ATMEGA64A_09 [ATMEL]

8-bit Microcontroller with 64K Bytes In-System Programmable Flash; 8位微控制器,带有64K字节的系统内可编程闪存
ATMEGA64A_09
型号: ATMEGA64A_09
厂家: ATMEL    ATMEL
描述:

8-bit Microcontroller with 64K Bytes In-System Programmable Flash
8位微控制器,带有64K字节的系统内可编程闪存

闪存 微控制器
文件: 总21页 (文件大小:586K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Features  
High-performance, Low-power AVR® 8-bit Microcontroller  
Advanced RISC Architecture  
– 130 Powerful Instructions – Most Single Clock Cycle Execution  
– 32 x 8 General Purpose Working Registers + Peripheral Control Registers  
– Fully Static Operation  
– Up to 16 MIPS Throughput at 16 MHz  
– On-chip 2-cycle Multiplier  
High Endurance Non-volatile Memory segments  
– 64K Bytes of In-System Reprogrammable Flash program memory  
– 2K Bytes EEPROM  
8-bit  
– 4K Bytes Internal SRAM  
– Write/Erase Cycles: 10,000 Flash/100,000 EEPROM  
– Data retention: 20 years at 85°C/100 years at 25°C(1)  
– Optional Boot Code Section with Independent Lock Bits  
• In-System Programming by On-chip Boot Program  
• True Read-While-Write Operation  
Microcontroller  
with 64K Bytes  
In-System  
Programmable  
Flash  
– Up to 64K Bytes Optional External Memory Space  
– Programming Lock for Software Security  
– SPI Interface for In-System Programming  
JTAG (IEEE std. 1149.1 Compliant) Interface  
– Boundary-scan Capabilities According to the JTAG Standard  
– Extensive On-chip Debug Support  
– Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface  
Peripheral Features  
– Two 8-bit Timer/Counters with Separate Prescalers and Compare Modes  
– Two Expanded 16-bit Timer/Counters with Separate Prescaler, Compare Mode, and  
Capture Mode  
ATmega64A  
– Real Time Counter with Separate Oscillator  
– Two 8-bit PWM Channels  
– 6 PWM Channels with Programmable Resolution from 1 to 16 Bits  
– 8-channel, 10-bit ADC  
• 8 Single-ended Channels  
• 7 Differential Channels  
• 2 Differential Channels with Programmable Gain (1x, 10x, 200x)  
– Byte-oriented Two-wire Serial Interface  
– Dual Programmable Serial USARTs  
Summary  
– Master/Slave SPI Serial Interface  
– Programmable Watchdog Timer with On-chip Oscillator  
– On-chip Analog Comparator  
Special Microcontroller Features  
– Power-on Reset and Programmable Brown-out Detection  
– Internal Calibrated RC Oscillator  
– External and Internal Interrupt Sources  
– Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby  
and Extended Standby  
– Software Selectable Clock Frequency  
ATmega103 Compatibility Mode Selected by a Fuse  
– Global Pull-up Disable  
I/O and Packages  
– 53 Programmable I/O Lines  
– 64-lead TQFP and 64-pad QFN/MLF  
Operating Voltages  
– 2.7 - 5.5V for ATmega64A  
Speed Grades  
– 0 - 16 MHz for ATmega64A  
8160CS–AVR–07/09  
ATmega64A  
1. Pin Configuration  
Figure 1-1. Pinout ATmega64A  
TQFP/MLF  
PEN  
RXD0/(PDI) PE0  
(TXD0/PDO) PE1  
(XCK0/AIN0) PE2  
(OC3A/AIN1) PE3  
(OC3B/INT4) PE4  
(OC3C/INT5) PE5  
(T3/INT6) PE6  
1
2
3
4
5
6
7
8
9
48 PA3 (AD3)  
47 PA4 (AD4)  
46 PA5 (AD5)  
45 PA6 (AD6)  
44 PA7 (AD7)  
43 PG2(ALE)  
42 PC7 (A15)  
41 PC6 (A14)  
40 PC5 (A13)  
39 PC4 (A12)  
38 PC3 (A11)  
37 PC2 (A10  
36 PC1 (A9)  
35 PC0 (A8)  
34 PG1(RD)  
33 PG0(WR)  
(ICP3/INT7) PE7  
(SS) PB0 10  
(SCK) PB1 11  
(MOSI) PB2 12  
(MISO) PB3 13  
(OC0) PB4 14  
(OC1A) PB5 15  
(OC1B) PB6  
16  
Note:  
The bottom pad under the QFN/MLF package should be soldered to ground.  
2
8160CS–AVR–07/09  
ATmega64A  
2. Overview  
The ATmega64A is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC  
architecture. By executing powerful instructions in a single clock cycle, the ATmega64A achieves  
throughputs approaching 1 MIPS per MHz, allowing the system designer to optimize power con-  
sumption versus processing speed.  
