ATR0630-7KQY [ATMEL]

Telecom Circuit, 1-Func, PBGA96, 7 X 10 MM, 0.80 MM PITCH, ROHS COMPLIANT, BGA-96;
ATR0630-7KQY
型号: ATR0630-7KQY
厂家: ATMEL    ATMEL
描述:

Telecom Circuit, 1-Func, PBGA96, 7 X 10 MM, 0.80 MM PITCH, ROHS COMPLIANT, BGA-96

电信 电信集成电路
文件: 总36页 (文件大小:286K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Features  
16-channel GPS Correlator  
– 8192 Search Bins with GPS Acquisition Accelerator  
– Accuracy: 2.5m CEP (2D, Stand Alone)  
– Time to First Fix: 34s (Cold Start)  
– Acquisition Sensitivity: –139 dBm (With External LNA)  
– Tracking Sensitivity: –149 dBm (With External LNA)  
Utilizes the ARM7TDMI® ARMt® Thumb® Processor Core  
– High-performance 32-bit RISC Architecture  
– EmbeddedICE(In-Circuit Emulation)  
128 Kbytes Internal RAM  
384 Kbytes Internal ROM with u-blox GPS Firmware  
1.5-bit ADC On-chip  
Single IF Architecture  
ANTARIS4  
Single-chipGPS  
Receiver  
2 External Interrupts  
24 User-programmable I/O Lines  
ATR0630  
1 USB Device Port  
– Universal Serial Bus (USB) 2.0 Full-speed Device  
– Embedded USB V2.0 Full-speed Transceiver  
2 USARTs  
Preliminary  
Master/Slave SPI Interface  
– 4 External Slave Chip Selects  
Programmable Watchdog Timer  
Advanced Power Management Controller (APMC)  
– Geared Master Clock to Reduce Power Consumption  
– Sleep State with Disabled Master Clock  
– Hibernate State with 32.768 kHz Master Clock  
Real Time Clock (RTC)  
1.8V to 3.3V User-definable IO Voltage for Several GPIOs with 5V Tolerance  
4 KBytes of Battery Backup Memory  
7 mm × 10 mm 96 Pin BGA Package, 0.8 mm Pitch, Pb-free, RoHS-compliant  
Benefits  
Fully Integrated Design With Low BOM  
No External Flash Memory Required  
Requires Only a GPS XTAL, No TCXO  
Supports NMEA, UBX Binary and RTCM Protocol for DGPS  
Supports SBAS (WAAS, EGNOS, MSAS)  
Up to 4Hz Update Rate  
Supports A-GPS (Aiding)  
Excellent Noise Performance  
4920B–GPS–06/06  
1. Description  
The ATR0630 is a low-power, single-chip GPS receiver, especially designed to meet the  
requirements of mobile applications. It is based on Atmel’s ANTARIS4 technology and inte-  
grates an RF front-end, filtering, and a baseband processor in a single, tiny 7 mm × 10 mm  
96 pin BGA package. Providing excellent RF performance with low noise figure and low power  
consumption.  
Due to the fully integrated design, just an RF SAW filter, a GPS XTAL (no TCXO) and blocking  
capacitors are required to realize a stand-alone GPS functionality.  
The ATR0630 includes a complete GPS firmware, licensed from u-blox AG, which performs the  
GPS operation, including tracking, acquisition, navigation and position data output. For normal  
PVT (Position/Velocity/Time) applications, there is no need for external Flash- or ROM-memory.  
The firmware supports e.g. the NMEA protocol (2.1 and 2.3), a binary protocol for PVT data,  
configuration and debugging, the RTCM protocol for DGPS, SBAS (WAAS, EGNOS and MSAS)  
and A-GPS (aiding). It is also possible to store the configuration settings in an optional external  
EEPROM.  
Due to the integrated ARM7TDMI processor and an intelligent radio architecture, the ATR0630  
operates in a complete autonomous mode, utilizing on chip AGC in closed loop operation.  
For maximum performance, we recommend to use the ATR0630 together with a low noise  
amplifier (e.g. ATR0610).  
The ATR0630 supports assisted GPS.  
2
ATR0630 [Preliminary]  
4920B–GPS–06/06  
ATR0630 [Preliminary]  
2. Architectural Overview  
2.1  
Block Diagram  
Figure 2-1. ATR0630 Block Diagram  
PUXTO  
PURF  
VDD18  
VDDIO  
VDD_USB  
VDIG  
VBAT18  
VBAT  
LDOBAT_IN  
Power Supply Manager/  
PMSS/Logic  
LDO_OUT  
LDO_IN  
VCC1  
VCC2  
LDO_EN  
VBP  
AGCO  
EGC  
SDI  
TEST  
MO  
1
A
A
SIGHI  
SIGLO  
CLK23  
D
D
RF  
NRF  
VCO  
PLL  
XTO  
NXTO  
X
XTO  
NX  
RF_ON  
NSHDN  
NSLEEP  
XT_IN  
XT_OUT  
P20/TIMEPULSE  
P29/GPSMODE12  
P27/GPSMODE11  
P26/GPSMODE10  
P24/GPSMODE8  
P23/GPSMODE7  
P19/GPSMODE6  
P17/GPSMODE5  
P13/GPSMODE3  
P12/GPSMODE2  
P1/GPSMODE0  
P21/TXD2  
P22/RXD2  
P14/NAADET1  
P25/NAADET0  
P15/ANTON  
P0/NANTSHORT  
P18/TXD1  
P31/RXD1  
P9/EXTINT0  
USB_DP  
USB_DM  
P16/NEEPROM  
P8/STATUSLED  
P30/AGCOUT0  
P2/BOOT_MODE  
DBG_EN  
NTRST  
TDI  
TDO  
TCK  
NRESET  
TMS  
3
4920B–GPS–06/06  
2.2  
General Description  
The ATR0630 has been designed especially for mobile applications. It provides high isolation  
between GPS and cellular bands, as well as very low power consumption.  
ATR0630 is based on the successful ANTARIS4 technology which includes the ANTARIS ROM  
software, developed by u-blox AG, Switzerland. ANTARIS provides a proven navigation engine  
which is used in high-end car navigation systems, automatic vehicle location (AVL), security and  
surveying systems, traffic control, road pricing, and speed camera detectors, and provides loca-  
tion-based services (LBS) worldwide.  
The ANTARIS4 chipset has a very low power consumption and comes with a very low BoM for  
the passive components. Especially, due to its fast search engine and GPS accelerator, the  
ATR0630 only needs a GPS crystal (XTAL) as a resonator for the integrated crystal oscillator of  
the ATR0630. This saves the considerable higher cost of a TCXO which is required for competi-  
tor’s systems. Also, as the powerful standard software is available in ROM, no external flash  
memory is needed.  
The L1 input signal (fRF) is a Direct Sequence Spread Spectrum (DSSS) signal with a center fre-  
quency of 1575.42 MHz. The digital modulation scheme is Bi-Phase-Shift-Keying (BPSK) with a  
chip rate of 1.023 Mbps.  
2.3  
2.4  
PMSS Logic  
The power management, startup and shutdown (PMSS) logic ensures reliable operation within  
the recommended operating conditions. The external power control signals PUrf and PUxto are  
passed through Schmitt trigger inputs to eliminate voltage ripple and prevent undesired behavior  
during start-up and shut-down. Digital and analog supply voltages are analyzed by a monitoring  
circuit, enabling the startup of the IC only when it is within a safe operating range.  
XTO  
The XTO is designed for minimum phase noise and frequency perturbations. The balanced  
topology gives maximum isolation from external and ground coupled noise. The built-in jump  
start circuitry ensures reliable start-up behavior of any specified crystal. For use with an external  
TCXO, the XTO circuitry can be used as a single-ended or balanced input buffer.  
The recommended reference frequency is: fXTO = 23.104 MHz.  
2.5  
2.6  
VCO/PLL  
The frequency synthesizer features a balanced VCO and a fully integrated loop filter, thus no  
external components are required. The VCO combines very good phase noise behavior and  
excellent spurious suppression. The relation between the reference frequency (fXTO) and the  
VCO center frequency (fVCO) is given by: fVCO = fXTO × 64 = 23.104 MHz × 64 = 1478.656 MHz.  
RF Mixer/Image Filter  
Combined with the antenna, an external LNA provides a first band-path filtering of the signal.  
Atmel’s ATR0610 is recommended for the LNA due to its low noise figure, high linearity and low  
power consumption. The output of the LNA drives a SAW filter, which provides image rejection  
for the mixer and the required isolation to all GSM bands. The output of the SAW filter is fed into  
a highly linear mixer with high conversion gain and excellent noise performance.  
4
ATR0630 [Preliminary]  
4920B–GPS–06/06  
ATR0630 [Preliminary]  
2.7  
2.8  
VGA/AGC  
The on-chip automatic gain control (AGC) stage sets the gain of the VGA in order to optimally  
load the input of the following analog-to-digital converter. The AGC control loop can be selected  
for on-chip closed-loop operation or for baseband controlled gain mode.  
Analog-to-digital Converter  
The analog-to-digital converter stage has a total resolution of 1.5 bits. It comprises balanced  
