64-level programmable voltage scaler. The  
analog comparator output state can also be output on a pin for use by external devices.  
A constant current source can be enabled and output on a selectable pin. This can be used to replace, for example,  
external resistors used to charge capacitors in capacitive touch sensing applications.  
The analog comparators are always grouped in pairs on each port. These are called analog comparator 0 (AC0) and  
analog comparator 1 (AC1). They have identical behavior, but separate control registers. Used as pair, they can be set in  
window mode to compare a signal to a voltage range instead of a voltage level.  
PORTA and PORTB each has one AC pair. Notations are ACA and ACB, respectively.  
XMEGA A3BU [DATASHEET]  
52  
8362F–AVR–02/2013  
Figure 31-1. Analog comparator overview.  
Pin Input  
+
AC0OUT  
Pin Input  
-
Hysteresis  
DAC  
Enable  
Interrupt  
Interrupts  
Events  
Interrupt  
Mode  
Sensititivity  
Control  
&
Voltage  
Scaler  
ACnMUXCTRL  
ACnCTRL  
WINCTRL  
Window  
Function  
Enable  
Bandgap  
Pin Input  
Hysteresis  
+
-
AC1OUT  
Pin Input  
The window function is realized by connecting the external inputs of the two analog comparators in a pair as shown in  
Figure 31-2.  
Figure 31-2. Analog comparator window function.  
+
AC0  
Upper limit of window  
-
Interrupts  
Interrupt  
Input signal  
sensitivity  
Events  
control  
+
AC1  
Lower limit of window  
-
XMEGA A3BU [DATASHEET]  
53  
8362F–AVR–02/2013  
32. Programming and Debugging  
32.1 Features  
Programming  
External programming through PDI or JTAG interfaces  
Minimal protocol overhead for fast operation  
Built-in error detection and handling for reliable operation  
Boot loader support for programming through any communication interface  
Debugging  
Nonintrusive, real-time, on-chip debug system  
No software or hardware resources required from device except pin connection  
Program flow control  
Go, Stop, Reset, Step Into, Step Over, Step Out, Run-to-Cursor  
Unlimited number of user program breakpoints  
Unlimited number of user data breakpoints, break on:  
Data location read, write, or both read and write  
Data location content equal or not equal to a value  
Data location content is greater or smaller than a value  
Data location content is within or outside a range  
No limitation on device clock frequency  
Program and Debug Interface (PDI)  
Two-pin interface for external programming and debugging  
Uses the Reset pin and a dedicated pin  
No I/O pins required during programming or debugging  
JTAG interface  
Four-pin, IEEE Std. 1149.1 compliant interface for programming and debugging  
Boundary scan capabilities according to IEEE Std. 1149.1 (JTAG)  
32.2 Overview  
The Program and Debug Interface (PDI) is an Atmel proprietary interface for external programming and on-chip  
debugging of a device.  
The PDI supports fast programming of nonvolatile memory (NVM) spaces; flash, EEPOM, fuses, lock bits, and the user  
signature row.  
Debug is supported through an on-chip debug system that offers nonintrusive, real-time debug. It does not require any  
software or hardware resources except for the device pin connection. Using the Atmel tool chain, it offers complete  
program flow control and support for an unlimited number of program and complex data breakpoints. Application debug  
can be done from a C or other high-level language source code level, as well as from an assembler and disassembler  
level.  
Programming and debugging can be done through two physical interfaces. The primary one is the PDI physical layer,  
which is available on all devices. This is a two-pin interface that uses the Reset pin for the clock input (PDI_CLK) and one  
other dedicated pin for data input and output (PDI_DATA). A JTAG interface is also available on most devices, and this  
can be used for programming and debugging through the four-pin JTAG interface. The JTAG interface is IEEE Std.  
1149.1 compliant, and supports boundary scan. Any external programmer or on-chip debugger/emulator can be directly  
connected to either of these interfaces. Unless otherwise stated, all references to the PDI assume access through the  
PDI physical layer.  
XMEGA A3BU [DATASHEET]  
54  
8362F–AVR–02/2013  
33. Pinout and Pin Functions  
The device pinout is shown in “Pinout/Block Diagram” on page 3. In addition to general purpose I/O functionality, each  
pin can have several alternate functions. This will depend on which peripheral is enabled and connected to the actual pin.  
Only one of the pin functions can be used at time.  
33.1 Alternate Pin Function Description  
The tables below show the notation for all pin functions available and describe its function.  
33.1.1 Operation/Power Supply  
VCC  
Digital supply voltage  
Analog supply voltage  
Battery Backup Module supply voltage  
Ground  
AVCC  
VBAT  
GND  
33.1.2 Port Interrupt functions  
SYNC  
Port pin with full synchronous and limited asynchronous interrupt function  
ASYNC  
Port pin with full synchronous and full asynchronous interrupt function  
33.1.3 Analog functions  
ACn  
Analog Comparator input pin n  
Analog Comparator n Output  
ACnOUT  
ADCn  
DACn  
AREF  
Analog to Digital Converter input pin n  
Digital to Analog Converter output pin n  
Analog Reference input pin  
33.1.4 Timer/Counter and AWEX functions  
OCnxLS  
OCnxHS  
Output Compare Channel x Low Side for Timer/Counter n  
Output Compare Channel x High Side for Timer/Counter n  
33.1.5 Communication functions  
SCL  
Serial Clock for TWI  
SDA  
Serial Data for TWI  
SCLIN  
SCLOUT  
SDAIN  
SDAOUT  
XCKn  
Serial Clock In for TWI when external driver interface is enabled  
Serial Clock Out for TWI when external driver interface is enabled  
Serial Data In for TWI when external driver interface is enabled  
Serial Data Out for TWI when external driver interface is enabled  
Transfer Clock for USART n  
XMEGA A3BU [DATASHEET]  
55  
8362F–AVR–02/2013  
RXDn  
TXDn  
SS  
Receiver Data for USART n  
Transmitter Data for USART n  
Slave Select for SPI  
MOSI  
MISO  
SCK  
D-  
Master Out Slave In for SPI  
Master In Slave Out for SPI  
Serial Clock for SPI  
Data- for USB  
D+  
Data+ for USB  
33.1.6 Oscillators, Clock and Event  
TOSCn  
XTALn  
Timer Oscillator pin n  
Input/Output for Oscillator pin n  
Peripheral Clock Output  
Event Channel Output  
CLKOUT  
EVOUT  
RTCOUT  
RTC Clock Source Output  
33.1.7 Debug/System functions  
RESET  
PDI_CLK  
PDI_DATA  
TCK  
Reset pin  
Program and Debug Interface Clock pin  
Program and Debug Interface Data pin  
JTAG Test Clock  
TDI  
JTAG Test Data In  
TDO  
JTAG Test Data Out  
TMS  
JTAG Test Mode Select  
XMEGA A3BU [DATASHEET]  
56  
8362F–AVR–02/2013  
33.2 Alternate Pin Functions  
The tables below show the primary/default function for each pin on a port in the first column, the pin number in the  
second column, and then all alternate pin functions in the remaining columns. The head row shows what peripheral that  
enable and use the alternate pin functions.  
For better flexibility, some alternate functions also have selectable pin locations for their functions, this is noted under the  
first table where this apply.  
Table 33-1. Port A - alternate functions.  
PORT A  
PIN #  
INTERRUPT  
ADCAPOS/  
GAINPOS  
ADCB  
POS  
ADCA  
NEG  
ADCA  
GAINNEG  
ACA  
POS  
ACA  
NEG  
ACA  
OUT  
REFA  
GND  
AVCC  
PA0  
PA1  
PA2  
PA3  
PA4  
PA5  
PA6  
PA7  
60  
61  
62  
63  
64  
1
SYNC  
SYNC  
ADC0  
ADC1  
ADC2  
ADC3  
ADC4  
ADC5  
ADC6  
ADC7  
ADC8  
ADC9  
ADC0  
ADC1  
ADC2  
ADC3  
AC0  
AC1  
AC2  
AC3  
AC4  
AC5  
AC6  
AC0  
AC1  
AREF  
SYNC/ASYNC  
SYNC  
ADC10  
ADC11  
ADC12  
ADC13  
ADC14  
ADC15  
AC3  
AC5  
AC7  
2
SYNC  
ADC4  
ADC5  
ADC6  
ADC7  
3
SYNC  
4
SYNC  
AC1OUT  
AC0OUT  
5
SYNC  
Table 33-2. Port B - alternate functions.  
PORT B  
PIN #  
INTERRUPT  
ADCBPOS/  
GAINPOS  
ADCB  
NEG  
ADCB  
GAINNEG  
ACB  
POS  
ACB  
NEG  
ACB  
OUT  
DACB  
REFB  
JTAG  
ADCA POS  
ADC8  
PB0  
PB1  
PB2  
PB3  
PB4  
PB5  
PB6  
PB7  
GND  
VCC  
6
7
SYNC  
SYNC  
ADC0  
ADC1  
ADC2  
ADC3  
ADC4  
ADC5  
ADC6  
ADC7  
ADC0  
ADC1  
ADC2  
ADC3  
AC0  
AC1  
AC2  
AC3  
AC4  
AC5  
AC6  
AC0  
AC1  
AREF  
ADC9  
8
SYNC/ASYNC  
SYNC  
ADC10  
ADC11  
ADC12  
ADC13  
ADC14  
ADC15  
DAC0  
DAC1  
9
AC3  
AC5  
AC7  
10  
11  
12  
13  
14  
15  
SYNC  
ADC4  
ADC5  
ADC6  
ADC7  
TMS  
TDI  
SYNC  
SYNC  
AC1OUT  
AC0OUT  
TCK  
TDO  
SYNC  
XMEGA A3BU [DATASHEET]  
57  
8362F–AVR–02/2013  
Table 33-3. Port C - alternate functions.  
TCC0  
USARTC0  
CLOCKOUT  
EVENTOUT  
(1)(2)  
(3)  
(6)  
PORT C  
PC0  
PIN #  
16  
INTERRUPT  
SYNC  
AWEXC  
OC0ALS  
OC0AHS  
OC0BLS  
OC0BHS  
OC0CLS  
TCC1  
USARTC1  
SPIC (4)  
TWIC  
SDA  
SCL  
(5)  
OC0A  
OC0B  
OC0C  
OC0D  
PC1  
17  
SYNC  
XCK0  
RXD0  
TXD0  
PC2  
18  
SYNC/ASYNC  
SYNC  
PC3  
19  
PC4  
20  
SYNC  
OC1A  
OC1B  
SS  
OC0CH  
S
PC5  
PC6  
PC7  
21  
22  
23  
SYNC  
SYNC  
SYNC  
XCK1  
RXD1  
TXD1  
MOSI  
MISO  
SCK  
OC0DLS  
clkRTC  
clkPER  
OC0DH  
S
EVOUT  
GND  
VCC  
24  
25  
Notes:  
1. Pin mapping of all TC0 can optionally be moved to high nibble of port.  
2. If TC0 is configured as TC2 all eight pins can be used for PWM output.  
3. Pin mapping of all USART0 can optionally be moved to high nibble of port.  
4. Pins MOSI and SCK for all SPI can optionally be swapped.  
5. CLKOUT can optionally be moved between port C, D and E and between pin 4 and 7.  
6. EVOUT can optionally be moved between port C, D and E and between pin 4 and 7.  
Table 33-4. Port D - alternate functions.  
PORT D  
PD0  
PIN #  
26  
INTERRUPT  
SYNC  
TCD0  
OC0A  
OC0B  
OC0C  
OC0D  
TCD1  
USBD  
USARTD0  
USARTD1  
SPID  
CLOCKOUT  
EVENTOUT  
PD1  
27  
SYNC  
XCK0  
RXD0  
TXD0  
PD2  
28  
SYNC/ASYNC  
SYNC  
PD3  
29  
PD4  
30  
SYNC  
OC1A  
OC1B  
SS  
PD5  
31  
SYNC  
XCK1  
RXD1  
TXD1  
MOSI  
MISO  
SCK  
PD6  
32  
SYNC  
D-  
PD7  
33  
SYNC  
D+  
clkPER  
EVOUT  
GND  
VCC  
34  
35  
XMEGA A3BU [DATASHEET]  
58  
8362F–AVR–02/2013  
Table 33-5. Port E - alternate functions.  
PORT E  
PE0  
PIN #  
36  
INTERRUPT  
SYNC  
TCE0  
OC0A  
OC0B  
OC0C  
OC0D  
TCE1  
USARTE0  
TWIE  
SDA  
SCL  
PE1  
37  
SYNC  
XCK0  
RXD0  
TXD0  
PE2  
38  
SYNC/ASYNC  
SYNC  
PE3  
39  
PE4  
40  
SYNC  
OC1A  
OC1B  
PE5  
41  
SYNC  
TOSC2  
TOSC1  
GND  
VCC  
42  
43  
44  
45  
Table 33-6. Port F - alternate functions.  
PORT F  
PF0  
PIN #  
46  
INTERRUPT  
SYNC  
TCF0  
USARTF0  
OC0A  
OC0B  
PF1  
47  
SYNC  
XCK0  
RXD0  
TXD0  
SYNC/ASYN  
C
PF2  
48  
OC0C  
OC0D  
PF3  
49  
50  
51  
52  
53  
54  
55  
SYNC  
SYNC  
PF4  
VBAT  
GND  
VCC  
PF6  
SYNC  
SYNC  
PF7  
Table 33-7. Port R - alternate functions.  
PORT R  
PDI  
PIN #  
56  
INTERRUPT  
PDI  
XTAL  
PDI_DATA  
PDI_CLOCK  
RESET  
PRO  
57  
58  
SYNC  
SYNC  
XTAL2  
XTAL1  
PR1  
59  
XMEGA A3BU [DATASHEET]  
59  
8362F–AVR–02/2013  
34. Peripheral Module Address Map  
The address maps show the base address for each peripheral and module in Atmel AVR XMEGA A3BU. For complete  
register description and summary for each peripheral module, refer to the XMEGA AU Manual.  
Table 34-1. Peripheral module address map.  
Base Address  
Name  
Description  
0x0000  
GPIO  
General purpose IO registers  
0x0010  
0x0014  
0x0018  
0x001C  
0x0030  
0x0040  
0x0048  
0x0050  
0x0060  
0x0068  
0x0070  
0x0078  
0x0080  
0x0090  
0x00A0  
0x00B0  
0x00C0  
0x00D0  
0x00F0  
0x0100  
0x0180  
0x01C0  
0x0200  
0x0240  
0x0320  
0x0380  
0x0390  
0x0420  
0x0480  
0x04A0  
0x04D0  
0x0600  
0x0620  
VPORT0  
VPORT1  
VPORT2  
VPORT3  
CPU  
Virtual Port 0  
Virtual Port 1  
Virtual Port 2  
Virtual Port 2  
CPU  
CLK  
Clock Control  
SLEEP  
OSC  
Sleep Controller  
Oscillator Control  
DFLLRC32M  
DFLLRC2M  
PR  
DFLL for the 32MHz internal oscillator  
DFLL for the 2MHz internal oscillator  
Power Reduction  
RST  
Reset Controller  
WDT  
Watch-Dog Timer  
MCU  
MCU Control  
PMIC  
Programmable Multilevel Interrupt Controller  
Port Configuration  
PORTCFG  
AES  
AES module  
CRC  
CRC generator  
VBAT  
VBAT Battery Backup module  
DMA Controller  
DMA  
EVSYS  
NVM  
Event System  
Non Volatile Memory (NVM) Controller  
Analog to Digital Converter on port A  
Analog to Digital Converter on port B  
Digital to Analog Converter on port B  
Analog Comparator pair on port A  
Analog Comparator pair on port B  
32-bit Real Time Counter  
Two-wire Interface on port C  
Two-wire Interface on port E  
USB Device  
ADCA  
ADCB  
DACB  
ACA  
ACB  
RTC32  
TWIC  
TWIE  
USBD  
PORTA  
PORTB  
Port A  
Port B  
XMEGA A3BU [DATASHEET]  
60  
8362F–AVR–02/2013  
Base Address  
Name  
Description  
0x0640  
PORTC  
Port C  
0x0660  
0x0680  
0x06A0  
0x07E0  
0x0800  
0x0840  
0x0880  
0x0890  
0x08A0  
0x08B0  
0x08C0  
0x08F8  
0x0900  
0x0940  
0x0990  
0x09A0  
0x09B0  
0x09C0  
0x0A00  
0x0A40  
0x0A80  
0x0A90  
0x0AA0  
0x0B00  
0x0B90  
0x0BA0  
PORTD  
PORTE  
PORTF  
PORTR  
TCC0  
Port D  
Port E  
Port F  
Port R  
Timer/Counter 0 on port C  
Timer/Counter 1 on port C  
Advanced Waveform Extension on port C  
High Resolution Extension on port C  
USART 0 on port C  
TCC1  
AWEXC  
HIRESC  
USARTC0  
USARTC1  
SPIC  
USART 1 on port C  
Serial Peripheral Interface on port C  
Infrared Communication Module  
Timer/Counter 0 on port D  
Timer/Counter 1 on port D  
High Resolution Extension on port D  
USART 0 on port D  
IRCOM  
TCD0  
TCD1  
HIRESD  
USARTD0  
USARTD1  
SPID  
USART 1 on port D  
Serial Peripheral Interface on port D  
Timer/Counter 0 on port E  
Timer/Counter 1 on port E  
Advanced Waveform Extension on port E  
High Resolution Extension on port E  
USART 0 on port E  
TCE0  
TCE1  
AWEXE  
HIRESE  
USARTE0  
TCF0  
Timer/Counter 0 on port F  
High Resolution Extension on port F  
USART 0 on port F  
HIRESF  
USARTF0  
XMEGA A3BU [DATASHEET]  
61  
8362F–AVR–02/2013  
35. Instruction Set Summary  
Mnemonics  
Operands  
Description  
Operation  
Flags  
#Clocks  
Arithmetic and Logic Instructions  
ADD  
ADC  
ADIW  
SUB  
Rd, Rr  
Rd, Rr  
Rd, K  
Rd, Rr  
Rd, K  
Rd, Rr  
