ATXMEGA256A3B_09 [ATMEL]

8/16-bit XMEGA A3B Microcontroller; 8位/ 16位XMEGA微控制器A3B
ATXMEGA256A3B_09
型号: ATXMEGA256A3B_09
厂家: ATMEL    ATMEL
描述:

8/16-bit XMEGA A3B Microcontroller
8位/ 16位XMEGA微控制器A3B

微控制器
文件: 总102页 (文件大小:3271K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Features  
High-performance, Low-power AVR 8/16-bit XMEGATM Microcontroller  
Non-volatile Program and Data Memories  
– 256 KB of In-System Self-Programmable Flash  
– 8 KB Boot Code Section with Independent Lock Bits  
– 4 KB EEPROM  
– 16 KB Internal SRAM  
Peripheral Features  
– Four-channel DMA Controller with support for external requests  
– Eight-channel Event System  
8/16-bit  
XMEGA A3B  
Microcontroller  
– Seven 16-bit Timer/Counters  
Four Timer/Counters with 4 Output Compare or Input Capture channels  
Three Timer/Counters with 2 Output Compare or Input Capture channels  
High-Resolution Extension on all Timer/Counters  
Advanced Waveform Extension on one Timer/Counter  
– Six USARTs  
IrDA modulation/demodulation for one USART  
– Two Two-Wire Interfaces with dual address match (I2C and SMBus compatible)  
– Two SPI (Serial Peripheral Interface) peripherals  
– AES and DES Crypto Engine  
ATxmega256A3B  
– 32-bit Real Time Counter with separate Oscillator and Battery Backup System  
– Two Eight-channel, 12-bit, 2 Msps Analog to Digital Converters  
– One Two-channel, 12-bit, 1 Msps Digital to Analog Converters  
– Four Analog Comparators with Window compare function  
– External Interrupts on all General Purpose I/O pins  
– Programmable Watchdog Timer with Separate On-chip Ultra Low Power Oscillator  
Special Microcontroller Features  
Preliminary  
– Power-on Reset and Programmable Brown-out Detection  
– Internal and External Clock Options with PLL  
– Programmable Multi-level Interrupt Controller  
– Sleep Modes: Idle, Power-down, Standby, Power-save, Extended Standby  
– Advanced Programming, Test and Debugging Interfaces  
JTAG (IEEE 1149.1 Compliant) Interface for test, debug and programming  
PDI (Program and Debug Interface) for programming and debugging  
I/O and Packages  
– 49 Programmable I/O Lines  
– 64-lead TQFP  
– 64-pad QFN/MLF  
Operating Voltage  
– 1.6 – 3.6V  
Speed performance  
– 0 – 12 MHz @ 1.6 – 3.6V  
– 0 – 32 MHz @ 2.7 – 3.6V  
Typical Applications  
Industrial control  
Factory automation  
Building control  
Board control  
Climate control  
Hand-held battery applications  
Power tools  
HVAC  
Metering  
Medical Applications  
ZigBee  
Motor control  
Networking  
Optical  
White Goods  
8116F–AVR–09/09  
XMEGA A3B  
1. Ordering Information  
Ordering Code  
Flash  
E2  
SRAM  
16 KB  
16 KB  
Speed (MHz) Power Supply Package(1)(2)(3)  
Temp  
ATxmega256A3B-AU  
ATxmega256A3B-MH  
256 KB + 8 KB  
256 KB + 8 KB  
4 KB  
4 KB  
32  
32  
1.6 - 3.6V  
1.6 - 3.6V  
64A  
-40°C - 85°C  
64M2  
Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information.  
2. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also  
Halide free and fully Green.  
3. For packaging information, see ”Electrical Characteristics” on page 63.  
Package Type  
64-Lead, 14 x 14 mm Body Size, 1.0 mm Body Thickness, 0.8 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP)  
64-Pad, 9 x 9 x 1.0 mm Body, Lead Pitch 0.50 mm, 7.65 mm Exposed Pad, Micro Lead Frame Package (MLF)  
64A  
64M2  
2
8116F–AVR–09/09  
XMEGA A3B  
2. Pinout/Block Diagram  
Figure 2-1. Block diagram and pinout.  
INDEXCORNER  
PA3  
PA4  
PA5  
PA6  
PA7  
PB0  
PB1  
PB2  
PB3  
PB4  
PB5  
PB6  
PB7  
GND  
VCC  
PC0  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
PF2  
Por t R  
2
PF1  
DATA BU S  
3
PF0  
Batt Backup  
ADC A  
AC A0  
4
OSC/CLK  
Cont ro l  
VCC  
GND  
TOSC1  
TOSC2  
PE5  
BOD  
VREF  
POR  
OCD  
5
TEMP  
RTC  
6
Power  
Cont ro l  
FLASH  
AC A1  
7
CPU  
DMA  
8
RAM  
ADC B  
DAC B  
AC B0  
AC B1  
Reset  
Cont ro l  
9
E2PROM  
PE4  
10  
11  
12  
13  
14  
15  
16  
PE3  
Interrupt Controlle r  
Event Systemctrl  
DATA BU S  
Watchdog  
PE2  
PE1  
PE0  
EVENTROUTING NETWORK  
VCC  
GND  
PD7  
Por t C  
Por t D  
Por t E  
Por t F  
Note:  
for full details on pinout and pin functions refer to ”Pinout and Pin Functions” on page 51.  
3
8116F–AVR–09/09  
XMEGA A3B  
3. Overview  
The XMEGAA3B is a family of low power, high performance and peripheral rich CMOS 8/16-bit  
microcontrollers based on the AVR® enhanced RISC architecture. By executing powerful  
instructions in a single clock cycle, the XMEGA A3B achieves throughputs approaching 1 Million  
Instructions Per Second (MIPS) per MHz allowing the system designer to optimize power con-  
sumption versus processing speed.  
The AVR CPU combines a rich instruction set with 32 general purpose working registers. All the  
32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent  
registers to be accessed in one single instruction, executed in one clock cycle. The resulting  
architecture is more code efficient while achieving throughputs many times faster than conven-  
tional single-accumulator or CISC based microcontrollers.  
The XMEGA A3B devices provides the following features: In-System Programmable Flash with  
Read-While-Write capabilities, Internal EEPROM and SRAM, four-channel DMA Controller,  
eight-channel Event System, Programmable Multi-level Interrupt Controller, 49 general purpose  
I/O lines, 32-bit Real Time Counter (RTC) with Battery Backup System, seven flexible 16-bit  
Timer/Counters with compare modes and PWM, six USARTs, two Two Wire Serial Interfaces  
(TWIs), two Serial Peripheral Interfaces (SPIs), AES and DES crypto engine, two 8-channel, 12-  
bit ADCs with optional differential input with programmable gain, one 2-channel 12-bit DAC, four  
analog comparators with window mode, programmable Watchdog Timer with separate Internal  
Oscillator, accurate internal oscillators with PLL and prescaler and programmable Brown-Out  
Detection.  
The Program and Debug Interface (PDI), a fast 2-pin interface for programming and debugging,  
is available. The devices also have an IEEE std. 1149.1 compliant JTAG test interface, and this  
can also be used for On-chip Debug and programming.  
The XMEGA A3B devices have five software selectable power saving modes. The Idle mode  
stops the CPU while allowing the SRAM, DMA Controller, Event System, Interrupt Controller and  
all peripherals to continue functioning. The Power-down mode saves the SRAM and register  
contents but stops the oscillators, disabling all other functions until the next TWI or pin-change  
interrupt, or Reset. In Power-save mode, the asynchronous Real Time Counter continues to run,  
allowing the application to maintain a timer base while the rest of the device is sleeping. In  
Standby mode, the Crystal/Resonator Oscillator is kept running while the rest of the device is  
sleeping. This allows very fast start-up from external crystal combined with low power consump-  
tion. In Extended Standby mode, both the main Oscillator and the Asynchronous Timer continue  
to run. To further reduce power consumption, the peripheral clock to each individual peripheral  
can optionally be stopped in Active mode and Idle sleep mode.  
The device is manufactured using Atmel's high-density nonvolatile memory technology. The pro-  
gram Flash memory can be reprogrammed in-system through the PDI or JTAG. A Bootloader  
running in the device can use any interface to download the application program to the Flash  
memory. The Bootloader software in the Boot Flash section will continue to run while the Appli-  
cation Flash section is updated, providing true Read-While-Write operation. By combining an  
8/16-bit RISC CPU with In-System Self-Programmable Flash, the Atmel XMEGA A3B is a pow-  
erful microcontroller family that provides a highly flexible and cost effective solution for many  
embedded applications.  
4
8116F–AVR–09/09  
XMEGA A3B  
The XMEGA A3B devices are supported with a full suite of program and system development  
tools including: C compilers, macro assemblers, program debugger/simulators, programmers,  
and evaluation kits.  
3.1  
Block Diagram  
Figure 3-1. XMEGA A3B Block Diagram  
PR[0..1]  
XTAL1  
XTAL2  
Oscillator  
Circuits/  
Clock  
Watchdog  
Oscillator  
Generation  
Watchdog  
Timer  
DATA BUS  
SRAM  
VCC  
GND  
Power  
Supervision  
POR/BOD &  
RESET  
PA[0..7]  
PORT A (8)  
Event System  
Controller  
Oscillator  
Control  
ACA  
DMA  
Controller  
Sleep  
Controller  
RESET/  
PDI_CLK  
ADCA  
PDI  
PDI_DATA  
AREFA  
VCC/10  
Int. Ref.  
Tempref  
AREFB  
BUS  
Controller  
Prog/Debug  
Controller  
JTAG  
PORT B  
DES  
OCD  
CPU  
Interrupt  
Controller  
AES  
ADCB  
ACB  
NVM Controller  
USARTF0  
TCF0  
PB[0..7]/  
JTAG  
PORT B (8)  
DACB  
PF[0..4,6..7]  
Flash  
EEPROM  
IRCOM  
DATA BUS  
EVENT ROUTING NETWORK  
Battery  
Backup  
Controller  
Real Time  
Counter  
VBAT  
Power  
Supervision  
VBAT  
32.768 kHz  
XOSC  
PORT C (8)  
PORT D (8)  
PORT E (6)  
TOSC1  
PC[0..7]  
PD[0..7]  
PE[0..5]  
TOSC2  
5
8116F–AVR–09/09  
XMEGA A3B  
4. Resources  
A comprehensive set of development tools, application notes and datasheets are available for  
download on http://www.atmel.com/avr.  
4.1  
Recommended reading  
• XMEGA A Manual  
• XMEGA Application Notes  
This device data sheet only contains part specific information and a short description of each  
peripheral and module. The XMEGA A Manual describes the modules and peripherals in depth.  
The XMEGA application notes contain example code and show applied use of the modules and  
peripherals.  
The XMEGA A Manual and Application Notes are available from http://www.atmel.com/avr.  
5. Disclaimer  
For devices that are not available yet, typical values contained in this datasheet are based on  
simulations and characterization of other AVR XMEGA microcontrollers manufactured on the  
same process technology. Min. and Max values will be available after the device is  
characterized.  
6
8116F–AVR–09/09  
XMEGA A3B  
6. AVR CPU  
6.1  
Features  
8/16-bit high performance AVR RISC Architecture  
– 138 instructions  
– Hardware multiplier  
32x8-bit registers directly connected to the ALU  
Stack in SRAM  
Stack Pointer accessible in I/O memory space  
Direct addressing of up to 16M Bytes of program and data memory  
True 16/24-bit access to 16/24-bit I/O registers  
Support for 8-, 16- and 32-bit Arithmetic  
Configuration Change Protection of system critical features  
6.2  
Overview  
The XMEGA A3B uses the 8/16-bit AVR CPU. The main function of the CPU is program execu-  
tion. The CPU must therefore be able to access memories, perform calculations and control  
peripherals. Interrupt handling is described in a separate section. Figure 6-1 on page 7 shows  
the CPU block diagram.  
Figure 6-1. CPU block diagram  
DATA BUS  
Flash  
Program  
Program  
Counter  
Memory  
32 x 8 General  
Purpose  
Registers  
Instruction  
Register  
OCD  
STATUS/  
CONTROL  
Instruction  
Decode  
Multiplier/  
DES  
ALU  
DATA BUS  
Peripheral  
Module 1  
Peripheral  
Module 2  
SRAM  
EEPROM  
PMIC  
The AVR uses a Harvard architecture - with separate memories and buses for program and  
data. Instructions in the program memory are executed with a single level pipeline. While one  
instruction is being executed, the next instruction is pre-fetched from the program memory. This  
7
8116F–AVR–09/09  
XMEGA A3B  
concept enables instructions to be executed in every clock cycle. The program memory is In-  
System Self-Programmable Flash memory.  
6.3  
Register File  
The fast-access Register File contains 32 x 8-bit general purpose working registers with single  
clock cycle access time. This allows single-cycle Arithmetic Logic Unit (ALU) operation. In a typ-  
ical ALU cycle, the operation is performed on two Register File operands, and the result is stored  
back in the Register File.  
Six of the 32 registers can be used as three 16-bit address register pointers for data space  
addressing - enabling efficient address calculations. One of these address pointers can also be  
used as an address pointer for look up tables in Flash program memory.  
6.4  
ALU - Arithmetic Logic Unit  
The high performance Arithmetic Logic Unit (ALU) supports arithmetic and logic operations  
between registers or between a constant and a register. Single register operations can also be  
executed. Within a single clock cycle, arithmetic operations between general purpose registers  
or between a register and an immediate are executed. After an arithmetic or logic operation, the  
Status Register is updated to reflect information about the result of the operation.  
The ALU operations are divided into three main categories – arithmetic, logical, and bit-func-  
tions. Both 8- and 16-bit arithmetic is supported, and the instruction set allows for easy  
implementation of 32-bit arithmetic. The ALU also provides a powerful multiplier supporting both  
signed and unsigned multiplication and fractional format.  
6.5  
Program Flow  
When the device is powered on, the CPU starts to execute instructions from the lowest address  
in the Flash Program Memory ‘0’. The Program Counter (PC) addresses the next instruction to  
be fetched. After a reset, the PC is set to location ‘0’.  
Program flow is provided by conditional and unconditional jump and call instructions, capable of  
addressing the whole address space directly. Most AVR instructions use a 16-bit word format,  
while a limited number uses a 32-bit format.  
During interrupts and subroutine calls, the return address PC is stored on the Stack. The Stack  
is effectively allocated in the general data SRAM, and consequently the Stack size is only limited  
by the total SRAM size and the usage of the SRAM. After reset the Stack Pointer (SP) points to  
the highest address in the internal SRAM. The SP is read/write accessible in the I/O memory  
space, enabling easy implementation of multiple stacks or stack areas. The data SRAM can  
easily be accessed through the five different addressing modes supported in the AVR CPU.  
8
8116F–AVR–09/09  
XMEGA A3B  
7. Memories  
7.1  
Features  
Flash Program Memory  
– One linear address space  
– In-System Programmable  
– Self-Programming and Bootloader support  
– Application Section for application code  
– Application Table Section for application code or data storage  
– Boot Section for application code or bootloader code  
– Separate lock bits and protection for all sections  
– Built in fast CRC check of a selectable flash program memory section  
Data Memory  
– One linear address space  
– Single cycle access from CPU  
– SRAM  
– EEPROM  
Byte and page accessible  
Optional memory mapping for direct load and store  
– I/O Memory  
Configuration and Status registers for all peripherals and modules  
16 bit-accessible General Purpose Register for global variables or flags  
– Bus arbitration  
Safe and deterministic handling of CPU and DMA Controller priority  
– Separate buses for SRAM, EEPROM, I/O Memory and External Memory access  
Simultaneous bus access for CPU and DMA Controller  
Production Signature Row Memory for factory programmed data  
Device ID for each microcontroller device type  
Serial number for each device  
Oscillator calibration bytes  
ADC, DAC and temperature sensor calibration data  
User Signature Row  
One flash page in size  
Can be read and written from software  
Content is kept after chip erase  
7.2  
Overview  
The AVR architecture has two main memory spaces, the Program Memory and the Data Mem-  
ory. In addition, the XMEGA A3B features an EEPROM Memory for non-volatile data storage. All  
three memory spaces are linear and require no paging. The available memory size configura-  
tions are shown in ”Ordering Information” on page 2. In addition each device has a Flash  
memory signature row for calibration data, device identification, serial number etc.  
Non-volatile memory spaces can be locked for further write or read/write operations. This pre-  
vents unrestricted access to the application software.  
9
8116F–AVR–09/09  
XMEGA A3B  
7.3  
In-System Programmable Flash Program Memory  
The XMEGA A3B devices contain On-chip In-System Programmable Flash memory for program  
storage, see Figure 7-1 on page 10. Since all AVR instructions are 16- or 32-bits wide, each  
Flash address location is 16 bits.  
The Program Flash memory space is divided into Application and Boot sections. Both sections  
have dedicated Lock Bits for setting restrictions on write or read/write operations. The Store Pro-  
gram Memory (SPM) instruction must reside in the Boot Section when used to write to the Flash  
memory.  
A third section inside the Application section is referred to as the Application Table section which  
has separate Lock bits for storage of write or read/write protection. The Application Table sec-  
tion can be used for storing non-volatile data or application software.  
Figure 7-1. Flash Program Memory (Hexadecimal address)  
Word Address  
0
Application Section  
(256 KB)  
...  
1EFFF  
1F000  
1FFFF  
20000  
20FFF  
Application Table Section  
(8 KB)  
Boot Section  
(8 KB)  
The Application Table Section and Boot Section can also be used for general application  
software.  
7.4  
Data Memory  
The Data Memory consists of the I/O Memory, EEPROM and SRAM memories, all within one  
linear address space, see Figure 7-2 on page 10. To simplify development, the memory map for  
all devices in the family is identical and with empty, reserved memory space for smaller devices.  
Figure 7-2. Data Memory Map (Hexadecimal address)  
Byte Address  
ATxmega256A3B  
0
I/O Registers  
(4 KB)  
FFF  
10  
8116F–AVR–09/09  
XMEGA A3B  
Figure 7-2. Data Memory Map (Hexadecimal address)  
1000  
EEPROM  
(4 KB)  
1FFF  
2000  
5FFF  
Internal SRAM  
(16 KB)  
7.4.1  
I/O Memory  
All peripherals and modules are addressable through I/O memory locations in the data memory  
space. All I/O memory locations can be accessed by the Load (LD/LDS/LDD) and Store  
(ST/STS/STD) instructions, transferring data between the 32 general purpose registers in the  
CPU and the I/O Memory.  
The IN and OUT instructions can address I/O memory locations in the range 0x00 - 0x3F  
directly.  
I/O registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI and  
CBI instructions. The value of single bits can be checked by using the SBIS and SBIC instruc-  
tions on these registers.  
The I/O memory address for all peripherals and modules in XMEGA A3B is shown in the  
”Peripheral Module Address Map” on page 56.  
7.4.2  
7.4.3  
SRAM Data Memory  
The XMEGA A3B devices have internal SRAM memory for data storage.  
EEPROM Data Memory  
The XMEGA A3B devices have internal EEPROM memory for non-volatile data storage. It is  
addressable either in a separate data space or it can be memory mapped into the normal data  
memory space. The EEPROM memory supports both byte and page access.  
11  
8116F–AVR–09/09  
XMEGA A3B  
7.5  
Production Signature Row  
The Production Signature Row is a separate memory section for factory programmed data. It  
contains calibration data for functions such as oscillators and analog modules.  
The production signature row also contains a device ID that identify each microcontroller device  
type, and a serial number that is unique for each manufactured device. The device ID for the  
available XMEGA A3 devices is shown in Table 7-1 on page 13. The serial number consist of  
the production LOT number, wafer number, and wafer coordinates for the device.  
12  
8116F–AVR–09/09  
XMEGA A3B  
7.6  
Production Signature Row  
The Production Signature Row is a separate memory section for factory programmed data. It  
contains calibration data for functions such as oscillators and analog modules.  
The production signature row also contains a device ID that identify each microcontroller device  
type, and a serial number that is unique for each manufactured device. The device ID for the  
available XMEGA A3 devices is shown in Table 7-1 on page 13. The serial number consist of  
the production LOT number, wafer number, and wafer coordinates for the device.  