2.1  
Block Diagram  
Figure 2-1. Block Diagram  
PF0 - PF7  
PA0 - PA7  
PC0 - PC7  
VCC  
GND  
PORTA DRIVERS  
PORTF DRIVERS  
PORTC DRIVERS  
AVCC  
DATA REGISTER  
PORTF  
DATA DIR.  
REG. PORTF  
DATA REGISTER  
PORTA  
DATA DIR.  
REG. PORTA  
DATA REGISTER  
PORTC  
DATA DIR.  
REG. PORTC  
8-BIT DATA BUS  
XTAL1  
XTAL2  
AREF  
CALIB. OSC  
INTERNAL  
OSCILLATOR  
ADC  
OSCILLATOR  
OSCILLATOR  
PROGRAM  
COUNTER  
STACK  
POINTER  
WATCHDOG  
TIMER  
JTAG TAP  
TIMING AND  
CONTROL  
PROGRAM  
FLASH  
MCU CONTROL  
REGISTER  
SRAM  
ON-CHIP DEBUG  
RESET  
BOUNDARY-  
SCAN  
INSTRUCTION  
REGISTER  
TIMER/  
COUNTERS  
GENERAL  
PURPOSE  
REGISTERS  
X
Y
Z
PROGRAMMING  
LOGIC  
INSTRUCTION  
DECODER  
INTERRUPT  
UNIT  
PEN  
CONTROL  
LINES  
ALU  
EEPROM  
STATUS  
REGISTER  
2-WIRE SERIAL  
INTERFACE  
SPI  
USART0  
USART1  
DATA REGISTER  
PORTE  
DATA DIR.  
REG. PORTE  
DATA REGISTER  
PORTB  
DATA DIR.  
REG. PORTB  
DATA REGISTER  
PORTD  
DATA DIR.  
REG. PORTD  
DATA REG. DATA DIR.  
PORTG  
REG. PORTG  
PORTB DRIVERS  
PORTD DRIVERS  
PORTG DRIVERS  
PORTE DRIVERS  
PE0 - PE7  
PB0 - PB7  
PD0 - PD7  
PG0 - PG4  
The AVR core combines a rich instruction set with 32 general purpose working registers. All the  
32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent  
registers to be accessed in one single instruction executed in one clock cycle. The resulting  
architecture is more code efficient while achieving throughputs up to ten times faster than con-  
ventional CISC microcontrollers.  
The ATmega64A provides the following features: 64K bytes of In-System Programmable Flash  
with Read-While-Write capabilities, 2K bytes EEPROM, 4K bytes SRAM, 53 general purpose I/O  
3
8160CS–AVR–07/09  
ATmega64A  
lines, 32 general purpose working registers, Real Time Counter (RTC), four flexible Timer/Coun-  
ters with compare modes and PWM, two USARTs, a byte oriented Two-wire Serial Interface, an  
8-channel, 10-bit ADC with optional differential input stage with programmable gain, program-  
mable Watchdog Timer with internal Oscillator, an SPI serial port, IEEE std. 1149.1 compliant  
JTAG test interface, also used for accessing the On-chip Debug system and programming, and  
six software selectable power saving modes. The Idle mode stops the CPU while allowing the  
SRAM, Timer/Counters, SPI port, and interrupt system to continue functioning. The Power-down  
mode saves the register contents but freezes the Oscillator, disabling all other chip functions  
until the next interrupt or Hardware Reset. In Power-save mode, the asynchronous timer contin-  
ues to run, allowing the user to maintain a timer base while the rest of the device is sleeping.  
The ADC Noise Reduction mode stops the CPU and all I/O modules except asynchronous timer  
and ADC, to minimize switching noise during ADC conversions. In Standby mode, the crys-  
tal/resonator Oscillator is running while the rest of the device is sleeping. This allows very fast  
start-up combined with low power consumption. In Extended Standby mode, both the main  
Oscillator and the asynchronous timer continue to run.  
The device is manufactured using Atmel’s high-density non-volatile memory technology. The  
On-chip ISP Flash allows the program memory to be reprogrammed In-System through an SPI  
serial interface, by a conventional non-volatile memory programmer, or by an On-chip Boot pro-  
gram running on the AVR core. The Boot Program can use any interface to download the  
Application Program in the Application Flash memory. Software in the Boot Flash section will  
continue to run while the Application Flash section is updated, providing true Read-While-Write  
operation. By combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a  
monolithic chip, the Atmel ATmega64A is a powerful microcontroller that provides a highly-flexi-  
ble and cost-effective solution to many embedded control applications.  
The ATmega64A AVR is supported with a full suite of program and system development tools  
including: C compilers, macro assemblers, program debugger/simulators, In-Circuit Emulators,  
and evaluation kits.  
2.2  
ATmega103 and ATmega64A Compatibility  
The ATmega64A is a highly complex microcontroller where the number of I/O locations super-  
sedes the 64 I/O location reserved in the AVR instruction set. To ensure backward compatibility  
with the ATmega103, all I/O locations present in ATmega103 have the same location in  
ATmega64A. Most additional I/O locations are added in an Extended I/O space starting from  
0x60 to 0xFF (i.e., in the ATmega103 internal RAM space). These location can be reached by  
using LD/LDS/LDD and ST/STS/STD instructions only, not by using IN and OUT instructions.  