Rd, K  
Rd, K  
Rd, Rr  
Rd, K  
Rd, Rr  
Rd, K  
Rd, Rr  
Rd  
Add without Carry  
Rd  
Rd  
Rd  
Rd  
Rd  
Rd  
Rd  
Rd + Rr  
Z,C,N,V,S,H  
Z,C,N,V,S,H  
Z,C,N,V,S  
Z,C,N,V,S,H  
Z,C,N,V,S,H  
Z,C,N,V,S,H  
Z,C,N,V,S,H  
Z,C,N,V,S  
Z,N,V,S  
Z,N,V,S  
Z,N,V,S  
Z,N,V,S  
Z,N,V,S  
Z,C,N,V,S  
Z,C,N,V,S,H  
Z,N,V,S  
Z,N,V,S  
Z,N,V,S  
Z,N,V,S  
Z,N,V,S  
Z,N,V,S  
None  
1
1
2
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
1/2  
Add with Carry  
Rd + Rr + C  
Rd + 1:Rd + K  
Rd - Rr  
Add Immediate to Word  
Subtract without Carry  
Subtract Immediate  
Subtract with Carry  
Subtract Immediate with Carry  
Subtract Immediate from Word  
Logical AND  
SUBI  
SBC  
Rd - K  
Rd - Rr - C  
Rd - K - C  
Rd + 1:Rd - K  
Rd Rr  
SBCI  
SBIW  
AND  
ANDI  
OR  
Rd + 1:Rd  
Rd  
Logical AND with Immediate  
Logical OR  
Rd  
Rd K  
Rd  
Rd v Rr  
ORI  
Logical OR with Immediate  
Exclusive OR  
Rd  
Rd v K  
EOR  
COM  
NEG  
SBR  
Rd  
Rd Rr  
One’s Complement  
Two’s Complement  
Set Bit(s) in Register  
Clear Bit(s) in Register  
Increment  
Rd  
$FF - Rd  
Rd  
Rd  
$00 - Rd  
Rd,K  
Rd,K  
Rd  
Rd  
Rd v K  
CBR  
INC  
Rd  
Rd ($FFh - K)  
Rd + 1  
Rd  
DEC  
TST  
Rd  
Decrement  
Rd  
Rd - 1  
Rd  
Test for Zero or Minus  
Clear Register  
Rd  
Rd Rd  
CLR  
Rd  
Rd  
Rd Rd  
SER  
Rd  
Set Register  
Rd  
$FF  
MUL  
MULS  
MULSU  
FMUL  
FMULS  
FMULSU  
DES  
Rd,Rr  
Rd,Rr  
Rd,Rr  
Rd,Rr  
Rd,Rr  
Rd,Rr  
K
Multiply Unsigned  
R1:R0  
R1:R0  
R1:R0  
R1:R0  
R1:R0  
R1:R0  
Rd x Rr (UU)  
Rd x Rr (SS)  
Rd x Rr (SU)  
Rd x Rr<<1 (UU)  
Rd x Rr<<1 (SS)  
Rd x Rr<<1 (SU)  
Z,C  
Multiply Signed  
Z,C  
Multiply Signed with Unsigned  
Fractional Multiply Unsigned  
Fractional Multiply Signed  
Fractional Multiply Signed with Unsigned  
Data Encryption  
Z,C  
Z,C  
Z,C  
Z,C  
if (H = 0) then R15:R0  
else if (H = 1) then R15:R0  
Encrypt(R15:R0, K)  
Decrypt(R15:R0, K)  
Branch instructions  
RJMP  
IJMP  
k
Relative Jump  
PC  
PC + k + 1  
None  
None  
2
2
Indirect Jump to (Z)  
PC(15:0)  
PC(21:16)  
Z,  
0
EIJMP  
Extended Indirect Jump to (Z)  
PC(15:0)  
PC(21:16)  
Z,  
EIND  
None  
2
JMP  
k
k
Jump  
PC  
PC  
k
None  
None  
3
RCALL  
Relative Call Subroutine  
PC + k + 1  
2 / 3 (1)  
XMEGA A3BU [DATASHEET]  
62  
8362F–AVR–02/2013  
Mnemonics  
Operands  
Description  
Operation  
Flags  
#Clocks  
ICALL  
Indirect Call to (Z)  
PC(15:0)  
PC(21:16)  
Z,  
0
None  
2 / 3 (1)  
EICALL  
Extended Indirect Call to (Z)  
PC(15:0)  
PC(21:16)  
Z,  
EIND  
None  
3 (1)  
CALL  
RET  
k
call Subroutine  
PC  
PC  
k
None  
None  
I
3 / 4 (1)  
4 / 5 (1)  
4 / 5 (1)  
1 / 2 / 3  
1
Subroutine Return  
STACK  
STACK  
PC + 2 or 3  
RETI  
Interrupt Return  
PC  
CPSE  
CP  
Rd,Rr  
Compare, Skip if Equal  
Compare  
if (Rd = Rr) PC  
None  
Z,C,N,V,S,H  
Z,C,N,V,S,H  
Z,C,N,V,S,H  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
Rd,Rr  
Rd - Rr  
CPC  
Rd,Rr  
Compare with Carry  
Rd - Rr - C  
1
CPI  
Rd,K  
Compare with Immediate  
Skip if Bit in Register Cleared  
Skip if Bit in Register Set  
Skip if Bit in I/O Register Cleared  
Skip if Bit in I/O Register Set  
Branch if Status Flag Set  
Branch if Status Flag Cleared  
Branch if Equal  
Rd - K  
1
SBRC  
SBRS  
SBIC  
SBIS  
Rr, b  
if (Rr(b) = 0) PC  
if (Rr(b) = 1) PC  
if (I/O(A,b) = 0) PC  
If (I/O(A,b) =1) PC  
if (SREG(s) = 1) then PC  
if (SREG(s) = 0) then PC  
if (Z = 1) then PC  
if (Z = 0) then PC  
if (C = 1) then PC  
if (C = 0) then PC  
if (C = 0) then PC  
if (C = 1) then PC  
if (N = 1) then PC  
if (N = 0) then PC  
if (N V= 0) then PC  
if (N V= 1) then PC  
if (H = 1) then PC  
if (H = 0) then PC  
if (T = 1) then PC  
if (T = 0) then PC  
if (V = 1) then PC  
if (V = 0) then PC  
if (I = 1) then PC  
if (I = 0) then PC  
PC + 2 or 3  
PC + 2 or 3  
PC + 2 or 3  
PC + 2 or 3  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
1 / 2 / 3  
1 / 2 / 3  
2 / 3 / 4  
2 / 3 / 4  
1 / 2  
Rr, b  
A, b  
A, b  
s, k  
s, k  
k
BRBS  
BRBC  
BREQ  
BRNE  
BRCS  
BRCC  
BRSH  
BRLO  
BRMI  
BRPL  
BRGE  
BRLT  
BRHS  
BRHC  
BRTS  
BRTC  
BRVS  
BRVC  
BRIE  
BRID  
1 / 2  
1 / 2  
k
Branch if Not Equal  
1 / 2  
k
Branch if Carry Set  
1 / 2  
k
Branch if Carry Cleared  
Branch if Same or Higher  
Branch if Lower  
1 / 2  
k
1 / 2  
k
1 / 2  
k
Branch if Minus  
1 / 2  
k
Branch if Plus  
1 / 2  
k
Branch if Greater or Equal, Signed  
Branch if Less Than, Signed  
Branch if Half Carry Flag Set  
Branch if Half Carry Flag Cleared  
Branch if T Flag Set  
1 / 2  
k
1 / 2  
k
1 / 2  
k
1 / 2  
k
1 / 2  
k
Branch if T Flag Cleared  
Branch if Overflow Flag is Set  
Branch if Overflow Flag is Cleared  
Branch if Interrupt Enabled  
Branch if Interrupt Disabled  
1 / 2  
k
1 / 2  
k
1 / 2  
k
1 / 2  
k
1 / 2  
Data transfer instructions  
MOV  
MOVW  
LDI  
Rd, Rr  
Rd, Rr  
Rd, K  
Copy Register  
Rd  
Rd+1:Rd  
Rd  
Rr  
None  
None  
None  
1
1
1
Copy Register Pair  
Load Immediate  
Rr+1:Rr  
K
XMEGA A3BU [DATASHEET]  
63  
8362F–AVR–02/2013  
Mnemonics  
Operands  
Rd, k  
Description  
Operation  
Flags  
None  
None  
None  
#Clocks  
2 (1)(2)  
LDS  
LD  
Load Direct from data space  
Load Indirect  
Rd  
Rd  
(k)  
Rd, X  
(X)  
1 (1)(2)  
LD  
Rd, X+  
Load Indirect and Post-Increment  
Rd  
X
(X)  
X + 1  
1 (1)(2)  
LD  
Rd, -X  
Load Indirect and Pre-Decrement  
X X - 1,  
Rd (X)  
X - 1  
(X)  
None  
2 (1)(2)  
LD  
LD  
Rd, Y  
Load Indirect  
Rd (Y)  
(Y)  
None  
None  
1 (1)(2)  
1 (1)(2)  
Rd, Y+  
Load Indirect and Post-Increment  
Rd  
Y
(Y)  
Y + 1  
LD  
Rd, -Y  
Load Indirect and Pre-Decrement  
Y
Rd  
Y - 1  
(Y)  
None  
2 (1)(2)  
LDD  
LD  
Rd, Y+q  
Rd, Z  
Load Indirect with Displacement  
Load Indirect  
Rd  
Rd  
(Y + q)  
(Z)  
None  
None  
None  
2 (1)(2)  
1 (1)(2)  
1 (1)(2)  
LD  
Rd, Z+  
Load Indirect and Post-Increment  
Rd  
Z
(Z),  
Z+1  
LD  
Rd, -Z  
Load Indirect and Pre-Decrement  
Z
Rd  
Z - 1,  
(Z)  
None  
2 (1)(2)  
LDD  
STS  
ST  
Rd, Z+q  
k, Rr  
Load Indirect with Displacement  
Store Direct to Data Space  
Store Indirect  
Rd  
(k)  
(X)  
(Z + q)  
Rd  
None  
None  
None  
None  
2 (1)(2)  
2 (1)  
X, Rr  
Rr  
1 (1)  
ST  
X+, Rr  
Store Indirect and Post-Increment  
(X)  
X
Rr,  
X + 1  
1 (1)  
ST  
-X, Rr  
Store Indirect and Pre-Decrement  
X
(X)  
X - 1,  
Rr  
None  
2 (1)  
ST  
ST  
Y, Rr  
Store Indirect  
(Y)  
Rr  
None  
None  
1 (1)  
1 (1)  
Y+, Rr  
Store Indirect and Post-Increment  
(Y)  
Y
Rr,  
Y + 1  
ST  
-Y, Rr  
Store Indirect and Pre-Decrement  
Y
(Y)  
Y - 1,  
Rr  
None  
2 (1)  
STD  
ST  
Y+q, Rr  
Z, Rr  
Store Indirect with Displacement  
Store Indirect  
(Y + q)  
(Z)  
Rr  
Rr  
None  
None  
None  
2 (1)  
1 (1)  
1 (1)  
ST  
Z+, Rr  
Store Indirect and Post-Increment  
(Z)  
Z
Rr  
Z + 1  
ST  
-Z, Rr  
Store Indirect and Pre-Decrement  
Store Indirect with Displacement  
Load Program Memory  
Z
(Z + q)  
R0  
Z - 1  
Rr  
None  
None  
None  
None  
None  
2 (1)  
2 (1)  
3
STD  
LPM  
LPM  
LPM  
Z+q,Rr  
(Z)  
Rd, Z  
Load Program Memory  
Rd  
(Z)  
3
Rd, Z+  
Load Program Memory and Post-Increment  
Rd  
Z
(Z),  
Z + 1  
3
ELPM  
ELPM  
ELPM  
Extended Load Program Memory  
Extended Load Program Memory  
R0  
Rd  
(RAMPZ:Z)  
(RAMPZ:Z)  
None  
None  
None  
3
3
3
Rd, Z  
Rd, Z+  
Extended Load Program Memory and Post-  
Increment  
Rd  
Z
(RAMPZ:Z),  
Z + 1  
SPM  
SPM  
Store Program Memory  
(RAMPZ:Z)  
R1:R0  
None  
None  
-
-
Z+  
Store Program Memory and Post-Increment  
by 2  
(RAMPZ:Z)  
Z
R1:R0,  
Z + 2  
XMEGA A3BU [DATASHEET]  
64  
8362F–AVR–02/2013  
Mnemonics  
IN  
Operands  
Rd, A  
A, Rr  
Rr  
Description  
Operation  
Flags  
None  
None  
None  
None  
None  
#Clocks  
In From I/O Location  
Out To I/O Location  
Push Register on Stack  
Pop Register from Stack  
Exchange RAM location  
Rd  
I/O(A)  
STACK  
Rd  
I/O(A)  
Rr  
1
1
OUT  
PUSH  
POP  
Rr  
1 (1)  
2 (1)  
2
Rd  
STACK  
XCH  
Z, Rd  
Temp  
Rd  
(Z)  
Rd,  
(Z),  
Temp  
LAS  
LAC  
LAT  
Z, Rd  
Z, Rd  
Z, Rd  
Load and Set RAM location  
Load and Clear RAM location  
Load and Toggle RAM location  
Temp  
Rd  
(Z)  
Rd,  
(Z),  
Temp v (Z)  
None  
None  
None  
2
2
2
Temp  
Rd  
(Z)  
Rd,  
(Z),  
($FFh – Rd) • (Z)  
Temp  
Rd  
(Z)  
Rd,  
(Z),  
Temp (Z)  
Bit and bit-test instructions  
LSL  
Rd  
Rd  
Rd  
Rd  
Logical Shift Left  
Rd(n+1)  
Rd(0)  
C
Rd(n),  
0,  
Rd(7)  
Z,C,N,V,H  
Z,C,N,V  
1
1
1
1
LSR  
ROL  
ROR  
Logical Shift Right  
Rd(n)  
Rd(7)  
C
Rd(n+1),  
0,  
Rd(0)  
Rotate Left Through Carry  
Rotate Right Through Carry  
Rd(0)  
Rd(n+1)  
C
C,  
Rd(n),  
Rd(7)  
Z,C,N,V,H  
Z,C,N,V  
Rd(7)  
Rd(n)  
C
C,  
Rd(n+1),  
Rd(0)  
ASR  
SWAP  
BSET  
BCLR  
SBI  
Rd  
Arithmetic Shift Right  
Swap Nibbles  
Rd(n)  
Rd(n+1), n=0..6  
Z,C,N,V  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Rd  
Rd(3..0)  
Rd(7..4)  
None  
s
Flag Set  
SREG(s)  
1
SREG(s)  
s
Flag Clear  
SREG(s)  
0
SREG(s)  
A, b  
A, b  
Rr, b  
Rd, b  
Set Bit in I/O Register  
Clear Bit in I/O Register  
Bit Store from Register to T  
Bit load from T to Register  
Set Carry  
I/O(A, b)  
1
None  
CBI  
I/O(A, b)  
0
None  
BST  
BLD  
SEC  
CLC  
SEN  
CLN  
SEZ  
CLZ  
SEI  
T
Rr(b)  
T
1
T
Rd(b)  
None  
C
C
N
N
Z
Z
I
C
C
N
N
Z
Z
I
Clear Carry  
0
Set Negative Flag  
Clear Negative Flag  
Set Zero Flag  
1
0
1
Clear Zero Flag  
0
Global Interrupt Enable  
Global Interrupt Disable  
Set Signed Test Flag  
Clear Signed Test Flag  
1
CLI  
I
0
I
SES  
CLS  
S
S
1
S
S
0
XMEGA A3BU [DATASHEET]  
65  
8362F–AVR–02/2013  
Mnemonics  
SEV  
Operands  
Description  
Operation  
Flags  
#Clocks  
Set Two’s Complement Overflow  
Clear Two’s Complement Overflow  
Set T in SREG  
V
V
T
1
0
1
0
1
0
V
V
T
T
H
H
1
1
1
1
1
1
CLV  
SET  
CLT  
Clear T in SREG  
T
SEH  
Set Half Carry Flag in SREG  
Clear Half Carry Flag in SREG  
H
H
CLH  
MCU control instructions  
BREAK  
NOP  
Break  
(See specific descr. for BREAK)  
None  
None  
None  
None  
1
1
1
1
No Operation  
Sleep  
SLEEP  
WDR  
(see specific descr. for Sleep)  
(see specific descr. for WDR)  
Watchdog Reset  
Notes:  
1. Cycle times for Data memory accesses assume internal memory accesses, and are not valid for accesses via the external RAM interface.  
2. One extra cycle must be added when accessing Internal SRAM.  
XMEGA A3BU [DATASHEET]  
66  
8362F–AVR–02/2013  
36. Packaging information  
36.1 64A  
PIN 1  
e
B
PIN 1 IDENTIFIER  
E1  
E
D1  
D
C
0°~7°  
A2  
A
A1  
L
COMMON DIMENSIONS  
(Unit of measure = mm)  
MIN  
MAX  
1.20  
NOM  
NOTE  
SYMBOL  
A
A1  
A2  
D
0.05  
0.95  
15.75  
13.90  
15.75  
13.90  
0.30  
0.09  
0.45  
0.15  
1.00  
16.00  
14.00  
16.00  
14.00  
1.05  
16.25  
D1  
E
14.10 Note 2  
16.25  
Notes:  
E1  
B
14.10 Note 2  
0.45  
1.This package conforms to JEDEC reference MS-026, Variation AEB.  
2. Dimensions D1 and E1 do not include mold protrusion. Allowable  
protrusion is 0.25mm per side. Dimensions D1 and E1 are maximum  
plastic body size dimensions including mold mismatch.  
C
0.20  
3. Lead coplanarity is 0.10mm maximum.  
L
0.75  
e
0.80 TYP  
2010-10-20  
DRAWING NO. REV.  
64A  
TITLE  
2325 Orchard Parkway  
San Jose, CA 95131  
64A, 64-lead, 14 x 14mm Body Size, 1.0mm Body Thickness,  
0.8mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP)  
C
XMEGA A3BU [DATASHEET]  
67  
8362F–AVR–02/2013  
36.2 64M2  
D
Marked Pin# 1 ID  
E
SEATING PLANE  
C
A1  
A3  
TOP VIEW  
A
K
0.08  
C
L
Pin #1 Corner  
SIDE VIEW  
D2  
1
2
3
Pin #1  
Triangle  
Option A  
COMMON DIMENSIONS  
(Unit of Measure = mm)  
MIN  
0.80  
MAX  
1.00  
0.05  
NOM  
NOTE  
SYMBOL  
E2  
Option B  
Option C  
Pin #1  
A
0.90  
Chamfer  
(C 0.30)  
A1  
A3  
0.02  
0.20 REF  
b
0.18  
8.90  
7.50  
8.90  
0.25  
9.00  
7.65  
9.00  
0.30  
9.10  
7.80  
9.10  
D
D2  
E
Pin #1  
Notch  
(0.20 R)  
K
e
b
BOTTOM VIEW  
E2  
e
7.50  
7.65  
0.50 BSC  
0.40  
7.80  
L
0.35  
0.20  
0.45  
0.40  
0.27  
K
1. JEDEC Standard MO-220, (SAW Singulation) Fig. 1, VMMD.  
2. Dimension and tolerance conform to ASMEY14.5M-1994.  
Notes:  
2011-10-28  
TITLE  
DRAWING NO. REV.  
64M2  
2325 Orchard Parkway  
San Jose, CA 95131  
64M2, 64-pad, 9 x 9 x 1.0mm Bod y, Lead Pitch 0.50mm ,  
Quad Flat No Lead  
E
R
7.65mm Exposed Pad,  
Package (QFN)  
XMEGA A3BU [DATASHEET]  
68  
8362F–AVR–02/2013  
37. Electrical Characteristics  
All typical values are measured at T = 25C unless other temperature condition is given. All minimum and maximum  
values are valid across operating temperature and voltage unless other conditions are given.  
Note: For devices that are not available yet, preliminary values in this datasheet are based on simulations, and/or  
characterization of similar AVR XMEGA microcontrollers. After the device is characterized the final values will be  
available, hence existing values can change. Missing minimum and maximum values will be available after the  
device is characterized.  
37.1 Absolute Maximum Ratings  
Stresses beyond those listed in Table 37-1 on page 69 under may cause permanent damage to the device. This is a  
stress rating only and functional operation of the device at these or other conditions beyond those indicated in the  
operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended  
periods may affect device reliability.  
Table 37-1. Absolute maximum ratings.  
Symbol  
VCC  
IVCC  
IGND  
VPIN  
IPIN  
Parameter  
Condition  
Min.  
Typ.  
Max.  
4
Units  
Power supply voltage  
Current into a VCC pin  
Current out of a Gnd pin  
Pin voltage with respect to Gnd and VCC  
I/O pin sink/source current  
Storage temperature  
-0.3  
V
200  
mA  
200  
-0.5  
-25  
-65  
VCC+0.5  
25  
V
mA  
TA  
150  
°C  
Tj  
Junction temperature  
150  
37.2 General Operating Ratings  
The device must operate within the ratings listed in Table 37-2 in order for all other electrical characteristics and typical  
characteristics of the device to be valid.  
Table 37-2. General operating conditions.  
Symbol  
VCC  
Parameter  
Condition  
Min.  
1.60  
1.60  
-40  
Typ.  
Max.  
3.6  
Units  
Power supply voltage  
Analog supply voltage  
Temperature range  
Junction temperature  
V
AVCC  
TA  
3.6  
85  
°C  