The production signature row can not be written or erased, but it can be read from both applica-  
tion software and external programming.  
Table 7-1.  
.Device ID bytes for XMEGA A3B device.  
Device  
Device ID bytes  
Byte 2  
43  
Byte 1  
Byte 0  
ATxmega256A3B  
98  
1E  
7.7  
User Signature Row  
The User Signature Row is a separate memory section that is fully accessible (read and write)  
from application software and external programming. The user signature row is one flash page  
in size, and is meant for static user parameter storage, such as calibration data, custom serial  
numbers or identification numbers, random number seeds etc. This section is not erased by  
Chip Erase commands that erase the Flash, and requires a dedicated erase command. This  
ensures parameter storage during multiple program/erase session and on-chip debug sessions.  
13  
8116F–AVR–09/09  
XMEGA A3B  
7.8  
Flash and EEPROM Page Size  
The Flash Program Memory and EEPROM data memory are organized in pages. The pages are  
word accessible for the Flash and byte accessible for the EEPROM.  
Table 7-2 on page 14 shows the Flash Program Memory organization. Flash write and erase  
operations are performed on one page at a time, while reading the Flash is done one byte at a  
time. For Flash access the Z-pointer (Z[m:n]) is used for addressing. The most significant bits in  
the address (FPAGE) give the page number and the least significant address bits (FWORD)  
give the word in the page.  
Table 7-2.  
Number of words and Pages in the Flash.  
Devices  
Flash Size  
Page Size  
FWORD  
FPAGE  
Application  
Boot  
No of Pages  
16  
(words)  
Size  
256 KB  
No of Pages  
Size  
ATxmega256A3B  
256 KB + 8 KB  
256  
Z[8:1]  
Z[18:9]  
512  
8 KB  
Table 7-3 on page 14 shows EEPROM memory organization for the XMEGA A3B devices.  
EEPROM write and erase operations can be performed one page or one byte at a time, while  
reading the EEPROM is done one byte at a time. For EEPROM access the NVM Address Regis-  
ter (ADDR[m:n]) is used for addressing. The most significant bits in the address (E2PAGE) give  
the page number and the least significant address bits (E2BYTE) give the byte in the page.  
Table 7-3.  
EEPROM  
Size  
Number of Bytes and Pages in the EEPROM.  
Devices  
Page Size  
(Bytes)  
32  
E2BYTE  
E2PAGE  
No of Pages  
ATxmega256A3B  
4 KB  
ADDR[4:0]  
ADDR[11:5]  
128  
14  
8116F–AVR–09/09  
XMEGA A3B  
8. DMAC - Direct Memory Access Controller  
8.1  
Features  
Allows High-speed data transfer  
– From memory to peripheral  
– From memory to memory  
– From peripheral to memory  
– From peripheral to peripheral  
4 Channels  
From 1 byte and up to 16M bytes transfers in a single transaction  
Multiple addressing modes for source and destination address  
– Increment  
– Decrement  
– Static  
1, 2, 4, or 8 byte Burst Transfers  
Programmable priority between channels  
8.2  
Overview  
The XMEGA A3B has a Direct Memory Access (DMA) Controller to move data between memo-  
ries and peripherals in the data space. The DMA controller uses the same data bus as the CPU  
to transfer data.  
It has 4 channels that can be configured independently. Each DMA channel can perform data  
transfers in blocks of configurable size from 1 to 64K bytes. A repeat counter can be used to  
repeat each block transfer for single transactions up to 16M bytes. Each DMA channel can be  
configured to access the source and destination memory address with incrementing, decrement-  
ing or static addressing. The addressing is independent for source and destination address.  
When the transaction is complete the original source and destination address can automatically  
be reloaded to be ready for the next transaction.  
The DMAC can access all the peripherals through their I/O memory registers, and the DMA may  
be used for automatic transfer of data to/from communication modules, as well as automatic  
data retrieval from ADC conversions, data transfer to DAC conversions, or data transfer to or  
from port pins. A wide range of transfer triggers are available from the peripherals, Event System  
and software. Each DMA channel has different transfer triggers.  
To allow for continuous transfers, two channels can be interlinked so that the second takes over  
the transfer when the first is finished and vice versa.  
The DMA controller can read from memory mapped EEPROM, but it cannot write to the  
EEPROM or access the Flash.  
15  
8116F–AVR–09/09  
XMEGA A3B  
9. Event System  
9.1  
Features  
Inter-peripheral communication and signalling with minimum latency  
CPU and DMA independent operation  
8 Event Channels allows for up to 8 signals to be routed at the same time  
Events can be generated by  
– Timer/Counters (TCxn)  
– Real Time Counter (RTC)  
– Analog to Digital Converters (ADCx)  
– Analog Comparators (ACx)  
– Ports (PORTx)  
– System Clock (ClkSYS  
)
– Software (CPU)  
Events can be used by  
– Timer/Counters (TCxn)  
– Analog to Digital Converters (ADCx)  
– Digital to Analog Converters (DACx)  
– Ports (PORTx)  
– DMA Controller (DMAC)  
– IR Communication Module (IRCOM)  
The same event can be used by multiple peripherals for synchronized timing  
Advanced Features  
– Manual Event Generation from software (CPU)  
– Quadrature Decoding  
– Digital Filtering  
Functions in Active and Idle mode  
9.2  
Overview  
The Event System is a set of features for inter-peripheral communication. It enables the possibil-  
ity for a change of state in one peripheral to automatically trigger actions in one or more  
peripherals. What changes in a peripheral that will trigger actions in other peripherals are config-  
urable by software. It is a simple, but powerful system as it allows for autonomous control of  
peripherals without any use of interrupts, CPU or DMA resources.  
The indication of a change in a peripheral is referred to as an event, and is usually the same as  
the interrupt conditions for that peripheral. Events are passed between peripherals using a dedi-  
cated routing network called the Event Routing Network. Figure 9-1 on page 17 shows a basic  
block diagram of the Event System with the Event Routing Network and the peripherals to which  
it is connected. This highly flexible system can be used for simple routing of signals, pin func-  
tions or for sequencing of events.  
The maximum latency is two CPU clock cycles from when an event is generated in one periph-  
eral, until the actions are triggered in one or more other peripherals.  
The Event System is functional in both Active and Idle modes.  
16  
8116F–AVR–09/09  
XMEGA A3B  
Figure 9-1. Event system block diagram.  
ClkSYS  
PORTx  
CPU  
ADCx  
RTC  
ACx  
Event Routing  
Network  
DACx  
IRCOM  
DMAC  
T/Cxn  
The Event Routing Network can directly connect together ADCs, DACs, Analog Comparators  
(ACx), I/O ports (PORTx), the Real-time Counter (RTC), Timer/Counters (T/C) and the IR Com-  
munication Module (IRCOM). Events can also be generated from software (CPU).  
All events from all peripherals are always routed into the Event Routing Network. This consist of  
eight multiplexers where each can be configured in software to select which event to be routed  
into that event channel. All eight event channels are connected to the peripherals that can use  
events, and each of these peripherals can be configured to use events from one or more event  
channels to automatically trigger a software selectable action.  
17  
8116F–AVR–09/09  
XMEGA A3B  
10. System Clock and Clock options  
10.1 Features  
Fast start-up time  
Safe run-time clock switching  
Internal Oscillators:  
– 32 MHz run-time calibrated RC oscillator  
– 2 MHz run-time calibrated RC oscillator  
– 32.768 kHz calibrated RC oscillator  
– 32 kHz Ultra Low Power (ULP) oscillator  
External clock options  
– 0.4 - 16 MHz Crystal Oscillator  
– 32 kHz Crystal Oscillator  
– External clock  
PLL with internal and external clock options with 2 to 31x multiplication  
Clock Prescalers with 2 to 2048x division  
Fast peripheral clock running at 2 and 4 times the CPU clock speed  
Automatic Run-Time Calibration of internal oscillators  
Crystal Oscillator failure detection  
10.2 Overview  
XMEGA A3B has an advanced clock system, supporting a large number of clock sources. It  
incorporates both integrated oscillators, external crystal oscillators and resonators. A high fre-  
quency Phase Locked Loop (PLL) and clock prescalers can be controlled from software to  
generate a wide range of clock frequencies from the clock source input.  
It is possible to switch between clock sources from software during run-time. After reset the  
device will always start up running from the 2 Mhz internal oscillator.  
A calibration feature is available, and can be used for automatic run-time calibration of the inter-  
nal 2 MHz and 32 MHz oscillators. This reduce frequency drift over voltage and temperature.  
A Crystal Oscillator Failure Monitor can be enabled to issue a Non-Maskable Interrupt and  
switch to internal oscillator if the external oscillator fails. Figure 10-1 on page 19 shows the prin-  
cipal clock system in XMEGA A3B.  
18  
8116F–AVR–09/09  
XMEGA A3B  
Figure 10-1. Clock system overview  
clkULP  
WDT/BOD  
RTC  
32 kHz ULP  
Internal Oscillator  
clkRTC  
32.768 kHz  
Calibrated Internal  
Oscillator  
PERIPHERALS  
ADC  
2 MHz  
Run-Time Calibrated  
Internal Oscillator  
DAC  
PORTS  
...  
CLOCK CONTROL  
UNIT  
32 MHz  
Run-time Calibrated  
Internal Oscillator  
clkPER  
with PLL and  
Prescaler  
DMA  
INTERRUPT  
EVSYS  
32.768 KHz  
Crystal Oscillator  
RAM  
0.4 - 16 MHz  
Crystal Oscillator  
CPU  
NVM MEMORY  
FLASH  
clkCPU  
External  
Clock Input  
EEPROM  
Each clock source is briefly described in the following sub-sections.  
10.3 Clock Options  
10.3.1  
32 kHz Ultra Low Power Internal Oscillator  
The 32 kHz Ultra Low Power (ULP) Internal Oscillator is a very low power consumption clock  
source. It is used for the Watchdog Timer, Brown-Out Detection and as an asynchronous clock  
source for the Real Time Counter. This oscillator cannot be used as the system clock source,  
and it cannot be directly controlled from software.  
10.3.2  
32.768 kHz Calibrated Internal Oscillator  
The 32.768 kHz Calibrated Internal Oscillator is a high accuracy clock source that can be used  
as the system clock source or as an asynchronous clock source for the Real Time Counter. It is  
calibrated during production to provide a default frequency which is close to its nominal  
frequency.  
19  
8116F–AVR–09/09  
XMEGA A3B  
10.3.3  
10.3.4  
10.3.5  
32.768 kHz Crystal Oscillator  
The 32.768 kHz Crystal Oscillator is a low power driver for an external watch crystal. It can be  
used as system clock source or as asynchronous clock source for the Real Time Counter.  
0.4 - 16 MHz Crystal Oscillator  
The 0.4 - 16 MHz Crystal Oscillator is a driver intended for driving both external resonators and  
crystals ranging from 400 kHz to 16 MHz.  
2 MHz Run-time Calibrated Internal Oscillator  
The 2 MHz Run-time Calibrated Internal Oscillator is a high frequency oscillator. It is calibrated  
during production to provide a default frequency which is close to its nominal frequency. The  
oscillator can use the 32 kHz Calibrated Internal Oscillator or the 32 kHz Crystal Oscillator as a  
source for calibrating the frequency run-time to compensate for temperature and voltage drift  
hereby optimizing the accuracy of the oscillator.  
10.3.6  
32 MHz Run-time Calibrated Internal Oscillator  
The 32 MHz Run-time Calibrated Internal Oscillator is a high frequency oscillator. It is calibrated  
during production to provide a default frequency which is close to its nominal frequency. The  
oscillator can use the 32 kHz Calibrated Internal Oscillator or the 32 kHz Crystal Oscillator as a  
source for calibrating the frequency run-time to compensate for temperature and voltage drift  
hereby optimizing the accuracy of the oscillator.  
10.3.7  
10.3.8  
External Clock input  
The external clock input gives the possibility to connect a clock from an external source.  
PLL with Multiplication factor 2 - 31x  
The PLL provides the possibility of multiplying a frequency by any number from 2 to 31. In com-  
bination with the prescalers, this gives a wide range of output frequencies from all clock sources.  
20  
8116F–AVR–09/09  
XMEGA A3B  
11. Power Management and Sleep Modes  
11.1 Features  
5 sleep modes  
– Idle  
– Power-down  
– Power-save  
– Standby  
– Extended standby  
Power Reduction registers to disable clocks to unused peripherals  
11.2 Overview  
The XMEGA A3B provides various sleep modes tailored to reduce power consumption to a min-  
imum. All sleep modes are available and can be entered from Active mode. In Active mode the  
CPU is executing application code. The application code decides when and what sleep mode to  
enter. Interrupts from enabled peripherals and all enabled reset sources can restore the micro-  
controller from sleep to Active mode.  
In addition, Power Reduction registers provide a method to stop the clock to individual peripher-  
als from software. When this is done, the current state of the peripheral is frozen and there is no  
power consumption from that peripheral. This reduces the power consumption in Active mode  
and Idle sleep mode.  
11.3 Sleep Modes  
11.3.1  
Idle Mode  
In Idle mode the CPU and Non-Volatile Memory are stopped, but all peripherals including the  
Interrupt Controller, Event System and DMA Controller are kept running. Interrupt requests from  
all enabled interrupts will wake the device.  
11.3.2  
Power-down Mode  
In Power-down mode all system clock sources, and the asynchronous Real Time Counter (RTC)  
clock source, are stopped. This allows operation of asynchronous modules only. The only inter-  
rupts that can wake up the MCU are the Two Wire Interface address match interrupts, and  
asynchronous port interrupts, e.g pin change.  
11.3.3  
11.3.4  
Power-save Mode  
Power-save mode is identical to Power-down, with one exception: If the RTC is enabled, it will  
keep running during sleep and the device can also wake up from RTC interrupts.  
Standby Mode  
Standby mode is identical to Power-down with the exception that all enabled system clock  
sources are kept running, while the CPU, Peripheral and RTC clocks are stopped. This reduces  
the wake-up time when external crystals or resonators are used.  
21  
8116F–AVR–09/09  
XMEGA A3B  
11.3.5  
Extended Standby Mode  
Extended Standby mode is identical to Power-save mode with the exception that all enabled  
system clock sources are kept running while the CPU and Peripheral clocks are stopped. This  
reduces the wake-up time when external crystals or resonators are used.  
22  
8116F–AVR–09/09  
XMEGA A3B  
12. System Control and Reset  
12.1 Features  
Multiple reset sources for safe operation and device reset  
– Power-On Reset  
– External Reset  
– Watchdog Reset  
The Watchdog Timer runs from separate, dedicated oscillator  
– Brown-Out Reset  
Accurate, programmable Brown-Out levels  
– JTAG Reset  
– PDI reset  
– Software reset  
Asynchronous reset  
– No running clock in the device is required for reset  
Reset status register  
12.2 Resetting the AVR  
During reset, all I/O registers are set to their initial values. The SRAM content is not reset. Appli-  
cation execution starts from the Reset Vector. The instruction placed at the Reset Vector should  
be an Absolute Jump (JMP) instruction to the reset handling routine. By default the Reset Vector  
address is the lowest Flash program memory address, ‘0’, but it is possible to move the Reset  
Vector to the first address in the Boot Section.  
The I/O ports of the AVR are immediately tri-stated when a reset source goes active.  
The reset functionality is asynchronous, so no running clock is required to reset the device.  
After the device is reset, the reset source can be determined by the application by reading the  
Reset Status Register.  
12.3 Reset Sources  
12.3.1  
12.3.2  
12.3.3  
Power-On Reset  
The MCU is reset when the supply voltage VCC is below the Power-on Reset threshold voltage.  
External Reset  
The MCU is reset when a low level is present on the RESET pin.  
Watchdog Reset  
The MCU is reset when the Watchdog Timer period expires and the Watchdog Reset is enabled.  
The Watchdog Timer runs from a dedicated oscillator independent of the System Clock. For  
more details see WDT - Watchdog Timer” on page 24.  
12.3.4  
Brown-Out Reset  
The MCU is reset when the supply voltage VCC is below the Brown-Out Reset threshold voltage  
and the Brown-out Detector is enabled. The Brown-out threshold voltage is programmable.  
23  
8116F–AVR–09/09  
XMEGA A3B  
12.3.5  
JTAG reset  
The MCU is reset as long as there is a logic one in the Reset Register in one of the scan chains  
of the JTAG system. Refer to IEEE 1149.1 (JTAG) Boundary-scan for details.  
12.3.6  
12.3.7  
PDI reset  
The MCU can be reset through the Program and Debug Interface (PDI).  
Software reset  
The MCU can be reset by the CPU writing to a special I/O register through a timed sequence.  
12.4 WDT - Watchdog Timer  
12.4.1  
Features  
11 selectable timeout periods, from 8 ms to 8s.  
Two operation modes  
– Standard mode  
– Window mode  
Runs from the 1 kHz output of the 32 kHz Ultra Low Power oscillator  
Configuration lock to prevent unwanted changes  
12.4.2  
Overview  
The XMEGA A3B has a Watchdog Timer (WDT). The WDT will run continuously when turned on  
and if the Watchdog Timer is not reset within a software configurable time-out period, the micro-  
controller will be reset. The Watchdog Reset (WDR) instruction must be run by software to reset  
the WDT, and prevents microcontroller reset.  
The WDT has a Window mode. In this mode the WDR instruction must be run within a specified  
period called a window. Application software can set the minimum and maximum limits for this  
window. If the WDR instruction is not executed inside the window limits, the microcontroller will  
be reset.  
A protection mechanism using a timed write sequence is implemented in order to prevent  
unwanted enabling, disabling or change of WDT settings.  
For maximum safety, the WDT also has an Always-on mode. This mode is enabled by program-  
ming a fuse. In Always-on mode, application software can not disable the WDT.  
24  
8116F–AVR–09/09  
XMEGA A3B  
13. Battery Backup System  
13.1 Features  
Battery Backup voltage supply from dedicated VBAT power pin for:  
– One Ultra Low-power 32-bit Real Time Counter  
– One 32.768 kHz crystal oscillator with failure detection monitor  
– Two Backup Registers  
Typical power consumption of 500nA with Real Time Counter (RTC) running  
Automatic switching from main power to battery backup power at:  
– Brown-Out Detection (BOD) reset  
Automatic switching from battery backup power to main power:  
– Device reset after Brown-Out Reset (BOR) is released  
– Device reset after Power-On Reset (POR) and BOR is released  
13.2 Overview  
The AVR XMEGA family is already running in an ultra low leakage process with power-save cur-  
rent consumption below 2 µA with RTC, BOD and watchdog enabled. Still, for some applications  
where time keeping is important, the system would have one main battery or power source used  
for day to day tasks, and one backup battery power for the time keeping functionality. The Bat-  
tery Backup System includes functionality that enable automatic power switching between main  
power and a battery backup power. Figure 13-1 on page 26 shows an overview of the system.  
The Battery Backup Module support connection of a backup battery to the dedicated VBAT power  
pin. This will ensure power to the 32-bit Real Time Counter, a 32.768 kHz crystal oscillator with  
failure detection monitor and two backup registers, when the main battery or power source is  
unavailable.  
Upon main power loss the device will automatically detect this and the Battery Backup Module  