comparators and a sub-sampling unit, clocked by the reference frequency (fXTO). The frequency  
spectrum of the digital output signal (fOUT), present at the data outputs SIGLO and SIGH1, is  
4.348 MHz.  
2.9  
Baseband  
The GPS baseband core includes a 16-channel correlator and is based on an ARM7TDMI ARM  
processor core with very low power consumption. It has a high-performance 32 bit RISC archi-  
tecture, uses a high-density 16-bit instruction set, The ARM standard In-Circuit Emulation debug  
interface is supported via the JTAG/ICE port of the ATR0630.  
The ATR0630 architecture consists of two main buses, the Advanced System Bus (ASB) and  
the Advanced Peripheral Bus (APB). The ASB is designed for maximum performance. It inter-  
faces the processor with the on-chip 32-bit memories and the external memories and devices by  
means of the External Bus Interface (EBI). The APB is designed for accesses to on-chip periph-  
erals and is optimized for low power consumption. The AMBABridge provides an interface  
between the ASB and the APB.  
An on-chip Peripheral Data Controller (PDC2) transfers data between the on-chip USARTs/SPI  
and the on- and off-chip memories without processor intervention. Most importantly, the PDC2  
removes the processor interrupt handling overhead and significantly reduces the number of  
clock cycles required for a data transfer. It can transfer up to 64K contiguous bytes without  
reprogramming the starting address. As a result, the performance of the microcontroller is  
increased and the power consumption reduced.  
All of the external signals of the on-chip peripherals are under the control of the Parallel I/O Con-  
troller (PIO2). The PIO2 Controller can be programmed to insert an input filter on each pin or  
generate an interrupt on a signal change. After reset, the user must carefully program the PIO2  
Controller in order to define which peripheral signals are connected with off-chip logic.  
The ATR0630 features a Programmable Watchdog Timer.  
An Advanced Power Management Controller (APMC) allows for the peripherals to be deacti-  
vated individually. Automatic master clock gearing reduces power consumption. A Sleep Mode  
is available with disabled 23.104 MHz master clock, as well as a Back-up Mode operating  
32.768 kHz master clock.  
A 32.768 kHz Real Time Clock (RTC), together with a buit-in battery back-up SRAM, allows for  
storage of Almanac, Ephemeris, software configurations to make quick hot- and warm starts.  
The ATR0630 includes full GPS firmware, licensed from u-blox AG, Switzerland. Features of the  
ROM firmware are described in software documentation available from u-blox AG, Switzerland.  
5
4920B–GPS–06/06  
3. Pin Configuration  
3.1  
Pinout  
Figure 3-1. Pinning BGA96 (Top View)  
1
2
3
4
5
6
7
8
9
10 11 12  
A
B
C
D
E
F
ATR0630  
G
H
Table 3-1.  
ATR0630 Pinout  
PIO Bank A  
Pull Resistor  
Pin Name BGA 96  
Pin Type  
(Reset Value)(1)  
Firmware Label  
I
O
AGCO  
CLK23  
DBG_EN  
EGC  
A4  
A8  
E8  
D4  
C5  
A6  
A9  
B11  
F5  
Analog I/O  
Digital IN  
Digital IN  
Digital IN  
Supply  
PD  
GDIG  
GND  
Supply  
GND  
Supply  
GND  
Supply  
GND  
Supply  
GND  
H8  
H12  
A3  
B1  
Supply  
GND  
Supply  
GNDA  
GNDA  
Supply  
Supply  
Notes: 1. PD = internal pull-down resistor, PU = internal pull-up resistor, OH = switched to Output High at reset  
2. VBAT18 represent the internal power supply of the backup power domain, see section “Power Supply” on page 20.  
3. VDD_USB is the supply voltage for following the USB pins: USB_DM and USB_DP, see section “Power Supply” on page  
20. For operation of the USB interface, supply of 3.0V to 3.6V is required.  
4. VDDIO is the supply voltage for the following GPIO pins: P1, P2, P8, P12, P14, P16, P17, P18, P19, P20, P21, P23, P24,  
P25, P26, P27 and P29, see section “Power Supply” on page 20.  
6
ATR0630 [Preliminary]  
4920B–GPS–06/06  
ATR0630 [Preliminary]  
Table 3-1.  
ATR0630 Pinout (Continued)  
PIO Bank A  
Pull Resistor  
Pin Name BGA 96  
Pin Type  
Supply  
(Reset Value)(1)  
Firmware Label  
I
O
GNDA  
GNDA  
GNDA  
GNDA  
GNDA  
GNDA  
GNDA  
GNDA  
GNDA  
GNDA  
LDOBAT_IN  
LDO_EN  
LDO_IN  
LDO_OUT  
MO  
B4  
D2  
E1  
Supply  
Supply  
E2  
Supply  
E3  
Supply  
F1  
Supply  
F2  
Supply  
F3  
Supply  
G1  
H1  
D11  
C11  
E11  
E12  
C3  
A7  
Supply  
Supply  
Supply  
Digital IN  
Supply  
Supply  
Analog OUT  
Digital I/O  
Analog IN  
Digital OUT  
Digital OUT  
Digital IN  
Analog OUT  
Analog IN  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
NRESET  
NRF  
Open Drain PU  
C1  
E9  
NSHDN  
NSLEEP  
NTRST  
NX  
E10  
H11  
B2  
PD  
NXTO  
P0  
B3  
C8  
D8  
C6  
D7  
A11  
D6  
B10  
G6  
F11  
G8  
H6  
C7  
F6  
PD  
NANTSHORT  
GPSMODE0  
BOOT_MODE  
STATUSLED  
EXTINT0  
P1  
Configurable (PD)  
Configurable (PD)  
Configurable (PD)  
PU to VBAT18  
Configurable (PU)  
PU to VBAT18  
Configurable (PD)  
PD  
P2  
‘0’  
‘0’  
P8  
P9  
EXTINT0  
EXTINT1  
P12  
GPSMODE2  
GPSMODE3  
NAADET1  
NPCS2  
‘0’  
P13  
P14  
P15  
ANTON  
P16  
Configurable (PU)  
Configurable (PD)  
Configurable (PU)  
Configurable (PU)  
NEEPROM  
GPSMODE5  
TXD1  
P17  
SCK1  
SCK1  
TXD1  
P18  
P19  
GPSMODE6  
Notes: 1. PD = internal pull-down resistor, PU = internal pull-up resistor, OH = switched to Output High at reset  
2. VBAT18 represent the internal power supply of the backup power domain, see section “Power Supply” on page 20.  
3. VDD_USB is the supply voltage for following the USB pins: USB_DM and USB_DP, see section “Power Supply” on page  
20. For operation of the USB interface, supply of 3.0V to 3.6V is required.  
4. VDDIO is the supply voltage for the following GPIO pins: P1, P2, P8, P12, P14, P16, P17, P18, P19, P20, P21, P23, P24,  
P25, P26, P27 and P29, see section “Power Supply” on page 20.  
7
4920B–GPS–06/06  
Table 3-1.  
ATR0630 Pinout (Continued)  
PIO Bank A  
Pull Resistor  
Pin Name BGA 96  
Pin Type  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Digital IN  
Digital IN  
Digital IN  
Analog IN  
Digital OUT  
Digital IN  
Digital OUT  
Digital OUT  
Digital IN  
Digital IN  
Digital OUT  
Analog IN  
Digital IN  
Digital I/O  
Digital I/O  
Supply  
(Reset Value)(1)  
Firmware Label  
TIMEPULSE  
TXD2  
I
O
P20  
P21  
G7  
E6  
Configurable (PD)  
Configurable (PU)  
PU to VBAT18  
Configurable (PU)  
Configurable (PU)  
Configurable (PD)  
Configurable (PU)  
Configurable (PU)  
OH  
SCK2  
SCK2  
TXD2  
P22  
D10  
F8  
RXD2  
RXD2  
SCK  
P23  
GPSMODE7  
GPSMODE8  
NAADET0  
SCK  
MOSI  
P24  
H7  
G5  
B6  
MOSI  
MISO  
NSS  
P25  
MISO  
P26  
GPSMODE10  
GPSMODE11  
NPCS0  
NPCS1  
P27  
F7  
P28  
E7  
P29  
D5  
G12  
C10  
G4  
H4  
F4  
Configurable (PU)  
PD  
GPSMODE12  
AGCOUT0  
RXD1  
NPCS3  
P30  
AGCOUT0  
P31  
PU to VBAT18  
RXD1  
PURF  
PURF  
PUXTO  
RF  
D1  
F10  
C4  
B8  
RF_ON  
SDI  
PD  
SIGHI0  
SIGLO0  
TCK  
B7  
G9  
H10  
F9  
PU  
PU  
TDI  
TDO  
TEST  
TMS  
D3  
G10  
D9  
C9  
D12  
C12  
G2  
G3  
H2  
H3  
C2  
E4  
PU  
USB_DM  
USB_DP  
VBAT  
VBAT18(2)  
VBP  
Supply  
Supply  
VBP  
Supply  
VBP  
Supply  
VBP  
Supply  
VCC1  
VCC2  
Supply  
Supply  
Notes: 1. PD = internal pull-down resistor, PU = internal pull-up resistor, OH = switched to Output High at reset  
2. VBAT18 represent the internal power supply of the backup power domain, see section “Power Supply” on page 20.  
3. VDD_USB is the supply voltage for following the USB pins: USB_DM and USB_DP, see section “Power Supply” on page  
20. For operation of the USB interface, supply of 3.0V to 3.6V is required.  
4. VDDIO is the supply voltage for the following GPIO pins: P1, P2, P8, P12, P14, P16, P17, P18, P19, P20, P21, P23, P24,  
P25, P26, P27 and P29, see section “Power Supply” on page 20.  
8
ATR0630 [Preliminary]  
4920B–GPS–06/06  
ATR0630 [Preliminary]  
Table 3-1.  
ATR0630 Pinout (Continued)  
PIO Bank A  
Pull Resistor  
Pin Name BGA 96  
Pin Type  