Tj  
-40  
105  
XMEGA A3BU [DATASHEET]  
69  
8362F–AVR–02/2013  
Table 37-3. Operating voltage and frequency.  
Symbol  
Parameter  
Condition  
VCC = 1.6V  
VCC = 1.8V  
VCC = 2.7V  
VCC = 3.6V  
Min.  
Typ.  
Max.  
12  
Units  
0
0
0
0
12  
ClkCPU  
CPU clock frequency  
MHz  
32  
32  
The maximum CPU clock frequency depends on VCC. As shown in Figure 37-1 on page 70 the Frequency vs. VCC curve  
is linear between 1.8V < VCC < 2.7V.  
Figure 37-1. Maximum frequency vs. VCC  
.
MHz  
32  
Safe Operating Area  
12  
V
1.6  
1.8  
2.7  
3.6  
XMEGA A3BU [DATASHEET]  
70  
8362F–AVR–02/2013  
37.3 Current consumption  
Table 37-4. Current consumption for Active mode and sleep modes.  
Symbol Parameter  
Condition  
Min.  
Typ.  
120  
270  
350  
697  
658  
1.1  
Max.  
Units  
VCC = 1.8V  
VCC = 3.0V  
VCC = 1.8V  
VCC = 3.0V  
VCC = 1.8V  
32kHz, Ext. Clk  
µA  
1MHz, Ext. Clk  
Active Power  
consumption (1)  
700  
1.4  
15  
2MHz, Ext. Clk  
32MHz, Ext. Clk  
32kHz, Ext. Clk  
VCC = 3.0V  
mA  
10.6  
4.3  
VCC = 1.8V  
VCC = 3.0V  
VCC = 1.8V  
VCC = 3.0V  
VCC = 1.8V  
4.8  
78  
1MHz, Ext. Clk  
2MHz, Ext. Clk  
µA  
Idle Power  
150  
150  
290  
4.7  
consumption (1)  
350  
600  
7.0  
1.0  
5.0  
ICC  
VCC = 3.0V  
VCC = 3.0V  
32MHz, Ext. Clk  
T = 25°C  
mA  
0.1  
T = 85°C  
1.8  
Power-down power  
consumption  
WDT and Sampled BOD enabled,  
T = 25°C  
1.3  
3.1  
3.0  
7.0  
VCC = 3.0V  
WDT and Sampled BOD enabled,  
T = 85°C  
µA  
VCC = 1.8V  
VCC = 3.0V  
VCC = 1.8V  
VCC = 3.0V  
0.6  
0.7  
0.8  
1.0  
2
2
3
3
RTC from 1.024kHz low power  
32.768kHz TOSC, T = 25°C  
Power-save power  
consumption (2)  
RTC from low power 32.768kHz  
TOSC, T = 25°C  
Current through RESET pin  
subtracted  
Reset power consumption  
VCC = 3.0V  
250  
Notes:  
1. All Power Reduction Registers set.  
2. Maximum limits are based on characterization, and not tested in production.  
XMEGA A3BU [DATASHEET]  
71  
8362F–AVR–02/2013  
Table 37-5. Current consumption for modules and peripherals.  
Symbol Parameter  
Condition (1)  
Min.  
Typ.  
1.0  
27  
Max.  
Units  
ULP oscillator  
32.768kHz int. oscillator  
85  
2MHz int. oscillator  
32MHz int. oscillator  
DFLL enabled with 32.768kHz int. osc. as reference  
DFLL enabled with 32.768kHz int. osc. as reference  
115  
270  
460  
µA  
20x multiplication factor,  
PLL  
220  
32MHz int. osc. DIV4 as reference  
Watchdog timer  
1.0  
138  
1.2  
100  
95  
Continuous mode  
BOD  
Sampled mode, includes ULP oscillator  
Internal 1.0V reference  
Temperature sensor  
ICC  
3.0  
2.6  
2.1  
1.6  
1.9  
CURRLIMIT = LOW  
CURRLIMIT = MEDIUM  
CURRLIMIT = HIGH  
Normal mode  
250ksps  
ADC  
VREF = Ext ref  
mA  
250ksps  
DAC  
AC  
VREF = Ext ref  
No load  
Low Power mode  
1.1  
High Speed Mode  
Low Power Mode  
330  
130  
115  
16  
DMA  
615KBps between I/O registers and SRAM  
µA  
Timer/Counter  
USART  
Rx and Tx enabled, 9600 BAUD  
2.5  
4
Flash memory and EEPROM programming  
mA  
Note:  
1. All parameters measured as the difference in current consumption between module enabled and disabled. All data at VCC = 3.0V, ClkSYS = 1MHz external clock  
without prescaling, T = 25°C unless other conditions are given.  
XMEGA A3BU [DATASHEET]  
72  
8362F–AVR–02/2013  
37.4 Wake-up time from sleep modes  
Table 37-6. Device wake-up time from sleep modes with various system clock sources.  
Symbol Parameter  
Condition  
External 2MHz clock  
Min.  
Typ. (1)  
2.0  
Max.  
Units  
Wake-up time from idle,  
standby, and extended standby  
mode  
32.768kHz internal oscillator  
2MHz internal oscillator  
32MHz internal oscillator  
External 2MHz clock  
120  
2.0  
0.2  
twakeup  
µs  
4.5  
32.768kHz internal oscillator  
2MHz internal oscillator  
32MHz internal oscillator  
320  
9.0  
Wake-up time from Power-save  
and Power-down mode  
5.0  
Note:  
1. The wake-up time is the time from the wake-up request is given until the peripheral clock is available on pin, see Figure 37-2. All peripherals and modules start  
execution from the first clock cycle, expect the CPU that is halted for four clock cycles before program execution starts.  
Figure 37-2. Wake-up time definition.  
Wakeup time  
Wakeup request  
Clock output  
XMEGA A3BU [DATASHEET]  
73  
8362F–AVR–02/2013  
37.5 I/O Pin Characteristics  
The I/O pins complies with the JEDEC LVTTL and LVCMOS specification and the high- and low level input and output  
voltage limits reflect or exceed this specification.  
Table 37-7. I/O pin characteristics.  
Symbol Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
(1)  
IOH  
/
I/O pin source/sink current  
-20  
20  
mA  
(2)  
IOL  
VCC = 2.7 - 3.6V  
2
0.7*VCC  
0.7*VCC  
-0.3  
-0.3  
-0.3  
2.4  
VCC+0.3  
VCC+0.3  
VCC+0.3  
0.3*VCC  
0.3*VCC  
0.3*VCC  
VIH  
High level input voltage  
VCC = 2.0 - 2.7V  
VCC = 1.6 - 2.0V  
VCC = 2.7- 3.6V  
VCC = 2.0 - 2.7V  
VCC = 1.6 - 2.0V  
VCC = 3.0 - 3.6V  
VIL  
Low level input voltage  
IOH = -2mA  
IOH = -1mA  
IOH = -2mA  
IOH = -8mA  
IOH = -6mA  
IOH = -2mA  
IOL = 2mA  
IOL = 1mA  
IOL = 2mA  
IOL = 15mA  
IOL = 10mA  
IOL = 5mA  
0.94*VCC  
0.96*VCC  
0.92*VCC  
2.9  
2.0  
VCC = 2.3 - 2.7V  
1.7  
VOH  
High level output voltage  
V
VCC = 3.3V  
2.6  
VCC = 3.0V  
2.1  
2.6  
VCC = 1.8V  
1.4  
1.6  
VCC = 3.0 - 3.6V  
0.05*VCC  
0.03*VCC  
0.06*VCC  
0.4  
0.4  
0.4  
VCC = 2.3 - 2.7V  
0.7  
VOL  
Low level output voltage  
VCC = 3.3V  
VCC = 3.0V  
VCC = 1.8V  
T = 25°C  
0.76  
0.64  
0.46  
0.1  
0.3  
0.3  
IIN  
RP  
Input leakage current  
<0.001  
25  
µA  
I/O pin Pull/Bus-keeper resistor  
Reset pin pull-up resistor  
k  
RRST  
25  
4
tr  
Rise time  
No load  
ns  
slew rate limitation  
7
Notes:  
1. The sum of all IOH for PORTA and PORTB must not exceed 100mA.  
The sum of all IOH for PORTC, PORTD, PORTE must for each port not exceed 200mA.  
The sum of all IOH for pins PF[0-4] on PORTF must not exceed 200mA.  
The sum of all IOL for pins PF[6-7] on PORTF, PORTR and PDI must not exceed 100mA.  
2. The sum of all IOL for PORTA and PORTB must not exceed 100mA.  
The sum of all IOL for PORTC, PORTD, PORTE must for each port not exceed 200mA.  
The sum of all IOL for pins PF[0-4] on PORTF must not exceed 200mA.  
The sum of all IOL for pins PF[6-7] on PORTF, PORTR and PDI must not exceed 100mA.  
XMEGA A3BU [DATASHEET]  
74  
8362F–AVR–02/2013  
37.6 ADC characteristics  
Table 37-8. Power supply, reference and input range.  
Symbol  
AVCC  
VREF  
Rin  
Parameter  
Condition  
Min.  
VCC- 0.3  
1
Typ.  
Max.  
Units  
Analog supply voltage  
Reference voltage  
Input resistance  
VCC+ 0.3  
AVCC- 0.6  
V
Switched  
4.0  
4.4  
>10  
7
k  
pF  
Cin  
Input capacitance  
Reference input resistance  
Switched  
RAREF  
CAREF  
VIN  
(leakage only)  
M  
pF  
Reference input capacitance Static load  
Input range  
-0.1  
-VREF  
-V  
AVCC+0.1  
VREF  
Conversion range  
Conversion range  
Fixed offset voltage  
Differential mode, Vinp - Vinn  
V
VIN  
Single ended unsigned mode, Vinp  
VREF-V  
ΔV  
190  
LSB  
Table 37-9. Clock and timing.  
Symbol  
Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
Maximum is 1/4 of Peripheral clock  
frequency  
100  
2000  
ClkADC  
ADC Clock frequency  
kHz  
Measuring internal signals  
Current limitation (CURRLIMIT) off  
CURRLIMIT = LOW  
100  
100  
100  
100  
100  
0.25  
125  
2000  
1500  
1000  
500  
5
fclkADC  
Sample rate  
ksps  
CURRLIMIT = MEDIUM  
CURRLIMIT = HIGH  
Sampling Time  
1/2 ClkADC cycle  
µs  
(RES+2)/2+(GAIN !=0)  
RES (Resolution) = 8 or 12  
ClkADC  
cycles  
Conversion time (latency)  
Start-up time  
5
8
ADC clock cycles  
12  
7
24  
7
ClkADC  
cycles  
After changing reference or input mode  
After ADC flush  
ADC settling time  
1
1
XMEGA A3BU [DATASHEET]  
75  
8362F–AVR–02/2013  
Table 37-10. Accuracy characteristics.  
Symbol  
Parameter  
Condition (2)  
Min.  
Typ.  
12  
Max.  
12  
Units  
RES  
Resolution  
Programmable to 8 or 12 bit  
8
Bits  
VCC-1.0V < VREF< VCC-0.6V  
±1.2  
±1.5  
±1.0  
±1.5  
<±0.8  
-1  
±2  
500ksps  
All VREF  
VCC-1.0V < VREF< VCC-0.6V  
All VREF  
±3  
INL (1)  
Integral non-linearity  
±2  
lsb  
2000ksps  
±3  
DNL (1)  
Differential non-linearity  
Offset Error  
guaranteed monotonic  
<±1  
mV  
Temperature drift  
<0.01  
<0.6  
-1  
mV/K  
mV/V  
Operating voltage drift  
External reference  
AVCC/1.6  
AVCC/2.0  
Bandgap  
10  
Differential  
mode  
mV  
8
Gain Error  
±5  
Temperature drift  
<0.02  
<0.5  
mV/K  
mV/V  
Operating voltage drift  
Differential mode, shorted input  
2msps, VCC = 3.6V, ClkPER = 16MHz  
mV  
rms  
Noise  
0.4  
Notes:  
1. Maximum numbers are based on characterisation and not tested in production, and valid for 5% to 95% input voltage range.  
2. Unless otherwise noted all linearity, offset and gain error numbers are valid under the condition that external VREF is used.  
Table 37-11. Gain stage characteristics.  
Symbol  
Rin  
Parameter  
Condition  
Switched in normal mode  
Switched in normal mode  
Gain stage output  
Min.  
Typ.  
4.0  
Max.  
Units  
k  
pF  
Input resistance  
Input capacitance  
Signal range  
Cin  
4.4  
0
VCC- 0.6  
V
ClkADC  
cycles  
Propagation delay  
Sample rate  
ADC conversion rate  
Same as ADC  
500ksps  
1
100  
1000  
±4  
kHz  
lsb  
All gain  
settings  
INL (1)  
Integral Non-Linearity  
±1.5  
XMEGA A3BU [DATASHEET]  
76  
8362F–AVR–02/2013  
Symbol  
Parameter  
Condition  
1x gain, normal mode  
Min.  
Typ.  
-0.8  
-2.5  
-3.5  
-2  
Max.  
Units  
Gain Error  
8x gain, normal mode  
64x gain, normal mode  
1x gain, normal mode  
8x gain, normal mode  
64x gain, normal mode  
1x gain, normal mode  
8x gain, normal mode  
64x gain, normal mode  
%
Offset Error,  
input referred  
-5  
mV  
-4  
0.5  
1.5  
11  
VCC = 3.6V  
Ext. VREF  
mV  
rms  
Noise  
Note:  
1. Maximum numbers are based on characterisation and not tested in production, and valid for 5% to 95% input voltage range.  
37.7 DAC Characteristics  
Table 37-12. Power supply, reference and output range.  
Symbol  
AVCC  
Parameter  
Condition  
Min.  
VCC- 0.3  
1.0  
Typ.  
Max.  
VCC+ 0.3  
VCC- 0.6  
50  
Units  
Analog supply voltage  
V
VREF  
Reference voltage  
Rchannel  
DC output impedance  
V
Linear output voltage range  
Reference input resistance  
Reference input capacitance Static load  
Minimum Resistance load  
0.15  
AVCC-0.15  
RAREF  
CAREF  
>10  
7
M  
pF  
k  
pF  
nF  
1
100  
Maximum capacitance load  
1000serial resistance  
1
AVCC/1000  
10  
Operating within accuracy specification  
Safe operation  
Output sink/source  
mA  
Table 37-13. Clock and timing.  
Symbol  
Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
Fclk  
Conversion rate  
Fout=Fclk/4, Cload=100pF, maximum step size  
0
1000  
ksps  
XMEGA A3BU [DATASHEET]  
77  
8362F–AVR–02/2013  
Table 37-14. Accuracy characteristics.  
Symbol  
Parameter  
Condition  
Min.  
Typ.  
Max.  
12  
3
Units  
RES  
Input Resolution  
Bits  
VCC = 1.6V  
VCC = 3.6V  
VCC = 1.6V  
VCC = 3.6V  
VCC = 1.6V  
VCC = 3.6V  
VCC = 1.6V  
VCC = 3.6V  
VCC = 1.6V  
VCC = 3.6V  
VCC = 1.6V  
VCC = 3.6V  
2.0  
1.5  
2.0  
1.5  
5.0  
5.0  
1.5  
0.6  
1.0  
0.6  
4.5  
4.5  
<4  
VREF= Ext 1.0V  
VREF=AVCC  
2.5  
4
INL (1)  
Integral non-linearity  
4
VREF=INT1V  
VREF=Ext 1.0V  
VREF=AVCC  
3
lsb  
1.5  
3.5  
1.5  
DNL (1)  
Differential non-linearity  
VREF=INT1V  
Gain error  
After calibration  
Gain calibration step size  
Gain calibration drift  
Offset error  
4
VREF= Ext 1.0V  
After calibration  
<0.2  
<1  
mV/K  
lsb  
Offset calibration step size  
1
Note:  
1. Maximum numbers are based on characterisation and not tested in production, and valid for 5% to 95% output voltage range.  
37.8 Analog Comparator Characteristics  
Table 37-15. Analog Comparator characteristics.  
Symbol  
Voff  
Parameter  
Condition  
Min.  
Typ.  
< 10  
<1  
Max.  
Units  
mV  
nA  
Input offset voltage  
Input leakage current  
Input voltage range  
AC startup time  
Ilk  
-0.1  
AVCC  
V
100  
0
µs  
Vhys1  
Hysteresis, None  
mode = High Speed (HS)  
mode = Low Power (LP)  
mode = HS  
13  
30  
30  
60  
Vhys2  
Hysteresis, Small  
Hysteresis, Large  
mV  
Vhys3  
mode = LP  
XMEGA A3BU [DATASHEET]  
78  
8362F–AVR–02/2013  
Symbol  
Parameter  
Condition  
VCC = 3.0V, T= 85°C  
mode = HS  
VCC = 3.0V, T= 85°C  
mode = LP  
Min.  
Typ.  
30  
Max.  
Units  
mode = HS  
mode = LP  
90  
30  
tdelay  
Propagation delay  
ns  
130  
130  
500  
Single mode  
Double mode  
2
4
8
Current source calibration  
range  
µs  
16  
0.5  
64-Level Voltage Scaler  
Integral non-linearity (INL)  
0.3  
lsb  
37.9 Bandgap and Internal 1.0V Reference Characteristics  
Table 37-16. Bandgap and Internal 1.0V reference characteristics.  
Symbol Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
As reference for ADC or DAC  
As input voltage to ADC and AC  
1 ClkPER + 2.5µs  
Startup time  
µs  
1.5  
1.1  
1
Bandgap voltage  
V
INT1V  
Internal 1.00V reference  
T= 85°C, after calibration  
0.99  
1.01  
Variation over voltage and temperature  
Relative to T= 85°C, VCC = 3.0V  
1.0  
%
37.10 Brownout Detection Characteristics  
Table 37-17. Brownout detection characteristics.  
Symbol Parameter  
BOD level 0 falling VCC  
BOD level 1 falling VCC  
BOD level 2 falling VCC  
Condition  
Min.  
Typ.  
1.62  
1.8  
Max.  
Units  
1.60  
1.72  
2.0  
BOD level 3 falling VCC  
VBOT  
2.2  
V
BOD level 4 falling VCC  
2.4  
BOD level 5 falling VCC  
BOD level 6 falling VCC  
BOD level 7 falling VCC  
2.6  
2.8  
3.0  
Continuous mode  
Sampled mode  
0.4  
tBOD  
Detection time  
Hysteresis  
µs  
1000  
1.6  
VHYST  
%
XMEGA A3BU [DATASHEET]  
79  
8362F–AVR–02/2013  
37.11 External Reset Characteristics  
Table 37-18. External reset characteristics.  
Symbol Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
tEXT  
Minimum reset pulse width  
95  
1000  
ns  
VCC = 2.7 - 3.6V  
0.60*VCC  
0.70*VCC  
0.40*VCC  
0.30*VCC  
Reset threshold voltage (VIH)  
VCC = 1.6 - 2.7V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 2.7V  
VRST  
V
Reset threshold voltage (VIL)  
37.12 Power-on Reset Characteristics  