will switch to be powered from the VBAT pin. After main power has been restored and both main  
POR and BOR are released, the Battery Backup Module will automatically switch back to be  
powered from main power again.  
The 32-bit Real Time Counter (RTC) must be clocked from the 1 Hz output of a 32.768 kHz crys-  
tal oscillator connected between the TOSC1 and TOSC2 pins when running from VBAT. For more  
details on the 32-bit RTC refer to the “RTC32 - 32-bit Real Time Counter” section in the XMEGA  
A Manual.  
25  
8116F–AVR–09/09  
XMEGA A3B  
Figure 13-1. Battery Backup Module and its power domain implementation  
Power  
switch  
Watchdog w/  
independent  
RCOSC  
Main  
power  
supervision  
VBAT  
power  
supervisor  
VBAT  
VCC  
XTAL1  
OCD &  
Programming  
Interface  
Oscillator &  
sleep  
controller  
XTAL2  
GPIO  
XOSC  
monitor  
CPU  
&
Peripherals  
TOSC1  
TOSC2  
XOSC  
FLASH,  
EEPROM  
& Fuses  
Internal  
RAM  
RTC  
Backup  
Registers  
26  
8116F–AVR–09/09  
XMEGA A3B  
14. PMIC - Programmable Multi-level Interrupt Controller  
14.1 Features  
Separate interrupt vector for each interrupt  
Short, predictable interrupt response time  
Programmable Multi-level Interrupt Controller  
– 3 programmable interrupt levels  
– Selectable priority scheme within low level interrupts (round-robin or fixed)  
– Non-Maskable Interrupts (NMI)  
Interrupt vectors can be moved to the start of the Boot Section  
14.2 Overview  
XMEGA A3B has a Programmable Multi-level Interrupt Controller (PMIC). All peripherals can  
define three different priority levels for interrupts; high, medium or low. Medium level interrupts  
may interrupt low level interrupt service routines. High level interrupts may interrupt both low-  
and medium level interrupt service routines. Low level interrupts have an optional round robin  
scheme to make sure all interrupts are serviced within a certain amount of time.  
The built in oscillator failure detection mechanism can issue a Non-Maskable Interrupt (NMI).  
14.3 Interrupt vectors  
When an interrupt is serviced, the program counter will jump to the interrupt vector address. The  
interrupt vector is the sum of the peripheral’s base interrupt address and the offset address for  
specific interrupts in each peripheral. The base addresses for the XMEGA A3B devices are  
shown in Table 14-1. Offset addresses for each interrupt available in the peripheral are  
described for each peripheral in the XMEGA A manual. For peripherals or modules that have  
only one interrupt, the interrupt vector is shown in Table 14-1. The program address is the word  
address.  
Table 14-1. Reset and Interrupt Vectors  
Program Address  
(Base Address)  
Source  
Interrupt Description  
0x000  
0x002  
0x004  
0x008  
0x00C  
0x014  
0x018  
0x01C  
0x028  
0x030  
0x032  
0x038  
0x03E  
RESET  
OSCF_INT_vect  
PORTC_INT_base  
PORTR_INT_base  
DMA_INT_base  
RTC32_INT_base  
TWIC_INT_base  
TCC0_INT_base  
TCC1_INT_base  
SPIC_INT_vect  
USARTC0_INT_base  
USARTC1_INT_base  
AES_INT_vect  
Crystal Oscillator Failure Interrupt vector (NMI)  
Port C Interrupt base  
Port R Interrupt base  
DMA Controller Interrupt base  
32-bit Real Time Counter Interrupt base  
Two-Wire Interface on Port C Interrupt base  
Timer/Counter 0 on port C Interrupt base  
Timer/Counter 1 on port C Interrupt base  
SPI on port C Interrupt vector  
USART 0 on port C Interrupt base  
USART 1 on port C Interrupt base  
AES Interrupt vector  
27  
8116F–AVR–09/09  
XMEGA A3B  
Table 14-1. Reset and Interrupt Vectors (Continued)  
Program Address  
(Base Address)  
Source  
Interrupt Description  
0x040  
NVM_INT_base  
PORTB_INT_base  
ACB_INT_base  
Non-Volatile Memory Interrupt base  
Port B Interrupt base  
0x044  
0x048  
Analog Comparator on Port B Interrupt base  
Analog to Digital Converter on Port B Interrupt base  
Port E Interrupt base  
0x04E  
0x056  
ADCB_INT_base  
PORTE_INT_base  
TWIE_INT_base  
TCE0_INT_base  
TCE1_INT_base  
USARTE0_INT_base  
PORTD_INT_base  
PORTA_INT_base  
ACA_INT_base  
0x05A  
0x05E  
0x06A  
0x074  
Two-Wire Interface on Port E Interrupt base  
Timer/Counter 0 on port E Interrupt base  
Timer/Counter 1 on port E Interrupt base  
USART 0 on port E Interrupt base  
Port D Interrupt base  
0x080  
0x084  
Port A Interrupt base  
0x088  
Analog Comparator on Port A Interrupt base  
Analog to Digital Converter on Port A Interrupt base  
Timer/Counter 0 on port D Interrupt base  
Timer/Counter 1 on port D Interrupt base  
SPI on port D Interrupt vector  
0x08E  
0x09A  
0x0A6  
0x0AE  
0x0B0  
0x0B6  
0x0D0  
0x0D8  
0x0EE  
ADCA_INT_base  
TCD0_INT_base  
TCD1_INT_base  
SPID_INT_vector  
USARTD0_INT_base  
USARTD1_INT_base  
PORTF_INT_base  
TCF0_INT_base  
USARTF0_INT_base  
USART 0 on port D Interrupt base  
USART 1 on port D Interrupt base  
Port F INT base  
Timer/Counter 0 on port F Interrupt base  
USART 0 on port F Interrupt base  
28  
8116F–AVR–09/09  
XMEGA A3B  
15. I/O Ports  
15.1 Features  
Selectable input and output configuration for each pin individually  
Flexible pin configuration through dedicated Pin Configuration Register  
Synchronous and/or asynchronous input sensing with port interrupts and events  
– Sense both edges  
– Sense rising edges  
– Sense falling edges  
– Sense low level  
Asynchronous wake-up from all input sensing configurations  
Two port interrupts with flexible pin masking  
Highly configurable output driver and pull settings:  
Totem-pole  
Pull-up/-down  
Wired-AND  
Wired-OR  
Bus-keeper  
Inverted I/O  
Optional Slew rate control  
Configuration of multiple pins in a single operation  
Read-Modify-Write (RMW) support  
Toggle/clear/set registers for Output and Direction registers  
Clock output on port pin  
Event Channel 7 output on port pin  
Mapping of port registers (virtual ports) into bit accessible I/O memory space  
15.2 Overview  
The XMEGA A3B devices have flexible General Purpose I/O Ports. A port consists of up to 8  
pins, ranging from pin 0 to pin 7. The ports implement several functions, including synchro-  
nous/asynchronous input sensing, pin change interrupts and configurable output settings. All  
functions are individual per pin, but several pins may be configured in a single operation.  
15.3 I/O configuration  
All port pins (Pn) have programmable output configuration. In addition, all port pins have an  
inverted I/O function. For an input, this means inverting the signal between the port pin and the  
pin register. For an output, this means inverting the output signal between the port register and  
the port pin. The inverted I/O function can be used also when the pin is used for alternate func-  
tions. The port pins also have configurable slew rate limitation to reduce electromagnetic  
emission.  
29  
8116F–AVR–09/09  
XMEGA A3B  
15.3.1  
Push-pull  
Figure 15-1. I/O configuration - Totem-pole  
DIRn  
OUTn  
INn  
Pn  
15.3.2  
Pull-down  
Figure 15-2. I/O configuration - Totem-pole with pull-down (on input)  
DIRn  
OUTn  
INn  
Pn  
15.3.3  
Pull-up  
Figure 15-3. I/O configuration - Totem-pole with pull-up (on input)  
DIRn  
OUTn  
INn  
Pn  
15.3.4  
Bus-keeper  
The bus-keeper’s weak output produces the same logical level as the last output level. It acts as  
a pull-up if the last level was ‘1’, and pull-down if the last level was ‘0’.  
30  
8116F–AVR–09/09  
XMEGA A3B  
Figure 15-4. I/O configuration - Totem-pole with bus-keeper  
DIRn  
OUTn  
INn  
Pn  
15.3.5  
Others  
Figure 15-5. Output configuration - Wired-OR with optional pull-down  
OUTn  
Pn  
INn  
Figure 15-6. I/O configuration - Wired-AND with optional pull-up  
INn  
Pn  
OUTn  
31  
8116F–AVR–09/09  
XMEGA A3B  
15.4 Input sensing  
Sense both edges  
Sense rising edges  
Sense falling edges  
Sense low level  
Input sensing is synchronous or asynchronous depending on the enabled clock for the ports,  
and the configuration is shown in Figure 15-7 on page 32.  
Figure 15-7. Input sensing system overview  
Asynchronous sensing  
EDGE  
DETECT  
Interrupt  
Control  
IREQ  
Synchronous sensing  
Pn  
Synchronizer  
INn  
EDGE  
DETECT  
Q
Q
D
D
Event  
INVERTED I/O  
R
R
When a pin is configured with inverted I/O the pin value is inverted before the input sensing.  
15.5 Port Interrupt  
Each port has two interrupts with separate priority and interrupt vector. All pins on the port can  
be individually selected as source for each of the interrupts. The interrupts are then triggered  
according to the input sense configuration for each pin configured as source for the interrupt.  
15.6 Alternate Port Functions  
In addition to the input/output functions on all port pins, most pins have alternate functions. This  
means that other modules or peripherals connected to the port can use the port pins for their  
functions, such as communication or pulse-width modulation. ”Pinout and Pin Functions” on  
page 51 shows which modules on peripherals that enables alternate functions on a pin, and  
what alternate functions that is available on a pin.  
32  
8116F–AVR–09/09  
XMEGA A3B  
16. T/C - 16-bit Timer/Counter with PWM  
16.1 Features  
Seven 16-bit Timer/Counters  
– Four Timer/Counters of type 0  
– Three Timer/Counters of type 1  
Four Compare or Capture (CC) Channels in Timer/Counter 0  
Two Compare or Capture (CC) Channels in Timer/Counter 1  
Double Buffered Timer Period Setting  
Double Buffered Compare or Capture Channels  
Waveform Generation:  
– Single Slope Pulse Width Modulation  
– Dual Slope Pulse Width Modulation  
– Frequency Generation  
Input Capture:  
– Input Capture with Noise Cancelling  
– Frequency capture  
– Pulse width capture  
– 32-bit input capture  
Event Counter with Direction Control  
Timer Overflow and Timer Error Interrupts and Events  
One Compare Match or Capture Interrupt and Event per CC Channel  
Supports DMA Operation  
Hi-Resolution Extension (Hi-Res)  
Advanced Waveform Extension (AWEX)  
16.2 Overview  
XMEGA A3B has seven Timer/Counters, four Timer/Counter 0 and three Timer/Counter 1. The  
difference between them is that Timer/Counter 0 has four Compare/Capture channels, while  
Timer/Counter 1 has two Compare/Capture channels.  
The Timer/Counters (T/C) are 16-bit and can count any clock, event or external input in the  
microcontroller. A programmable prescaler is available to get a useful T/C resolution. Updates of  
Timer and Compare registers are double buffered to ensure glitch free operation. Single slope  
PWM, dual slope PWM and frequency generation waveforms can be generated using the Com-  
pare Channels.  
Through the Event System, any input pin or event in the microcontroller can be used to trigger  
input capture, hence no dedicated pins are required for this. The input capture has a noise can-  
celler to avoid incorrect capture of the T/C, and can be used to do frequency and pulse width  
measurements.  
A wide range of interrupt or event sources are available, including T/C Overflow, Compare  
match and Capture for each Compare/Capture channel in the T/C.  
PORTC, PORTD and PORTE each has one Timer/Counter 0 and one Timer/Counter1. PORTF  
has one Timer/Counter 0. Notation of these are TCC0 (Time/Counter C0), TCC1, TCD0, TCD1,  
TCE0, TCE1 and TCF0, respectively.  
33  
8116F–AVR–09/09  
XMEGA A3B  
Figure 16-1. Overview of a Timer/Counter and closely related peripherals  
Timer/Counter  
Base Counter  
Timer Period  
Counter  
Prescaler  
clkPER  
Control Logic  
Event  
System  
clkPER4  
Compare/Capture Channel D  
Compare/Capture Channel C  
Compare/Capture Channel B  
Compare/Capture Channel A  
AWeX  
Pattern  
Generation  
Fault  
DTI  
Dead-Time  
Insertion  
Capture  
Comparator  
Control  
Protection  
Waveform  
Buffer  
Generation  
The Hi-Resolution Extension can be enabled to increase the waveform generation resolution by  
2 bits (4x). This is available for all Timer/Counters. See ”Hi-Res - High Resolution Extension” on  
page 36 for more details.  
The Advanced Waveform Extension can be enabled to provide extra and more advanced fea-  
tures for the Timer/Counter. This are only available for Timer/Counter 0. See ”AWEX - Advanced  
Waveform Extension” on page 35 for more details.  
34  
8116F–AVR–09/09  
XMEGA A3B  
17. AWEX - Advanced Waveform Extension  
17.1 Features  
Output with complementary output from each Capture channel  
Four Dead Time Insertion (DTI) Units, one for each Capture channel  
8-bit DTI Resolution  
Separate High and Low Side Dead-Time Setting  
Double Buffered Dead-Time  
Event Controlled Fault Protection  
Single Channel Multiple Output Operation (for BLDC motor control)  
Double Buffered Pattern Generation  
17.2 Overview  
The Advanced Waveform Extension (AWEX) provides extra features to the Timer/Counter in  
Waveform Generation (WG) modes. The AWEX enables easy and safe implementation of for  
example, advanced motor control (AC, BLDC, SR, and Stepper) and power control applications.  
Any WG output from a Timer/Counter 0 is split into a complimentary pair of outputs when any  
AWEX feature is enabled. These output pairs go through a Dead-Time Insertion (DTI) unit that  
enables generation of the non-inverted Low Side (LS) and inverted High Side (HS) of the WG  
output with dead time insertion between LS and HS switching. The DTI output will override the  
normal port value according to the port override setting. Optionally the final output can be  
inverted by using the invert I/O setting for the port pin.  
The Pattern Generation unit can be used to generate a synchronized bit pattern on the port it is  
connected to. In addition, the waveform generator output from Compare Channel A can be dis-  
tributed to, and override all port pins. When the Pattern Generator unit is enabled, the DTI unit is  
bypassed.  
The Fault Protection unit is connected to the Event System. This enables any event to trigger a  
fault condition that will disable the AWEX output. Several event channels can be used to trigger  
fault on several different conditions.  
The AWEX is available for TCC0. The notation is AWEXC.  
35  
8116F–AVR–09/09  
XMEGA A3B  
18. Hi-Res - High Resolution Extension  
18.1 Features  
Increases Waveform Generator resolution by 2-bits (4x)  
Supports Frequency, single- and dual-slope PWM operation  
Supports the AWEX when this is enabled and used for the same Timer/Counter  
18.2 Overview  
The Hi-Resolution (Hi-Res) Extension is able to increase the resolution of the waveform genera-  
tion output by a factor of 4. When enabled for a Timer/Counter, the Fast Peripheral clock running  
at four times the CPU clock speed will be as input to the Timer/Counter.  
The High Resolution Extension can also be used when an AWEX is enabled and used with a  
Timer/Counter.  
XMEGA A3B devices have four Hi-Res Extensions that each can be enabled for each  
Timer/Counters pair on PORTC, PORTD, PORTE and PORTF. The notation of these are  
HIRESC, HIRESD, HIRESE and HIRESF, respectively.  
36  
8116F–AVR–09/09  
XMEGA A3B  
19. RTC32 - 32-bit Real-Time Counter  
19.1 Features  
32-bit resolution  
One 32-bit Compare register  
One 32-bit Period register  
Clear Timer on overflow  
Optional Interrupt/ Event on overflow and compare match  
Selectable clock reference  
– 1.024 kHz  
– 1 Hz  
Isolated VBAT power domain with dynamic switch over from/to VCC power domain’  
19.1.1  
Overview  
The 32-bit Real Time Counter (RTC) is a 32-bit counter, counting reference clock cycles and giv-  
ing an event and/or an interrupt request when it reaches a configurable compare and/or top  
value. The reference clock is generated from a high accuracy 32.768 kHz crystal, and the design  
is optimized for low power consumption. The RTC typically operate in low power sleep modes,  
keeping track of time and waking up the device at regular intervals.  
The RTC input clock can be taken from a 1.024 kHz or 1 Hz prescaled output from the 32.768  
kHz reference clock. The RTC will give a compare interrupt request and/or event when the coun-  
ter value equals the Compare register value. The RTC will give an overflow interrupt request  
and/or event when the counter value equals the Period register value. Counter overflow will also  
reset the counter value to zero.  
The 32-bit Real Time Counter (RTC) must be clocked from the 1 Hz output of a 32.768 kHz crys-  
tal oscillator connected between the TOSC1 and TOSC2 pins when running from VBAT. For more  
details on the 32-bit RTC refer to the “32-bit Real Time Counter” section in the XMEGA A  
Manual.  
Figure 19-1. Real Time Counter Overview  
3 2 -b it P e rio d  
O v e r flo w  
=
1 H z  
3 2 - b it C o u n te r  
1 .0 2 4 k H z  
=
C o m p a re M a tc h  
3 2 -b it C o m p a re  
37  
8116F–AVR–09/09  
XMEGA A3B  
20. TWI - Two Wire Interface  
20.1 Features  
Two Identical TWI peripherals  
Simple yet Powerful and Flexible Communication Interface  
Both Master and Slave Operation Supported  
Device can Operate as Transmitter or Receiver  
7-bit Address Space Allows up to 128 Different Slave Addresses  
Multi-master Arbitration Support  
Up to 400 kHz Data Transfer Speed  
Slew-rate Limited Output Drivers  
Noise Suppression Circuitry Rejects Spikes on Bus Lines  
Fully Programmable Slave Address with General Call Support  
Address Recognition Causes Wake-up when in Sleep Mode  
I2C and System Management Bus (SMBus) compatible  
20.2 Overview  
The Two-Wire Interface (TWI) is a bi-directional wired-AND bus with only two lines, the clock  
(SCL) line and the data (SDA) line. The protocol makes it possible to interconnect up to 128 indi-  
vidually addressable devices. Since it is a multi-master bus, one or more devices capable of  
taking control of the bus can be connected.  
The only external hardware needed to implement the bus is a single pull-up resistor for each of  
the TWI bus lines. Mechanisms for resolving bus contention are inherent in the TWI protocol.  
PORTC and PORTE, each has one TWI. Notation of these peripherals are TWIC, and TWIE,  
respectively.  
38  
8116F–AVR–09/09  
XMEGA A3B  
21. SPI - Serial Peripheral Interface  
21.1 Features  
Two Identical SPI peripherals  
Full-duplex, Three-wire Synchronous Data Transfer  
Master or Slave Operation  
LSB First or MSB First Data Transfer  
Seven Programmable Bit Rates  
End of Transmission Interrupt Flag  
Write Collision Flag Protection  
Wake-up from Idle Mode  
Double Speed (CK/2) Master SPI Mode  
21.2 Overview  
The Serial Peripheral Interface (SPI) allows high-speed full-duplex, synchronous data transfer  
between different devices. Devices can communicate using a master-slave scheme, and data is  
transferred both to and from the devices simultaneously.  
PORTC and PORTD each has one SPI. Notation of these peripherals are SPIC and SPID,  
respectively.  
39  
8116F–AVR–09/09  
XMEGA A3B  
22. USART  
22.1 Features  
Six Identical USART peripherals  
Full Duplex Operation (Independent Serial Receive and Transmit Registers)  
Asynchronous or Synchronous Operation  
Master or Slave Clocked Synchronous Operation  
High-resolution Arithmetic Baud Rate Generator  
Supports Serial Frames with 5, 6, 7, 8, or 9 Data Bits and 1 or 2 Stop Bits  
Odd or Even Parity Generation and Parity Check Supported by Hardware  
Data OverRun Detection  
Framing Error Detection  
Noise Filtering Includes False Start Bit Detection and Digital Low Pass Filter  
Three Separate Interrupts on TX Complete, TX Data Register Empty and RX Complete  
Multi-processor Communication Mode  
Double Speed Asynchronous Communication Mode  
Master SPI mode for SPI communication  
IrDA support through the IRCOM module  
22.2 Overview  
The Universal Synchronous and Asynchronous serial Receiver and Transmitter (USART) is a  
highly flexible serial communication module. The USART supports full duplex communication,  
and both asynchronous and clocked synchronous operation. The USART can also be set in  
Master SPI mode to be used for SPI communication.  
Communication is frame based, and the frame format can be customized to support a wide  
range of standards. The USART is buffered in both direction, enabling continued data transmis-  