Supply  
(Reset Value)(1)  
Firmware Label  
I
O
VDD_USB(3)  
VDD18  
VDD18  
VDD18  
VDD18  
VDD18  
VDDIO(4)  
VDDIO  
VDIG  
A10  
H9  
Supply  
G11  
F12  
B9  
Supply  
Supply  
Supply  
E5  
Supply  
B5  
Supply  
H5  
Supply  
A5  
Supply  
X
A2  
Analog OUT  
Analog IN  
Analog OUT  
Analog Input  
XT_IN  
A12  
B12  
A1  
XT_OUT  
XTO  
Notes: 1. PD = internal pull-down resistor, PU = internal pull-up resistor, OH = switched to Output High at reset  
2. VBAT18 represent the internal power supply of the backup power domain, see section “Power Supply” on page 20.  
3. VDD_USB is the supply voltage for following the USB pins: USB_DM and USB_DP, see section “Power Supply” on page  
20. For operation of the USB interface, supply of 3.0V to 3.6V is required.  
4. VDDIO is the supply voltage for the following GPIO pins: P1, P2, P8, P12, P14, P16, P17, P18, P19, P20, P21, P23, P24,  
P25, P26, P27 and P29, see section “Power Supply” on page 20.  
3.2  
Signal Description  
Table 3-2.  
Signal Description  
Pin Number  
Pin Name  
Type  
Active Level Pin Description/Comment  
RF Section  
D1  
RF  
ANALOG IN  
ANALOG IN  
-
-
Input from SAW filter  
C1  
NRF  
Inverted input from SAW filter  
GPS XTAL Section  
A1  
XTO  
ANALOG IN  
ANALOG IN  
-
-
-
-
XTO input (23.104 MHz)/optional TCXO input  
Inverted XTO input (23.104 MHz)/optional TCXO input  
XTO interface (capacitor)  
B3  
NXTO  
X
A2  
B2  
ANALOG OUT  
ANALOG OUT  
NX  
Inverted XTO interface (capacitor)  
RTC Section  
A12  
XT_IN  
ANALOG IN  
-
-
Oscillator input (32.768 kHz)  
Oscillator output (32.768 kHz)  
B12  
XT_OUT  
ANALOG OUT  
Automatic Gain Control, bandwidth setting  
A4  
AGCO  
ANALOG IO  
-
-
Automatic gain control analog voltage, connect shunt capacitor to GND  
Enable external gain control  
(high = software gain control, low = automatic gain control)  
D4  
EGC  
DIGITAL IN  
G12  
C4  
AGCOUT0  
SDI  
DIGITAL OUT  
DIGITAL IN  
-
-
Software gain control  
Software gain control  
9
4920B–GPS–06/06  
Table 3-2.  
Pin Number  
Boot Section  
C6  
Signal Description (Continued)  
Pin Name  
BOOT_MODE  
NRESET  
Type  
Active Level Pin Description/Comment  
DIGITAL IN  
DIGITAL IN  
-
Leave open, internal pull down  
Reset  
A7  
Low  
Reset input; open drain with internal pull-up resistor  
APMC/Power Management  
E9  
C11  
E10  
NSHDN  
LDO_EN  
NSLEEP  
PUXTO  
PURF  
DIGITAL OUT  
DIGITAL IN  
Low  
Shutdown output, connect to LDO_EN (C11)  
Enable LDO18  
-
DIGITAL OUT  
DIGITAL IN  
Low  
Power-up output for GPS XTAL, connect to PUXTO (F4)  
Power-up input for GPS XTAL  
F4  
-
-
-
G4, H4  
F10  
DIGITAL IN  
Power-up input for GPS radio  
RF_ON  
DIGITAL OUT  
Power-up output for GPS radio, connect to PURF (G4, H4)  
Advanced Interrupt Controller (AIC)  
High/Low/  
Edge  
A11, B10  
EXTINT0-1  
DIGITAL IN  
External interrupt request  
USART  
C10, D10  
C7, E6  
RXD1/RXD2  
TXD1/TXD2  
SCK1/SCK2  
DIGITAL OUT  
DIGITAL IN  
DIGITAL I/O  
-
-
-
USART receive data output  
USART transmit data input  
External synchronous serial clock  
H6, G7  
USB  
C9  
USB_DP  
USB_DM  
DIGITAL I/O  
DIGITAL I/O  
-
-
USB data (D+)  
USB data (D-)  
D9  
SPI Interface  
F8  
H7  
G5  
B6  
SCK  
MOSI  
DIGITAL I/O  
DIGITAL I/O  
DIGITAL I/O  
DIGITAL I/O  
-
SPI clock  
-
-
Master out slave in  
Master in slave out  
Slave select  
MISO  
NSS/NPCS0  
Low  
NPCS1/NPCS2  
/NPCS3  
F7, D6, D5  
DIGITAL OUT  
Low  
Slave select  
PIO  
A11, B[6,10],  
C[6-8,10],  
D[5-8,10],  
E[6,7],  
P0 to P31  
DIGITAL I/O  
-
Programmable I/O ports  
F[6-8],  
G[5-8],  
H[6,7]  
Configuration  
B[6,10],  
D[5,6,8],  
F[6-8], H[6,7]  
GPSMODE0-1  
2
DIGITAL IN  
DIGITAL IN  
-
GPS mode pins  
G8  
GPS  
D7  
NEEPROM  
Low  
Enable EEPROM support  
STATUSLED  
TIMEPULSE  
DIGITAL OUT  
DIGITAL OUT  
-
-
Status LED  
G7  
GPS synchronized time pulse  
10  
ATR0630 [Preliminary]  
4920B–GPS–06/06  
ATR0630 [Preliminary]  
Table 3-2.  
Signal Description (Continued)  
Pin Number  
Pin Name  
Type  
Active Level Pin Description/Comment  
Active Antenna Supervision  
C8  
G5, G6  
F11  
NANTSHORT  
DIGITAL IN  
DIGITAL IN  
Low  
Low  
-
Active antenna short detection Input  
NAADET0/NAA  
DET1  
Active antenna detection Input  
Active antenna power-on Output  
ANTON  
DIGITAL OUT  
JTAG Interface  
E8  
F9  
DBG_EN  
TDO  
DIGITAL IN  
DIGITAL OUT  
DIGITAL IN  
DIGITAL IN  
DIGITAL IN  
DIGITAL IN  
-
Debug enable  
Test data out  
Test clock  
-
G9  
TCK  
-
G10  
H10  
H11  
Debug/Test  
C3  
TMS  
-
-
Test mode select  
Test data in  
TDI  
NTRST  
Low  
Test reset input  
MO  
ANALOG OUT  
ANALOG IN  
-
-
-
-
-
IF output buffer  
D3  
TEST  
SIGLO  
SIGHI  
CLK23  
Enable IF output buffer  
Digital IF (data output “Low”)  
Digital IF (data output “High”)  
Digital IF (sample clock)  
B7  
DIGITAL OUT  
DIGITAL OUT  
DIGITAL OUT  
B8  
A8  
Power Analog Part  
C2  
E4  
VCC1  
SUPPLY  
SUPPLY  
-
-
Analog supply 3V  
Analog supply 3V  
VCC2  
G2, G3, H2,  
H3  
VBP  
SUPPLY  
-
Analog supply 3V  
A3, B1, B4,  
D2, E[1-3],  
F[1-3], G1,  
H1  
GNDA  
VDIG  
SUPPLY  
-
Analog Ground  
Power Digital Part  
A5  
SUPPLY  
SUPPLY  
-
-
Digital supply (radio) 1.8V  
Core voltage 1.8V  
B9, E5, F12,  
G11,H9  
VDD18  
USB transceiver supply voltage (3.0V to 3.6V (USB enabled) or 0 to  
2.0V (USB disabled))  
A10  
VDD_USB  
SUPPLY  
-
B5, H5  
C5  
VDDIO  
GDIG  
SUPPLY  
SUPPLY  
-
-
Variable I/O voltage 1.65V to 3.6V  
Digital ground (radio)  
A6, A9, B11,  
F5, H8, H12  
GND  
SUPPLY  
-
Digital ground  
LDO18  
E11  
LDO_IN  
SUPPLY  
SUPPLY  
-
-
2.3V to 3.6V  
E12  
LDO_OUT  
1.8V LDO18 output, max. 80 mA  
LDOBAT  
D11  
LDOBAT_IN  
VBAT  
SUPPLY  
SUPPLY  
SUPPLY  
-
-
-
2.3V to 3.6V  
D12  
1.5V to 3.6V  
C12  
VBAT18  
1.8V LDOBAT Output  
11  
4920B–GPS–06/06  
3.3  
Setting GPSMODE0 to GPSMODE12  
The start-up configuration of this ROM-based system without external non-volatile memory is  
defined by the status of the GPSMODE pins after system reset. Alternatively, the system can be  
configured through message commands passed through the serial interface after start-up. This  
configuration of the ATR0630 can be stored in an external non-volatile memory like EEPROM.  
Default designates settings used by ROM firmware if GPSMODE configuration is disabled  
(GPSMODE0 = 0).  
Table 3-3.  
Pin  
GPSMODE Functions  
Function  
GPSMODE0 (P1)  
Enable configuration with GPSMODE pins  
This pin (EXTINT0) is used for FixNOWfunctionality and not used for GPSMODE  
configuration.  
GPSMODE1 (P9)  
GPSMODE2 (P12)  
GPSMODE3 (P13)  
GPS sensitivity settings  
This pin (NAADET1) is used as active antenna supervisor input and not used for  
GPSMODE4 (P14) GPSMODE configuration. This is the default selection if GPSMODE configuration is  
disabled.  
GPSMODE5 (P17)  
Serial I/O configuration  
GPSMODE6 (P19)  
GPSMODE7 (P23) USB power mode  
GPSMODE8 (P24) General I/O configuration  
This pin (NAADET0) is used as an active Antenna Supervisor input and not used for  
GPSMODE configuration  
GPSMODE9 (P25)  
GPSMODE10 (P26)  
General I/O configuration  
GPSMODE11 (P27)  
GPSMODE12 (P29) Serial I/O configuration  
In the case that GPSMODE pins with internal pull-up or pull-down resistors are connected to  
GND/VDD18, additional current is drawn over these resistors. Especially GPSMODE3 can  
impact the back-up current.  
3.3.1  
Enable GPSMODE Pin Configuration  
Table 3-4. Enable Configuration With GPSMODE Pins  
GPSMODE0  
(Reset = PD) Description  
0(1)  
1
Ignore all GPSMODE pins. The default settings as indicated below are used.  
Use settings as specified with GPSMODE[2, 3, 5 to 8, 10 to 12]  
1. Leave open  
Note:  
If the GPSMODE configuration is enabled (GPSMODE0 = 1) and the other GPSMODE pins are  
not connected externally, the reset default values of the internal pull-down and pull-up resistors  
will be used.  
12  
ATR0630 [Preliminary]  
4920B–GPS–06/06  
 