Table 37-19. Power-on reset characteristics.  
Symbol Parameter  
Condition  
Min.  
Typ.  
1.0  
Max.  
Units  
VCC falls faster than 1V/ms  
VCC falls at 1V/ms or slower  
0.4  
0.8  
(1)  
VPOT-  
POR threshold voltage falling VCC  
POR threshold voltage rising VCC  
1.0  
V
VPOT+  
1.3  
1.59  
Note:  
1. VPOT- values are only valid when BOD is disabled. When BOD is enabled VPOT- = VPOT+.  
37.13 VBAT and Battery Backup Characteristics  
Table 37-20. VBAT and battery backup characteristics.  
Symbol Parameter  
Vbat supply voltage range  
Condition  
Min  
Typ  
Max  
Units  
V
Vbbbod  
3.6  
0.1  
Vcc Power-down slope range  
BOD threshold voltage  
Monotonic falling  
V/ms  
1.8  
V
s
Vbbbod  
BBBOD threshold voltage  
BBBOD detection speed  
1.7  
1
2.1  
2
Powering from VBAT pin RTC from Low  
Power 32kHz TOSC and XOSC Faillure  
Monitor enabled  
Current consumption  
VBAT pin leackage  
0.6  
µA  
nA  
Powering Battery Backup module from Vcc  
50  
XMEGA A3BU [DATASHEET]  
80  
8362F–AVR–02/2013  
37.14 Flash and EEPROM Memory Characteristics  
Table 37-21. Endurance and data retention.  
Symbol Parameter  
Condition  
Min.  
10K  
10K  
100  
25  
Typ.  
Max.  
Units  
25°C  
85°C  
25°C  
55°C  
25°C  
85°C  
25°C  
55°C  
Write/Erase cycles  
Cycle  
Flash  
Data retention  
Year  
Cycle  
Year  
80K  
30K  
100  
25  
Write/Erase cycles  
Data retention  
EEPROM  
Table 37-22. Programming time.  
Symbol Parameter  
Condition  
Min.  
Typ. (1)  
Max.  
Units  
Chip Erase  
256KB Flash, EEPROM (2) and SRAM Erase  
Page Erase  
105  
4
Flash  
Page Write  
4
Atomic Page Erase and Write  
Page Erase  
8
ms  
4
EEPROM  
Page Write  
4
Atomic Page Erase and Write  
8
Notes:  
1. Programming is timed from the 2MHz internal oscillator.  
2. EEPROM is not erased if the EESAVE fuse is programmed.  
37.15 Clock and Oscillator Characteristics  
37.15.1 Calibrated 32.768kHz Internal Oscillator characteristics  
Table 37-23. 32.768kHz internal oscillator characteristics.  
Symbol Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
Frequency  
32.768  
kHz  
Factory calibration accuracy  
User calibration accuracy  
T = 85C, VCC = 3.0V  
-0.5  
-0.5  
0.5  
0.5  
%
XMEGA A3BU [DATASHEET]  
81  
8362F–AVR–02/2013  
37.15.2 Calibrated 2MHz RC Internal Oscillator characteristics  
Table 37-24. 2MHz internal oscillator characteristics.  
Symbol Parameter  
Frequency range  
Condition  
Min.  
Typ.  
Max.  
Units  
DFLL can tune to this frequency over  
voltage and temperature  
1.8  
2.2  
MHz  
Factory calibrated frequency  
Factory calibration accuracy  
User calibration accuracy  
DFLL calibration stepsize  
2.0  
T = 85C, VCC= 3.0V  
-1.5  
-0.2  
1.5  
0.2  
%
0.22  
37.15.3 Calibrated and tunable 32MHz internal oscillator characteristics  
Table 37-25. 32MHz internal oscillator characteristics.  
Symbol Parameter  
Frequency range  
Condition  
Min.  
Typ.  
Max.  
Units  
DFLL can tune to this frequency over  
voltage and temperature  
30  
55  
MHz  
Factory calibrated frequency  
Factory calibration accuracy  
User calibration accuracy  
DFLL calibration step size  
32  
T = 85C, VCC= 3.0V  
-1.5  
-0.2  
1.5  
0.2  
%
0.23  
37.15.4 32kHz Internal ULP Oscillator characteristics  
Table 37-26. 32kHz internal ULP oscillator characteristics.  
Symbol Parameter  
Output frequency  
Accuracy  
Condition  
Min.  
Typ.  
Max.  
Units  
kHz  
%
32  
-30  
30  
XMEGA A3BU [DATASHEET]  
82  
8362F–AVR–02/2013  
37.15.5 Internal Phase Locked Loop (PLL) characteristics  
Table 37-27. Internal PLL characteristics.  
Symbol Parameter  
Condition  
Min.  
0.4  
20  
Typ.  
Max.  
64  
Units  
fIN  
Input frequency  
Output frequency must be within fOUT  
VCC= 1.6 - 1.8V  
48  
MHz  
fOUT  
Output frequency (1)  
VCC= 2.7 - 3.6V  
20  
128  
Start-up time  
Re-lock time  
25  
25  
µs  
Note:  
1. The maximum output frequency vs. supply voltage is linear between 1.8V and 2.7V, and can never be higher than four times the maximum CPU frequency.  
37.15.6 External clock characteristics  
Figure 37-3. External clock drive waveform.  
tCH  
tCH  
tCR  
tCF  
VIH1  
VIL1  
tCL  
tCK  
Table 37-28. External clock used as system clock without prescaling.  
Symbol Parameter  
Clock frequency(1)  
Condition  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
Min.  
0
Typ.  
Max.  
12  
Units  
1/tCK  
MHz  
0
32  
83.3  
31.5  
30.0  
12.5  
30.0  
12.5  
tCK  
Clock period  
tCH  
Clock high time  
tCL  
Clock low time  
ns  
10  
3
tCR  
Rise time (for maximum frequency)  
10  
3
tCF  
Fall time (for maximum frequency)  
tCK  
Change in period from one clock cycle to the next  
10  
%
Note:  
1. The maximum frequency vs. supply voltage is linear between 1.8V and 2.7V, and the same applies for all other parameters with supply voltage conditions.  
XMEGA A3BU [DATASHEET]  
83  
8362F–AVR–02/2013  
Table 37-29. External clock with prescaler (1)for system clock.  
Symbol Parameter  
Condition  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
Min.  
0
Typ.  
Max.  
90  
Units  
1/tCK  
Clock Frequency (2)  
Clock Period  
MHz  
0
142  
11  
tCK  
ns  
ns  
ns  
ns  
7
4.5  
2.4  
4.5  
2.4  
tCH  
Clock High Time  
tCL  
Clock Low Time  
1.5  
1.0  
1.5  
1.0  
10  
tCR  
Rise Time (for maximum frequency)  
tCF  
Fall Time (for maximum frequency)  
ns  
%
tCK  
Change in period from one clock cycle to the next  
Notes:  
1. System Clock Prescalers must be set so that maximum CPU clock frequency for device is not exceeded.  
2. The maximum frequency vs. supply voltage is linear between 1.6V and 2.7V, and the same applies for all other parameters with supply voltage conditions.  
37.15.7 External 16MHz crystal oscillator and XOSC characteristics  
Table 37-30. External 16MHz crystal oscillator and XOSC characteristics.  
Symbol Parameter  
Condition  
Min.  
Typ.  
<10  
<1  
Max.  
Units  
FRQRANGE=0  
XOSCPWR=0  
XOSCPWR=1  
XOSCPWR=0  
XOSCPWR=1  
Cycle to cycle jitter  
FRQRANGE=1, 2, or 3  
<1  
ns  
FRQRANGE=0  
<6  
Long term jitter  
Frequency error  
FRQRANGE=1, 2, or 3  
<0.5  
<0.5  
<0.1  
<0.05  
<0.005  
<0.005  
40  
FRQRANGE=0  
FRQRANGE=1  
FRQRANGE=2 or 3  
XOSCPWR=0  
XOSCPWR=1  
XOSCPWR=0  
XOSCPWR=1  
%
FRQRANGE=0  
FRQRANGE=1  
FRQRANGE=2 or 3  
42  
Duty cycle  
45  
48  
XMEGA A3BU [DATASHEET]  
84  
8362F–AVR–02/2013  
Symbol Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
0.4MHz resonator,  
CL=100pF  
2.4k  
XOSCPWR=0,  
FRQRANGE=0  
1MHz crystal, CL=20pF  
2MHz crystal, CL=20pF  
2MHz crystal  
8.7k  
2.1k  
4.2k  
250  
195  
360  
285  
155  
365  
200  
105  
435  
235  
125  
495  
270  
145  
305  
XOSCPWR=0,  
FRQRANGE=1,  
CL=20pF  
8MHz crystal  
9MHz crystal  
8MHz crystal  
XOSCPWR=0,  
FRQRANGE=2,  
CL=20pF  
9MHz crystal  
12MHz crystal  
9MHz crystal  
XOSCPWR=0,  
FRQRANGE=3,  
CL=20pF  
12MHz crystal  
16MHz crystal  
9MHz crystal  
RQ  
Negative impedance (1)  
XOSCPWR=1,  
FRQRANGE=0,  
CL=20pF  
12MHz crystal  
16MHz crystal  
9MHz crystal  
XOSCPWR=1,  
FRQRANGE=1,  
CL=20pF  
12MHz crystal  
16MHz crystal  
12MHz crystal  
XOSCPWR=1,  
FRQRANGE=2,  
CL=20pF  
16MHz crystal  
12MHz crystal  
16MHz crystal  
160  
380  
205  
XOSCPWR=1,  
FRQRANGE=3,  
CL=20pF  
ESR  
SF = safety factor  
min(RQ)/SF  
k  
Parasitic capacitance  
XTAL1 pin  
CXTAL1  
5.2  
Parasitic capacitance  
XTAL2 pin  
pF  
CXTAL2  
CLOAD  
6.8  
Parasitic capacitance load  
2.95  
Note:  
1. Numbers for negative impedance are not tested in production but guaranteed from design and characterization.  
XMEGA A3BU [DATASHEET]  
85  
8362F–AVR–02/2013  
37.15.8 External 32.768kHz crystal oscillator and TOSC characteristics  
Table 37-31. External 32.768kHz crystal oscillator and TOSC characteristics.  
Symbol Parameter  
Condition  
Min.  
Typ.  
Max.  
60  
Units  
Crystal load capacitance 6.5pF  
Crystal load capacitance 9.0pF  
Recommended crystal equivalent  
ESR/R1  
k  
series resistance (ESR)  
35  
CTOSC1  
CTOSC2  
CL  
Parasitic capacitance TOSC1 pin  
Parasitic capacitance TOSC2 pin  
Parasitic capacitance load  
3.0  
2.9  
2.0  
pF  
capacitance load matched to  
crystal specification  
Recommended safety factor  
3.0  
Note:  
1. See Figure 37-4 for definition.  
Figure 37-4. TOSC input capacitance.  
CL1  
CL2  
Device internal  
External  
TOSC1  
TOSC2  
32.768kHz crystal  
The parasitic capacitance between the TOSC pins is CL1 + CL2 in series as seen from the crystal when oscillating without  
external capacitors.  
XMEGA A3BU [DATASHEET]  
86  
8362F–AVR–02/2013  
37.16 SPI Characteristics  
Figure 37-5. SPI timing requirements in master mode.  
SS  
tMOS  
tSCKR  
tSCKF  
SCK  
(CPOL = 0)  
tSCKW  
SCK  
(CPOL = 1)  
tSCKW  
tMIS  
tMIH  
tSCK  
MISO  
(Data input)  
MSB  
LSB  
tMOH  
tMOH  
MOSI  
(Data output)  
MSB  
LSB  
Figure 37-6. SPI timing requirements in slave mode.  
SS  
tSSS  
tSCKR  
tSCKF  
tSSH  
SCK  
(CPOL = 0)  
tSSCKW  
SCK  
(CPOL = 1)  
tSSCKW  
tSIS  
tSIH  
tSSCK  
MOSI  
(Data input)  
MSB  
LSB  
tSOSSS  
tSOS  
tSOSSH  
MISO  
(Data output)  
MSB  
LSB  
XMEGA A3BU [DATASHEET]  
87  
8362F–AVR–02/2013  
Table 37-32. SPI timing characteristics and requirements.  
Symbol Parameter Condition  
Min.  
Typ.  
Max.  
Units  
(See Table 22-3 in  
XMEGA AU Manual)  
tSCK  
SCK Period  
Master  
tSCKW  
tSCKR  
tSCKF  
tMIS  
SCK high/low width  
SCK Rise time  
Master  
Master  
Master  
Master  
Master  
Master  
Master  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
0.5*SCK  
2.7  
SCK Fall time  
2.7  
MISO setup to SCK  
MISO hold after SCK  
MOSI setup SCK  
MOSI hold after SCK  
Slave SCK Period  
SCK high/low width  
SCK Rise time  
10  
tMIH  
10  
tMOS  
tMOH  
tSSCK  
tSSCKW  
tSSCKR  
tSSCKF  
tSIS  
0.5*SCK  
1.0  
4*t ClkPER  
2*t ClkPER  
ns  
1600  
1600  
SCK Fall time  
MOSI setup to SCK  
MOSI hold after SCK  
SS setup to SCK  
3
t ClkPER  
21  
tSIH  
tSSS  
tSSH  
SS hold after SCK  
MISO setup SCK  
MISO hold after SCK  
MISO setup after SS low  
MISO hold after SS high  
20  
tSOS  
8.0  
13  
tSOH  
tSOSS  
tSOSH  
11  
8.0  
XMEGA A3BU [DATASHEET]  
88  
8362F–AVR–02/2013  
37.17 Two-Wire Interface Characteristics  
Table 37-33 describes the requirements for devices connected to the Two-Wire Interface Bus. The Atmel AVR XMEGA  
Two-Wire Interface meets or exceeds these requirements under the noted conditions. Timing symbols refer to Figure 37-  
7.  
Figure 37-7. Two-Wire Interface bus timing.  
tof  
tHIGH  
tLOW  
tr  
SCL  
SDA  
tHD;DAT  
tSU;STA  
tSU;STO  
tSU;DAT  
tHD;STA  
tBUF  
Table 37-33. Two-wire interface characteristics.  
Symbol Parameter  
Condition  
Min.  
0.7VCC  
0.5  
Typ.  
Max.  
Units  
VIH  
VIL  
Input high voltage  
VCC+0.5  
0.3×VCC  
Input low voltage  
V
(1)  
Vhys  
Hysteresis of Schmitt Trigger inputs  
Output low voltage  
0.05VCC  
0
VOL  
3mA, sink current  
0.4  
300  
250  
50  
(1)(2)  
(1)(2)  
tr  
tof  
Rise time for both SDA and SCL  
Output fall time from VIHmin to VILmax  
Spikes suppressed by input filter  
Input current for each I/O pin  
Capacitance for each I/O pin  
SCL clock frequency  
20+0.1Cb  
20+0.1Cb  
0
10pF < Cb < 400pF (2)  
0.1VCC < VI < 0.9VCC  
ns  
tSP  
II  
-10  
10  
µA  
pF  
CI  
10  
fSCL  
fPER (3)>max(10fSCL, 250kHz)  
0
400  
kHz  
fSCL 100kHz  
100ns  
Cb  
--------------  
VCC 0.4V  
---------------------------  
3mA  
RP  
Value of pull-up resistor  
300ns  
fSCL > 100kHz  
--------------  
Cb  
XMEGA A3BU [DATASHEET]  
89  
8362F–AVR–02/2013  
Symbol Parameter  
Condition  
fSCL 100kHz  
Min.  
4.0  
0.6  
4.7  
1.3  
4.0  
0.6  
4.7  
0.6  
0
Typ.  
Max.  
Units  
tHD;STA  
Hold Time (repeated) START condition  
fSCL > 100kHz  
fSCL 100kHz  
fSCL > 100kHz  
fSCL 100kHz  
fSCL > 100kHz  
fSCL 100kHz  
fSCL > 100kHz  
fSCL 100kHz  
fSCL > 100kHz  
fSCL 100kHz  
fSCL > 100kHz  
fSCL 100kHz  
fSCL > 100kHz  
fSCL 100kHz  
fSCL > 100kHz  
tLOW  
Low Period of SCL Clock  
High Period of SCL Clock  
tHIGH  
Set-up time for a repeated START  
condition  
tSU;STA  
tHD;DAT  
tSU;DAT  
tSU;STO  
tBUF  
µs  
3.45  
0.9  
Data hold time  
0
250  
100  
4.0  
0.6  
4.7  
1.3  
Data setup time  
Setup time for STOP condition  
Bus free time between a STOP and  
START condition  
Notes:  
1. Required only for fSCL > 100kHz.  
2. Cb = Capacitance of one bus line in pF.  
3.  
fPER = Peripheral clock frequency.  
XMEGA A3BU [DATASHEET]  
90  
8362F–AVR–02/2013  
38. Typical Characteristics  
38.1 Current consumption  
38.1.1 Active mode supply current  
Figure 38-1. Active supply current vs. frequency.  
fSYS = 0 - 1MHz external clock, T = 25°C.  
800  
700  
600  
500  
400  
300  
200  
100  
3.3V  
3.0V  
2.7V  
2.2V  
1.8V  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
Frequency [MHz]  
Figure 38-2. Active supply current vs. frequency.  
fSYS = 1 - 32MHz external clock, T = 25°C.  
14  
12  
10  
8
3.3V  
3.0V  
2.7V  
6
2.2V  
4
1.8V  
2
0
0
4
8
12  
16  
20  
24  
28  
32  
Frequency [MHz]  
XMEGA A3BU [DATASHEET]  
91  
8362F–AVR–02/2013  
Figure 38-3. Active mode supply current vs. VCC  
.
fSYS = 32.768kHz internal oscillator.  
450  
400  
350  
300  
250  
200  
150  
100  
-40°C  
25°C  
85°C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
V
CC [V]  
Figure 38-4. Active mode supply current vs. VCC  
.
fSYS = 1MHz external clock.  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
-40°C  
25°C  
85°C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
XMEGA A3BU [DATASHEET]  
92  
8362F–AVR–02/2013  
Figure 38-5. Active mode supply current vs. VCC  
.
fSYS = 2MHz internal oscillator.  
1800  
1600  
1400  
1200  
1000  
800  
-40°C  
25°C  
85°C  
600  
400  
200  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
VCC [V]  
2.8  
3.0  
3.2  
3.4  
3.6  
Figure 38-6. Active mode supply current vs. VCC  
.
fSYS = 32MHz internal oscillator prescaled to 8MHz.  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
-40°C  
25°C  
85°C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
XMEGA A3BU [DATASHEET]  
93  
8362F–AVR–02/2013  
Figure 38-7. Active mode supply current vs. VCC  
.
fSYS = 32MHz internal oscillator.  
16  
15  
14  
13  
12  
11  
10  
9
-40°C  
25°C  