sion without any delay between frames. There are separate interrupt vectors for receive and  
transmit complete, enabling fully interrupt driven communication. Frame error and buffer over-  
flow are detected in hardware and indicated with separate status flags. Even or odd parity  
generation and parity check can also be enabled.  
One USART can use the IRCOM module to support IrDA 1.4 physical compliant pulse modula-  
tion and demodulation for baud rates up to 115.2 kbps.  
PORTC and PORTD each has two USARTs, while PORTE and PORTF each has one USART.  
Notation of these peripherals are USARTC0, USARTC1, USARTD0, USARTD1, USARTE0 and  
USARTF0, respectively.  
40  
8116F–AVR–09/09  
XMEGA A3B  
23. IRCOM - IR Communication Module  
23.1 Features  
Pulse modulation/demodulation for infrared communication  
Compatible to IrDA 1.4 physical for baud rates up to 115.2 kbps  
Selectable pulse modulation scheme  
– 3/16 of baud rate period  
– Fixed pulse period, 8-bit programmable  
– Pulse modulation disabled  
Built in filtering  
Can be connected to and used by one USART at a time  
23.2 Overview  
XMEGA A3B contains an Infrared Communication Module (IRCOM) for IrDA communication  
with baud rates up to 115.2 kbps. This supports three modulation schemes: 3/16 of baud rate  
period, fixed programmable pulse time based on the Peripheral Clock speed, or pulse modula-  
tion disabled. There is one IRCOM available which can be connected to any USART to enable  
infrared pulse coding/decoding for that USART.  
41  
8116F–AVR–09/09  
XMEGA A3B  
24. Crypto Engine  
24.1 Features  
Data Encryption Standard (DES) CPU instruction  
Advanced Encryption Standard (AES) Crypto module  
DES Instruction  
– Encryption and Decryption  
– Single-cycle DES instruction  
– Encryption/Decryption in 16 clock cycles per 8-byte block  
AES Crypto Module  
– Encryption and Decryption  
– Support 128-bit keys  
– Support XOR data load mode to the State memory for Cipher Block Chaining  
– Encryption/Decryption in 375 clock cycles per 16-byte block  
24.2 Overview  
The Advanced Encryption Standard (AES) and Data Encryption Standard (DES) are two com-  
monly used encryption standards. These are supported through an AES peripheral module and  
a DES CPU instruction. All communication interfaces and the CPU can optionally use AES and  
DES encrypted communication and data storage.  
DES is supported by a DES instruction in the AVR XMEGA CPU. The 8-byte key and 8-byte  
data blocks must be loaded into the Register file, and then DES must be executed 16 times to  
encrypt/decrypt the data block.  
The AES Crypto Module encrypts and decrypts 128-bit data blocks with the use of a 128-bit key.  
The key and data must be loaded into the key and state memory in the module before encryp-  
tion/decryption is started. It takes 375 peripheral clock cycles before the encryption/decryption is  
done and decrypted/encrypted data can be read out, and an optional interrupt can be generated.  
The AES Crypto Module also has DMA support with transfer triggers when encryption/decryp-  
tion is done and optional auto-start of encryption/decryption when the state memory is fully  
loaded.  
42  
8116F–AVR–09/09  
XMEGA A3B  
25. ADC - 12-bit Analog to Digital Converter  
25.1 Features  
Two ADCs with 12-bit resolution  
2 Msps sample rate for each ADC  
Signed and Unsigned conversions  
4 result registers with individual input channel control for each ADC  
8 single ended inputs for each ADC  
8x4 differential inputs for each ADC  
4 internal inputs:  
Integrated Temperature Sensor  
DAC Output  
VCC voltage divided by 10  
Bandgap voltage  
Software selectable gain of 2, 4, 8, 16, 32 or 64  
Software selectable resolution of 8- or 12-bit.  
Internal or External Reference selection  
Event triggered conversion for accurate timing  
DMA transfer of conversion results  
Interrupt/Event on compare result  
25.2 Overview  
XMEGA A3B devices have two Analog to Digital Converters (ADC), see Figure 25-1 on page 44.  
The two ADC modules can be operated simultaneously, individually or synchronized.  
The ADC converts analog voltages to digital values. The ADC has 12-bit resolution and is capa-  
ble of converting up to 2 million samples per second. The input selection is flexible, and both  
single-ended and differential measurements can be done. For differential measurements an  
optional gain stage is available to increase the dynamic range. In addition several internal signal  
inputs are available. The ADC can provide both signed and unsigned results.  
This is a pipeline ADC. A pipeline ADC consists of several consecutive stages, where each  
stage convert one part of the result. The pipeline design enables high sample rate at low clock  
speeds, and remove limitations on samples speed versus propagation delay. This also means  
that a new analog voltage can be sampled and a new ADC measurement started while other  
ADC measurements are ongoing.  
ADC measurements can either be started by application software or an incoming event from  
another peripheral in the device. Four different result registers with individual input selection  
(MUX selection) are provided to make it easier for the application to keep track of the data. Each  
result register and MUX selection pair is referred to as an ADC Channel. It is possible to use  
DMA to move ADC results directly to memory or peripherals when conversions are done.  
Both internal and external analog reference voltages can be used. An accurate internal 1.0V  
reference is available.  
An integrated temperature sensor is available and the output from this can be measured with the  
ADC. The output from the DAC, VCC/10 and the Bandgap voltage can also be measured by the  
ADC.  
43  
8116F–AVR–09/09  
XMEGA A3B  
Figure 25-1. ADC overview  
Channel A MUX selection  
Channel B MUX selection  
Channel C MUX selection  
Channel D MUX selection  
Configuration  
Reference selection  
Channel A  
Register  
Channel B  
Register  
ADC  
Channel C  
Register  
Channel D  
Register  
Event  
Trigger  
1-64 X  
Each ADC has four MUX selection registers with a corresponding result register. This means  
that four channels can be sampled within 1.5 µs without any intervention by the application other  
than starting the conversion. The results will be available in the result registers.  
The ADC may be configured for 8- or 12-bit result, reducing the minimum conversion time (prop-  
agation delay) from 3.5 µs for 12-bit to 2.5 µs for 8-bit result.  
ADC conversion results are provided left- or right adjusted with optional ‘1’ or ‘0’ padding. This  
eases calculation when the result is represented as a signed integer (signed 16-bit number).  
PORTA and PORTB each have one ADC. Notation of these peripherals are ADCA and ADCB,  
respectively.  
44  
8116F–AVR–09/09  
XMEGA A3B  
26. DAC - 12-bit Digital to Analog Converter  
26.1 Features  
One DAC with 12-bit resolution  
Up to 1 Msps conversion rate for each DAC  
Flexible conversion range  
Multiple trigger sources  
1 continuous output or 2 Sample and Hold (S/H) outputs for each DAC  
Built-in offset and gain calibration  
High drive capabilities  
Low Power Mode  
26.2 Overview  
The XMEGA A3B devices features two 12-bit, 1 Msps DACs with built-in offset and gain calibra-  
tion, see Figure 26-1 on page 45.  
A DAC converts a digital value into an analog signal. The DAC may use an internal 1.1 voltage  
as the upper limit for conversion, but it is also possible to use the supply voltage or any applied  
voltage in-between. The external reference input is shared with the ADC reference input.  
Figure 26-1. DAC overview  
Configuration  
Reference selection  
Channel A  
Register  
Channel A  
DAC  
Channel B  
Channel B  
Register  
Event  
Trigger  
Each DAC has one continuous output with high drive capabilities for both resistive and capaci-  
tive loads. It is also possible to split the continuous time channel into two Sample and Hold (S/H)  
channels, each with separate data conversion registers.  
A DAC conversion may be started from the application software by writing the data conversion  
registers. The DAC can also be configured to do conversions triggered by the Event System to  
have regular timing, independent of the application software. DMA may be used for transferring  
data from memory locations to DAC data registers.  
The DAC has a built-in calibration system to reduce offset and gain error when loading with a  
calibration value from software.  
PORTB has one DAC. Notation of this is DACB.  
45  
8116F–AVR–09/09  
XMEGA A3B  
27. AC - Analog Comparator  
27.1 Features  
Four Analog Comparators  
Selectable Power vs. Speed  
Selectable hysteresis  
– 0, 20 mV, 50 mV  
Analog Comparator output available on pin  
Flexible Input Selection  
– All pins on the port  
– Output from the DAC  
– Bandgap reference voltage.  
Voltage scaler that can perform a 64-level scaling of the internal VCC voltage.  
Interrupt and event generation on  
– Rising edge  
– Falling edge  
– Toggle  
Window function interrupt and event generation on  
– Signal above window  
– Signal inside window  
– Signal below window  
27.2 Overview  
XMEGA A3B features four Analog Comparators (AC). An Analog Comparator compares two  
voltages, and the output indicates which input is largest. The Analog Comparator may be config-  
ured to give interrupt requests and/or events upon several different combinations of input  
change.  
Both hysteresis and propagation delays may be adjusted in order to find the optimal operation  
for each application.  
A wide range of input selection is available, both external pins and several internal signals can  
be used.  
The Analog Comparators are always grouped in pairs (AC0 and AC1) on each analog port. They  
have identical behavior but separate control registers.  
Optionally, the state of the comparator is directly available on a pin.  
PORTA and PORTB each have one AC pair. Notations are ACA and ACB, respectively.  
46  
8116F–AVR–09/09  
XMEGA A3B  
Figure 27-1. Analog comparator overview  
Pin inputs  
Internal inputs  
+
-
Pin 0 output  
Interrupts  
AC0  
Pin inputs  
Internal inputs  
VCC scaled  
Interrupt  
sensitivity  
control  
Events  
Pin inputs  
Internal inputs  
+
-
AC1  
Pin inputs  
Internal inputs  
VCC scaled  
47  
8116F–AVR–09/09  
XMEGA A3B  
27.3 Input Selection  
The Analog comparators have a very flexible input selection and the two comparators grouped  
in a pair may be used to realize a window function. One pair of analog comparators is shown in  
Figure 27-1 on page 47.  
Input selection from pin  
– Pin 0, 1, 2, 3, 4, 5, 6 selectable to positive input of analog comparator  
– Pin 0, 1, 3, 5, 7 selectable to negative input of analog comparator  
Internal signals available on positive analog comparator inputs  
– Output from 12-bit DAC  
Internal signals available on negative analog comparator inputs  
– 64-level scaler of the VCC, available on negative analog comparator input  
– Bandgap voltage reference  
– Output from 12-bit DAC  
27.4 Window Function  
The window function is realized by connecting the external inputs of the two analog comparators  
in a pair as shown in Figure 27-2.  
Figure 27-2. Analog comparator window function  
+
AC0  
Upper limit of window  
-
Interrupts  
Events  
Interrupt  
sensitivity  
control  
Input signal  
+
AC1  
Lower limit of window  
-
48  
8116F–AVR–09/09  
XMEGA A3B  
28. OCD - On-chip Debug  
28.1 Features  
Complete Program Flow Control  
– Go, Stop, Reset, Step into, Step over, Step out, Run-to-Cursor  
Debugging on C and high-level language source code level  
Debugging on Assembler and disassembler level  
1 dedicated program address or source level breakpoint for AVR Studio / debugger  
4 Hardware Breakpoints  
Unlimited Number of User Program Breakpoints  
Unlimited Number of User Data Breakpoints, with break on:  
– Data location read, write or both read and write  
– Data location content equal or not equal to a value  
– Data location content is greater or less than a value  
– Data location content is within or outside a range  
– Bits of a data location are equal or not equal to a value  
Non-Intrusive Operation  
– No hardware or software resources in the device are used  
High Speed Operation  
– No limitation on debug/programming clock frequency versus system clock frequency  
28.2 Overview  
The XMEGA A3B has a powerful On-Chip Debug (OCD) system that - in combination with  
Atmel’s development tools - provides all the necessary functions to debug an application. It has  
support for program and data breakpoints, and can debug an application from C and high level  
language source code level, as well as assembler and disassembler level. It has full Non-Intru-  
sive Operation and no hardware or software resources in the device are used. The ODC system  
is accessed through an external debugging tool which connects to the JTAG or PDI physical  
interfaces. Refer to ”Program and Debug Interfaces” on page 50.  
49  
8116F–AVR–09/09  
XMEGA A3B  
29. Program and Debug Interfaces  
29.1 Features  
PDI - Program and Debug Interface (Atmel proprietary 2-pin interface)  
JTAG Interface (IEEE std. 1149.1 compliant)  
Boundary-scan capabilities according to the IEEE Std. 1149.1 (JTAG)  
Access to the OCD system  
Programming of Flash, EEPROM, Fuses and Lock Bits  
29.2 Overview  
The programming and debug facilities are accessed through the JTAG and PDI physical inter-  
faces. The PDI physical uses one dedicated pin together with the Reset pin, and no general  
purpose pins are used. JTAG uses four general purpose pins on PORTB.  
29.3 JTAG interface  
The JTAG physical layer handles the basic low-level serial communication over four I/O lines  
named TMS, TCK, TDI, and TDO. It complies to the IEEE Std. 1149.1 for test access port and  
boundary scan.  
29.4 PDI - Program and Debug Interface  
The PDI is an Atmel proprietary protocol for communication between the microcontroller and  
Atmel’s development tools.  
50  
8116F–AVR–09/09  
XMEGA A3B  
30. Pinout and Pin Functions  
The pinout of XMEGA A3B is shown in ”Pinout/Block Diagram” on page 3. In addition to general  
I/O functionality, each pin may have several functions. This will depend on which peripheral is  
enabled and connected to the actual pin. Only one of the alternate pin functions can be used at  
time.  
30.1 Alternate Pin Function Description  
The tables below shows the notation for all pin functions available and describes its function.  
Operation/Power Supply  
30.1.1  
VCC  
Digital supply voltage  
Analog supply voltage  
Battery Backup Module supply voltage  
Ground  
AVCC  
VBAT  
GND  
30.1.2  
30.1.3  
Port Interrupt functions  
SYNC  
Port pin with full synchronous and limited asynchronous interrupt function  
Port pin with full synchronous and full asynchronous interrupt function  
ASYNC  
Analog functions  
ACn  
Analog Comparator input pin n  
Analog Comparator 0 Output  
AC0OUT  
ADCn  
DACn  
AREF  
Analog to Digital Converter input pin n  
Digital to Analog Converter output pin n  
Analog Reference input pin  
30.1.4  
30.1.5  
Timer/Counter and AWEX functions  
OCnx  
OCxn  
Output Compare Channel x for Timer/Counter n  
Inverted Output Compare Channel x for Timer/Counter n  
Communication functions  
SCL  
Serial Clock for TWI  
SDA  
Serial Data for TWI  
SCLIN  
SCLOUT  
SDAIN  
SDAOUT  
Serial Clock In for TWI when external driver interface is enabled  
Serial Clock Out for TWI when external driver interface is enabled  
Serial Data In for TWI when external driver interface is enabled  
Serial Data Out for TWI when external driver interface is enabled  
51  
8116F–AVR–09/09  
XMEGA A3B  
XCKn  
RXDn  
TXDn  
SS  
Transfer Clock for USART n  
Receiver Data for USART n  
Transmitter Data for USART n  
Slave Select for SPI  
MOSI  
MISO  
SCK  
Master Out Slave In for SPI  
Master In Slave Out for SPI  
Serial Clock for SPI  
30.1.6  
Oscillators, Clock and Event  
TOSCn  
XTALn  
Timer Oscillator pin n  
Input/Output for inverting Oscillator pin n  
Peripheral Clock Output  
CLKOUT  
EVOUT  
Event Channel 0 Output  
30.1.7  
Debug/System functions  
RESET  
PDI_CLK  
PDI_DATA  
TCK  
Reset pin  
Program and Debug Interface Clock pin  
Program and Debug Interface Data pin  
JTAG Test Clock  
TDI  
JTAG Test Data In  
TDO  
JTAG Test Data Out  
TMS  
JTAG Test Mode Select  
52  
8116F–AVR–09/09  
XMEGA A3B  
30.2 Alternate Pin Functions  
The tables below show the primary/default function for each pin on a port in the first column, the  
pin number in the second column, and then all alternate pin functions in the remaining columns.  
The head row shows what peripheral that enable and use the alternate pin functions.  
Table 30-1. Port A - Alternate functions  
PORT A  
PIN #  
INTERRUPT  
ADCA  
POS  
ADCA  
NEG  
ADCA  
GAINPOS  
ADCA  
GAINNEG  
ACA  
POS  
ACA  
NEG  
ACA  
OUT  
REFA  
GND  
AVCC  
PA0  
PA1  
PA2  
PA3  
PA4  
PA5  
PA6  
PA7  
60  
61  
62  
63  
64  
1
SYNC  
SYNC  
ADC0  
ADC1  
ADC2  
ADC3  
ADC4  
ADC5  
ADC6  
ADC7  
ADC0  
ADC1  
ADC2  
ADC3  
ADC0  
ADC1  
ADC2  
ADC3  
ADC4  
ADC5  
ADC6  
ADC7  
AC0  
AC1  
AC2  
AC3  
AC4  
AC5  
AC6  
AC0  
AC1  
AREF  
SYNC/ASYNC  
SYNC  
AC3  
AC5  
AC7  
2
SYNC  
ADC4  
ADC5  
ADC6  
ADC7  
3
SYNC  
4
SYNC  
5
SYNC  
AC0OUT  
Table 30-2. Port B - Alternate functions  
REFB  
PORT B  
PIN #  
INTERRUPT  
ADCB  
POS  
ADCB  
NEG  
ADCB  
GAINPOS  
ADCB  
GAINNEG  
ACB  
POS  
ACB  
NEG  
ACB  
OUT  
DACB  
JTAG  
PB0  
PB1  
PB2  
PB3  
PB4  
PB5  
PB6  
PB7  
6
7
SYNC  
SYNC  
ADC0  
ADC1  
ADC2  
ADC3  
ADC4  
ADC5  
ADC6  
ADC7  
ADC0  
ADC1  
ADC2  
ADC3  
ADC0  
ADC1  
ADC2  
ADC3  
ADC4  
ADC5  
ADC6  
ADC7  
AC0  
AC1  
AC2  
AC3  
AC4  
AC5  
AC6  
AC0  
AC1  
AREF  
8
SYNC/ASYNC  
SYNC  
DAC0  
DAC1  
9
AC3  
AC5  
AC7  
10  
11  
12  
13  
SYNC  
ADC4  
ADC5  
ADC6  
ADC7  
TMS  
TDI  
SYNC  
SYNC  
TCK  
TDO  
SYNC  
AC0OUT  
Table 30-3. Port C - Alternate functions  
PORT C  
GND  
AVCC  
PC0  
PIN #  
INTERRUPT  
TCC0  
AWEXC  
TCC1  
USARTC0  
USARTC1  
SPIC  
TWIC  
CLOCKOUT  
EVENTOUT  
14  
15  
16  
SYNC  
SYNC  
OC0A  
OC0B  
OC0C  
OC0D  
OC0A  
OC0A  
OC0B  
OC0B  
OC0C  
OC0C  
OC0D  
OC0D  
SDA/SDA_IN  
SCL/SCL_IN  
SDA_OUT  
PC1  
17  
XCK0  
RXD0  
TXD0  
PC2  
18  
SYNC/ASYNC  
SYNC  
PC3  
19  
SCL_OUT  
PC4  
20  
SYNC  
OC1A  
OC1B  
SS  
PC5  
21  
SYNC  
XCK1  
RXD1  
TXD1  
MOSI  
MISO  
SCK  
PC6  
22  
SYNC  
PC7  
23  
SYNC  
CLKOUT  
EVOUT  
53  
8116F–AVR–09/09  
XMEGA A3B  
Table 30-4. Port D - Alternate functions  
PORT D  
GND  
VCC  
PD0  
PIN #  
INTERRUPT  
TCD0  
TCD1  
USARTD0  
USARTD1  
SPID  
CLOCKOUT  
EVENTOUT  
24  
25  
26  
SYNC  
SYNC  
OC0A  
OC0B  
OC0C  
OC0D  
PD1  
27  
XCK0  
RXD0  
TXD0  
PD2  
28  
SYNC/ASYNC  
SYNC  
PD3  
29  
PD4  
30  
SYNC  
OC1A  
OC1B  
SS  
PD5  
31  
SYNC  
XCK1  
RXD1  
TXD1  
MOSI  
MISO  
SCK  
PD6  
32  
SYNC  
PD7  
33  
SYNC  
CLKOUT  
EVOUT  
Table 30-5. Port E - Alternate functions  
PORT E  
GND  
VCC  
PIN #  
INTERRUPT  
TCE0  
TCE1  
USARTE0  
TWIE  
34  
35  
PE0  
36  
SYNC  
SYNC  
OC0A  
OC0B  
OC0C  
OC0D  
SDA/SDA_IN  
SCL/SCL_IN  
SDA_OUT  
PE1  
37  
XCK0  
RXD0  
TXD0  
PE2  
38  
SYNC/ASYNC  
SYNC  
PE3  
39  
SCL_OUT  
PE4  
40  
SYNC  
OC1A  
OC1B  
PE5  
41  
SYNC  
TOSC2  
TOSC1  
42  
43  
Table 30-6. Port F - Alternate functions  
PORT F  
GND  
VCC  
PF0  
PIN #  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
INTERRUPT  
TCF0  
USARTF0  
SYNC  
SYNC  
OC0A  
OC0B  
OC0C  
OC0D  
OC0A  
PF1  
XCK0  
RXD0  
TXD0  
PF2  
SYNC/ASYNC  
SYNC  
PF3  
PF4  
SYNC  
VBAT  
GND  
VCC  
PF6  
SYNC  
SYNC  
PF7  
54  
8116F–AVR–09/09  
XMEGA A3B  
Table 30-7. Port R- Alternate functions  
PORT R  
PIN #  
INTERRUPT  
PDI  
XTAL  
PDI  
56  
PDI_DATA  
PDI_CLK  
RESET  
PRO  
57  
58  
SYNC  
SYNC  
XTAL2  
XTAL1  
PR1  
59  
55  
8116F–AVR–09/09  
XMEGA A3B  
31. Peripheral Module Address Map  
The address maps show the base address for each peripheral and module in XMEGA A3B. For  
complete register description and summary for each peripheral module, refer to the XMEGA A  
Manual.  