ATR0630 [Preliminary]  
3.3.2  
Sensitivity Settings  
Table 3-5.  
GPS Sensitivity Settings  
GPSMODE3  
(Fixed PU)  
GPSMODE2  
(Reset = PU) Description  
0(1)  
0(1)  
1(2)  
1(2)  
0
1(2)  
Auto mode  
Fast mode  
0
1(2)  
Normal mode (Default ROM value)  
High sensitivity  
Notes: 1. Increased back-up current  
2. Leave open  
For all GPS receivers the sensitivity depends on the integration time of the GPS signals. There-  
fore there is a trade-off between sensitivity and the time to detect the GPS signal (Time to first  
fix). The three modes, “Fast Acquisition”, “Normal” and “High Sensitivity”, have a fixed integra-  
tion time. The “Normal” mode, recommended for the most applications, is a trade off between  
the sensitivity and TTFF. The “Fast Acquisition” mode is optimized for fast acquisition, at the  
cost of a lower sensitivity. The “High Sensitivity” mode is optimized for higher sensitivity, at the  
cost of longer TTFF. The “Auto” mode adjusts the integration time (sensitivity) automatically  
according to the measured signal levels. That means the receiver with this setting has a fast  
TTFF at strong signals, a high sensitivity to acquire weak signals but some times at medium sig-  
nal level a higher TTFF as the “Normal” mode. These sensitivity settings affect only the startup  
performance not the tracking performance.  
3.4  
Serial I/O Configuration  
The ATR0630 features a two-stage I/O-message and protocol-selection procedure for the two  
available serial ports. At the first stage, a certain protocol can be enabled or disabled for a given  
USART port or the USB port. Selectable protocols are RTCM, NMEA and UBX. At the second  
stage, messages can be enabled or disabled for each enabled protocol on each port. In all con-  
figurations described below, all protocols are enabled on all ports, but output messages are  
enabled in a way that ports appear to communicate at only one protocol. However, each port will  
accept any input message in any of the three implemented protocols.  
Table 3-6.  
Serial I/O Configuration  
USART1/USB  
GPSMODE12 GPSMODE6 GPSMODE5 (Output Protocol/  
USART2  
(Output Protocol/  
(Reset = PU) (Reset = PU) (Reset = PD) Baud Rate (kBaud)) Baud Rate (kBaud)) Messages(1) Information Messages  
0
0
0
0
1(2)  
1(2)  
0
0(2)  
UBX/57.6  
UBX/38.4  
UBX/19.2  
–/Auto  
NMEA/19.2  
NMEA/9.6  
NMEA/4.8  
–/Auto  
High  
User, Notice, Warning, Error  
User, Notice, Warning, Error  
User, Notice, Warning, Error  
None  
1
Medium  
Low  
0
0(2)  
1
0(2)  
0
Off  
1(2)  
1(2)  
1(2)  
1(2)  
NMEA/19.2  
NMEA/4.8  
NMEA/9.6  
UBX/115.2  
UBX/57.6  
UBX/19.2  
UBX/38.4  
NMEA/19.2  
High  
User, Notice, Warning, Error  
User, Notice, Warning, Error  
User, Notice, Warning, Error  
All  
0
1
Low  
1(2)  
1(2)  
0(2)  
1
Medium  
Debug  
Notes: 1. See Table 3-7 to Table 3-10 on page 14, the messages are described in the ANTARIS4 protocol specification  
2. Leave open  
13  
4920B–GPS–06/06  
Both USART ports accept input messages in all three supported protocols (NMEA, RTCM and  
UBX) at the configured baud rate. Input messages of all three protocols can be arbitrarily mixed.  
Response to a query input message will always use the same protocol as the query input mes-  
sage. The USB port does only accept NMEA and UBX as input protocol by default. RTCM can  
be enabled via protocol messages on demand.  
In Auto mode, no output message is sent out by default, but all input messages are accepted at  
any supported baud rate. Again, USB is restricted to only NMEA and UBX protocols. Response  
to query input commands will be given by the same protocol and baud rate as it was used for the  
query command. Using the respective configuration commands, periodic output messages can  
be enabled.  
The following message settings are used in the tables below:  
Table 3-7.  
NMEA Port  
Supported Messages at Setting Low  
Standard  
NAV  
GGA, RMC  
SOL, SVINFO  
EXCEPT  
UBX Port  
MON  
Table 3-8.  
NMEA Port  
Supported Messages at Setting Medium  
Standard  
GGA, RMC, GSA, GSV, GLL, VTG, ZDA  
SOL, SVINFO, POSECEF, POSLLH, STATUS, DOP, VELECEF,  
VELNED, TIMEGPS, TIMEUTC, CLOCK  
UBX Port  
NAV  
Table 3-9.  
NMEA Port  
Supported Messages at Setting High  
Standard  
GGA, RMC, GSA, GSV, GLL, VTG, ZDA, GRS, GST  
Proprietary  
PUBX00, PUBX03, PUBX04  
SOL, SVINFO, POSECEF, POSLLH, STATUS, DOP, VELECEF,  
VELNED, TIMEGPS, TIMEUTC, CLOCK  
NAV  
UBX Port  
MON  
SCHD, IO, IPC, EXCEPT  
Table 3-10. Supported Messages at Setting Debug (Additional Undocumented Message May  
be Part of Output Data)  
Standard  
GGA, RMC, GSA, GSV, GLL, VTG, ZDA, GRS, GST  
PUBX00, PUBX03, PUBX04  
NMEA Port  
UBX Port  
Proprietary  
SOL, SVINFO, POSECEF, POSLLH, STATUS, DOP, VELECEF,  
VELNED, TIMEGPS, TIMEUTC, CLOCK  
NAV  
MON  
RXM  
SCHD, IO, IPC, EXCEPT  
RAW (RAW message support requires an additional license)  
14  
ATR0630 [Preliminary]  
4920B–GPS–06/06  
ATR0630 [Preliminary]  
The following settings apply if GPSMODE configuration is not enabled, that is, GPSMODE = 0  
(ROM defaults):  
Table 3-11. Serial I/O Default Setting if GPSMODE Configuration is Deselected  
(GPSMODE0 = 0)  
USART1/USB  
NMEA  
USART2  
UBX  
Setting  
Baud rate (kBaud)  
Input protocol  
Output protocol  
57.6, Auto enabled  
UBX, NMEA, RTCM  
NMEA  
57.6, Auto enabled  
UBX, NMEA, RTCM  
UBX  
NAV: SOL, SVINFO  
MON: EXCEPT  
Messages  
GGA, RMC, GSA, GSV  
Information messages  
(UBX INF or NMEA TXT)  
User, Notice, Warning, Error  
User, Notice, Warning, Error  
3.4.1  
USB Power Mode  
For correct response to the USB host queries, the device has to know its power mode. This is  
configured via GPSMODE7. If set to bus powered, an upper current limit of 100 mA is reported  
to the USB host; that is, the device classifies itself as a “low-power bus-powered function” with  
no more than one USB power unit load.  
Table 3-12. USB Power Modes  
GPSMODE7 (Reset = PU) Description  
0
1(1)  
USB device is bus-powered (maximum current limit 100 mA)  
USB device is self-powered (default ROM value)  
Note:  
1. Leave open  
3.4.2  
Active Antenna Supervisor  
The two pins P0/NANTSHORT and P15/ANTON plus one pin of P25/NAADET0/MISO or  
P14/NAADET1 are always initialized as general purpose I/Os and used as follows:  
• P15/ANTON is an output which can be used to switch on and off antenna power supply.  
• Input P0/NANTSHORT will indicate an antenna short circuit, i.e. zero DC voltage at the  
antenna, to the firmware. If the antenna is switched off by output P15/ANTON, it is assumed  
that also input P0/NANTSHORT will signal zero DC voltage, i.e. switch to its active low state.  
• Input P25/NAADET0/MISO or P14/NAADET1 will indicate a DC current into the antenna. In  
case of short circuit, both P0 and P25/P14 will be active, i.e. at low level. If the antenna is  
switched off by output P15/ANTON, it is assumed that also input P25/NAADET0/MISO will  
signal zero DC current, i.e. switch to its active low state. Which pin is used as NAADET (P14  
or P25) depends on the settings of GPSMODE11 and GPSMODE10 (see Table 3-14 on  
page 16).  
15  
4920B–GPS–06/06  
Table 3-13. Pin Usage of Active Antenna Supervisor  
Pin  
Usage  
Meaning  
Active antenna short circuit detection  
High = No antenna DC short circuit present  
Low = Antenna DC short circuit present  
P0/NANTSHORT  
NANTSHORT  
P25/NAADET0/  
MISO or  
P14/NAADET1  
Active antenna detection input  
High = No active antenna present  
Low = Active antenna is present  
NAADET  
ANTON  
Active antenna power on output  
High = Power supply to active antenna is switched on  
Low = Power supply to active antenna is switched off  
P15/ANTON  
Table 3-14. Antenna Detection I/O Settings  
GPSMODE11 GPSMODE10 GPSMODE8  
(Reset = PU) (Reset = PU) (Reset = PU) Location of NAADET  
Comment  
0
0
0
0
0
1(1)  
P25/NAADET0/MISO  
P25/NAADET0/MISO  
Reserved for further use.  
Do not use this setting.  
0
1(1)  
1(1)  
0
0
P14/NAADET1  
P14/NAADET1  
(Default ROM value)  
0
1(1)  
0
Reserved for further use.  
Do not use this setting.  
1(1)  
1(1)  
P14/NAADET1  
P14/NAADET1  
Reserved for further use.  
Do not use this setting.  
0
1(1)  
1(1)  
1(1)  
1(1)  
1(1)  
0
1(1)  
P25/NAADET0/MISO  
P25/NAADET0/MISO  
Note:  
1. Leave open  
The Antenna Supervisor Software will be configured as follows:  
1. Enable Control Signal  
2. Enable Short Circuit Detection (power down antenna via ANTON if short is detected via  
NANTSHORT)  
3. Enable Open Circuit Detection via NAADET  
The antenna supervisor function may not be disabled by GPSMODE pin selection.  
If the antenna supervisor function is not used, please leave open ANTON, NANTSHORT and  
NAADET.  
16  
ATR0630 [Preliminary]  
4920B–GPS–06/06  
ATR0630 [Preliminary]  
3.4.3  
External Connections for a Working GPS System  
Figure 3-2. Example of an External Connection (ATR0630)  
ATR0630  
XT_IN  
NC  
NC  
NC  
SIGHI  
SIGLO  
CLK23  
LNA  
(optional)  
SAW  
32.768 kHz  
(see RTC)  
RF  
XT_OUT  
XTO  
NXTO  
X
ATR0610  
NRF  
RF_ON  
PURF  
NSLEEP  
PUXTO  
23.104 MHz  
NX  
(see GPS crystal)  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NRESET  
TMS  
TCK  
TDI  
NTRST  
TDO  
DBG_EN  
P8  
STATUS LED  
TIMEPULSE  
P20  
see Table 3-15  
see Table 3-15  
see Table 3-15  
see Table 3-15  
see Table 3-15  
see Table 3-15  
P0 - 2  
P9  
USB_DM  
USB_DP  
Optional  
USB  
P12 - 17  
P19  
P23 - 27  
P29 - 30  
P31  
P18  
Optional  
USART 1  
P30/AGCOUT0  
SDI  
P22  
P21  
Optional  
USART 2  
NC  
NC  
MO  
TEST  
EGC  
GND analog  
AGCO  
GND digital  
GND analog  
GNDD  
GNDA  
+3V  
GND  
(see Power Supply)  
NSHDN  
LDO_EN  
VDDIO  
+3V  
+3V  
(see Power Supply)  
LDO_OUT  
VDD18  
VDIG  
(see Power Supply)  
VDD_USB  
+3V  
LDO_IN  
(see Power Supply)  
LDOBAT_IN  
VCC1  
VCC2  
VBP  
VBAT18  
VBAT  
+3V  
(see Power Supply)  
GND  
NC: Not connected  
17  
4920B–GPS–06/06  
Table 3-15. Recommended Pin Connections  
Pin Name  
Recommended External Circuit  
P0/NANTSHORT  
Internal pull-down resistor; leave open if Antenna Supervision functionality is unused.  
Internal pull-down resistor; leave open in order to disable the GPSMODE pin configuration feature. Connect  
to VDD18 to enable the GPSMODE pin configuration feature. Refer to GPSMODE definitions in “Setting  
GPSMODE0 to GPSMODE12” on page 12.  
P1/GPSMODE0  
P2/BOOT_MODE  
P8/STATUSLED  
P9/EXTINT0  
Internal pull-down resistor; leave open.  
Output in default ROM firmware: leave open if not used.  
Internal pull-up resistor; leave open if unused.  
Internal pull-up resistor; can be left open if the GPSMODE feature is not used. Refer to GPSMODE  
definitions in “Setting GPSMODE0 to GPSMODE12” on page 12.  
P12/GPSMODE2/NPCS2  
P13/GPSMODE3/  
EXTINT1  
Internal pull-up resistor; can be left open if the GPSMODE feature is not used. Refer to GPSMODE  
definitions in “Setting GPSMODE0 to GPSMODE12” on page 12.  
P14/NAADET1  
P15/ANTON  
Internal pull-down resistor; leave open if Antenna Supervision functionality is unused.  
Internal pull-down resistor; leave open if Antenna Supervision functionality is unused.  
Internal pull-up resistor; leave open if no serial EEPROM is connected. Otherwise connect to GND.  
P16/NEEPROM  
Internal pull-down resistor; can be left open if the GPSMODE feature is not used. Refer to GPSMODE  
definitions in “Setting GPSMODE0 to GPSMODE12” on page 12.  
P17/GPSMODE5/SCK1  
P18/TXD1  
Output in default ROM firmware: leave open if serial interface is not used.  
Internal pull-up resistor; can be left open if the GPSMODE feature is not used. Refer to GPSMODE  
definitions in “Setting GPSMODE0 to GPSMODE12” on page 12.  
P19/GPSMODE6/SIGLO1  
P20/TIMEPULSE/SCK2  
P21/TXD2  
Output in default ROM firmware: leave open if time pulse feature is not used.  
Output in default ROM firmware: leave open if serial interface not used.  
Internal pull-up resistor; leave open if serial interface is not used.  
P22/RXD2  
Internal pull-up resistor; can be left open if the GPSMODE feature is not used. Refer to GPSMODE  
definitions in “Setting GPSMODE0 to GPSMODE12” on page 12.  
P23/GPSMODE7/SCK  
Internal pull-up resistor; can be left open if the GPSMODE feature is not used. Refer to GPSMODE  
definitions in “Setting GPSMODE0 to GPSMODE12” on page 12.  
P24/GPSMODE8/MOSI  
P25/NAADET0/MISO  
Internal pull-down resistor; leave open if Antenna Supervision functionality is unused.  
P26/GPSMODE10/NSS/ Internal pull-up resistor; can be left open if the GPSMODE feature is not used. Refer to GPSMODE  
NPCS0  
definitions in “Setting GPSMODE0 to GPSMODE12” on page 12.  
Internal pull-up resistor; can be left open if the GPSMODE feature is not used. Refer to GPSMODE  
definitions in “Setting GPSMODE0 to GPSMODE12” on page 12.  
P27/GPSMODE11/NPCS1  
Internal pull-up resistor; can be left open if the GPSMODE feature is not used. Refer to GPSMODE  
definitions in “Setting GPSMODE0 to GPSMODE12” on page 12.  
P29/GPSMODE12/NPCS3  
P30/AGCOUT0  
P31/RXD1  
Internal pull-down resistor; leave open.  
Internal pull-up resistor; leave open if serial interface is not used.  
18  
ATR0630 [Preliminary]  
4920B–GPS–06/06  
ATR0630 [Preliminary]  
3.5  
Connecting an Optional Serial EEPROM  
The ATR0630 offers the possibility of connecting an external serial EEPROM. The internal ROM  
firmware supports storing the configuration of the ATR0630 in serial EEPROM. The pin  
P16/NEEPROM signals the firmware that a serial EEPROM is connected to the ATR0630. The  
ATR0630’s 32-bit RISC processor accesses the external memory via SPI (serial peripheral inter-  
face). For best results, use a 32-Kbit 1.8V serial EEPROM such as Atmel’s AT25320AY1-1.8.  
Figure 3-3 shows an example of the serial EEPROM connection.  
Figure 3-3. Example of a Serial EEPROM Connection  
ATR0630  
AT25320AY1-1.8  
SCK  
SI  
P23/SCK  
P24/MOSI  
SO  
P25/MISO/NAADET0  
P29/NPCS3  
CS_N  
HOLD_N  
WP_N  
GND  
NC  
P16/NEEPROM  
P1/GPSMODE0  
GND  
GND  
NSHDN  
LDO_EN  
LDO_OUT  
VDD18  
VDDIO  
+3V  
(see Power Supply)  
LDO_IN  
LDOBAT_IN  
NC: Not connected  
Note:  
The GPSMODE pin configuration feature can be disabled, because the configuration can be  
stored in the serial EEPROM. VDDIO is the supply voltage for the pins: P23, P24, P25 and P29.  
19  
4920B–GPS–06/06  
 