85°C  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
VCC [V]  
38.1.2 Idle mode supply current  
Figure 38-8. Idle mode supply current vs. frequency.  
fSYS = 0 - 1MHz external clock, T = 25°C.  
180  
160  
140  
120  
100  
80  
3.3V  
3.0V  
2.7V  
2.2V  
1.8V  
60  
40  
20  
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
Frequency [MHz]  
XMEGA A3BU [DATASHEET]  
94  
8362F–AVR–02/2013  
Figure 38-9. Idle mode supply current vs. frequency.  
fSYS = 1 - 32MHz external clock, T = 25°C.  
6
5
4
3
2
3.3V  
3.0V  
2.7V  
2.2V  
1
0
1.8V  
0
4
8
12  
16  
Frequency [MHz]  
20  
24  
28  
32  
Figure 38-10.Idle mode supply current vs. VCC  
.
fSYS = 32.768kHz internal oscillator.  
35  
34  
33  
32  
31  
30  
29  
28  
85°C  
-40°C  
25°C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
XMEGA A3BU [DATASHEET]  
95  
8362F–AVR–02/2013  
Figure 38-11.Idle mode supply current vs. VCC  
.
fSYS = 1MHz external clock.  
200  
180  
160  
140  
120  
100  
80  
85°C  
25°C  
-40°C  
60  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
Figure 38-12.Idle mode supply current vs. VCC  
.
fSYS = 2MHz internal oscillator.  
500  
450  
400  
350  
300  
250  
200  
-40°C  
25°C  
85°C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
XMEGA A3BU [DATASHEET]  
96  
8362F–AVR–02/2013  
Figure 38-13.Idle mode supply current vs. VCC  
.
fSYS = 32MHz internal oscillator prescaled to 8MHz.  
2.3  
-40°C  
25°C  
85°C  
2.1  
1.9  
1.7  
1.5  
1.3  
1.1  
0.9  
0.7  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
Figure 38-14.Idle mode current vs. VCC  
.
fSYS = 32MHz internal oscillator.  
6.7  
6.4  
6.1  
5.8  
5.5  
5.2  
4.9  
4.6  
4.3  
4.0  
-40°C  
25°C  
85°C  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
[V]  
3.3  
3.4  
3.5  
3.6  
V
CC  
XMEGA A3BU [DATASHEET]  
97  
8362F–AVR–02/2013  
38.1.3 Power-down mode supply current  
Figure 38-15.Power-down mode supply current vs. VCC  
.
All functions disabled.  
2.4  
2.1  
1.8  
1.5  
1.2  
0.9  
0.6  
0.3  
0
85°C  
25°C  
-40°C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
Figure 38-16.Power-down mode supply current vs. VCC  
.
Watchdog and sampled BOD enabled.  
3.5  
3.2  
2.9  
2.6  
2.3  
2.0  
1.7  
1.4  
1.1  
85°C  
25°C  
-40°C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
V
CC [V]  
XMEGA A3BU [DATASHEET]  
98  
8362F–AVR–02/2013  
38.1.4 Power-save mode supply current  
Figure 38-17.Power-save mode supply current vs. VCC  
.
Real Time Counter enabled and running from 1.024kHz output of 32.768kHz TOSC.  
0.90  
0.85  
0.80  
0.75  
0.70  
0.65  
0.60  
0.55  
0.50  
Normal mode  
Low-power mode  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
38.1.5 Standby mode supply current  
Figure 38-18.Standby supply current vs. VCC  
.
Standby, fSYS = 1MHz.  
9.5  
9.0  
8.5  
8.0  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
85°C  
25°C  
-40°C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
XMEGA A3BU [DATASHEET]  
99  
8362F–AVR–02/2013  
Figure 38-19.Standby supply current vs. VCC  
.
25°C, running from different crystal oscillators.  
500  
16MHz  
12MHz  
450  
400  
350  
300  
250  
200  
150  
8MHz  
2MHz  
0.454MHz  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
38.2 I/O Pin Characteristics  
38.2.1 Pull-up  
Figure 38-20.I/O pin pull-up resistor current vs. input voltage.  
VCC = 1.8V.  
80  
70  
60  
50  
40  
30  
20  
10  
0
-40°C  
25°C  
85°C  
0
0.2  
0.4  
0.6  
0.8  
1.0  
VPIN[V]  
1.2  
1.4  
1.6  
1.8  
XMEGA A3BU [DATASHEET]  
100  
8362F–AVR–02/2013  
Figure 38-21.I/O pin pull-up resistor current vs. input voltage.  
VCC = 3.0V.  
130  
117  
104  
91  
78  
65  
52  
39  
26  
13  
0
-40°C  
25°C  
85°C  
0
0.3  
0.6  
0.9  
1.2  
1.5  
1.8  
PIN[V]  
2.1  
2.4  
2.7  
3.0  
V
Figure 38-22.I/O pin pull-up resistor current vs. input voltage.  
VCC = 3.3V.  
140  
126  
112  
98  
84  
70  
56  
42  
28  
14  
0
-40°C  
25°C  
85°C  
0
0.3  
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
2.4  
2.7  
3.0  
3.3  
VPIN[V]  
XMEGA A3BU [DATASHEET]  
101  
8362F–AVR–02/2013  
38.2.2 Output Voltage vs. Sink/Source Current  
Figure 38-23.I/O pin output voltage vs. source current.  
VCC = 1.8V.  
1.9  
1.7  
1.5  
1.3  
1.1  
0.9  
-40°C  
25°C 85°C  
-7  
0.7  
0.5  
-9  
-8  
-6  
-5  
-4  
-3  
-2  
-1  
0
IPIN [mA]  
Figure 38-24.I/O pin output voltage vs. source current.  
VCC = 3.0V.  
3.0  
2.5  
2.0  
1.5  
1.0  
-40°C  
25°C 85°C  
-25  
0.5  
-30  
-20  
-15  
-10  
-5  
0
IPIN [mA]  
XMEGA A3BU [DATASHEET]  
102  
8362F–AVR–02/2013  
Figure 38-25.I/O pin output voltage vs. source current.  
VCC = 3.3V.  
3.5  
3.0  
2.5  
2.0  
-40°C  
1.5  
25°C  
1.0  
85°C  
0.5  
-30  
-25  
-20  
-15  
-10  
-5  
0
I
PIN [mA]  
Figure 38-26.I/O pin output voltage vs. source current.  
4.0  
3.6V  
3.3V  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
2.7V  
2.2V  
1.8V  
-20  
-18  
-16  
-14  
-12  
-10  
-8  
-6  
-4  
-2  
0
IPIN [mA]  
XMEGA A3BU [DATASHEET]  
103  
8362F–AVR–02/2013  
Figure 38-27.I/O pin output voltage vs. sink current.  
VCC = 1.8V.  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
85°C 25°C  
-40°C  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
I
PIN [mA]  
Figure 38-28.I/O pin output voltage vs. sink current.  
VCC = 3.0V.  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
25°C  
85°C  
-40°C  
0
3
6
9
12  
15  
18  
21  
24  
27  
30  
IPIN [mA]  
XMEGA A3BU [DATASHEET]  
104  
8362F–AVR–02/2013  
Figure 38-29.I/O pin output voltage vs. sink current.  
VCC = 3.3V.  
1.0  
0.8  
0.6  
0.4  
0.2  
0
85°C  
25°C  
-40°C  
0
5
10  
15  
20  
25  
30  
35  
IPIN [mA]  
Figure 38-30.I/O pin output voltage vs. sink current.  
1.5  
1.8V  
1.2  
0.9  
0.6  
0.3  
0
2.2V  
2.7V  
3.3V  
3.6V  
0
5
10  
15  
20  
25  
IPIN [mA]  
XMEGA A3BU [DATASHEET]  
105  
8362F–AVR–02/2013  
38.2.3 Thresholds and Hysteresis  
Figure 38-31.I/O pin input threshold voltage vs. VCC.  
T = 25°C.  
1.85  
1.70  
1.55  
1.40  
1.25  
1.10  
0.95  
0.80  
0.65  
0.50  
VIH  
VIL  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
Figure 38-32.I/O pin input threshold voltage vs. VCC  
.
VIH I/O pin read as “1”.  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
-40°C  
25°C  
85°C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
XMEGA A3BU [DATASHEET]  
106  
8362F–AVR–02/2013  
Figure 38-33.I/O pin input threshold voltage vs. VCC  
.
VIL I/O pin read as “0”.  
1.7  
1.5  
1.3  
1.1  
0.9  
0.7  
0.5  
-40°C  
25°C  
85°C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
Figure 38-34.I/O pin input hysteresis vs. VCC  
.
350  
300  
250  
200  
150  
100  
-40°C  
25°C  
85°C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
XMEGA A3BU [DATASHEET]  
107  
8362F–AVR–02/2013  
38.3 ADC Characteristics  
Figure 38-35.INL error vs. external VREF  
.
T = 25C, VCC = 3.6V, external reference.  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
Differential mode  
Single-ended unsigned mode  
Single-ended signed mode  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
V
REF [V]  
Figure 38-36.INL error vs. sample rate.  
T = 25C, VCC = 3.6V, VREF = 3.0V external.  
1.4  
Differential mode  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
Single-ended unsigned mode  
Single-ended signed mode  
500  
650  
800  
950  
1100  
1250  
1400  
1550  
1700  
1850  
2000  
ADC sample rate [ksps]  
XMEGA A3BU [DATASHEET]  
108  
8362F–AVR–02/2013  
Figure 38-37.INL error vs. input code.  
2.0  
1.5  
1.0  
0.5  
0
-0.5  
-1.0  
-1.5  
-2.0  
0
512  
1024  
1536  
2048  
2560  
3072  
3584  
4096  
ADC input code  
Figure 38-38.DNL error vs. external VREF  
.
T = 25C, VCC = 3.6V, external reference.  
0.80  
0.75  
0.70  
0.65  
0.60  
0.55  
0.50  
0.45  
Differential mode  
Single-endedsigned mode  
Single-ended unsigned mode  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
VREF [V]  
XMEGA A3BU [DATASHEET]  
109  
8362F–AVR–02/2013  
Figure 38-39.DNL error vs. sample rate.  
T = 25C, VCC = 3.6V, VREF = 3.0V external.  
0.70  
0.65  
0.60  
0.55  
0.50  
0.45  
0.40  
0.35  
Differential mode  
Single-ended signed mode  
Single-ended unsigned mode  
0.50  
0.65  
0.80  
0.95  
1.10  
1.25  
1.40  
1.55  
1.70  
1.85  
2.00  
Sampling speed [MS/s]  
Figure 38-40.DNL error vs. input code.  
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
0
512  
1024  
1536  
2048  
2560  
3072  
3584  
4096  
ADC Input Code  
XMEGA A3BU [DATASHEET]  
110  
8362F–AVR–02/2013  
Figure 38-41.Gain error vs. VREF  
.
T = 25C, VCC = 3.6V, ADC sampling speed = 500ksps.  
4
2
0
Single-ended signed mode  
Single-ended unsigned mode  
-2  
-4  
Differential mode  
-6  
-8  
-10  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
VREF [V]  
Figure 38-42.Gain error vs. VCC  
.
T = 25C, VREF = external 1.0V, ADC sampling speed = 500ksps.  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
Single-ended signed mode  
Single-ended unsigned mode  
-0.5  
-1.0  
-1.5  
-2.0  
Differential mode  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
XMEGA A3BU [DATASHEET]  
111  
8362F–AVR–02/2013  
Figure 38-43.Offset error vs. VREF  
.
T = 25C, VCC = 3.6V, ADC sampling speed = 500ksps.  
-1.1  
-1.2  
-1.3  
-1.4  
-1.5  
-1.6  
Differential mode  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
VREF [V]  
Figure 38-44.Gain error vs. temperature.  
VCC = 3.0V, VREF = external 2.0V.  
1
0
1V mode  
-1  
-2  
1.5V mode  
2V mode  
-3  
-4  
-5  
-6  
2.5V mode  
3V mode  
-7  
-8  
-9  
-10  
-11  
-45  
-35  
-25  
-15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
Temperature [°C]  
XMEGA A3BU [DATASHEET]  
112  
8362F–AVR–02/2013  
Figure 38-45.Offset error vs. VCC  
.
T = 25C, VREF = external 1.0V, ADC sampling speed = 500ksps.  
-0.5  
-0.6  
-0.7  
-0.8  
-0.9  
-1.0  
-1.1  
-1.2  
Differential mode  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
Figure 38-46.Noise vs. VREF  
.
T = 25C, VCC = 3.6V, ADC sampling speed = 500ksps.  
1.30  
1.15  
1.00  
0.85  
0.70  
0.55  
0.40  
Single-ended signed mode  
Single-ended unsigned mode  
Differential mode  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
VREF [V]  
XMEGA A3BU [DATASHEET]  
113  
8362F–AVR–02/2013  
Figure 38-47.Noise vs. VCC  
.
T = 25C, VREF = external 1.0V, ADC sampling speed = 500ksps.  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
Single-ended signed mode  
Single-ended unsigned mode  
Differential mode  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
38.4 DAC Characteristics  
Figure 38-48.DAC INL error vs. VREF  
.
VCC = 3.6V.  
3.1  
2.9  
2.7  
2.5  
2.3  
2.1  
1.9  
1.7  
1.5  
1.3  
1.1  
0.9  
-40°C  
25°C  
85°C  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
V
REF [V]  
XMEGA A3BU [DATASHEET]  
114  
8362F–AVR–02/2013  
Figure 38-49.DNL error vs. VREF  
.
T = 25C, VCC = 3.6V.  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
-40°C  
25°C  
85°C  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
V
REF [V]  
Figure 38-50.DAC noise vs. temperature.  
VCC = 3.0V, VREF = 2.4V .  
0.183  
0.181  
0.179  
0.177  
0.175  
0.173  
0.171  
0.169  
0.167  
0.165  
-45  
-35  
-25  
-15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
Temperature [ºC]  
XMEGA A3BU [DATASHEET]  
115  
8362F–AVR–02/2013  
38.5 Analog Comparator Characteristics  
Figure 38-51.Analog comparator hysteresis vs. VCC  
.
High-speed, small hysteresis.  
17  
16  
15  
14  
13  
12  
11  
10  
9
85°C  
-40°C  
25°C  
8
7
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
Figure 38-52.Analog comparator hysteresis vs. VCC  
.
Low power, small hysteresis.  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
85°C  
25°C  
-40°C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
XMEGA A3BU [DATASHEET]  
116  
8362F–AVR–02/2013  
Figure 38-53.Analog comparator hysteresis vs. VCC  
.
High-speed mode, large hysteresis.  
40  
38  
36  
34  
32  
30  
28  
26  
24  
22  
20  
85°C  
25°C  
-40°C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
Figure 38-54.Analog comparator hysteresis vs. VCC  
.
Low power, large hysteresis.  
75  
70  
65  
60  
55  
50  
85°C  
25°C  
-40°C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
XMEGA A3BU [DATASHEET]  
117  
8362F–AVR–02/2013  
Figure 38-55.Analog comparator current source vs. calibration value.  
Temperature = 25°C.  
8
7
6
5
4
3
2
3.3V  
3.0V  
2.7V  
2.2V  
1.8V  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
CALIB[3..0]  
Figure 38-56.Analog comparator current source vs. calibration value.  
VCC = 3.0V.  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
-40°C  
25°C  
85°C  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
CALIB[3..0]  
XMEGA A3BU [DATASHEET]  
118  
8362F–AVR–02/2013  
Figure 38-57.Voltage scaler INL vs. SCALEFAC.  
T = 25C, VCC = 3.0V.  
0.100  
0.075  
0.050  
0.025  
0
25°C  
-0.025  
-0.050  
-0.075  
-0.100  
0
10  
20  
30  
40  
50  
60  
70  
SCALEFAC  
38.6 Internal 1.0V reference Characteristics  
Figure 38-58.ADC/DAC Internal 1.0V reference vs. temperature.  
1.002  
1.000  
0.998  
0.996  
0.994  
0.992  
0.990  
3.3V  
3.0V  
2.7V  
1.8V  
-45 -35 -25 -15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
Temperature [°C]  
XMEGA A3BU [DATASHEET]  
119  
8362F–AVR–02/2013  
38.7 BOD Characteristics  
Figure 38-59.BOD thresholds vs. temperature.  
BOD level = 1.6V.  
1.632  
1.630  
1.628  
1.626  
1.624  
1.622  
1.620  
Rising VCC  
Falling VCC  
-45  
-35  
-25  
-15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
Temperature [°C]  
Figure 38-60.BOD thresholds vs. temperature.  
BOD level = 3.0V.  
3.08  
3.07  
3.06  
3.05  
3.04  
3.03  
3.02  
3.01  
Rising VCC  
Falling VCC  
-45 -35 -25 -15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
Temperature [°C]  
XMEGA A3BU [DATASHEET]  
120  
8362F–AVR–02/2013  
38.8 External Reset Characteristics  
Figure 38-61. Minimum Reset pin pulse width vs. VCC  
.
147  
142  
137  
132  
127  
122  
117  
112  
107  
102  
97  
85°C  
-40°C  
25°C  
92  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
Figure 38-62. Reset pin pull-up resistor current vs. reset pin voltage.  
VCC = 1.8V.  
80  
70  
60  
50  
40  
30  
20  
10  
0
-40°C  
25°C  
85°C  
0
0.2  