Base Address  
Name  
Description  
0x0000  
0x0010  
0x0014  
0x0018  
0x001C  
0x0030  
0x0040  
0x0048  
0x0050  
0x0060  
0x0068  
0x0070  
0x0078  
0x0080  
0x0090  
0x00A0  
0x00B0  
0x00C0  
0x00F0  
0x0100  
0x0180  
0x01C0  
0x0200  
0x0240  
0x0320  
0x0380  
0x0390  
0x0420  
0x0480  
0x04A0  
0x0600  
0x0620  
0x0640  
0x0660  
0x0680  
0x06A0  
0x07E0  
0x0800  
0x0840  
0x0880  
0x0890  
0x08A0  
0x08B0  
0x08C0  
0x08F8  
0x0900  
0x0940  
0x0990  
0x09A0  
0x09B0  
0x09C0  
0x0A00  
0x0A40  
0x0A80  
0x0A90  
0x0AA0  
0x0B00  
0x0B90  
0x0BA0  
GPIO  
General Purpose IO Registers  
Virtual Port 0  
Virtual Port 1  
VPORT0  
VPORT1  
VPORT2  
VPORT3  
CPU  
Virtual Port 2  
Virtual Port 2  
CPU  
CLK  
SLEEP  
OSC  
Clock Control  
Sleep Controller  
Oscillator Control  
DFLLRC32M  
DFLLRC2M  
PR  
DFLL for the 32 MHz Internal RC Oscillator  
DFLL for the 2 MHz RC Oscillator  
Power Reduction  
RST  
WDT  
MCU  
Reset Controller  
Watch-Dog Timer  
MCU Control  
PMIC  
PORTCFG  
AES  
Programmable Multilevel Interrupt Controller  
Port Configuration  
AES Module  
VBAT  
DMA  
EVSYS  
NVM  
ADCA  
VBAT Battery Backup Module  
DMA Controller  
Event System  
Non Volatile Memory (NVM) Controller  
Analog to Digital Converter on port A  
Analog to Digital Converter on port B  
Digital to Analog Converter on port B  
Analog Comparator pair on port A  
Analog Comparator pair on port B  
32-bit Real Time Counter  
Two Wire Interface on port C  
Two Wire Interface on port E  
Port A  
ADCB  
DACB  
ACA  
ACB  
RTC32  
TWIC  
TWIE  
PORTA  
PORTB  
PORTC  
PORTD  
PORTE  
PORTF  
PORTR  
TCC0  
Port B  
Port C  
Port D  
Port E  
Port F  
Port R  
Timer/Counter 0 on port C  
Timer/Counter 1 on port C  
Advanced Waveform Extension on port C  
High Resolution Extension on port C  
USART 0 on port C  
TCC1  
AWEXC  
HIRESC  
USARTC0  
USARTC1  
SPIC  
IRCOM  
TCD0  
TCD1  
HIRESD  
USARTD0  
USARTD1  
SPID  
USART 1 on port C  
Serial Peripheral Interface on port C  
Infrared Communication Module  
Timer/Counter 0 on port D  
Timer/Counter 1 on port D  
High Resolution Extension on port D  
USART 0 on port D  
USART 1 on port D  
Serial Peripheral Interface on port D  
Timer/Counter 0 on port E  
Timer/Counter 1 on port E  
Advanced Waveform Extension on port E  
High Resolution Extension on port E  
USART 0 on port E  
Timer/Counter 0 on port F  
High Resolution Extension on port F  
USART 0 on port F  
TCE0  
TCE1  
AWEXE  
HIRESE  
USARTE0  
TCF0  
HIRESF  
USARTF0  
56  
8116F–AVR–09/09  
XMEGA A3B  
32. Instruction Set Summary  
Mnemonics  
Operands  
Description  
Operation  
Flags  
#Clocks  
Arithmetic and Logic Instructions  
ADD  
ADC  
Rd, Rr  
Rd, Rr  
Rd, K  
Rd, Rr  
Rd, K  
Rd, Rr  
Rd, K  
Rd, K  
Rd, Rr  
Rd, K  
Rd, Rr  
Rd, K  
Rd, Rr  
Rd  
Add without Carry  
Rd  
Rd  
Rd  
Rd  
Rd  
Rd  
Rd  
Rd + Rr  
Z,C,N,V,S,H  
Z,C,N,V,S,H  
Z,C,N,V,S  
Z,C,N,V,S,H  
Z,C,N,V,S,H  
Z,C,N,V,S,H  
Z,C,N,V,S,H  
Z,C,N,V,S  
Z,N,V,S  
Z,N,V,S  
Z,N,V,S  
Z,N,V,S  
Z,N,V,S  
Z,C,N,V,S  
Z,C,N,V,S,H  
Z,N,V,S  
Z,N,V,S  
Z,N,V,S  
Z,N,V,S  
Z,N,V,S  
Z,N,V,S  
None  
1
1
2
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
1/2  
Add with Carry  
Rd + Rr + C  
Rd + 1:Rd + K  
Rd - Rr  
ADIW  
SUB  
Add Immediate to Word  
Subtract without Carry  
Subtract Immediate  
Subtract with Carry  
Subtract Immediate with Carry  
Subtract Immediate from Word  
Logical AND  
SUBI  
SBC  
Rd - K  
Rd - Rr - C  
Rd - K - C  
Rd + 1:Rd - K  
Rd Rr  
SBCI  
SBIW  
AND  
ANDI  
OR  
Rd + 1:Rd  
Rd  
Logical AND with Immediate  
Logical OR  
Rd  
Rd K  
Rd  
Rd v Rr  
ORI  
Logical OR with Immediate  
Exclusive OR  
Rd  
Rd v K  
EOR  
COM  
NEG  
SBR  
Rd  
Rd Rr  
One’s Complement  
Two’s Complement  
Set Bit(s) in Register  
Clear Bit(s) in Register  
Increment  
Rd  
$FF - Rd  
Rd  
Rd  
$00 - Rd  
Rd,K  
Rd,K  
Rd  
Rd  
Rd v K  
CBR  
INC  
Rd  
Rd ($FFh - K)  
Rd + 1  
Rd  
DEC  
TST  
Rd  
Decrement  
Rd  
Rd - 1  
Rd  
Test for Zero or Minus  
Clear Register  
Rd  
Rd Rd  
CLR  
Rd  
Rd  
Rd Rd  
SER  
Rd  
Set Register  
Rd  
$FF  
MUL  
MULS  
MULSU  
FMUL  
FMULS  
FMULSU  
DES  
Rd,Rr  
Rd,Rr  
Rd,Rr  
Rd,Rr  
Rd,Rr  
Rd,Rr  
K
Multiply Unsigned  
R1:R0  
R1:R0  
R1:R0  
R1:R0  
R1:R0  
R1:R0  
Rd x Rr (UU)  
Rd x Rr (SS)  
Rd x Rr (SU)  
Rd x Rr<<1 (UU)  
Rd x Rr<<1 (SS)  
Rd x Rr<<1 (SU)  
Z,C  
Multiply Signed  
Z,C  
Multiply Signed with Unsigned  
Fractional Multiply Unsigned  
Fractional Multiply Signed  
Fractional Multiply Signed with Unsigned  
Data Encryption  
Z,C  
Z,C  
Z,C  
Z,C  
if (H = 0) then R15:R0  
else if (H = 1) then R15:R0  
Encrypt(R15:R0, K)  
Decrypt(R15:R0, K)  
Branch Instructions  
RJMP  
IJMP  
k
Relative Jump  
PC  
PC + k + 1  
None  
None  
2
2
Indirect Jump to (Z)  
PC(15:0)  
PC(21:16)  
Z,  
0
EIJMP  
Extended Indirect Jump to (Z)  
PC(15:0)  
PC(21:16)  
Z,  
EIND  
None  
2
JMP  
k
k
Jump  
PC  
PC  
k
None  
None  
None  
3
RCALL  
ICALL  
Relative Call Subroutine  
Indirect Call to (Z)  
PC + k + 1  
2 / 3(1)  
2 / 3(1)  
PC(15:0)  
PC(21:16)  
Z,  
0
EICALL  
Extended Indirect Call to (Z)  
PC(15:0)  
PC(21:16)  
Z,  
EIND  
None  
3(1)  
57  
8116F–AVR–09/09  
XMEGA A3B  
Mnemonics  
CALL  
RET  
Operands  
Description  
Operation  
Flags  
None  
None  
I
#Clocks  
3 / 4(1)  
4 / 5(1)  
4 / 5(1)  
1 / 2 / 3  
1
k
call Subroutine  
PC  
PC  
k
Subroutine Return  
STACK  
STACK  
PC + 2 or 3  
RETI  
Interrupt Return  
PC  
CPSE  
CP  
Rd,Rr  
Compare, Skip if Equal  
Compare  
if (Rd = Rr) PC  
None  
Z,C,N,V,S,H  
Z,C,N,V,S,H  
Z,C,N,V,S,H  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
Rd,Rr  
Rd - Rr  
CPC  
Rd,Rr  
Compare with Carry  
Rd - Rr - C  
1
CPI  
Rd,K  
Compare with Immediate  
Skip if Bit in Register Cleared  
Skip if Bit in Register Set  
Skip if Bit in I/O Register Cleared  
Skip if Bit in I/O Register Set  
Branch if Status Flag Set  
Branch if Status Flag Cleared  
Branch if Equal  
Rd - K  
1
SBRC  
SBRS  
SBIC  
Rr, b  
if (Rr(b) = 0) PC  
if (Rr(b) = 1) PC  
if (I/O(A,b) = 0) PC  
If (I/O(A,b) =1) PC  
if (SREG(s) = 1) then PC  
if (SREG(s) = 0) then PC  
if (Z = 1) then PC  
if (Z = 0) then PC  
if (C = 1) then PC  
if (C = 0) then PC  
if (C = 0) then PC  
if (C = 1) then PC  
if (N = 1) then PC  
if (N = 0) then PC  
if (N V= 0) then PC  
if (N V= 1) then PC  
if (H = 1) then PC  
if (H = 0) then PC  
if (T = 1) then PC  
if (T = 0) then PC  
if (V = 1) then PC  
if (V = 0) then PC  
if (I = 1) then PC  
if (I = 0) then PC  
PC + 2 or 3  
PC + 2 or 3  
PC + 2 or 3  
PC + 2 or 3  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
1 / 2 / 3  
1 / 2 / 3  
2 / 3 / 4  
2 / 3 / 4  
1 / 2  
Rr, b  
A, b  
A, b  
s, k  
s, k  
k
SBIS  
BRBS  
BRBC  
BREQ  
BRNE  
BRCS  
BRCC  
BRSH  
BRLO  
BRMI  
BRPL  
BRGE  
BRLT  
BRHS  
BRHC  
BRTS  
BRTC  
BRVS  
BRVC  
BRIE  
1 / 2  
1 / 2  
k
Branch if Not Equal  
1 / 2  
k
Branch if Carry Set  
1 / 2  
k
Branch if Carry Cleared  
Branch if Same or Higher  
Branch if Lower  
1 / 2  
k
1 / 2  
k
1 / 2  
k
Branch if Minus  
1 / 2  
k
Branch if Plus  
1 / 2  
k
Branch if Greater or Equal, Signed  
Branch if Less Than, Signed  
Branch if Half Carry Flag Set  
Branch if Half Carry Flag Cleared  
Branch if T Flag Set  
1 / 2  
k
1 / 2  
k
1 / 2  
k
1 / 2  
k
1 / 2  
k
Branch if T Flag Cleared  
Branch if Overflow Flag is Set  
Branch if Overflow Flag is Cleared  
Branch if Interrupt Enabled  
Branch if Interrupt Disabled  
1 / 2  
k
1 / 2  
k
1 / 2  
k
1 / 2  
BRID  
k
1 / 2  
Data Transfer Instructions  
MOV  
MOVW  
LDI  
Rd, Rr  
Rd, Rr  
Rd, K  
Rd, k  
Copy Register  
Rd  
Rd+1:Rd  
Rd  
Rr  
None  
None  
None  
None  
None  
None  
1
Copy Register Pair  
Load Immediate  
Rr+1:Rr  
1
K
1
LDS  
LD  
Load Direct from data space  
Load Indirect  
Rd  
(k)  
(X)  
2(1)(2)  
1(1)(2)  
1(1)(2)  
Rd, X  
Rd, X+  
Rd  
LD  
Load Indirect and Post-Increment  
Rd  
X
(X)  
X + 1  
LD  
Rd, -X  
Load Indirect and Pre-Decrement  
X X - 1,  
Rd (X)  
X - 1  
(X)  
None  
2(1)(2)  
LD  
LD  
Rd, Y  
Load Indirect  
Rd (Y)  
(Y)  
None  
None  
1(1)(2)  
1(1)(2)  
Rd, Y+  
Load Indirect and Post-Increment  
Rd  
Y
(Y)  
Y + 1  
58  
8116F–AVR–09/09  
XMEGA A3B  
Mnemonics  
Operands  
Description  
Operation  
Flags  
#Clocks  
LD  
Rd, -Y  
Load Indirect and Pre-Decrement  
Y
Rd  
Y - 1  
(Y)  
None  
2(1)(2)  
LDD  
LD  
Rd, Y+q  
Rd, Z  
Load Indirect with Displacement  
Load Indirect  
Rd  
Rd  
(Y + q)  
(Z)  
None  
None  
None  
2(1)(2)  
1(1)(2)  
1(1)(2)  
LD  
Rd, Z+  
Load Indirect and Post-Increment  
Rd  
Z
(Z),  
Z+1  
LD  
Rd, -Z  
Load Indirect and Pre-Decrement  
Z
Rd  
Z - 1,  
(Z)  
None  
2(1)(2)  
LDD  
STS  
ST  
Rd, Z+q  
k, Rr  
Load Indirect with Displacement  
Store Direct to Data Space  
Store Indirect  
Rd  
(k)  
(X)  
(Z + q)  
Rd  
None  
None  
None  
None  
2(1)(2)  
2(1)  
X, Rr  
Rr  
1(1)  
ST  
X+, Rr  
Store Indirect and Post-Increment  
(X)  
X
Rr,  
X + 1  
1(1)  
ST  
-X, Rr  
Store Indirect and Pre-Decrement  
X
(X)  
X - 1,  
Rr  
None  
2(1)  
ST  
ST  
Y, Rr  
Store Indirect  
(Y)  
Rr  
None  
None  
1(1)  
1(1)  
Y+, Rr  
Store Indirect and Post-Increment  
(Y)  
Y
Rr,  
Y + 1  
ST  
-Y, Rr  
Store Indirect and Pre-Decrement  
Y
(Y)  
Y - 1,  
Rr  
None  
2(1)  
STD  
ST  
Y+q, Rr  
Z, Rr  
Store Indirect with Displacement  
Store Indirect  
(Y + q)  
(Z)  
Rr  
Rr  
None  
None  
None  
2(1)  
1(1)  
1(1)  
ST  
Z+, Rr  
Store Indirect and Post-Increment  
(Z)  
Z
Rr  
Z + 1  
ST  
-Z, Rr  
Store Indirect and Pre-Decrement  
Store Indirect with Displacement  
Load Program Memory  
Z
(Z + q)  
R0  
Z - 1  
Rr  
None  
None  
None  
None  
None  
2(1)  
2(1)  
3
STD  
LPM  
LPM  
LPM  
Z+q,Rr  
(Z)  
Rd, Z  
Load Program Memory  
Rd  
(Z)  
3
Rd, Z+  
Load Program Memory and Post-Increment  
Rd  
Z
(Z),  
Z + 1  
3
ELPM  
ELPM  
ELPM  
Extended Load Program Memory  
Extended Load Program Memory  
R0  
Rd  
(RAMPZ:Z)  
(RAMPZ:Z)  
None  
None  
None  
3
3
3
Rd, Z  
Rd, Z+  
Extended Load Program Memory and Post-  
Increment  
Rd  
Z
(RAMPZ:Z),  
Z + 1  
SPM  
SPM  
Store Program Memory  
(RAMPZ:Z)  
R1:R0  
None  
None  
-
-
Z+  
Store Program Memory and Post-Increment  
by 2  
(RAMPZ:Z)  
Z
R1:R0,  
Z + 2  
IN  
Rd, A  
A, Rr  
Rr  
In From I/O Location  
Out To I/O Location  
Rd  
I/O(A)  
STACK  
Rd  
I/O(A)  
Rr  
None  
None  
None  
None  
1
OUT  
PUSH  
POP  
1
Push Register on Stack  
Pop Register from Stack  
Rr  
1(1)  
2(1)  
Rd  
STACK  
Bit and Bit-test Instructions  
LSL  
LSR  
Rd  
Rd  
Logical Shift Left  
Logical Shift Right  
Rd(n+1)  
Rd(0)  
C
Rd(n),  
0,  
Rd(7)  
Z,C,N,V,H  
Z,C,N,V  
1
1
Rd(n)  
Rd(7)  
C
Rd(n+1),  
0,  
Rd(0)  
59  
8116F–AVR–09/09  
XMEGA A3B  
Mnemonics  
Operands  
Description  
Operation  
Flags  
#Clocks  
ROL  
Rd  
Rotate Left Through Carry  
Rd(0)  
Rd(n+1)  
C
C,  
Rd(n),  
Rd(7)  
Z,C,N,V,H  
1
ROR  
Rd  
Rotate Right Through Carry  
Rd(7)  
Rd(n)  
C
C,  
Z,C,N,V  
1
Rd(n+1),  
Rd(0)  
ASR  
SWAP  
BSET  
BCLR  
SBI  
Rd  
Arithmetic Shift Right  
Swap Nibbles  
Rd(n)  
Rd(n+1), n=0..6  
Z,C,N,V  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Rd  
Rd(3..0)  
Rd(7..4)  
None  
s
Flag Set  
SREG(s)  
1
SREG(s)  
s
Flag Clear  
SREG(s)  
0
SREG(s)  
A, b  
A, b  
Rr, b  
Rd, b  
Set Bit in I/O Register  
Clear Bit in I/O Register  
Bit Store from Register to T  
Bit load from T to Register  
Set Carry  
I/O(A, b)  
1
None  
CBI  
I/O(A, b)  
0
None  
BST  
BLD  
SEC  
CLC  
SEN  
CLN  
SEZ  
CLZ  
SEI  
T
Rr(b)  
T
1
T
Rd(b)  
C
C
N
N
Z
None  
C
C
N
N
Z
Clear Carry  
0
Set Negative Flag  
1
Clear Negative Flag  
Set Zero Flag  
0
1
Clear Zero Flag  
Z
0
Z
Global Interrupt Enable  
Global Interrupt Disable  
Set Signed Test Flag  
Clear Signed Test Flag  
Set Two’s Complement Overflow  
Clear Two’s Complement Overflow  
Set T in SREG  
I
1
I
CLI  
I
0
I
SES  
CLS  
SEV  
CLV  
SET  
CLT  
S
1
S
S
V
V
T
S
0
V
1
V
0
T
1
Clear T in SREG  
T
0
T
SEH  
CLH  
Set Half Carry Flag in SREG  
Clear Half Carry Flag in SREG  
H
H
1
H
H
0
MCU Control Instructions  
BREAK  
NOP  
Break  
(See specific descr. for BREAK)  
None  
None  
None  
None  
1
1
1
1
No Operation  
Sleep  
SLEEP  
WDR  
(see specific descr. for Sleep)  
Watchdog Reset  
(see specific descr. for WDR)  
Notes: 1. Cycle times for Data memory accesses assume internal memory accesses, and are not valid  
for accesses via the external RAM interface.  
2. One extra cycle must be added when accessing Internal SRAM.  
60  
8116F–AVR–09/09  
XMEGA A3B  
33. Packaging information  
33.1 64A  
PIN 1  
B
PIN 1 IDENTIFIER  
E1  
E
e
D1  
D
C
0°~7°  
A2  
A
A1  
L
COMMON DIMENSIONS  
(Unit of Measure = mm)  
MIN  
MAX  
1.20  
NOM  
NOTE  
SYMBOL  
A
A1  
A2  
D
0.05  
0.95  
15.75  
13.90  
15.75  
13.90  
0.30  
0.09  
0.45  
0.15  
1.00  
16.00  
14.00  
16.00  
14.00  
1.05  
16.25  
D1  
E
14.10 Note 2  
16.25  
Notes:  
E1  
B
14.10 Note 2  
0.45  
1.This package conforms to JEDEC reference MS-026, Variation AEB.  
2. Dimensions D1 and E1 do not include mold protrusion. Allowable  
protrusion is 0.25 mm per side. Dimensions D1 and E1 are maximum  
plastic body size dimensions including mold mismatch.  
C
0.20  
3. Lead coplanarity is 0.10 mm maximum.  
L
0.75  
e
0.80 TYP  
10/5/2001  
TITLE  
DRAWING NO. REV.  
2325 Orchard Parkway  
San Jose, CA 95131  
64A, 64-lead, 14 x 14 mm Body Size, 1.0 mm Body Thickness,  
0.8 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP)  
64A  
B
R
61  
8116F–AVR–09/09  
XMEGA A3B  
33.2 64M2  
D
Marked Pin# 1 ID  
E
SEATING PLANE  
C
A1  
TOP VIEW  
A
K
0.08  
C
L
Pin #1 Corner  
SIDE VIEW  
D2  
Pin #1  
Triangle  
Option A  
1
2
3
COMMON DIMENSIONS  
(Unit of Measure = mm)  
MIN  
0.80  
MAX  
1.00  
0.05  
0.30  
9.10  
7.80  
9.10  
NOM  
0.90  
0.02  
0.25  
9.00  
7.65  
9.00  
NOTE  
SYMBOL  
E2  
Option B  
Option C  
A
Pin #1  
Chamfer  
(C 0.30)  
A1  
b
0.18  
8.90  
7.50  
8.90  
D
D2  
E
K
Pin #1  
Notch  
(0.20 R)  
e
b
E2  
e
7.50  
7.65  
0.50 BSC  
0.40  
7.80  
BOTTOM VIEW  
L
0.35  
0.20  
0.45  
0.40  
K
0.27  
1. JEDEC Standard MO-220, (SAW Singulation) Fig. 1, VMMD.  
2. Dimension and tolerance conform to ASMEY14.5M-1994.  
Note:  
5/25/06  
DRAWING NO. REV.  
64M2  
TITLE  
2325 Orchard Parkway  
San Jose, CA 95131  
64M2, 64-pad, 9 x 9 x 1.0 mm Body, Lead Pitch 0.50 mm,  
7.65 mm Exposed Pad, Micro Lead Frame Package (MLF)  
D
R
62  
8116F–AVR–09/09  
XMEGA A3B  
34. Electrical Characteristics  
34.1 Absolute Maximum Ratings*  
*NOTICE:  
Stresses beyond those listed under “Absolute  
Maximum Ratings” may cause permanent dam-  
age to the device. This is a stress rating only and  
functional operation of the device at these or  
other conditions beyond those indicated in the  
operational sections of this specification is not  
implied. Exposure to absolute maximum rating  
conditions for extended periods may affect  
device reliability.  
Operating Temperature.................................. -55°C to +125°C  
Storage Temperature..................................... -65°C to +150°C  
Voltage on any Pin with respect to Ground..-0.5V to VCC+0.5V  
Maximum Operating Voltage ............................................ 3.6V  
DC Current per I/O Pin ............................................... 20.0 mA  
DC Current VCC and GND Pins................................ 200.0 mA  
34.2 DC Characteristics  
Table 34-1. Current Consumption  
Symbol Parameter  
Condition  
32 kHz, Ext. Clk  
Min  
Typ  
25  
Max  
Units  
µA  
V
CC = 1.8V  
VCC = 3.0V  
71  
V
CC = 1.8V  
CC = 3.0V  
CC = 1.8V  
317  
697  
613  
1340  
15.7  
3.6  
1 MHz, Ext. Clk  
Active  
V
V
800  
1800  
18  
2 MHz, Ext. Clk  
32 MHz, Ext. Clk  
32 kHz, Ext. Clk  
VCC = 3.0V  
V
CC = 3.0V  
CC = 1.8V  
mA  
µA  
Power Supply Current(1)  
V
VCC = 3.0V  
CC = 1.8V  
VCC = 3.0V  
6.9  
V
112  
215  
224  
430  
6.9  
1 MHz, Ext. Clk  
Idle  
V
CC = 1.8V  
CC = 3.0V  
350  
650  
8
ICC  
2 MHz, Ext. Clk  
32 MHz, Ext. Clk  
V
VCC = 3.0V  
VCC = 3.0V  
VCC = 3.0V  
mA  
All Functions Disabled  
0.1  
3
All Functions Disabled, T = 85°C  
1.75  
1
5
Power-down mode  
Power-save mode  
V
CC = 1.8V  
VCC = 3.0V  
CC = 3.0V  
VCC = 1.8V  
CC = 3.0V  
ULP, WDT, Sampled BOD  
1
6
ULP, WDT, Sampled BOD, T=85°C  
V
2.7  
10  
µA  
0.55  
0.65  
1.16  
RTC 1 kHz from Low Power 32 kHz  
TOSC  
V
RTC from Low Power 32 kHz TOSC  
without Reset pull-up resistor current  
VCC = 3.0V  
VCC = 3.0V  
Reset Current  
Consumption  
1300  
63  
8116F–AVR–09/09  
XMEGA A3B  
Table 34-1. Current Consumption  
Symbol Parameter  
Module current consumption(2)  
RC32M  
Condition  
Min  
Typ  
Max  
Units  
460  
594  
101  
134  
27  
RC32M w/DFLL  
Internal 32.768 kHz oscillator as DFLL source  
Internal 32.768 kHz oscillator as DFLL source  
Multiplication factor = 10x  
RC2M  
RC2M w/DFLL  
RC32K  
PLL  
202  
1
Watchdog normal mode  
BOD Continuous mode  
BOD Sampled mode  
Internal 1.00 V ref  
Temperature reference  
RTC with int. 32 kHz RC  
µA  
128  
1
80  
74  
No prescaling  
27  
as source  
ICC  
RTC with ULP as source  
No prescaling  
1
ADC  
250 kS/s - Int. 1V Ref  
2.9  
1.8  
0.95  
2.9  
DAC Normal Mode  
DAC Low-Power Mode  
DAC S/H Normal Mode  
1000 kS/s, Single channel, Int. 1V Ref  
1000 KS/s, Single channel, Int. 1V Ref  
Int.1.1V Ref, Refresh 16CLK  
mA  
DAC Low-Power Mode  
S/H  
Int.1.1V Ref, Refresh 16CLK  
1.1  
AC High-speed  
AC Low-power  
USART  
195  
103  
5.4  
Rx and Tx enabled, 9600 BAUD  
Prescaler DIV1  
µA  
DMA  
128  
20  
Timer/Counter  
AES  
223  
Note:  
1. All Power Reduction Registers set. Typical numbers measured at T = 25°C if nothing else is specified.  
2. All parameters measured as the difference in current consumption between module enabled and disabled. All data at  
CC = 3.0V, ClkSYS = 1 MHz External clock with no prescaling, T = 25°C.  
V
64  
8116F–AVR–09/09  
XMEGA A3B  
34.3 Operating Voltage and Frequency  
Table 34-2. Operating voltage and voltage and frequency  
Symbol  
Parameter  
Condition  
CC = 1.6V  
Min  
0
Typ  
Max  
12  
Units  
V
V
V
CC = 1.8V  
CC = 2.7V  
0
12  
System clock  
frequency  
ClkSYS  
MHz  
0
32  
VCC = 3.6V  
0
32  
The maximum System clock frequency of the XMEGA A3 devices is depending on VCC. As  
shown in Figure 34-1 on page 65 the Frequency vs. VCC curve is linear between  
1.8V < VCC < 2.7V.  
Figure 34-1. Maximum Frequency vs. Vcc  
MHz  
32  
Safe Operating Area  
12  
V
1.6  
1.8  
2.7  
3.6  
65  
8116F–AVR–09/09  
XMEGA A3B  
34.4 Flash and EEPROM Memory Characteristics  
Table 34-3. Endurance  
Symbol Parameter  
Condition  
Write/Erase cycles  
Min  
10K  
10K  
80K  
30K  
Typ  
Max  
Units  
25°C  
85°C  
25°C  
85°C  
Flash  
Cycle  
EEPROM  
Write/Erase cycles  
Table 34-4. Programming time  
Symbol Parameter  
Chip Erase  
Condition  
Min  
Typ(1)  
40  
6
Max  
Units  
Flash, EEPROM(2) and SRAM Erase  
Page Erase  
Flash  
Page Write  
6
Page WriteAutomatic Page Erase and Write  
Page Erase  
12  
6
ms  
EEPROM  
Page Write  
6
Page WriteAutomatic Page Erase and Write  
12  
Notes: 1. Programming is timed from the internal 2 MHz oscillator.  
2. EEPROM is not erased if the EESAVE fuse is programmed.  
66  
8116F–AVR–09/09  
XMEGA A3B  
34.5 ADC Characteristics  
Table 34-5. ADC Characteristics  
Symbol  
RES  
Parameter  
Condition  
Programmable: 8/12  
500 ksps  
Min  
Typ  
12  
Max  
Units  
Bits  
Resolution  
8
12  
INL  
Integral Non-Linearity  
Differential Non-Linearity  
Gain Error  
±2  
LSB  
LSB  
mV  
DNL  
500 ksps  
< ±1  
< ±10  
< ±2  
Offset Error  
mV  
ADCclk  
ADC Clock frequency  
Conversion rate  
Max is 1/4 of Peripheral Clock  
2000  
2000  
kHz  
ksps  
Conversion time  
(RES+2)/2+GAIN  
ADCclk  
cycles  
5
7
8
(propagation delay)  
RES = 8 or 12, GAIN = 0 or 1  
Sampling Time  
1/2 ADCclk cycle  
0.25  
0
uS  
V
Conversion range  
VREF  
VREF  
Reference voltage  
1.0  
Vcc-0.6V  
V
Input bandwidth  
kHz  
V
INT1V  
INTVCC  
SCALEDVCC  
RAREF  
Internal 1.00V reference  
Internal VCC/1.6  
1.00  
VCC/1.6  
VCC/10  
> 10  
V
Scaled internal VCC/10 input  
Reference input resistance  
Start-up time  
V
MΩ  
µs  
ksps  
Temp. sensor, VCC/10, Bandgap  
Internal input sampling speed  