4. Power Supply  
The ATR0630 is supplied with six distinct supply voltages:  
• The power supplies for the RF part (VCC1, VCC2, VBP) within 2.7V to 3.3V.  
• VDIG, the 1.8V supply of the digital pins of the RF part (SIGHI, SIGLO and CLK23). VDIG  
should be connected to VDD18.  
• VDD18, the nominal 1.8V supply voltage for the core, the I/O pins, the memory interface and  
the test pins and all GPIO pins not mentioned in next item.  
• VDDIO, the variable supply voltage within 1.8V to 3.6V for the following GPIO pins: P1, P2,  
P8, P12, P14, P16, P17, P18, P19, P20, P21, P23, P24, P25, P26, P27 and P29. In input  
mode, these pins are 5V input tolerant.  
• VDD_USB, the power supply of the USB pins: USB_DM and USB_DP.  
• VBAT18 to supply the backup domain: RTC, backup SRAM and the pins NSLEEP, NSHDN,  
LDO_EN, VBAT18, P9/EXTIN0, P13/EXTINT1, P22/RXD2 and P31/RXD1 and the 32kHz  
oscillator. In input mode, the four GPIO-pins are 5V input tolerant.  
20  
ATR0630 [Preliminary]  
4920B–GPS–06/06  
ATR0630 [Preliminary]  
Figure 4-1. Connecting Example: Separate Power Supplies for RF and Digital Part Using the Internal LDOs  
ATR0630 internal  
VCC1  
VCC2  
VBP  
2.7V to 3.3V  
RF  
VDIG  
2.3V to 3.6V  
LDO18  
ldoin  
LDO_IN  
LDO_EN  
LDO_OUT  
ldoen  
ldoout  
NSHDN  
VDD18  
VDDIO  
Core  
1 µF  
(X7R)  
1.8V to 3.3V  
variable I/O domain  
LDOBAT  
ldobat_in  
LDOBAT_IN  
VBAT  
vbat  
1.5V to 3.6V  
vbat18  
VBAT18  
VDD  
1 µF  
(X7R)  
RTC  
backup memory  
USB SM and  
transceiver  
0V or 3V to 3.6V  
VDDUSB  
The ATR0630 contains a built in low dropout voltage regulator LDO18. This regulator can be  
used if the host system does not provide the core voltage VDD18 of 1.8V nominal. In such case,  
LDO18 will provide a 1.8V supply voltage from any input voltage VDD between 2.3V and 3.6V.  
The LDO_EN input can be used to shut down VDD18 if the system is in standby mode.  
If the host system does supply a 1.8V core voltage directly, this voltage has to be connected to  
the VDD18 supply pins of the Core. LDO_EN must be connected to GND. LDO_IN can be con-  
nected to GND. LDO_OUT must not be connected.  
A second built in low dropout voltage regulator LDOBAT provides the supply voltage for the RTC  
and backup SRAM from any input voltage VBAT between 1.5V and 3.6V. The backup battery  
delivers the supply current if LDOBAT_IN is not powered.  
21  
4920B–GPS–06/06  
The RTC section will be initialized properly if VDD18 is supplied first to the ATR0630. If VBAT is  
applied first, the current consumption of the RTC and backup SRAM is undetermined.  
Figure 4-2. Connecting Example: Common Power Supplies for RF and Digital Part Using the Internal LDOs  
ATR0630 internal  
VCC1  
VCC2  
RF  
VBP  
VDIG  
LDO18  
ldoin  
2.7V to 3.3V  
NSHDN  
LDO_IN  
LDO_EN  
LDO_OUT  
ldoen  
ldoout  
VDD18  
VDDIO  
Core  
1 µF  
(X7R)  
1.8V to 3.3V  
variable IO domain  
LDOBAT  
ldobat_in  
LDOBAT_IN  
VBAT  
vbat  
1.5V to 3.6V  
vbat18  
VBAT18  
VDD  
1 µF  
(X7R)  
RTC  
backup memory  
USB SM and  
transceiver  
0V or 3V to 3.6V  
VDDUSB  
The USB Transceiver is disabled if VDD_USB < 2.0V. In this case the pins USB_DM and  
USB_DP are connected to GND (internal pull-down resistors). The USB Transceiver is enabled  
if VDD_USB within 3.0V and 3.6V.  
22  
ATR0630 [Preliminary]  
4920B–GPS–06/06  
ATR0630 [Preliminary]  
Figure 4-3. Connecting Example: Separate Power Supplies for RF and Digital Part Using 1.8V from Host System  
ATR0630 internal  
VCC1  
2.7V to 3.3V  
VCC2  
RF  
VBP  
VDIG  
LDO18  
ldoin  
LDO_IN  
ldoen  
LDO_EN  
ldoout  
LDO_OUT  
1.65V to 1.95V  
VDD18  
VDDIO  
Core  
1.8V to 3.3V  
variable I/O domain  
1 µF  
(X7R)  
LDOBAT  
ldobat_in  
2.3V to 3.6V  
1.5V to 3.6V  
LDOBAT_IN  
VBAT  
vbat  
vbat18  
VBAT18  
VDD  
1 µF  
(X7R)  
RTC  
backup memory  
USB SM and  
transceiver  
0V or 3V to 3.6V  
VDDUSB  
23  
4920B–GPS–06/06  
Figure 4-4. Connecting Example: Power Supply from USB Using the Internal LDOs  
ATR0630 internal  
VCC1  
VCC2  
VBP  
RF  
VDIG  
LDO18  
ldoin  
LDO_IN  
ldoen  
ldoout  
NSHDN  
LDO_EN  
LDO_OUT  
VDD18  
VDDIO  
Core  
1 µF  
(X7R)  
1.8V to 3.3V  
variable I/O domain  
LDOBAT  
ldobat_in  
LDOBAT_IN  
VBAT  
vbat  
1.5V to 3.6V  
vbat18  
VBAT18  
VDD  
1 µF  
(X7R)  
RTC  
backup memory  
External LDO  
3.0V to 3.3V  
USB SM and  
transceiver  
USB-VSB 5V  
VDDUSB  
24  
ATR0630 [Preliminary]  
4920B–GPS–06/06  
ATR0630 [Preliminary]  
5. Crystals  
The ATR0630 only needs a GPS crystal (XTAL), but supports also TCXOs. The reference fre-  
quency is 23.104 MHz. By connecting an optional RTC crystal, different power modes are  
available. The reference frequency is 32.768 kHz.  
5.1  
GPS XTAL  
Figure 5-1. Application Example Using a GPS Crystal with ESR Typically = 12Ω  
(See Table 5-1 on page 27)  
A1  
XTO  
B3  
NXTO  
47 pF  
A2  
B2  
27  
X
68 pF  
47 pF  
NX  
X1  
Figure 5-2. Application Example Using a GPS Crystal With ESR Typically 12Ω  
(See Table 5-2 on page 27)  
A1  
XTO  
B3  
NXTO  
47 pF  
A2  
B2  
R1  
X
68 pF  
47 pF  
NX  
X1  
Note:  
The external series resistor R1 has to be selected depending on the typical value of the crystal  
ESR. Refer to the application note “ATR0601: Crystal and TXCO Selection”.  
25  
4920B–GPS–06/06  
Figure 5-3. Equivalent Application Examples Using a GPS TCXO (See Table 5-3 on page 27)  
22 pF  
A1  
XTO  
12 pF  
B3  
TCXO  
NXTO  
4.7 pF  
A2  
X
Do not  
connect  
B2  
NX  
A1  
B3  
12 pF  
XTO  
22 pF  
TCXO  
NXTO  
4.7 pF  
A2  
B2  
X
Do not  
connect  
NX  
Figure 5-4. Application Example Using an External Reference Frequency and Balanced  
Inputs (See Table 5-4 on page 27)  
1:1  
A1  
XTO  
Vin  
B3  
NXTO  
A2  
X
Do not  
connect  
B2  
NX  
26  
ATR0630 [Preliminary]  
4920B–GPS–06/06  
ATR0630 [Preliminary]  
Table 5-1.  
Specification of GPS Crystals Appropriate for the Application Example Shown in  
Figure 5-1 on page 25  
Parameter  
Comment  
Min  
Typ  
Max  
Units  
Frequency Characteristics  
Nominal frequency referenced to  
25°C  
Fundamental frequency  
23.104  
MHz  
Calibration tolerance  
Frequency deviation  
Temperature range  
Electrical  
Frequency at 23°C ±2°C  
7.0  
15.0  
±ppm  
±ppm  
°C  
Over operating temperature range  
Operating temperature range  
–40.0  
18.5  
7
+85.0  
Load capacitance (CL)  
19.5  
23  
pF  
Equivalent Series Resistance (ESR)  
Fundamental  
Specification  
12  
Table 5-2.  
Parameter  
Specification of GPS Crystals Appropriate for the Application Example Shown in  
Figure 5-2 on page 25  
Comment  
Min  
Typ  
Max  
Units  
Equivalent Series Resistance (ESR)  
Fundamental Specification  
7
40  
Note:  
All other parameters as specified in Table 5-1.  
Table 5-3.  
Specification of GPS TCXOs Appropriate for the Application Example Shown in  
Figure 5-3 on page 26  
Parameter  
Comment  
Min  
Typ  
Max  
Units  
Frequency Characteristics  
Nominal frequency referenced to  
25°C  
Nominal Frequency  
23.104  
MHz  
Frequency deviation  
Temperature range  
Electrical  
Over operating temperature range  
Operating temperature range  
2.0  
±ppm  
°C  
–40.0  
+85.0  
Output waveform  
DC coupled clipped sine wave  
Operating range  
Output voltage  
(peak-to-peak)  
0.8  
10  
1.5  
V
Output load capacitance  
Tolerable load capacitance  
pF  
Table 5-4.  
Specification of an External Reference Signal for the Application Example Shown  
in Figure 5-4 on page 26  
Parameter  
Comment  
Min  
Typ  
23.104  
0.9  
Max  
Units  
MHz  
V
Signal Characteristics  
Nominal Frequency  
Waveform  
Sine wave or clipped sine wave  
Voltage peak-to-peak  
Amplitude  
0.6  
1.2  
27  
4920B–GPS–06/06  
5.2  
RTC Oscillator  
Figure 5-5. Crystal Connection  
ATR0630 internal  
XT_IN  
32 kHz  
Crystal  
32.768 kHz  
50 ppm  
Oscillator  
32.768 kHz clock  
RTC  
XT_OUT  
C
C
C = 2 × Cload, Cload can be derived from the crystal datasheet. Maximum value for C is 25 pF  
28  
ATR0630 [Preliminary]  
4920B–GPS–06/06  
ATR0630 [Preliminary]  