The relocation of the internal RAM space may still be a problem for ATmega103 users. Also, the  
increased number of Interrupt Vectors might be a problem if the code uses absolute addresses.  
To solve these problems, an ATmega103 compatibility mode can be selected by programming  
the fuse M103C. In this mode, none of the functions in the Extended I/O space are in use, so the  
internal RAM is located as in ATmega103. Also, the extended Interrupt Vectors are removed.  
The ATmega64A is 100% pin compatible with ATmega103, and can replace the ATmega103 on  
current printed circuit boards. The application notes “Replacing ATmega103 by ATmega128”  
and “Migration between ATmega64 and ATmega128” describes what the user should be aware  
of replacing the ATmega103 by an ATmega128 or ATmega64.  
4
8160CS–AVR–07/09  
ATmega64A  
2.2.1  
ATmega103 Compatibility Mode  
By programming the M103C Fuse, the ATmega64A will be compatible with the ATmega103  
regards to RAM, I/O pins and Interrupt Vectors as described above. However, some new fea-  
tures in ATmega64A are not available in this compatibility mode, these features are listed below:  
• One USART instead of two, asynchronous mode only. Only the eight least significant bits of  
the Baud Rate Register is available.  
• One 16 bits Timer/Counter with two compare registers instead of two 16 bits Timer/Counters  
with three compare registers.  
Two-wire serial interface is not supported.  
• Port G serves alternate functions only (not a general I/O port).  
• Port F serves as digital input only in addition to analog input to the ADC.  
• Boot Loader capabilities is not supported.  
• It is not possible to adjust the frequency of the internal calibrated RC Oscillator.  
• The External Memory Interface can not release any Address pins for general I/O, neither  
configure different wait states to different External Memory Address sections.  
• Only EXTRF and PORF exist in the MCUCSR Register.  
• No timed sequence is required for Watchdog Timeout change.  
• Only low-level external interrupts can be used on four of the eight External Interrupt sources.  
• Port C is output only.  
• USART has no FIFO buffer, so Data OverRun comes earlier.  
• The user must have set unused I/O bits to 0 in ATmega103 programs.  
2.3  
Pin Descriptions  
2.3.1  
VCC  
Digital supply voltage.  
2.3.2  
2.3.3  
GND  
Ground.  
Port A (PA7:PA0)  
Port A is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The  
Port A output buffers have symmetrical drive characteristics with both high sink and source  
capability. As inputs, Port A pins that are externally pulled low will source current if the pull-up  
resistors are activated. The Port A pins are tri-stated when a reset condition becomes active,  
even if the clock is not running.  
Port A also serves the functions of various special features of the ATmega64A as listed on page  
75.  
2.3.4  
Port B (PB7:PB0)  
Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The  
Port B output buffers have symmetrical drive characteristics with both high sink and source  
capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up  
resistors are activated. The Port B pins are tri-stated when a reset condition becomes active,  
even if the clock is not running.  
5
8160CS–AVR–07/09  
ATmega64A  
Port B also serves the functions of various special features of the ATmega64A as listed on page  
76.  
2.3.5  
Port C (PC7:PC0)  
Port C is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The  
Port C output buffers have symmetrical drive characteristics with both high sink and source  
capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up  
resistors are activated. The Port C pins are tri-stated when a reset condition becomes active,  
even if the clock is not running.  
Port C also serves the functions of special features of the ATmega64A as listed on page 79. In  
ATmega103 compatibility mode, Port C is output only, and the port C pins are not tri-stated  
when a reset condition becomes active.  
2.3.6  
2.3.7  
2.3.8  
Port D (PD7:PD0)  
Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The  
Port D output buffers have symmetrical drive characteristics with both high sink and source  
capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up  
resistors are activated. The Port D pins are tri-stated when a reset condition becomes active,  
even if the clock is not running.  
Port D also serves the functions of various special features of the ATmega64A as listed on page  
80.  
Port E (PE7:PE0)  
Port E is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The  
Port E output buffers have symmetrical drive characteristics with both high sink and source  
capability. As inputs, Port E pins that are externally pulled low will source current if the pull-up  
resistors are activated. The Port E pins are tri-stated when a reset condition becomes active,  
even if the clock is not running.  
Port E also serves the functions of various special features of the ATmega64A as listed on page  
83.  
Port F (PF7:PF0)  
Port F serves as the analog inputs to the A/D Converter.  
Port F also serves as an 8-bit bi-directional I/O port, if the A/D Converter is not used. Port pins  
can provide internal pull-up resistors (selected for each bit). The Port F output buffers have sym-  
metrical drive characteristics with both high sink and source capability. As inputs, Port F pins  
that are externally pulled low will source current if the pull-up resistors are activated. The Port F  
pins are tri-stated when a reset condition becomes active, even if the clock is not running. If the  
JTAG interface is enabled, the pull-up resistors on pins PF7(TDI), PF5(TMS) and PF4(TCK) will  
be activated even if a reset occurs.  