100  
Table 34-6. ADC Gain Stage Characteristics  
Symbol  
Parameter  
Gain error  
Offset error  
Condition  
Min  
Typ  
Max  
Units  
1 to 64 gain  
< ±1  
< ±1  
0.12  
0.06  
%
VREF = Int. 1V  
VREF = Ext. 2V  
mV  
Vrms  
Noise level at input  
Clock rate  
64x gain  
Same as ADC  
1000  
kHz  
67  
8116F–AVR–09/09  
XMEGA A3B  
34.6 DAC Characteristics  
Table 34-7. DAC Characteristics  
Symbol Parameter  
Condition  
VREF = Ext. ref  
Min  
Typ  
5
Max  
Units  
INL  
Integral Non-Linearity  
VCC = 1.6-3.6V  
VCC = 1.6-3.6V  
VREF = Ext. ref  
VREF= AVCC  
<±1  
LSB  
DNL  
Differential Non-Linearity  
Fclk  
Conversion rate  
1000  
ksps  
V
AREF  
External reference voltage  
Reference input impedance  
DC output impedance  
Max output voltage  
1.1  
AVCC-0.6  
>10  
MΩ  
kΩ  
AVCC*0.98  
0.015  
±0.5  
Rload=100kΩ  
Rload=100kΩ  
V
Min output voltage  
Offset factory calibration accuracy  
Gain factory calibration accuracy  
Continues mode, VCC=3.0V,  
VREF = Int 1.00V, T=85°C  
LSB  
±2.5  
34.7 Analog Comparator Characteristics  
Table 34-8. Analog Comparator Characteristics  
Symbol Parameter  
Condition  
Min  
Typ  
<±10  
< 1000  
0
Max  
Units  
mV  
Voff  
Ilk  
Input Offset Voltage  
VCC = 1.6 - 3.6V  
VCC = 1.6 - 3.6V  
VCC = 1.6 - 3.6V  
VCC = 1.6 - 3.6V  
VCC = 1.6 - 3.6V  
Input Leakage Current  
Hysteresis, No  
pA  
Vhys1  
Vhys2  
Vhys3  
mV  
Hysteresis, Small  
Hysteresis, Large  
mode = HS  
mode = HS  
mode = HS  
mode = HS  
mode = LP  
20  
mV  
40  
V
CC = 3.0V, T= 85°C  
VCC = 1.6 - 3.6V  
CC = 1.6 - 3.6V  
100  
tdelay  
Propagation delay  
110  
175  
ns  
V
34.8 Bandgap Characteristics  
Table 34-9. Bandgap Voltage Characteristics  
Symbol Parameter  
Condition  
Min  
Typ  
Max  
Units  
As reference for ADC or DAC  
As input to AC or ADC  
1 Clk_PER + 2.5µs  
Bandgap  
µs  
1.5  
1.1  
Bandgap voltage  
T= 85°C, After calibration  
0.99  
1
1
1.01  
V
ADC/DAC ref  
Variation over voltage and temperature  
VCC = 1.6 - 3.6V, T = -40°C to 85°C  
±5  
%
68  
8116F–AVR–09/09  
XMEGA A3B  
34.9 Brownout Detection Characteristics  
Table 34-10. Brownout Detection Characteristics(1)  
Symbol Parameter  
Condition  
Min  
Typ  
1.62  
1.9  
Max  
Units  
BOD level 0 falling Vcc  
BOD level 1 falling Vcc  
BOD level 2 falling Vcc  
2.17  
2.43  
2.68  
2.96  
3.22  
3.49  
1
BOD level 3 falling Vcc  
V
BOD level 4 falling Vcc  
BOD level 5 falling Vcc  
BOD level 6 falling Vcc  
BOD level 7 falling Vcc  
Hysteresis  
BOD level 0-5  
%
Note:  
1. BOD is calibrated on BOD level 0 at 85°C.  
34.10 PAD Characteristics  
Table 34-11. PAD Characteristics  
Symbol Parameter  
Condition  
CC = 2.4 - 3.6V  
Min  
Typ  
Max  
VCC+0.5  
VCC+0.5  
0.3*VCC  
0.2*VCC  
0.76  
Units  
V
V
V
0.7*VCC  
0.8*VCC  
-0.5  
VIH  
VIL  
Input High Voltage  
Input Low Voltage  
CC = 1.6 - 2.4V  
CC = 2.4 - 3.6V  
VCC = 1.6 - 2.4V  
OH = 15 mA, VCC = 3.3V  
-0.5  
I
0.4  
0.3  
V
VOL  
Output Low Voltage GPIO  
Output High Voltage GPIO  
IOH = 10 mA, VCC = 3.0V  
IOH = 5 mA, VCC = 1.8V  
0.64  
0.2  
0.46  
I
OH = -8 mA, VCC = 3.3V  
2.6  
2.1  
1.4  
2.9  
VOH  
IOH = -6 mA, VCC = 3.0V  
IOH = -2 mA, VCC = 1.8V  
2.7  
1.6  
IIL  
IIH  
Input Leakage Current I/O pin  
Input Leakage Current I/O pin  
I/O pin Pull/Buss keeper Resistor  
Reset pin Pull-up Resistor  
Input hysteresis  
<0.001  
<0.001  
20  
1
1
µA  
RP  
kΩ  
RRST  
20  
0.5  
mV  
69  
8116F–AVR–09/09  
XMEGA A3B  
34.11 POR Characteristics  
Table 34-12. Power-on Reset Characteristics  
Symbol Parameter  
Condition  
Min  
Typ  
1
Max  
Units  
VPOT-  
POR threshold voltage falling Vcc  
POR threshold voltage rising Vcc  
V
VPOT+  
1.45  
34.12 Reset Characteristics  
Table 34-13. Reset Characteristics  
Symbol Parameter  
Condition  
Min  
Typ  
90  
Max  
Units  
Minimum reset pulse width  
ns  
V
CC = 2.7 - 3.6V  
0.45*VCC  
0.42*VCC  
Reset threshold voltage  
V
VCC = 1.6 - 2.7V  
34.13 Oscillator Characteristics  
Table 34-14. Internal 32.768 kHz Oscillator Characteristics  
Symbol Parameter  
Condition  
Min  
Typ  
Max  
Units  
T = 85°C, VCC = 3V,  
After production calibration  
Accuracy  
-0.5  
0.5  
%
Table 34-15. Internal 2 MHz Oscillator Characteristics  
Symbol Parameter  
Condition  
Min  
Typ  
Max  
Units  
T = 85°C, VCC = 3V,  
After production calibration  
Accuracy  
-1.5  
1.5  
%
DFLL Calibration step size  
T = 25°C, VCC = 3V  
0.15  
Table 34-16. Internal 32 MHz Oscillator Characteristics  
Symbol Parameter  
Condition  
Min  
Typ  
Max  
Units  
T = 85°C, VCC = 3V,  
After production calibration  
Accuracy  
-1.5  
1.5  
%
DFLL Calibration stepsize  
T = 25°C, VCC = 3V  
0.2  
Table 34-17. Internal 32 kHz, ULP Oscillator Characteristics  
Symbol Parameter Condition  
Output frequency 32 kHz ULP OSC T = 85°C, VCC = 3.0V  
Min  
Typ  
Max  
Units  
26  
kHz  
70  
8116F–AVR–09/09  
XMEGA A3B  
34.14 VBAT and Battery Backup Characteristics  
Table 34-18. VBAT and Battery Backup Characteristics  
Symbol Parameter  
Vbat supply voltage range  
Condition  
Min  
Typ  
Max  
3.6  
Units  
Vbbbod  
V
V/ms  
V
Vcc Power-down slope range  
BOD threshold voltage  
Monotonic falling  
0.1  
1.8  
Vbbbod BBBOD threshold voltage  
BBBOD detection speed  
1.7  
1
2.1  
2
V
s
Powering from VBAT pin RTC from Low  
Power 32 kHz TOSC and XOSC Faillure  
Monitor enabled  
Current consumption  
VBAT pin leackage  
0.5  
µA  
nA  
Powering Battery Backup module from Vcc  
50  
71  
8116F–AVR–09/09  
XMEGA A3B  
35. Typical Characteristics  
35.1 Active Supply Current  
Figure 35-1. Active Supply Current vs. Frequency  
fSYS = 0 - 1.0 MHz External clock, T = 25°C  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
3.3 V  
3.0 V  
2.7 V  
2.2 V  
1.8 V  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
Frequency [MHz]  
Figure 35-2. Active Supply Current vs. Frequency  
fSYS = 1 - 32 MHz External clock, T = 25°C  
20  
18  
16  
14  
12  
10  
8
3.3 V  
3.0 V  
2.7 V  
2.2 V  
6
4
1.8 V  
2
0
0
4
8
12  
16  
20  
24  
28  
32  
Frequency [MHz]  
72  
8116F–AVR–09/09  
XMEGA A3B  
Figure 35-3. Active Supply Current vs. Vcc  
fSYS = 1.0 MHz External Clock  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
85 °C  
25 °C  
-40 °C  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
V
CC [V]  
Figure 35-4. Active Supply Current vs. VCC  
fSYS = 32.768 kHz internal RC  
140  
120  
100  
80  
-40 °C  
25 °C  
85 °C  
60  
40  
20  
0
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
V
CC [V]  
73  
8116F–AVR–09/09  
XMEGA A3B  
Figure 35-5. Active Supply Current vs. Vcc  
fSYS = 2.0 MHz internal RC  
2000  
1800  
1600  
1400  
1200  
1000  
800  
-40 °C  
25 °C  
85 °C  
600  
400  
200  
0
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
V
CC [V]  
Figure 35-6. Active Supply Current vs. Vcc  
fSYS = 32 MHz internal RC prescaled to 8 MHz  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
-40 °C  
25 °C  
85 °C  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
V
CC [V]  
74  
8116F–AVR–09/09  
XMEGA A3B  
Figure 35-7. Active Supply Current vs. Vcc  
fSYS = 32 MHz internal RC  
25  
20  
15  
10  
5
-40 °C  
25 °C  
85 °C  
0
2.7  
2.8  
2.9  
3
3.1  
3.2  
CC [V]  
3.3  
3.4  
3.5  
3.6  
V
35.2 Idle Supply Current  
Figure 35-8. Idle Supply Current vs. Frequency  
fSYS = 0 - 1.0 MHz, T = 25°C  
250  
200  
150  
100  
50  
3.3 V  
3.0 V  
2.7 V  
2.2 V  
1.8 V  
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
Frequency [MHz]  
75  
8116F–AVR–09/09  
XMEGA A3B  
Figure 35-9. Idle Supply Current vs. Frequency  
fSYS = 1 - 32 MHz, T = 25°C  
8
7
6
5
4
3
2
1
0
3.3 V  
3.0 V  
2.7 V  
2.2 V  
1.8 V  
0
4
8
12  
16  
Frequency [MHz]  
20  
24  
28  
32  
Figure 35-10. Idle Supply Current vs. Vcc  
fSYS = 1.0 MHz External Clock  
300  
250  
200  
150  
100  
50  
85 °C  
25 °C  
-40 °C  
0
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
V
CC [V]  
76  
8116F–AVR–09/09  
XMEGA A3B  
Figure 35-11. Idle Supply Current vs. Vcc  
fSYS = 32.768 kHz internal RC  
40  
35  
30  
25  
20  
15  
10  
5
85 °C  
-40 °C  
25 °C  
0
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
V
CC [V]  
Figure 35-12. Idle Supply Current vs. Vcc  
fSYS = 2.0 MHz internal RC  
700  
600  
500  
400  
300  
200  
100  
0
-40 °C  
25 °C  
85 °C  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
V
CC [V]  
77  
8116F–AVR–09/09  
XMEGA A3B  
Figure 35-13. Idle Supply Current vs. Vcc  
fSYS = 32 MHz internal RC prescaled to 8 MHz  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
-40 °C  
25 °C  
85 °C  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
V
CC [V]  
Figure 35-14. Idle Supply Current vs. Vcc  
fSYS = 32 MHz internal RC  
10  
8
-40 °C  
25 °C  
85 °C  
6
4
2
0
2.7  
2.8  
2.9  
3
3.1  
3.2  
CC [V]  
3.3  
3.4  
3.5  
3.6  
V
78  
8116F–AVR–09/09  
XMEGA A3B  
35.3 Power-down Supply Current  
Figure 35-15. Power-down Supply Current vs. Temperature  
2
1.8  
1.6  
1.4  
1.2  
1
3.3 V  
3.0 V  
2.7 V  
2.2 V  
1.8 V  
0.8  
0.6  
0.4  
0.2  
0
-40 -30 -20 -10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
Temperature [°C]  
Figure 35-16. Power-down Supply Current vs. Temperature  
With WDT and sampled BOD enabled.  
3
2.5  
2
3.3 V  
3.0 V  
2.7 V  
2.2 V  
1.8 V  
1.5  
1
0.5  
0
-40 -30 -20 -10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
Temperature [°C]  
79  
8116F–AVR–09/09  
XMEGA A3B  
35.4 Power-save Supply Current  
Figure 35-17. Power-save Supply Current vs. Temperature  
With WDT, sampled BOD and RTC from ULP enabled  
3
2.5  
2
3.3 V  
3.0 V  
2.7 V  
1.8 V  
2.2 V  
1.5  
1
0.5  
0
-40 -30 -20 -10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
Temperature [°C]  
35.5 Pin Pull-up  
Figure 35-18. Reset Pull-up Resistor Current vs. Reset Pin Voltage  
VCC = 1.8V  
100  
80  
60  
40  
20  
0
-40 °C  
25 °C  
85 °C  
0
0.2  
0.4  
0.6  
0.8  
1
1.2  
1.4  
1.6  
1.8  
V
RESET [V]  
80  
8116F–AVR–09/09  
XMEGA A3B  
Figure 35-19. Reset Pull-up Resistor Current vs. Reset Pin Voltage  
VCC = 3.0V  
160  
140  
120  
100  
80  
60  
40  
-40 °C  
25 °C  
85 °C  
20  
0
0
0.5  
1
1.5  
2
2.5  
3
V
RESET [V]  
Figure 35-20. Reset Pull-up Resistor Current vs. Reset Pin Voltage  
VCC = 3.3V  
180  
160  
140  
120  
100  
80  
60  
40  
-40 °C  
25 °C  
85 °C  
20  
0
0
0.5  
1
1.5  
RESET [V]  
2
2.5  
3
V
81  
8116F–AVR–09/09  
XMEGA A3B  
35.6 Pin Output Voltage vs. Sink/Source Current  
Figure 35-21. I/O Pin Output Voltage vs. Source Current  
Vcc = 1.8V  
2
1.8  
1.6  
1.4  
1.2  
1
-40 °C  
25 °C  
85 °C  
0.8  
0.6  
0.4  
0.2  
0
-12  
-10  
-8  
-6  
-4  
-2  
0
I
PIN [mA]  
Figure 35-22. I/O Pin Output Voltage vs. Source Current  
Vcc = 3.0V  
3.5  
3
-40 °C  
25 °C  
85 °C  
2.5  
2
1.5  
1
0.5  
0
-20  
-18  
-16  
-14  
-12  
-10  
-8  
-6  
-4  
-2  
0
I
PIN [mA]  
82  
8116F–AVR–09/09  
XMEGA A3B  
Figure 35-23. I/O Pin Output Voltage vs. Source Current  
Vcc = 3.3V  
3.5  
-40 °C  
25 °C  
85 °C  
3
2.5  
2
1.5  
1
0.5  
0
-20  
-18  
-16  
-14  
-12  
-10  
-8  
-6  
-4  
-2  
0
I
PIN [mA]  
Figure 35-24. I/O Pin Output Voltage vs. Sink Current  
Vcc = 1.8V  
85°C 25°C  
1.8  
1.6  
1.4  
1.2  
1
-40 °C  
0.8  
0.6  
0.4  
0.2  
0
0
2
4
6
8
10  
12  
14  
16  
18  
20  
I
PIN [mA]  
83  
8116F–AVR–09/09  
XMEGA A3B  
Figure 35-25. I/O Pin Output Voltage vs. Sink Current  
Vcc = 3.0V  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
85 °C  
25 °C  
-40 °C  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
I
PIN [mA]  
Figure 35-26. I/O Pin Output Voltage vs. Sink Current  
Vcc = 3.3V  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
85 °C  
25 °C  
-40 °C  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
I
PIN [mA]  
84  
8116F–AVR–09/09  
XMEGA A3B  
35.7 Pin Thresholds and Hysteresis  
Figure 35-27. I/O Pin Input Threshold Voltage vs. VCC  
VIH - I/O Pin Read as “1”  
2.5  
2
-40 °C  
25 °C  
85 °C  
1.5  
1
0.5  
0
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
V
CC [V]  
Figure 35-28. I/O Pin Input Threshold Voltage vs. VCC  
VIL - I/O Pin Read as “0”  
1.8  
1.6  
1.4  
1.2  
1
85 °C  
25 °C  
-40 °C  
0.8  
0.6  
0.4  
0.2  
0
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
V
CC [V]  
85  
8116F–AVR–09/09  
XMEGA A3B  
Figure 35-29. I/O Pin Input Hysteresis vs. VCC  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
85 °C  
25 °C  
-40 °C  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
V
CC [V]  
Figure 35-30. Reset Input Threshold Voltage vs. VCC  
VIH - I/O Pin Read as “1”  
1.8  
1.6  
1.4  
1.2  
1
-40 °C  
25 °C  
85 °C  
0.8  
0.6  
0.4  
0.2  
0
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
V
CC [V]  
86  
8116F–AVR–09/09  
XMEGA A3B  
Figure 35-31. Reset Input Threshold Voltage vs. VCC  
VIL - I/O Pin Read as “0”  
1.8  
1.6  
1.4  
1.2  
1
-40 °C  
25 °C  
85 °C  
0.8  
0.6  
0.4  
0.2  
0
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
V
CC [V]  
35.8 Bod Thresholds  
Figure 35-32. BOD Thresholds vs. Temperature  
BOD Level = 1.6V  
1.67  
1.66  
Rising Vcc  
Falling Vcc  
1.65  
1.64  
1.63  
1.62  
1.61  
-40 -30 -20 -10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
Temperature [°C]  
87  
8116F–AVR–09/09  
XMEGA A3B  
Figure 35-33. BOD Thresholds vs. Temperature  
BOD Level = 2.9V  
3.06  
3.04  
Rising Vcc  
3.02  
3
2.98  
2.96  
2.94  
2.92  
2.9  
Falling Vcc  
-40 -30 -20 -10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
Temperature [°C]  
35.9 Internal Oscillator Speed  
35.9.1  
Internal 32.768 kHz Oscillator  
Figure 35-34. Internal 32.768 kHz Oscillator Calibration Step Size  
T = -40 to 85°C, VCC = 3V  
0.80 %  
0.65 %  
0.50 %  
0.35 %  
0.20 %  
0.05 %  
0
32  
64  
96  
128  
160  
192  
224  
256  
RC32KCAL[7..0]  
88  
8116F–AVR–09/09  
XMEGA A3B  
35.9.2  
Internal 2 MHz Oscillator  
Figure 35-35. Internal 2 MHz Oscillator CALA Calibration Step Size  
T = -40 to 85°C, VCC = 3V  
0.50 %  
0.40 %  
0.30 %  
0.20 %  
0.10 %  
0.00 %  
-0.10 %  
-0.20 %  
-0.30 %  
0
16  
32  
48  
64  
80  
96  
112  
128  
DFLLRC2MCALA  
Figure 35-36. Internal 2 MHz Oscillator CALB Calibration Step Size  
T = -40 to 85°C, VCC = 3V  
3.00 %  
2.50 %  
2.00 %  
1.50 %  
1.00 %  
0.50 %  
0.00 %  
0
8
16  
24  
32  
40  
48  
56  
64  
DFLLRC2MCALB  
89  
8116F–AVR–09/09  
XMEGA A3B  
35.9.3  
Internal 32 MHZ Oscillator  
Figure 35-37. Internal 32 MHz Oscillator CALA Calibration Step Size  
T = -40 to 85°C, VCC = 3V  
0.60 %  
0.50 %  
0.40 %  
0.30 %  
0.20 %  
0.10 %  
0.00 %  
-0.10 %  
-0.20 %  
0
16  
32  
48  
64  
80  
96  
112  
128  
DFLLRC32MCALA  
Figure 35-38. Internal 32 MHz Oscillator CALB Calibration Step Size  
T = -40 to 85°C, VCC = 3V  
3.00 %  
2.50 %  
2.00 %  
1.50 %  
1.00 %  
0.50 %  
0.00 %  
0
8
16  
24  
32  
40  
48  
56  
64  
DFLLRC32MCALB  
90  
8116F–AVR–09/09  
XMEGA A3B  
35.10 Module current consumption  
Figure 35-39. AC current consumption vs. Vcc  
Low-power Mode  
120  
100  
80  
60  
40  
20  
0
85 °C  
25 °C  
-40 °C  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
V
CC [V]  
Figure 35-40. Power-up current consumption vs. Vcc  
700  
-40 °C  
25 °C  
85 °C  
600  
500  
400  
300  
200  
100  
0
0.4  
0.6  
0.8  
1
1.2  
1.4  
1.6  
V
CC [V]  
91  
8116F–AVR–09/09  
XMEGA A3B  
35.11 Reset Pulsewidth  
Figure 35-41. Minimum Reset Pulse Width vs. Vcc  
120  
100  
80  
60  
40  
20  
0
85 °C  
25 °C  
-40 °C  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
V
CC [V]  
92  
8116F–AVR–09/09  
XMEGA A3B  
36. Errata  
36.1 ATxmega256A3B  
36.1.1  
rev. C  
Bandgap voltage input for the ACs cannot be changed when used for both ACs simultaneously  
ADC gain stage output range is limited to 2.4V  
Sampled BOD in Active mode will cause noise when bandgap is used as reference  
Bandgap measurement with the ADC is non-functional when VCC is below 2.7V  
BOD will be enabled after any reset  
ADC has increased INL error for some operating conditions  
DAC has increased INL or noise for some operating conditions  
VCC voltage scaler for AC is non-linear  
Maximum operating frequency below 1.76V is 8 MHz  
1. Bandgap voltage input for the ACs cannot be changed when used for both ACs  
simultaneously  
If the bandgap voltage is selected as input for one Analog Comparator (AC) and then  
selected/deselected as input for the another AC, the first comparator will be affected for up  
to 1 us and could potentially give a wrong comparison result.  
Problem fix/Workaround  
If the Bandgap is required for both ACs simultaneously, configure the input selection for both  
ACs before enabling any of them.  
2. ADC gain stage output range is limited to 2.4 V  
The amplified output of the ADC gain stage will never go above 2.4 V, hence the differential  
input will only give correct output when below 2.4 V/gain. For the available gain settings, this  
gives a differential input range of:  
1x gain:  
2x gain:  
4x gain:  
8x gain:  
16x gain:  
32x gain:  
64x gain:  
2.4  
1.2  
0.6  
V
V
V
300 mV  
150 mV  
75 mV  
38 mV  
Problem fix/Workaround  
Keep the amplified voltage output from the ADC gain stage below 2.4 V in order to get a cor-  
rect result, or keep ADC voltage reference below 2.4 V.  
3. Sampled BOD in Active mode will cause noise when bandgap is used as reference  
Using the BOD in sampled mode when the device is running in Active or Idle mode will add  
noise on the bandgap reference for ADC, DAC and Analog Comparator.  
93  
8116F–AVR–09/09  
XMEGA A3B  
Problem fix/Workaround  
If the bandgap is used as reference for either the ADC, DAC and Analog Comparator, the  
BOD must not be set in sampled mode.  
4. Bandgap measurement with the ADC is non-functional when VCC is below 2.7V  
The ADC cannot be used to do bandgap measurements when VCC is below 2.7V.  
Problem fix/Workaround  
If internal voltages must be measured when VCC is below 2.7V, measure the internal 1.00V  
reference instead of the bandgap.  
5. BOD will be enabled after any reset  
If any reset source goes active, the BOD will be enabled and keep the device in reset if the  
VCC voltage is below the programmed BOD level. During Power-On Reset, reset will not be  
released until VCC is above the programmed BOD level even if the BOD is disabled.  
Problem fix/Workaround  
Do not set the BOD level higher than VCC even if the BOD is not used.  
6. ADC has increased INL error for some operating conditions  
Some ADC configurations or operating condition will result in increased INL error.  
In differential mode INL is increased to:  
– 6 LSB for sample rates above 1 Msps, and up to 8 LSB for 2 Msps sample rate.  
– 6 LSB for reference voltage below 1.1V when VCC is above 3.0V.  
– 20 LSB for ambient temperature below 0 degree C and reference voltage below 1.3V.  
In single ended mode, the INL is increased up to a factor of 3 for the conditions above.  
Problem fix/Workaround  
None, avoid using the ADC in the above configurations in order to prevent increased INL  
error.  
7. DAC has increased INL or noise for some operating conditions  
Some DAC configurations or operating condition will result in increased output error.  
– INL error is increased up to 35 LSB when VCC < 2.0V  
– Enabling Sample and Hold, will increase noise and reduce resolution below 8 bit  
Problem fix/Workaround  
None, avoid using the DAC in the above configurations in order to prevent increased INL  
error.  
8. VCC voltage scaler for AC is non-linear  
The 6-bit VCC voltage scaler in the Analog Comparators is non-linear. The typical voltage  
output versus the scale factor for different VCC voltages is shown below:  
94  
8116F–AVR–09/09  
XMEGA A3B  
Figure 36-1. Analog Comparator Voltage Scaler vs. Scalefac  
T = 25°C  
3.5  
3
3.3 V  
2.7 V  
2.5  
2
1.8 V  
1.5  
1
0.5  
0
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
SCALEFAC  
Problem fix/Workaround  
Use external voltage input for the analog comparator if accurate voltage levels are needed.  
9. Maximum operating frequency below 1.76V is 8 MHz  
To ensure correct operation, the maximum operating frequency below 1.76V VCC is 8 MHz.  
Problem fix/Workaround  
None, avoid running the device outside this frequency and voltage limitation.  
95  
8116F–AVR–09/09  
XMEGA A3B  