6. Absolute Maximum Ratings  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating  
only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this  
specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.  
Parameters  
Pins  
Symbol  
Top  
Min  
–40  
Max  
+85  
Unit  
°C  
°C  
V
Operating temperature  
Storage temperature  
Analog supply voltage  
Digital supply voltage RF  
DC supply voltage core  
Tstg  
–55  
–0.3  
–0.3  
–0.3  
+125  
+3.7  
+3.7  
+1.95  
VCC1, VCC2, VBP  
VDIG  
VCC  
VDIG  
V
VDD18  
VDD18  
V
DC supply voltage VDDIO  
domain  
VDDIO  
VDDIO  
–0.3  
+3.6  
V
DC supply voltage USB  
DC supply voltage LDO18  
DC supply voltage LDOBAT  
DC supply voltage VBAT  
VDD_USB  
LDO_IN  
VDD_USB  
LDO_IN  
–0.3  
–0.3  
–0.3  
–0.3  
+3.6  
+3.6  
+3.6  
+3.6  
V
V
V
V
LDOBAT_IN  
VBAT  
LDOBAT_IN  
VBAT  
P0, P15, P30, XT_IN,  
TMS, TCK, TDI, NTRST,  
DBG_EN, LDO_EN,  
NRESET  
Digital input voltage  
–0.3  
+1.95  
V
Digital input voltage  
Digital input voltage  
USB_DM, USB_DP  
–0.3  
–0.3  
+3.6  
+5.0  
V
V
P1, P2, P8, P9, P12 to  
P14, P16 to P27, P29, P31  
Note:  
Minimum/maximum limits are at +25°C ambient temperature, unless otherwise specified.  
7. Handling  
The ATR0630 is an ESD-sensitive device. The current ESD values are to be defined. Observe  
proper precautions for handling.  
29  
4920B–GPS–06/06  
8. Operating Range  
Parameters  
Pins  
VCC1, VCC2, VBP  
VDIG  
Symbol  
VCC  
Min  
2.70  
1.65  
1.65  
Typ  
Max  
3.30  
1.95  
1.95  
Unit  
V
Analog supply voltage RF  
Digital supply voltage RF  
Digital supply voltage core  
VDIG  
1.8  
1.8  
V
VDD18  
VDD18  
V
Digital supply voltage VDDIO  
domain(1)  
VDDIO  
VDDIO  
1.65  
1.8/3.3  
3.3  
3.6  
V
Digital supply voltage USB(2)  
DC supply voltage LDO18  
DC supply voltage LDOBAT  
DC Supply voltage VBAT  
Supply voltage difference  
VDD_USB  
LDO_IN  
VDD_USB  
LDO_IN  
3.0  
2.3  
2.3  
1.5  
3.6  
3.6  
3.6  
3.6  
V
V
V
V
LDOBAT_IN  
VBAT  
LDOBAT_IN  
VBAT  
V∆  
0.80  
V
(V= VCC – VDIG  
)
Temperature range  
Temp  
fRF  
–40  
+85  
°C  
Input frequency  
1575.42  
23.104  
32.768  
MHz  
MHz  
KHz  
Reference frequency GPS XTAL  
Reference frequency RTC  
fXTO  
fXTC  
Notes: 1. VDDIO is the supply voltage for the following GPIO-pins: P1, P2, P8, P12, P14, P16, P17, P18, P19, P20, P21, P23, P24,  
P25, P26, P27 and P29  
2. Values defined for operating USB Interface. Otherwise VDD_USB may be connected to ground.  
9. Electrical Characteristics  
If no additional information is given in column Test Conditions, the values apply to temperature range from –40°C to +85°C.  
No.  
1
Parameters  
Test Conditions  
Pin  
Symbol  
Min  
Typ  
Max  
Unit  
RF Front-end  
Output frequency  
1.1  
fXTO = 23.104 MHz  
fRF = 1575.42 MHz  
C3  
fIF  
96.764  
MHz  
Input impedance  
(balanced)  
1.2  
D1, C1  
Z11  
10 – j80  
1.3  
1.4  
1.5  
1.6  
2
Mixer conversion gain  
Mixer noise figure (SSB)  
Maximum total gain  
Total noise figure (SSB)  
VGA/AGC  
C3  
C3  
GMIX  
NFMIX  
Gmax_tot  
NFtot  
10  
6
dB  
dB  
dB  
dB  
VAGCO = 2.2V  
90  
6.8  
2.1  
2.2  
Minimum gain  
VAGCO = 1.0V  
VAGCO = 2.2V  
GVGA,min  
GVGA,max  
0
dB  
dB  
Maximum gain  
70  
Notes: 1. The LDO18 is a built in low dropout voltage regulator, which can be used if the host system does not provide the core volt-  
age VDD18.  
2. The LDOBAT is a built in low dropout voltage regulator, which provides the supply voltage VBAT18 for the RTC, backup  
SRAM, P9, P13, P22, P31, NSLEEP and NSHDN. The LDOBAT voltage regulator switches in battery mode if LDOBAT_IN  
falls below 1.5V.  
3. Supply voltage VBAT18 for backup domain is generated internally by the LDOBAT.  
4. No external load allowed.  
5. If no current is caused by outputs (pad output current as well as current across internal pull-up resistors)  
30  
ATR0630 [Preliminary]  
4920B–GPS–06/06  
ATR0630 [Preliminary]  
9. Electrical Characteristics (Continued)  
If no additional information is given in column Test Conditions, the values apply to temperature range from –40°C to +85°C.  
No.  
Parameters  
Test Conditions  
VAGCO = 2.2V  
VAGCO = 1.0V  
Cext = open  
Pin  
Symbol  
NVGA,min  
NVGA,max  
f3dB_AGC  
f3dB_AGC  
Min  
Typ  
6.6  
150  
250  
33  
Max  
Unit  
dB/V  
dB/V  
kHz  
2.3  
Control-voltage sensitivity  
2.4  
2.5  
AGC cut-off frequency  
AGC cut-off frequency  
A4  
A4  
Cext = 100 pF  
kHz  
Gain-control output  
voltage  
2.6  
3
A4  
VAGCO  
0.9  
2.3  
V
Reference Oscillator  
XTO phase noise at  
100Hz  
3.1  
With specified crystal  
A8  
A8  
Pn100  
Pn1k  
–80  
dBc/Hz  
dBc/Hz  
3.2  
4
XTO phase noise at 1 kHz With specified crystal  
–100  
PMSS  
4.1  
4.2  
5
Voltage level power-on  
Voltage level power-off  
LDO18(1)  
F4, G4, H4  
F4, G4, H4  
VPU,on  
VPU,off  
1.3  
V
V
0.5  
5.1  
5.2  
5.3  
Output voltage  
Output current  
LDO_OUT  
LDO_OUT  
1.65  
1.8  
1.95  
80  
V
mA  
µA  
Current consumption  
After startup, no load  
80  
Standby mode  
(LDO_EN = 0)  
5.4  
Current consumption  
1
5
µA  
6
LDOBAT(2)  
6.1  
6.2  
Output voltage(3)  
Output current(4)  
VBAT18  
VBAT18  
1.65  
1.8  
1.95  
1.5  
V
mA  
After startup (sleep/backup  
mode), at room  
temperature  
Current consumption  
LDOBAT_IN(5)  
6.3  
6.4  
6.5  
15  
10  
µA  
µA  
After startup (backup mode  
and LDOBAT_IN = 0V), at  
room temperature  
Current consumption  
VBAT  
After startup (normal  
mode), at room  
temperature  
Current consumption  
1.5  
mA  
7
Core  
7.1  
7.2  
DC supply voltage VDD18  
DC supply voltage VDDIO  
VO,18  
VO,IO  
0
0
VDD18  
VDDIO  
V
V
Low-level input voltage  
VDD18 domain  
0.3 ×  
VDD18  
7.3  
VDD18 = 1.65V to 1.95V  
VIL,18  
–0.3  
V
Notes: 1. The LDO18 is a built in low dropout voltage regulator, which can be used if the host system does not provide the core volt-  
age VDD18.  
2. The LDOBAT is a built in low dropout voltage regulator, which provides the supply voltage VBAT18 for the RTC, backup  
SRAM, P9, P13, P22, P31, NSLEEP and NSHDN. The LDOBAT voltage regulator switches in battery mode if LDOBAT_IN  
falls below 1.5V.  
3. Supply voltage VBAT18 for backup domain is generated internally by the LDOBAT.  
4. No external load allowed.  
5. If no current is caused by outputs (pad output current as well as current across internal pull-up resistors)  
31  
4920B–GPS–06/06  
9. Electrical Characteristics (Continued)  
If no additional information is given in column Test Conditions, the values apply to temperature range from –40°C to +85°C.  
No.  
Parameters  
Test Conditions  
Pin  
Symbol  
Min  
Typ  
Max  
Unit  
High-level input voltage  
VDD18 domain  
0.7 ×  
VDD18  
VDD18 +  
0.3  
7.4  
VDD18 = 1.65V to 1.95V  
VIH,18  
V
Schmitt trigger threshold  
rising  
0.7 ×  
VDD18  
7.5  
VDD18 = 1.65V to 1.95V  
VDD18 = 1.65V to 1.95V  
CLK23  
Vth+,CLK23  
V
Schmitt trigger threshold  
falling  
0.3 ×  
VDD18  
7.6  
7.7  
7.8  
CLK23  
CLK23  
Vth-,CLK23  
V
V
V
Schmitt trigger hysteresis VDD18 = 1.65V to 1.95V  
Vhyst,CLK23  
0.3  
0.55  
1.3  
Schmitt trigger threshold  
VDD18 = 1.65V to 1.95V  
rising  
NRESET Vth+,NRESET  
NRESET Vth-,NRESET  
VIL,IO  
0.8  
Schmitt trigger threshold  
VDD18 = 1.65V to 1.95V  
falling  
7.9  
0.46  
–0.3  
1.46  
–0.3  
1.46  
–0.3  
0.77  
+0.41  
5.0  
V
V
V
V
V
V
Low-level input voltage  
VDDIO = 1.65V to 3.6V  
VDDIO domain  
7.10  
7.11  
7.12  
7.13  
7.14  
High-level input voltage  
VDDIO = 1.65V to 3.6V  
VDDIO domain  
VIH,IO  
Low-level input voltage  
VBAT18 = 1.65V to 1.95V  
VBAT18 domain  
A11, B10,  
VIL,BAT  
+0.41  
5.0  
C10, D10  
High-level input voltage  
VBAT18 = 1.65V to 1.95V  
VBAT18 domain  
A11, B10,  
VIH,BAT  
C10, D10  
Low-level input voltage  
VDD_USB = 3.0V to 3.6V  
USB  
C9, D9  
C9, D9  
VIL,USB  
+0.8  
VDD_USB = 3.0V to 3.6V  
High-level input voltage  
7.15  
39source resistance +  
USB  
VIH,USB  
2.0  
3.6  
0.4  
V
27external series resistor  
Low-level output voltage  
VDD18 domain  
IOL = 1.5 mA,  
VDD18 = 1.65V  
7.16  
7.17  
7.18  
7.19  
7.20  
7.21  
VOL,18  
VOH,18  
VOL,IO  
V
V
V
V