The TDO pin is tri-stated unless TAP states that shift out data are entered.  
Port F also serves the functions of the JTAG interface.  
In ATmega103 compatibility mode, Port F is an input port only.  
6
8160CS–AVR–07/09  
ATmega64A  
2.3.9  
Port G (PG4:PG0)  
Port G is a 5-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The  
Port G output buffers have symmetrical drive characteristics with both high sink and source  
capability. As inputs, Port G pins that are externally pulled low will source current if the pull-up  
resistors are activated. The Port G pins are tri-stated when a reset condition becomes active,  
even if the clock is not running.  
Port G also serves the functions of various special features.  
In ATmega103 compatibility mode, these pins only serves as strobes signals to the external  
memory as well as input to the 32 kHz Oscillator, and the pins are initialized to PG0 = 1,  
PG1 = 1, and PG2 = 0 asynchronously when a reset condition becomes active, even if the clock  
is not running. PG3 and PG4 are Oscillator pins.  
2.3.10  
RESET  
Reset input. A low level on this pin for longer than the minimum pulse length will generate a  
reset, even if the clock is not running. The minimum pulse length is given in Table 28-3 on page  
330. Shorter pulses are not guaranteed to generate a reset.  
2.3.11  
2.3.12  
2.3.13  
XTAL1  
XTAL2  
AVCC  
Input to the inverting Oscillator amplifier and input to the internal clock operating circuit.  
Output from the inverting Oscillator amplifier.  
AVCC is the supply voltage pin for Port F and the A/D Converter. It should be externally con-  
nected to VCC, even if the ADC is not used. If the ADC is used, it should be connected to VCC  
through a low-pass filter.  
2.3.14  
2.3.15  
AREF  
PEN  
AREF is the analog reference pin for the A/D Converter.  
This is a programming enable pin for the SPI Serial Programming mode. By holding this pin low  
during a Power-on Reset, the device will enter the SPI Serial Programming mode. PEN is inter-  
nally pulled high. The pullup is shown in Figure 10-1 on page 52 and its value is given in Section  
28.2 “DC Characteristics” on page 327. PEN has no function during normal operation.  
7
8160CS–AVR–07/09  
ATmega64A  
3. Resources  
A comprehensive set of development tools, application notes and datasheetsare available for  
download on http://www.atmel.com/avr.  
Note:  
1.  
4. Data Retention  
Reliability Qualification results show that the projected data retention failure rate is much less  
than 1 PPM over 20 years at 85°C or 100 years at 25°C.  
8
8160CS–AVR–07/09  
ATmega64A  
5. Register Summary  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Page  
(0xFF)  
:
Reserved  
Reserved  
Reserved  
UCSR1C  
UDR1  
(0x9E)  
(0x9D)  
(0x9C)  
(0x9B)  
(0x9A)  
(0x99)  
(0x98)  
(0x97)  
(0x96)  
UMSEL1  
UPM11  
UPM10  
USBS1  
UCSZ11  
UCSZ10  
UCPOL1  
198  
196  
196  
197  
200  
200  
USART1 I/O Data Register  
UCSR1A  
UCSR1B  
UBRR1L  
UBRR1H  
Reserved  
Reserved  
UCSR0C  
Reserved  
Reserved  
Reserved  
Reserved  
UBRR0H  
Reserved  
ADCSRB  
Reserved  