0.4  
0.6  
0.8  
1.0  
VPIN[V]  
1.2  
1.4  
1.6  
1.8  
XMEGA A3BU [DATASHEET]  
121  
8362F–AVR–02/2013  
Figure 38-63. Reset pin pull-up resistor current vs. reset pin voltage.  
VCC = 3.0V.  
130  
117  
104  
91  
78  
65  
52  
39  
26  
13  
0
-40°C  
25°C  
85°C  
0
0.3  
0.6  
0.9  
1.2  
1.5  
1.8  
PIN[V]  
2.1  
2.4  
2.7  
3.0  
V
Figure 38-64. Reset pin pull-up resistor current vs. reset pin voltage.  
VCC = 3.3V.  
140  
126  
112  
98  
84  
70  
56  
42  
28  
14  
0
-40°C  
25°C  
85°C  
0
0.3  
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
2.4  
2.7  
3.0  
3.3  
VPIN[V]  
XMEGA A3BU [DATASHEET]  
122  
8362F–AVR–02/2013  
Figure 38-65. Reset pin input threshold voltage vs. VCC.  
VIH - Reset pin read as “1”.  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
-40°C  
85°C  
25°C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
CC [V]  
2.8  
3.0  
3.2  
3.4  
3.6  
V
Figure 38-66. Reset pin input threshold voltage vs. VCC.  
VIL - Reset pin read as “0”.  
1.65  
1.50  
1.35  
1.20  
1.05  
0.90  
0.75  
0.60  
0.45  
-40°C  
25°C  
85°C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
XMEGA A3BU [DATASHEET]  
123  
8362F–AVR–02/2013  
38.9 Power-on Reset Characteristics  
Figure 38-67. Power-on reset current consumption vs. VCC  
.
BOD level = 3.0V, enabled in continuous mode.  
700  
600  
500  
400  
300  
200  
100  
0
-40°C  
25°C  
85°C  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
VCC [V]  
38.10 Oscillator Characteristics  
38.10.1 Ultra Low-Power internal oscillator  
Figure 38-68. Ultra Low-Power internal oscillator frequency vs. temperature.  
32.9  
32.8  
32.7  
32.6  
32.5  
32.4  
32.3  
32.2  
3.3V  
3.0V  
2.7V  
2.2V  
1.8V  
-45 -35 -25 -15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
Temperature [°C]  
XMEGA A3BU [DATASHEET]  
124  
8362F–AVR–02/2013  
38.10.2 32.768kHz Internal Oscillator  
Figure 38-69. 32.768kHz internal oscillator frequency vs. temperature.  
32.85  
32.80  
32.75  
32.70  
32.65  
32.60  
32.55  
32.50  
32.45  
32.40  
32.35  
3.3V  
3.0V  
2.7V  
2.2V  
1.8V  
-45  
-35  
-25  
-15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
Temperature [°C]  
Figure 38-70. 32.768kHz internal oscillator frequency vs. calibration value.  
VCC = 3.0V, T = 25°C.  
50  
45  
40  
35  
30  
25  
20  
0
50  
100  
150  
200  
250  
300  
RC32KCAL[7..0]  
XMEGA A3BU [DATASHEET]  
125  
8362F–AVR–02/2013  
38.10.3 2MHz Internal Oscillator  
Figure 38-71. 2MHz internal oscillator frequency vs. temperature.  
DFLL disabled.  
2.18  
2.16  
2.14  
2.12  
2.10  
2.08  
2.06  
2.04  
2.02  
2.00  
1.98  
3.3V  
3.0V  
2.7V  
2.2V  
1.8V  
-45  
-35  
-25  
-15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
Temperature [°C]  
Figure 38-72. 2MHz internal oscillator frequency vs. temperature.  
DFLL enabled, from the 32.768kHz internal oscillator .  
2.008  
2.005  
2.002  
1.999  
1.996  
1.993  
1.990  
1.987  
1.984  
1.981  
1.978  
1.975  
3.0V  
3.3V  
2.7V  
2.2V  
1.8V  
-45  
-35  
-25  
-15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
Temperature [°C]  
XMEGA A3BU [DATASHEET]  
126  
8362F–AVR–02/2013  
Figure 38-73. 2MHz internal oscillator CALA calibration step size.  
VCC = 3V.  
0.37  
0.35  
0.32  
0.30  
0.27  
0.25  
0.22  
0.20  
0.17  
25°C  
-40°C  
85°C  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100 110 120 130  
CALA  
38.10.4 32MHz Internal Oscillator  
Figure 38-74. 32MHz internal oscillator frequency vs. temperature.  
DFLL disabled.  
36.5  
36.0  
35.5  
35.0  
34.5  
34.0  
33.5  
33.0  
32.5  
32.0  
31.5  
3.3V  
3.0V  
2.7V  
1.8V  
-45  
-35  
-25  
-15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
Temperature [°C]  
XMEGA A3BU [DATASHEET]  
127  
8362F–AVR–02/2013  
Figure 38-75. 32MHz internal oscillator frequency vs. temperature.  
DFLL enabled, from the 32.768kHz internal oscillator.  
32.10  
32.05  
32.00  
31.95  
31.90  
31.85  
31.80  
31.75  
31.70  
31.65  
31.60  
3.0V  
3.3V  
2.7V  
2.2V  
1.8V  
-45  
-35  
-25  
-15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
Temperature [°C]  
Figure 38-76. 32MHz internal oscillator CALA calibration step size.  
VCC = 3.0V.  
0.39  
0.34  
0.29  
0.24  
0.19  
0.14  
25°C  
85°C  
-40°C  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100 110 120 130  
CALA  
XMEGA A3BU [DATASHEET]  
128  
8362F–AVR–02/2013  
Figure 38-77. 32MHz internal oscillator frequency vs. CALB calibration value.  
VCC = 3.0V.  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
-40°C  
25°C  
85°C  
0
10  
20  
30  
40  
50  
60  
70  
CALB  
38.10.5 32MHz internal oscillator calibrated to 48MHz  
Figure 38-78. 48MHz internal oscillator frequency vs. temperature.  
DFLL disabled.  
55  
54  
53  
52  
51  
50  
49  
48  
47  
3.3V  
3.0V  
2.7V  
2.2V  
1.8V  
-45  
-35  
-25  
-15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
Temperature [°C]  
XMEGA A3BU [DATASHEET]  
129  
8362F–AVR–02/2013  
Figure 38-79. 48MHz internal oscillator frequency vs. temperature.  
DFLL enabled, from the 32.768kHz internal oscillator.  
48.15  
48.05  
47.95  
47.85  
47.75  
47.65  
47.55  
47.45  
3.3V  
3.0V  
2.7V  
2.2V  
1.8V  
-45  
-35  
-25  
-15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
Temperature [°C]  
Figure 38-80. 48MHz internal oscillator CALA calibration step size.  
VCC = 3.0V.  
0.40%  
0.35%  
0.30%  
0.25%  
0.20%  
0.15%  
25°C  
85°C  
-40°C  
0
16  
32  
48  
64  
80  
96  
112  
128  
CALA  
XMEGA A3BU [DATASHEET]  
130  
8362F–AVR–02/2013  
38.11 Two-Wire Interface characteristics  
Figure 38-81.SDA hold time vs. temperature.  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
3
2
1
0
-45 -35 -25 -15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
Temperature [°C]  
Figure 38-82. SDA hold time vs. supply voltage.  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
3
2
1
0
2.6  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
VCC [V]  
XMEGA A3BU [DATASHEET]  
131  
8362F–AVR–02/2013  
38.12 PDI characteristics  
Figure 38-83. Maximum PDI frequency vs. VCC  
.
36  
31  
26  
21  
16  
11  
-40°C  
25°C  
85°C  
2.6  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
VCC [V]  
XMEGA A3BU [DATASHEET]  
132  
8362F–AVR–02/2013  
39. Errata  
39.1 ATxmega256A3BU  
39.1.1 Rev. G  
AWeX fault protection restore is not done correct in Pattern Generation Mode  
1. AWeX fault protection restore is not done correctly in Pattern Generation Mode  
When a fault is detected the OUTOVEN register is cleared, and when fault condition is cleared, OUTOVEN is  
restored according to the corresponding enabled DTI channels. For Common Waveform Channel Mode (CWCM),  
this has no effect as the OUTOVEN is correct after restoring from fault. For Pattern Generation Mode (PGM),  
OUTOVEN should instead have been restored according to the DTILSBUF register.  
Problem fix/Workaround  
For CWCM no workaround is required.  
For PGM in latched mode, disable the DTI channels before returning from the fault condition. Then, set correct  
OUTOVEN value and enable the DTI channels, before the direction (DIR) register is written to enable the correct  
outputs again.  
For PGM in cycle-by-cycle mode there is no workaround.  
39.1.2 Rev. E-F  
Not sampled  
39.1.3 rev. D  
ADC unsigned mode non-functional  
ADC increased noise when using internal 1.0V reference at low temperature  
DAC offset calibration range too small when using AVCC as reference  
Register ANAINIT in MCUR will always read as zero  
CPU clock frequency limited to 24MHz  
CPU clock frequency limited to 20MHz if using both application section and boot section  
High active current consumption at low frequency  
USB Transfer Complete interrupt generated for each IN packet in Multipacket Mode  
Disabling the USART transmitter does not automatically set the TxD pin direction to input  
AWeX PWM output after fault restarted with wrong values  
TWI inactive bus timeout from BUSY bus state  
TOSC32 as RTC32 clock output Non-functional  
Pending asynchronous RTC32 interrupts will not wake up device  
Pending full asynchronous pin change interrupts will not wake the device  
1. ADC Unsigned mode non-functional  
The ADC Unsigned mode is non-functional.  
Problem fix/Workaround  
XMEGA A3BU [DATASHEET]  
133  
8362F–AVR–02/2013  
None, use the ADC in signed mode also for single ended conversions.  
2. ADC increased noise when using internal 1.0V reference at low temperature  
When operating at -40C and using internal 1.0V reference the RMS noise will be up 4LSB.  
Problem fix/Workaround  
Use averaging tof multiple samples to remove noise.  
3. DAC offset calibration range too small when using AVCC as reference  
If using AVCC as reference, the DAC offset calibration will not totally remove the offset error. Offset could be up to  
100LSB after calibration.  
Problem fix/Workaround  
Offset adjustment must be partly handled in software.  
4. Register ANAINIT in MCUR will always read as zero  
The ANAINIT register in the MCUR module will always be read as zero even if written to a different value. The  
actual content of the register is correct.  
Problem fix/Workaround  
Do not use software that reads these registers to get the Analog Initialization configuration.  
5. CPU clock frequency limited to 24MHz  
The CPU clock must never exceed 24MHz for any supply level.  
Problem fix/Workaround  
None.  
6. CPU clock frequency limited to 20MHz if using both application section and boot section  
The CPU clock frequency must never exceed 20MHz when jumping between flash application section and boot  
section or executing code from one section and reading (LPM) from the other. If exceeding this frequency the first  
instruction/read will be read as NOP/0x00.  
These conditions occur when:  
• Executing code in one section and jumping (JMP, CALL, RET, branch) to other section.  
• Interrupt table is located in different flash section than the code is executed from.  
• Using LPM reading the other flash section than the code is executed from.  
• Reading signature rows  
• Running CRC and the address crosses the boundary between the two sections.  
Problem fix/Workaround  
For all conditions except CRC crossing the boundary between the sections, enable the Flash Power Reduction  
mode and add a NOP after every LPM instruction. For CRC there is no workaround.  
7. High active current consumption at low frequency  
The current consumption in Active mode is higher than specified for all frequencies below 12MHz. The extra cur-  
rent consumption increases with supply level and lower frequency (see Figure 39-1 on page 135).  
XMEGA A3BU [DATASHEET]  
134  
8362F–AVR–02/2013  
Problem fix/Workaround  
None, avoid running at low frequenices and use higher frequnecies in compination with sleep modes where  
possible.  
Figure 39-1. Current consumption increase vs. VCC voltage and CPU clock frequency  
3500  
3000  
3.6V  
2500  
3.3V  
2000  
3.0V  
2.7V  
1500  
2.2V  
1000  
1.8V  
500  
0
0
2
4
6
8
10  
12  
14  
Frequency (MHz)  
8. USB Transfer Complete interrupt generated for each IN packet in Multipacket Mode  
When multipacket is used, a Transfer Complete interrupt will be generated for each IN packet transferred on USB  
line instead of just at the end of the multipacket transfer.  
Problem fix/Workaround  
Ignore interrupt until multipacket is complete.  
9. Disabling the USART transmitter does not automatically set the TxD pin direction to input  
If the USART transmitter is idle with no frames to transmit, setting TXEN to zero will not automatically set the TxD  
pin direction to input.  
Problem fix/Workaround  
The TxD pin direction can be set to input using the Port DIR register. Using Port DIR register to set direction to  
input only will be immediate and ongoing transmissions will be truncated.  
10. AWeX PWM output after fault restarted with wrong values  
When recovering from fault state, the PWM output will drive wrong values to the port for up to 2x CLKPER + 1  
CLKPER4 cycles.  
Problem fix/Workaround  
If the glitch can not be tolerated or not filtered out by external components the following sequence can be used in  
Latched Mode for restaring without glitch:  
XMEGA A3BU [DATASHEET]  
135  
8362F–AVR–02/2013  
1. Disable DTI outputs (Write DTICCxEN to 0).  
2. Clear fault flag.  
3. Wait for Overflow.  
4. Re-enable DTI (Write DTICCxEN to 1).  
5. Set pin direction to Output.  
This will remove the glitch, but the following period will be shorter.  
In Cycle-by-cycle mode the same procedure can be followed as long as the Pattern Generation Mode is not  
enabled.  
For Pattern Generation Mode, there is no workaround.  
11. TWI inactive bus timeout from BUSY bus state  
If Bus Timeout is enabled and a timeout occurs on the same Peripheral Clock cycle as a START is detected, the  
transaction will be dropped.  
Problem fix/Workaround  
None.  
12. TOSC32 as RTC32 clock output Non-functional  
Selecting TOSC32 as clock output is Non-functional.  
Problem fix/Workaround  
If 32kHz clock output is required, the internal 32.768kHz oscillator can be selected as source for RTC32 and out-  
put to pin.  
13. Pending asynchronous RTC32-interrupts will not wake up device  
Asynchronous Interrupts from the Real-Time-Counter that is pending when the sleep instruction is executed, will  
be ignored until the device is woken from another source or the source triggers again.  
Problem fix/Workaround  
In software, read the RTC32 CNT value before executing the SLEEP instruction and check that it will not to gener-  
ate overflow or compare match interrupt during the last CPU instruction before the SLEEP instruction is executed.  
In addition check that no previous RTC interrupts are pending.  
14. Pending full asynchronous pin change interrupts will not wake the device  
Any full asynchronous pin-change Interrupt from pin 2, on any port, that is pending when the sleep instruction is  
executed, will be ignored until the device is woken from another source or the source triggers again. This applies  
when entering all sleep modes where the System Clock is stopped.  
Problem fix/Workaround  