V
V
High-level output voltage IOH = –1.5 mA,  
VDD18 domain  
VDD18 –  
0.45  
VDD18 = 1.65V  
Low-level output voltage  
VDDIO domain  
IOL = 1.5 mA,  
VDDIO = 3.0V  
0.4  
0.4  
High-level output voltage  
VDDIO domain  
I
OH = –1.5 mA,  
VDDIO –  
0.5  
VOH,IO  
VOL,BAT  
VOH,BAT  
VDDIO = 3.0V  
Low-level output voltage  
VBAT18 domain  
P9, P13,  
P22, P31  
IOL = 1 mA  
High-level output voltage  
VBAT18 domain  
P9, P13,  
P22, P31  
IOH = –1 mA  
1.2  
Notes: 1. The LDO18 is a built in low dropout voltage regulator, which can be used if the host system does not provide the core volt-  
age VDD18.  
2. The LDOBAT is a built in low dropout voltage regulator, which provides the supply voltage VBAT18 for the RTC, backup  
SRAM, P9, P13, P22, P31, NSLEEP and NSHDN. The LDOBAT voltage regulator switches in battery mode if LDOBAT_IN  
falls below 1.5V.  
3. Supply voltage VBAT18 for backup domain is generated internally by the LDOBAT.  
4. No external load allowed.  
5. If no current is caused by outputs (pad output current as well as current across internal pull-up resistors)  
32  
ATR0630 [Preliminary]  
4920B–GPS–06/06  
ATR0630 [Preliminary]  
9. Electrical Characteristics (Continued)  
If no additional information is given in column Test Conditions, the values apply to temperature range from –40°C to +85°C.  
No.  
Parameters  
Test Conditions  
Pin  
Symbol  
Min  
Typ  
Max  
Unit  
IOL = 2.2 mA,  
VDD_USB = 3.0V to 3.6V,  
27external series resistor  
Low-level output voltage  
USB  
7.22  
DP, DM  
VOL,USB  
0.3  
V
IOH = 0.2 mA,  
VDD_USB = 3.0V to 3.6V,  
27external series resistor  
High-level output voltage  
USB  
7.23  
7.24  
DP, DM  
VOH,USB  
2.8  
–1  
V
Input-leakage current  
(standard inputs and I/Os) VIL = 0V  
VDD18 = 1.95V  
ILEAK  
ICAP  
RPU  
+1  
10  
µA  
pF  
kΩ  
7.25 Input capacitance  
Input pull-up resistor  
NRESET  
7.26  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
A7  
0.7  
7
1.8  
Input pull-up resistors  
7.27  
G9, H10,  
G10  
RPU  
RPU  
RPD  
RPD  
18  
235  
18  
kΩ  
kΩ  
kΩ  
kΩ  
TCK, TDI, TMS  
Input pull-up resistors P9,  
P13, P22, P31  
A11, B10,  
C10, D10  
7.28  
100  
7
Input pull-down resistors  
7.29  
E8, H11  
DBG_EN, NTRST, RF_ON  
Input pull-down resistors  
P0, P15, P30  
F10, C8,  
F11, G12  
7.30  
100  
235  
Configurable input pull-up  
resistors P1, P2, P8, P12,  
P14, P16 to P21, P23 to  
7.31  
–40°C to +85°C  
RCPU  
50  
160  
kΩ  
P27, P29  
Configurable input  
pull-down resistors P1, P2,  
P8, P12, P14, P16 to P21,  
P23 to P27, P29  
7.32  
–40°C to +85°C  
–40°C to +85°C  
RCPD  
40  
160  
kΩ  
kΩ  
Configurable input pull-up  
7.33 resistor USB_DP (idle  
state)  
C9  
RCPU  
0.9  
1.575  
Configurable input pull-up  
7.34 resistor USP_DP  
(operation state)  
–40°C to +85°C  
–40°C to +85°C  
C9  
RCPU  
1.425  
10  
3.09  
500  
kΩ  
kΩ  
Input pull-down resistors  
7.35  
C9, D9  
RPD  
USB_DP, USB_DM  
Notes: 1. The LDO18 is a built in low dropout voltage regulator, which can be used if the host system does not provide the core volt-  
age VDD18.  
2. The LDOBAT is a built in low dropout voltage regulator, which provides the supply voltage VBAT18 for the RTC, backup  
SRAM, P9, P13, P22, P31, NSLEEP and NSHDN. The LDOBAT voltage regulator switches in battery mode if LDOBAT_IN  
falls below 1.5V.  
3. Supply voltage VBAT18 for backup domain is generated internally by the LDOBAT.  
4. No external load allowed.  
5. If no current is caused by outputs (pad output current as well as current across internal pull-up resistors)  
33  
4920B–GPS–06/06  
10. Power Consumption  
Mode  
Conditions  
Typ  
0.065(1)  
0.007(1)  
40  
Unit  
Sleep  
At 1.8V, no CLK23  
Shutdown RTC, backup SRAM and LDOBAT  
Satellite acquisition  
mA  
Normal  
Normal tracking on 6 channels with 1 fix/s; each additional active tracking channel adds 0.5 mA  
29  
All channels disabled  
26  
Note:  
1. Specified value only  
11. Ordering Information  
Extended Type Number  
Package  
MPQ  
3000  
1
Remarks  
7 mm × 10 mm, 0.8 mm pitch, Pb-free,  
RoHS-compliant  
ATR0630-7KQY  
ATR0630-EK1  
ATR0630-DK1  
BGA96  
-
-
Evaluation kit/Road test kit  
Design kit including design guide and PCB  
Gerber files  
1
34  
ATR0630 [Preliminary]  
4920B–GPS–06/06  
ATR0630 [Preliminary]  
12. Package Information  
2.  
Package: BGA96  
Dimensions in mm  
0.08  
0.15  
n
n
m
m
C
0.4±0.05  
B A  
A1 Corner  
Top View  
Bottom View  
A1 Corner  
1 2 3 4 5 6 7 8 9 10 11 12  
12 11 10 9 8 7 6 5 4 3 2 1  
A
B
C
D
E
F
A
B
C
D
E
F
G
H
G
H
Pin A1 Laser Marking  
0.8  
A
8.8  
10±0.05  
B
technical drawings  
according to DIN  
specifications  
0.1C  
0.08 C  
Drawing-No.: 6.580-5005.01-4  
Issue: 2; 31.05.06  
Seating plane  
3.  
C
Note:  
1. All dimensions and tolerance conform to ASME Y 14.5M-1994  
Dimension is measured at the maximum solder ball diameter, parallel to primary datum  
C
2.  
3.  
Primary datum  
and seating plane are defined by the spherical crowns of the solder balls  
C
4. The surface finish of the package shall be EDM CHARMILLE #24 - #27  
5. Unless otherwise specified tolerance: Decimal ±0.05, Angular ±2  
5. Raw ball diameter: 0.4 mm ref.  
˚
35  
4920B–GPS–06/06  
Atmel Corporation  
Atmel Operations  
2325 Orchard Parkway  
San Jose, CA 95131, USA  
Tel: 1(408) 441-0311  
Fax: 1(408) 487-2600  
Memory  
RF/Automotive  
Theresienstrasse 2  
Postfach 3535  
74025 Heilbronn, Germany  
Tel: (49) 71-31-67-0  
Fax: (49) 71-31-67-2340  
2325 Orchard Parkway  
San Jose, CA 95131, USA  
Tel: 1(408) 441-0311  
Fax: 1(408) 436-4314  
Microcontrollers  
Regional Headquarters  
2325 Orchard Parkway  
San Jose, CA 95131, USA  
Tel: 1(408) 441-0311  
Fax: 1(408) 436-4314  
1150 East Cheyenne Mtn. Blvd.  
Colorado Springs, CO 80906, USA  
Tel: 1(719) 576-3300  
Europe  
Atmel Sarl  
Route des Arsenaux 41  
Case Postale 80  
CH-1705 Fribourg  
Switzerland  
Tel: (41) 26-426-5555  
Fax: (41) 26-426-5500  
Fax: 1(719) 540-1759  
Biometrics/Imaging/Hi-Rel MPU/  
High-Speed Converters/RF Datacom  
Avenue de Rochepleine  
La Chantrerie  
BP 70602  
44306 Nantes Cedex 3, France  
Tel: (33) 2-40-18-18-18  
Fax: (33) 2-40-18-19-60  
BP 123  
38521 Saint-Egreve Cedex, France  
Tel: (33) 4-76-58-30-00  
Fax: (33) 4-76-58-34-80  
Asia  
Room 1219  
Chinachem Golden Plaza  
77 Mody Road Tsimshatsui  
East Kowloon  
Hong Kong  
Tel: (852) 2721-9778  
Fax: (852) 2722-1369  
ASIC/ASSP/Smart Cards  
Zone Industrielle  
13106 Rousset Cedex, France  
Tel: (33) 4-42-53-60-00  
Fax: (33) 4-42-53-60-01  
1150 East Cheyenne Mtn. Blvd.  
Colorado Springs, CO 80906, USA  
Tel: 1(719) 576-3300  
Japan  
9F, Tonetsu Shinkawa Bldg.  
1-24-8 Shinkawa  
Chuo-ku, Tokyo 104-0033  
Japan  
Tel: (81) 3-3523-3551  
Fax: (81) 3-3523-7581  
Fax: 1(719) 540-1759  
Scottish Enterprise Technology Park  
Maxwell Building  
East Kilbride G75 0QR, Scotland  
Tel: (44) 1355-803-000  
Fax: (44) 1355-242-743  
Literature Requests  
www.atmel.com/literature  
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any  
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMELS TERMS AND CONDI-  
TIONS OF SALE LOCATED ON ATMELS WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY  
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR  
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-  
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT  
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no  
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications  
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided  
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use  
as components in applications intended to support or sustain life.  
© 2006, Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, Everywhere You Are® and others are registered trade-  
marks, Antarisand others are trademarks of Atmel Corporation or its subsidiaries. ARM®, ARM Powered® Logo, and others are the registered  
trademarks or trademarks of ARM Ltd. Other terms and product names may be trademarks of others.  
4920B–GPS–06/06  