TCCR3C  
TCCR3A  
TCCR3B  
TCNT3H  
TCNT3L  
OCR3AH  
OCR3AL  
OCR3BH  
OCR3BL  
OCR3CH  
OCR3CL  
ICR3H  
RXC1  
TXC1  
UDRE1  
UDRIE1  
FE1  
DOR1  
UPE1  
U2X1  
MPCM1  
TXB81  
RXCIE1  
TXCIE1  
RXEN1  
TXEN1  
UCSZ12  
RXB81  
USART1 Baud Rate Register Low  
– USART1 Baud Rate Register High  
(0x95)  
(0x94)  
(0x93)  
(0x92)  
(0x91)  
UMSEL0  
UPM01  
UPM00  
USBS0  
UCSZ01  
UCSZ00  
UCPOL0  
198  
(0x90)  
(0x8F)  
(0x8E)  
USART0 Baud Rate Register High  
200  
251  
ADTS2  
ADTS1  
ADTS0  
(0x8D)  
(0x8C)  
(0x8B)  
(0x8A)  
(0x89)  
(0x88)  
(0x87)  
(0x86)  
(0x85)  
(0x84)  
(0x83)  
(0x82)  
(0x81)  
(0x80)  
(0x7F)  
(0x7E)  
FOC3A  
COM3A1  
ICNC3  
FOC3B  
COM3A0  
ICES3  
FOC3C  
COM3B1  
137  
133  
135  
137  
137  
138  
138  
138  
138  
138  
138  
139  
139  
COM3B0  
WGM33  
COM3C1  
WGM32  
COM3C0  
CS32  
WGM31  
CS31  
WGM30  
CS30  
Timer/Counter3 – Counter Register High Byte  
Timer/Counter3 – Counter Register Low Byte  
Timer/Counter3 – Output Compare Register A High Byte  
Timer/Counter3 – Output Compare Register A Low Byte  
Timer/Counter3 – Output Compare Register B High Byte  
Timer/Counter3 – Output Compare Register B Low Byte  
Timer/Counter3 – Output Compare Register C High Byte  
Timer/Counter3 – Output Compare Register C Low Byte  
Timer/Counter3 – Input Capture Register High Byte  
Timer/Counter3 – Input Capture Register Low Byte  
ICR3L  
Reserved  
Reserved  
ETIMSK  
ETIFR  
OCIE3A  
OCF3A  
OCIE3B  
OCF3B  
TOIE3  
TOV3  
OCIE3C  
OCF3C  
OCIE1C  
OCF1C  
(0x7D)  
(0x7C)  
(0x7B)  
(0x7A)  
TICIE3  
ICF3  
140  
141  
Reserved  
TCCR1C  
OCR1CH  
OCR1CL  
Reserved  
Reserved  
Reserved  
TWCR  
FOC1A  
FOC1B  
FOC1C  
136  
138  
138  
(0x79)  
(0x78)  
(0x77)  
(0x76)  
(0x75)  
Timer/Counter1 – Output Compare Register C High Byte  
Timer/Counter1 – Output Compare Register C Low Byte  
(0x74)  
(0x73)  
(0x72)  
(0x71)  
(0x70)  
(0x6F)  
(0x6E)  
(0x6D)  
(0x6C)  
(0x6B)  
TWINT  
TWEA  
TWSTA  
TWSTO  
TWWC  
TWEN  
TWIE  
226  
228  
229  
228  
226  
44  
TWDR  
Two-wire Serial Interface Data Register  
TWAR  
TWA6  
TWS7  
TWA5  
TWS6  
TWA4  
TWS5  
TWA3  
TWS4  
TWA2  
TWS3  
TWA1  
TWA0  
TWGCE  
TWPS0  
TWSR  
TWPS1  
TWBR  
Two-wire Serial Interface Bit Rate Register  
Oscillator Calibration Register  
OSCCAL  
Reserved  
XMCRA  
XMCRB  
Reserved  
EICRA  
SRL0  
SRW01  
SRW00  
XMM2  
SRW11  
XMM1  
SRL2  
SRL1  
30  
32  
XMBK  
XMM0  
(0x6A)  
(0x69)  
(0x68)  
(0x67)  
(0x66)  
(0x65)  
(0x64)  
(0x63)  
ISC31  
ISC30  
ISC21  
ISC20  
ISC11  
ISC10  
ISC01  
ISC00  
65  
Reserved  
SPMCSR  
Reserved  
Reserved  
PORTG  
DDRG  
SPMIE  
RWWSB  
RWWSRE  
BLBSET  
PGWRT  
PGERS  
SPMEN  
293  
PORTG4  
DDG4  
PING4  
PORTF4  
DDF4  
PORTG3  
DDG3  
PING3  
PORTF3  
DDF3  
PORTG2  
DDG2  
PING2  
PORTF2  
DDF2  
PORTG1  
DDG1  
PING1  
PORTF1  
DDF1  
PORTG0  
DDG0  
PING0  
PORTF0  
DDF0  
91  
91  
91  
90  
90  
PING  
(0x62)  
(0x61)  
PORTF  
PORTF7  
DDF7  
PORTF6  
DDF6  
PORTF5  
DDF5  
DDRF  
9
8160CS–AVR–07/09  
ATmega64A  
5. Register Summary (Continued)  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Page  