37. Datasheet Revision History  
37.1 8116F - 09/09  
1.  
2.  
3.  
4.  
Updated ”DC Characteristics” on page 63.  
Added ”Flash and EEPROM Memory Characteristics” on page 66.  
Added ”VBAT and Battery Backup Characteristics” on page 71.  
Upddated ”Errata” on page 93.  
37.2 8116E - 06/09  
1.  
2.  
3.  
Updated ”Electrical Characteristics” on page 63.  
Added ”Typical Characteristics” on page 72.  
Updated ”Errata” on page 93.  
37.3 8116D - 04/09  
1.  
2.  
Updated ”Ordering Information” on page 2.  
Editorial updates.  
37.4 8116C - 02/09  
37.5 8116B - 12/08  
37.6 8116A - 11/08  
1.  
Added ”Errata” on page 93 for ATxmega256A3B rev B.  
1.  
1.  
Added ”Errata” on page 93 for ATxmega256A3B rev A.  
Initial version.  
96  
8116F–AVR–09/09  
XMEGA A3B  
Table of Contents  
Features..................................................................................................... 1  
Typical Applications ................................................................................ 1  
Ordering Information ............................................................................... 2  
Pinout/Block Diagram .............................................................................. 3  
1
2
3
Overview ................................................................................................... 4  
3.1Block Diagram ...........................................................................................................5  
4
Resources ................................................................................................. 6  
4.1Recommended reading .............................................................................................6  
5
6
Disclaimer ................................................................................................. 6  
AVR CPU ................................................................................................... 7  
6.1Features ....................................................................................................................7  
6.2Overview ...................................................................................................................7  
6.3Register File ..............................................................................................................8  
6.4ALU - Arithmetic Logic Unit .......................................................................................8  
6.5Program Flow ............................................................................................................8  
7
Memories .................................................................................................. 9  
7.1Features ....................................................................................................................9  
7.2Overview ...................................................................................................................9  
7.3In-System Programmable Flash Program Memory .................................................10  
7.4Data Memory ...........................................................................................................10  
7.5Production Signature Row .......................................................................................12  
7.6Production Signature Row .......................................................................................13  
7.7User Signature Row ................................................................................................13  
7.8Flash and EEPROM Page Size ...............................................................................14  
8
9
DMAC - Direct Memory Access Controller .......................................... 15  
8.1Features ..................................................................................................................15  
8.2Overview .................................................................................................................15  
Event System ......................................................................................... 16  
9.1Features ..................................................................................................................16  
9.2Overview .................................................................................................................16  
10 System Clock and Clock options ......................................................... 18  
i
8116F–AVR–09/09  
XMEGA A3B  
10.1Features ................................................................................................................18  
10.2Overview ...............................................................................................................18  
10.3Clock Options ........................................................................................................19  
11 Power Management and Sleep Modes ................................................. 21  
11.1Features ................................................................................................................21  
11.2Overview ...............................................................................................................21  
11.3Sleep Modes .........................................................................................................21  
12 System Control and Reset .................................................................... 23  
12.1Features ................................................................................................................23  
12.2Resetting the AVR .................................................................................................23  
12.3Reset Sources .......................................................................................................23  
12.4WDT - Watchdog Timer .........................................................................................24  
13 Battery Backup System ......................................................................... 25  
13.1Features ................................................................................................................25  
13.2Overview ...............................................................................................................25  
14 PMIC - Programmable Multi-level Interrupt Controller ....................... 27  
14.1Features ................................................................................................................27  
14.2Overview ...............................................................................................................27  
14.3Interrupt vectors ....................................................................................................27  
15 I/O Ports .................................................................................................. 29  
15.1Features ................................................................................................................29  
15.2Overview ...............................................................................................................29  
15.3I/O configuration ....................................................................................................29  
15.4Input sensing .........................................................................................................32  
15.5Port Interrupt .........................................................................................................32  
15.6Alternate Port Functions ........................................................................................32  
16 T/C - 16-bit Timer/Counter with PWM ................................................... 33  
16.1Features ................................................................................................................33  
16.2Overview ...............................................................................................................33  
17 AWEX - Advanced Waveform Extension ............................................. 35  
17.1Features ................................................................................................................35  
17.2Overview ...............................................................................................................35  
18 Hi-Res - High Resolution Extension ..................................................... 36  
ii  
8116F–AVR–09/09  
XMEGA A3B  
18.1Features ................................................................................................................36  
18.2Overview ...............................................................................................................36  
19 RTC32 - 32-bit Real-Time Counter ........................................................ 37  
19.1Features ................................................................................................................37  
20 TWI - Two Wire Interface ....................................................................... 38  
20.1Features ................................................................................................................38  
20.2Overview ...............................................................................................................38  
21 SPI - Serial Peripheral Interface ............................................................ 39  
21.1Features ................................................................................................................39  
21.2Overview ...............................................................................................................39  
22 USART ..................................................................................................... 40  
22.1Features ................................................................................................................40  
22.2Overview ...............................................................................................................40  
23 IRCOM - IR Communication Module .................................................... 41  
23.1Features ................................................................................................................41  
23.2Overview ...............................................................................................................41  
24 Crypto Engine ........................................................................................ 42  
24.1Features ................................................................................................................42  
24.2Overview ...............................................................................................................42  
25 ADC - 12-bit Analog to Digital Converter ............................................. 43  
25.1Features ................................................................................................................43  
25.2Overview ...............................................................................................................43  
26 DAC - 12-bit Digital to Analog Converter ............................................. 45  
26.1Features ................................................................................................................45  
26.2Overview ...............................................................................................................45  
27 AC - Analog Comparator ....................................................................... 46  
27.1Features ................................................................................................................46  
27.2Overview ...............................................................................................................46  
27.3Input Selection .......................................................................................................48  
27.4Window Function ...................................................................................................48  
28 OCD - On-chip Debug ............................................................................ 49  
28.1Features ................................................................................................................49  
28.2Overview ...............................................................................................................49  
iii  
8116F–AVR–09/09  
XMEGA A3B  
29 Program and Debug Interfaces ............................................................. 50  
29.1Features ................................................................................................................50  
29.2Overview ...............................................................................................................50  
29.3JTAG interface ......................................................................................................50  
29.4PDI - Program and Debug Interface ......................................................................50  
30 Pinout and Pin Functions ...................................................................... 51  
30.1Alternate Pin Function Description ........................................................................51  
30.2Alternate Pin Functions .........................................................................................53  
31 Peripheral Module Address Map .......................................................... 56  
32 Instruction Set Summary ...................................................................... 57  
33 Packaging information .......................................................................... 61  
33.164A ........................................................................................................................61  
33.264M2 .....................................................................................................................62  
34 Electrical Characteristics ...................................................................... 63  
34.1Absolute Maximum Ratings* .................................................................................63  
34.2DC Characteristics ................................................................................................63  
34.3Operating Voltage and Frequency ........................................................................65  
34.4Flash and EEPROM Memory Characteristics .......................................................66  
34.5ADC Characteristics ..............................................................................................67  
34.6DAC Characteristics ..............................................................................................68  
34.7Analog Comparator Characteristics .......................................................................68  
34.8Bandgap Characteristics .......................................................................................68  
34.9Brownout Detection Characteristics ......................................................................69  
34.10PAD Characteristics ............................................................................................69  
34.11POR Characteristics ............................................................................................70  
34.12Reset Characteristics ..........................................................................................70  
34.13Oscillator Characteristics .....................................................................................70  
34.14VBAT and Battery Backup Characteristics ..........................................................71  
35 Typical Characteristics .......................................................................... 72  
35.1Active Supply Current ............................................................................................72  
35.2Idle Supply Current ................................................................................................75  
35.3Power-down Supply Current .................................................................................79  
35.4Power-save Supply Current ..................................................................................80  
35.5Pin Pull-up .............................................................................................................80  
iv  
8116F–AVR–09/09  
35.6Pin Output Voltage vs. Sink/Source Current .........................................................82  
35.7Pin Thresholds and Hysteresis ..............................................................................85  
35.8Bod Thresholds .....................................................................................................87  
35.9Internal Oscillator Speed .......................................................................................88  
35.10Module current consumption ...............................................................................91  
35.11Reset Pulsewidth .................................................................................................92  
36 Errata ....................................................................................................... 93  
36.1ATxmega256A3B ..................................................................................................93  
37 Datasheet Revision History .................................................................. 96  
37.18116F - 09/09 ........................................................................................................96  
37.28116E - 06/09 ........................................................................................................96  
37.38116D - 04/09 ........................................................................................................96  
37.48116C - 02/09 ........................................................................................................96  
37.58116B - 12/08 ........................................................................................................96  
37.68116A - 11/08 ........................................................................................................96  
Table of Contents....................................................................................... i  
Headquarters  
International  
Atmel Corporation  
2325 Orchard Parkway  
San Jose, CA 95131  
USA  
Tel: 1(408) 441-0311  
Fax: 1(408) 487-2600  
Atmel Asia  
Atmel Europe  
Le Krebs  
Atmel Japan  
9F, Tonetsu Shinkawa Bldg.  
1-24-8 Shinkawa  
Chuo-ku, Tokyo 104-0033  
Japan  
Tel: (81) 3-3523-3551  
Fax: (81) 3-3523-7581  
Unit 1-5 & 16, 19/F  
BEA Tower, Millennium City 5  
418 Kwun Tong Road  
Kwun Tong, Kowloon  
Hong Kong  
8, Rue Jean-Pierre Timbaud  
BP 309  
78054 Saint-Quentin-en-  
Yvelines Cedex  
France  
Tel: (852) 2245-6100  
Fax: (852) 2722-1369  
Tel: (33) 1-30-60-70-00  
Fax: (33) 1-30-60-71-11  
Product Contact  
Web Site  
Technical Support  
Sales Contact  
www.atmel.com  
avr@atmel.com  
www.atmel.com/contacts  
Literature Requests  
www.atmel.com/literature  
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any  
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMELS TERMS AND CONDI-  
TIONS OF SALE LOCATED ON ATMELS WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY  
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR  
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-  
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF  
THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no  
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications  
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided  
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use  
as components in applications intended to support or sustain life.  
© 2009 Atmel Corporation. All rights reserved. Atmel®, Atmel logo and combinations thereof, AVR®, AVR® logo and others are registered trade-  
marks, XMEGATM and others are trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks  
of others.  
8116F–AVR–09/09  