相关型号:

ATR0630-DK1

ANTARIS4 Single-chip GPS Receiver
ATMEL

ATR0630-EK1

ANTARIS4 Single-chip GPS Receiver
ATMEL

ATR0630P1

ANTARIS4 Single-chip GPS Receiver
ATMEL

ATR0630P1-7KQY

ANTARIS4 Single-chip GPS Receiver
ATMEL

ATR0635

ANTARIS4 Single-chip GPS Receiver SuperSense
ATMEL

ATR0635-7KQY

ANTARIS4 Single-chip GPS Receiver SuperSense
ATMEL

ATR0635-DK1

ANTARIS4 Single-chip GPS Receiver SuperSense
ATMEL

ATR0635-EK1

ANTARIS4 Single-chip GPS Receiver SuperSense
ATMEL

ATR0635P1

ANTARIS4 Single-chip GPS Receiver SuperSense
ATMEL

ATR0635P1-7KQY

ANTARIS4 Single-chip GPS Receiver SuperSense
ATMEL

ATR0635_08

ANTARIS4 Single-chip GPS Receiver SuperSense
ATMEL

ATR0640

Telecom Circuit, 1-Func, CMOS, PBGA160, 12 X 12 MM, 0.80 MM PITCH, LFBGA-160
ATMEL