Use limited asynchronous pin-change interrupts instead.  
39.1.4 rev A-C  
Not sampled.  
XMEGA A3BU [DATASHEET]  
136  
8362F–AVR–02/2013  
40. Datasheet Revision History  
Please note that the referring page numbers in this section are referred to this document. The referring revisions in this  
section are referring to the document revision.  
40.1 8362F – 02/2013  
1.  
2.  
3.  
4.  
5.  
6.  
Updated the whole contents with an updated template (Atmel new logo, table tags and paragraph tags).  
Updated Figure 2-1 on page 3. Pin 15 and Pin 25 are VCC and not VDD.  
Updated Figure 16-7 on page 33, “Input sensing system overview.”  
Updated Figure 31-1 on page 53, “Analog comparator overview.”  
Removed TWID from Table 33-4 on page 58, “Port D - alternate functions.”  
Updated Table 37-30 on page 84. Added ESR parameter in “External 16MHz crystal oscillator and XOSC characteristics.”  
40.2 8362E – 12/11  
1.  
2.  
3.  
4.  
5.  
6.  
7.  
Updated “Electrical Characteristics” on page 69.  
Updated “Typical Characteristics” on page 91.  
Added “Errata” on page 133.  
Updated “Packaging information” on page 67.  
Editing and figure updates  
Tape and reel added in “Ordering Information” on page 2  
Pin numbers for GND and VCC in Table 33-4 on page 62 have been corrected  
40.3 8362D - 03/11  
1.  
2.  
3.  
Preliminary removed from the front page.  
Updated the datasheet according to the Atmel new brand style guide.  
Editing update.  
40.4 8362C - 02/11  
1.  
2.  
2.  
3.  
Updated “Electrical Characteristics” on page 69.  
Added “Typical Characteristics” on page 91  
Added “Errata” on page 133.  
Editing update.  
40.5 8362B - 11/09  
1.  
Updated “Ordering Information” on page 2.  
XMEGA A3BU [DATASHEET]  
137  
8362F–AVR–02/2013  
40.6 8362A - 10/09  
1.  
Initial version.  
XMEGA A3BU [DATASHEET]  
138  
8362F–AVR–02/2013  
Table Of Contents  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
1. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
2. Pinout/Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
3. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
3.1  
Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
4. Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
4.1  
Recommended reading. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
5. Capacitive touch sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
6. AVR CPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
6.1  
6.2  
6.3  
6.4  
6.5  
6.6  
6.7  
6.8  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Architectural Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
ALU - Arithmetic Logic Unit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Program Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Stack and Stack Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Register File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
7. Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
7.1  
7.2  
7.3  
7.4  
7.5  
7.6  
7.7  
7.8  
7.9  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Flash Program Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Fuses and Lock bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Data Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
I/O Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Data Memory and Bus Arbitration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Memory Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
7.10 Device ID and Revision. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
7.11 JTAG Disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
7.12 I/O Memory Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
7.13 Flash and EEPROM Page Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
8. DMAC – Direct Memory Access Controller . . . . . . . . . . . . . . . . . . . 15  
8.1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
8.2  
Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
9. Event System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
9.1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
9.2  
Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
10. System Clock and Clock options . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
10.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
10.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
10.3 Clock Sources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
XMEGA A3BU [DATASHEET]  
i
8362F–AVR–02/2013  
11. Power Management and Sleep Modes . . . . . . . . . . . . . . . . . . . . . . 21  
11.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
11.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
11.3 Sleep Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
12. System Control and Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
12.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
12.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
12.3 Reset Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
12.4 Reset Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
13. WDT – Watchdog Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
13.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
13.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
14. Battery Backup System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
14.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
14.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
15. Interrupts and Programmable Multilevel Interrupt Controller . . . . . . 28  
15.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
15.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
15.3 Interrupt vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
16. I/O Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
16.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
16.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
16.3 Output Driver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
16.4 Input sensing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
16.5 Alternate Port Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
17. TC0/1 – 16-bit Timer/Counter Type 0 and 1 . . . . . . . . . . . . . . . . . . 34  
17.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
17.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
18. TC2 – Timer/Counter Type 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
18.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
18.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
19. AWeX – Advanced Waveform Extension . . . . . . . . . . . . . . . . . . . . . 37  
19.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
19.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
20. Hi-Res – High Resolution Extension . . . . . . . . . . . . . . . . . . . . . . . . 38  
20.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
20.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
21. RTC32 – 32-bit Real-Time Counter . . . . . . . . . . . . . . . . . . . . . . . . . 39  
21.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
22. USB – Universal Serial Bus Interface . . . . . . . . . . . . . . . . . . . . . . . 40  
22.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
22.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
XMEGA A3BU [DATASHEET]  
ii  
8362F–AVR–02/2013  
23. TWI – Two-Wire Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
23.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
23.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
24. SPI – Serial Peripheral Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
24.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
24.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
25. USART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
25.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
25.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
26. IRCOM – IR Communication Module . . . . . . . . . . . . . . . . . . . . . . . . 45  
26.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
26.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
27. AES and DES Crypto Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
27.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
27.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
28. CRC – Cyclic Redundancy Check Generator . . . . . . . . . . . . . . . . . 47  
28.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
28.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
29. ADC – 12-bit Analog to Digital Converter . . . . . . . . . . . . . . . . . . . . 48  
29.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
29.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
30. DAC – 12-bit Digital to Analog Converter . . . . . . . . . . . . . . . . . . . . 50  
30.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
30.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
31. AC – Analog Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
31.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
31.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
32. Programming and Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
32.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
32.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
33. Pinout and Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
33.1 Alternate Pin Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
33.2 Alternate Pin Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
34. Peripheral Module Address Map . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
35. Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
36. Packaging information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
36.1 64A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
36.2 64M2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
37. Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
37.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
XMEGA A3BU [DATASHEET]  
iii  
8362F–AVR–02/2013  
37.2 General Operating Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
37.3 Current consumption. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
37.4 Wake-up time from sleep modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
37.5 I/O Pin Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
37.6 ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
37.7 DAC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
37.8 Analog Comparator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
37.9 Bandgap and Internal 1.0V Reference Characteristics. . . . . . . . . . . . . . . . . . 79  
37.10 Brownout Detection Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
37.11 External Reset Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
37.12 Power-on Reset Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
37.13 VBAT and Battery Backup Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
37.14 Flash and EEPROM Memory Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . 81  
37.15 Clock and Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
37.16 SPI Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
37.17 Two-Wire Interface Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
38. Typical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
38.1 Current consumption. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
38.2 I/O Pin Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
38.3 ADC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
38.4 DAC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
38.5 Analog Comparator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
38.6 Internal 1.0V reference Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
38.7 BOD Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
38.8 External Reset Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
38.9 Power-on Reset Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
38.10 Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
38.11 Two-Wire Interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
38.12 PDI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
39. Errata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
39.1 ATxmega256A3BU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
40. Datasheet Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
40.1 8362F – 02/2013. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
40.2 8362E – 12/11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
40.3 8362D - 03/11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
40.4 8362C - 02/11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
40.5 8362B - 11/09 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
40.6 8362A - 10/09 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
Table Of Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i  
XMEGA A3BU [DATASHEET]  
iv  
8362F–AVR–02/2013  
Atmel Corporation  
Atmel Asia Limited  
Atmel Munich GmbH  
Atmel Japan G.K.  
1600 Technology Drive  
Unit 01-5 & 16, 19F  
Business Campus  
16F Shin-Osaki Kangyo Bldg  
San Jose, CA 95110  
USA  
BEA Tower, Millennium City 5  
418 Kwun Tong Roa  
Kwun Tong, Kowloon  
HONG KONG  
Parkring 4  
1-6-4 Osaki, Shinagawa-ku  
Tokyo 141-0032  
D-85748 Garching b. Munich  
GERMANY  
Tel: (+1) (408) 441-0311  
Fax: (+1) (408) 487-2600  
www.atmel.com  
JAPAN  
Tel: (+49) 89-31970-0  
Fax: (+49) 89-3194621  
Tel: (+81) (3) 6417-0300  
Fax: (+81) (3) 6417-0370  
Tel: (+852) 2245-6100  
Fax: (+852) 2722-1369  
© 2013 Atmel Corporation. All rights reserved. / Rev.: 8362F–AVR–02/2013  
Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, and others are registered trademarks or trademarks of Atmel Corporation or its  
subsidiaries. Other terms and product names may be trademarks of others.  
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this  
document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES  
NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED  
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,  
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF  
INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no  
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time  
without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,  
automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.  