相关型号:

ATXMEGA256A3B_10

8/16-bit XMEGA A3B Microcontroller
ATMEL

ATXMEGA256A3U

8/16-bit Atmel XMEGA A3U Microcontroller
ATMEL

ATXMEGA256A3U-AU

8/16-bit Atmel XMEGA A3U Microcontroller
ATMEL

ATXMEGA256A3U-MH

8/16-bit Atmel XMEGA A3U Microcontroller
ATMEL

ATXMEGA256A3U-MHR

暂无描述
MICROCHIP

ATXMEGA256A3_09

8/16-bit XMEGA A3 Microcontroller
ATMEL

ATXMEGA256A3_10

8/16-bit AVR XMEGA A3 Microcontroller
ATMEL

ATXMEGA256A3_1012

8/16-bit XMEGA A3 Microcontroller
ATMEL

ATXMEGA256D3

8/16-bit XMEGA D3 Microcontroller
ATMEL

ATXMEGA256D3-AN

IC MCU 8BIT 256KB FLASH 64TQFP
MICROCHIP

ATXMEGA256D3-ANR

IC MCU 8BIT 256KB FLASH 64TQFP
MICROCHIP

ATXMEGA256D3-AU

8/16-bit AVR XMEGA D3 Microcontroller
ATMEL