(0x60)  
Reserved  
SREG  
I
T
H
0x3F (0x5F)  
0x3E (0x5E)  
0x3D (0x5D)  
0x3C (0x5C)  
0x3B (0x5B)  
0x3A (0x5A)  
0x39 (0x59)  
0x38 (0x58)  
0x37 (0x57)  
0x36 (0x56)  
0x35 (0x55)  
0x34 (0x54)  
0x33 (0x53)  
0x32 (0x52)  
0x31 (0x51)  
0x30 (0x50)  
0x2F (0x4F)  
0x2E (0x4E)  
0x2D (0x4D)  
0x2C (0x4C)  
0x2B (0x4B)  
0x2A (0x4A)  
0x29 (0x49)  
0x28 (0x48)  
0x27 (0x47)  
0x26 (0x46)  
0x25 (0x45)  
0x24 (0x44)  
0x23 (0x43)  
S
V
N
Z
C
10  
13  
13  
44  
SPH  
SP15  
SP7  
SP14  
SP6  
SP13  
SP5  
XDIV5  
SP12  
SP4  
SP11  
SP3  
SP10  
SP2  
SP9  
SP8  
SPL  
SP1  
SP0  
XDIV  
XDIVEN  
XDIV6  
XDIV4  
XDIV3  
XDIV2  
XDIV1  
XDIV0  
Reserved  
EICRB  
EIMSK  
EIFR  
ISC71  
INT7  
INTF7  
OCIE2  
OCF2  
SRE  
JTD  
ISC70  
INT6  
INTF6  
TOIE2  
TOV2  
SRW10  
ISC61  
INT5  
INTF5  
TICIE1  
ICF1  
SE  
ISC60  
INT4  
INTF4  
OCIE1A  
OCF1A  
SM1  
ISC51  
INT3  
ISC50  
INT2  
INTF  
TOIE1  
TOV1  
SM2  
BORF  
CS02  
ISC41  
INT1  
INTF1  
OCIE0  
OCF0  
IVSEL  
EXTRF  
CS01  
ISC40  
INT0  
INTF0  
TOIE0  
TOV0  
IVCE  
PORF  
CS00  
66  
67  
INTF3  
OCIE1B  
OCF1B  
SM0  
67  
TIMSK  
TIFR  
109, 139, 160  
109, 141, 160  
30, 50, 64  
57, 261  
106  
MCUCR  
MCUCSR  
TCCR0  
TCNT0  
OCR0  
JTRF  
COM00  
WDRF  
WGM01  
FOC0  
WGM00  
COM01  
Timer/Counter0 (8 Bit)  
108  
Timer/Counter0 Output Compare Register  
108  
ASSR  
COM1B1  
AS0  
TCN0UB  
COM1C0  
CS12  
OCR0UB  
WGM11  
CS11  
TCR0UB  
WGM10  
CS10  
108  
TCCR1A  
TCCR1B  
TCNT1H  
TCNT1L  
OCR1AH  
OCR1AL  
OCR1BH  
OCR1BL  
ICR1H  
COM1A1  
ICNC1  
COM1A0  
ICES1  
COM1B0  
WGM13  
COM1C1  
WGM12  
133  
135  
Timer/Counter1 – Counter Register High Byte  
Timer/Counter1 – Counter Register Low Byte  
137  
137  
Timer/Counter1 – Output Compare Register A High Byte  
Timer/Counter1 – Output Compare Register A Low Byte  
Timer/Counter1 – Output Compare Register B High Byte  
Timer/Counter1 – Output Compare Register B Low Byte  
Timer/Counter1 – Input Capture Register High Byte  
Timer/Counter1 – Input Capture Register Low Byte  
138  
138  
138  
138  
139  
ICR1L  
139  
TCCR2  
TCNT2  
OCR2  
FOC2  
WGM20  
OCDR6  
COM21  
COM20  
WGM21  
CS22  
CS21  
CS20  
157  
Timer/Counter2 (8 Bit)  
160  
Timer/Counter2 Output Compare Register  
160  
IDRD/  
OCDR7  
0x22 (0x42)  
OCDR  
OCDR5  
OCDR4  
OCDR3  
OCDR2  
OCDR1  
OCDR0  
258  
0x21 (0x41)  
0x20 (0x40)  
0x1F (0x3F)  
0x1E (0x3E)  
0x1D (0x3D)  
0x1C (0x3C)  
0x1B (0x3B)  
0x1A (0x3A)  
0x19 (0x39)  
0x18 (0x38)  
0x17 (0x37)  
0x16 (0x36)  
0x15 (0x35)  
0x14 (0x34)  
0x13 (0x33)  
0x12 (0x32)  
0x11 (0x31)  
0x10 (0x30)  
0x0F (0x2F)  
0x0E (0x2E)  
0x0D (0x2D)  
0x0C (0x2C)  
0x0B (0x2B)  
0x0A (0x2A)  
0x09 (0x29)  
0x08 (0x28)  
0x07 (0x27)  
0x06 (0x26)  
0x05 (0x25)  
0x04 (0x24)  
0x03 (0x23)  
0x02 (0x22)  
0x01 (0x21)  
WDTCR  
SFIOR  
EEARH  
EEARL  
EEDR  
TSM  
WDCE  
WDE  
ACME  
WDP2  
PUD  
WDP1  
PSR0  
WDP0  
57  
PSR321  
91, 110, 145, 231  
EEPROM Address Register High Byte  
32  
32  
EEPROM Address Register Low Byte  
EEPROM Data Register  
33  
EECR  
EERIE  
PORTA3  
DDA3  
EEMWE  
PORTA2  
DDA2  