相关型号:

ATXMEGA256A3BU-AUR

8/16-bit Atmel XMEGA A3BUMicrocontroller
ATMEL

ATXMEGA256A3BU-MH

8/16-bit Atmel XMEGA A3BUMicrocontroller
ATMEL

ATXMEGA256A3BU-MHR

8/16-bit Atmel XMEGA A3BUMicrocontroller
ATMEL

ATXMEGA256A3B_09

8/16-bit XMEGA A3B Microcontroller
ATMEL

ATXMEGA256A3B_10

8/16-bit XMEGA A3B Microcontroller
ATMEL

ATXMEGA256A3U

8/16-bit Atmel XMEGA A3U Microcontroller
ATMEL

ATXMEGA256A3U-AU

8/16-bit Atmel XMEGA A3U Microcontroller
ATMEL

ATXMEGA256A3U-MH

8/16-bit Atmel XMEGA A3U Microcontroller
ATMEL

ATXMEGA256A3U-MHR

暂无描述
MICROCHIP

ATXMEGA256A3_09

8/16-bit XMEGA A3 Microcontroller
ATMEL

ATXMEGA256A3_10

8/16-bit AVR XMEGA A3 Microcontroller
ATMEL

ATXMEGA256A3_1012

8/16-bit XMEGA A3 Microcontroller
ATMEL