EEWE  
PORTA1  
DDA1  
EERE  
PORTA0  
DDA0  
33  
PORTA  
DDRA  
PINA  
PORTA7  
DDA7  
PORTA6  
DDA6  
PORTA5  
DDA5  
PORTA4  
DDA4  
88  
89  
PINA7  
PORTB7  
DDB7  
PINA6  
PORTB6  
DDB6  
PINA5  
PORTB5  
DDB5  
PINA4  
PORTB4  
DDB4  
PINA3  
PINA2  
PINA1  
PINA0  
89  
PORTB  
DDRB  
PINB  
PORTB3  
DDB3  
PORTB2  
DDB2  
PORTB1  
DDB1  
PORTB0  
DDB0  
89  
89  
PINB7  
PORTC7  
DDC7  
PINB6  
PORTC6  
DDC6  
PINB5  
PORTC5  
DDC5  
PINB4  
PORTC4  
DDC4  
PINB3  
PINB2  
PINB1  
PINB0  
89  
PORTC  
DDRC  
PINC  
PORTC3  
DDC3  
PORTC2  
DDC2  
PORTC1  
DDC1  
PORTC0  
DDC0  
89  
89  
PINC7  
PORTD7  
DDD7  
PINC6  
PORTD6  
DDD6  
PINC5  
PORTD5  
DDD5  
PINC4  
PORTD4  
DDD4  
PINC3  
PORTD3  
DDD3  
PINC2  
PINC1  
PORTD1  
DDD1  
PINC0  
PORTD0  
DDD0  
89  
PORTD  
DDRD  
PIND  
PORTD2  
DDD2  
90  
90  
PIND7  
PIND6  
PIND5  
PIND4  
PIND3  
PIND2  
PIND1  
PIND0  
90  
SPDR  
SPI Data Register  
173  
172  
171  
196  
196  
197  
200  
231  
247  
249  
250  
250  
90  
SPSR  
SPIF  
SPIE  
WCOL  
SPE  
SPI2X  
SPR0  
SPCR  
DORD  
MSTR  
CPOL  
CPHA  
SPR1  
UDR0  
USART0 I/O Data Register  
UCSR0A  
UCSR0B  
UBRR0L  
ACSR  
RXC0  
TXC0  
UDRE0  
UDRIE0  
FE0  
DOR0  
UPE0  
U2X0  
MPCM0  
TXB80  
RXCIE0  
TXCIE0  
RXEN0  
TXEN0  
UCSZ02  
RXB80  
USART0 Baud Rate Register Low  
ACD  
REFS1  
ADEN  
ACBG  
REFS0  
ADSC  
ACO  
ACI  
MUX4  
ADIF  
ACIE  
MUX3  
ADIE  
ACIC  
MUX2  
ADPS2  
ACIS1  
MUX1  
ADPS1  
ACIS0  
MUX0  
ADPS0  
ADMUX  
ADCSRA  
ADCH  
ADCL  
ADLAR  
ADATE  
ADC Data Register High Byte  
ADC Data Register Low byte  
PORTE  
DDRE  
PINE  
PORTE7  
DDE7  
PORTE6  
DDE6  
PORTE5  
DDE5  
PORTE4  
DDE4  
PORTE3  
DDE3  
PORTE2  
DDE2  
PORTE1  
DDE1  
PORTE0  
DDE0  
90  
PINE7  
PINE6  
PINE5  
PINE4  
PINE3  
PINE2  
PINE1  
PINE0  
90  
10  
8160CS–AVR–07/09  
ATmega64A  
5. Register Summary (Continued)  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Page  
0x00 (0x20)  
PINF  
PINF7  
PINF6  
PINF5  
PINF4  
PINF3  
PINF2  
PINF1  
PINF0  
91  
Notes: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses  
should never be written.  
2. Some of the status flags are cleared by writing a logical one to them. Note that the CBI and SBI instructions will operate on  
all bits in the I/O Register, writing a one back into any flag read as set, thus clearing the flag. The CBI and SBI instructions  
work with registers 0x00 to 0x1F only.  
11  
8160CS–AVR–07/09  
ATmega64A  
6. Instruction Set Summary  
Mnemonics  
Operands  
Description  
Operation  
Flags  
#Clocks  
ARITHMETIC AND LOGIC INSTRUCTIONS  
ADD  
Rd, Rr  
Rd, Rr  
Rdl,K  
Rd, Rr  
Rd, K  
Rd, Rr  
Rd, K  
Rdl,K  
Rd, Rr  
Rd, K  
Rd, Rr  
Rd, K  
Rd, Rr  
Rd  
Add two Registers  
Rd Rd + Rr  
Z,C,N,V,H  
Z,C,N,V,H  
Z,C,N,V,S  
Z,C,N,V,H  
Z,C,N,V,H  
Z,C,N,V,H  
Z,C,N,V,H  
Z,C,N,V,S  
Z,N,V  
1
1
2
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
ADC  
ADIW  
SUB  
Add with Carry two Registers  
Add Immediate to Word  
Subtract two Registers  
Subtract Constant from Register  
Subtract with Carry two Registers  
Subtract with Carry Constant from Reg.  
Subtract Immediate from Word  
Logical AND Registers  
Logical AND Register and Constant  
Logical OR Registers  
Rd Rd + Rr + C  
Rdh:Rdl Rdh:Rdl + K  
Rd Rd - Rr  
SUBI  
SBC  
Rd Rd - K  
Rd Rd - Rr - C  
Rd Rd - K - C  
Rdh:Rdl Rdh:Rdl - K  
Rd Rd Rr  
SBCI  
SBIW  
AND  
ANDI  
OR  
Rd Rd K  
Z,N,V  
Rd Rd v Rr  
Z,N,V  
ORI  
Logical OR Register and Constant  
Exclusive OR Registers  
One’s Complement  
Rd Rd v K  
Z,N,V  
EOR  
COM  
NEG  
SBR  
Rd Rd Rr  
Z,N,V  
Rd 0xFF Rd  
Rd 0x00 Rd  
Rd Rd v K  
Z,C,N,V  
Z,C,N,V,H  
Z,N,V  
Rd  
Two’s Complement  
Rd,K  
Rd,K  
Rd  
Set Bit(s) in Register  
CBR  
Clear Bit(s) in Register  
Increment  
Rd Rd (0xFF - K)  
Rd Rd + 1  
Z,N,V  
INC  
Z,N,V  
DEC  
Rd  
Decrement  
Rd Rd 1  
Z,N,V  
TST  
Rd  
Test for Zero or Minus  
Clear Register  
Rd Rd Rd  
Z,N,V  
CLR  
Rd  
Rd Rd Rd  
Rd 0xFF  
Z,N,V  
SER  
Rd  
Set Register  
None  
MUL  
Rd, Rr  
Rd, Rr  
Rd, Rr  
Rd, Rr  
Rd, Rr  
Rd, Rr  
Multiply Unsigned  
R1:R0 Rd x Rr  
R1:R0 Rd x Rr  
R1:R0 Rd x Rr  
R1:R0 ¨ (Rd x Rr) << 1  
R1:R0 ¨ (Rd x Rr) << 1  
R1:R0 ¨ (Rd x Rr) << 1  
Z,C  
MULS  
MULSU  
FMUL  
FMULS  
FMULSU  
Multiply Signed  
Z,C  
Multiply Signed with Unsigned  
Fractional Multiply Unsigned  
Fractional Multiply Signed  
Fractional Multiply Signed with Unsigned  
Z,C  
Z,C  
Z,C  
Z,C  
BRANCH INSTRUCTIONS  
RJMP  
IJMP  
k
Relative Jump  
PC PC + k + 1  
None  
None  
None  
None  
None  
None  
None  
I
2
2
Indirect Jump to (Z)  
PC Z  
JMP  
k
k
Direct Jump  
PC k  
3
RCALL  
ICALL  
CALL  
RET  
Relative Subroutine Call  
Indirect Call to (Z)  
PC PC + k + 1  
3
PC Z  
3
k
Direct Subroutine Call  
Subroutine Return  
PC k  
4
PC STACK  
4
RETI  
Interrupt Return  
PC STACK  
4
CPSE  
CP  
Rd,Rr  
Compare, Skip if Equal  
Compare  
if (Rd = Rr) PC PC + 2 or 3  
Rd Rr  
None  
Z, N,V,C,H  
Z, N,V,C,H  
Z, N,V,C,H  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
1/2/3  
1
Rd,Rr  
CPC  
Rd,Rr  
Compare with Carry  
Rd Rr C  
1
CPI  
Rd,K  
Compare Register with Immediate  
Skip if Bit in Register Cleared  
Skip if Bit in Register is Set  
Skip if Bit in I/O Register Cleared  
Skip if Bit in I/O Register is Set  
Branch if Status Flag Set  
Branch if Status Flag Cleared  
Branch if Equal  
Rd K  
1
SBRC  
SBRS  
SBIC  
SBIS  
Rr, b  
if (Rr(b)=0) PC PC + 2 or 3  
if (Rr(b)=1) PC PC + 2 or 3  
if (P(b)=0) PC PC + 2 or 3  
if (P(b)=1) PC PC + 2 or 3  
if (SREG(s) = 1) then PCPC+k + 1  
if (SREG(s) = 0) then PCPC+k + 1  
if (Z = 1) then PC PC + k + 1  
if (Z = 0) then PC PC + k + 1  
if (C = 1) then PC PC + k + 1  
if (C = 0) then PC PC + k + 1  
if (C = 0) then PC PC + k + 1  
if (C = 1) then PC PC + k + 1  
if (N = 1) then PC PC + k + 1  
if (N = 0) then PC PC + k + 1  
if (N V= 0) then PC PC + k + 1  
if (N V= 1) then PC PC + k + 1  
if (H = 1) then PC PC + k + 1  
if (H = 0) then PC PC + k + 1  
if (T = 1) then PC PC + k + 1  
if (T = 0) then PC PC + k + 1  
if (V = 1) then PC PC + k + 1  
if (V = 0) then PC PC + k + 1  
1/2/3  
1/2/3  
1/2/3  
1/2/3  
1/2  
1/2  
1/2  
1/2  
1/2  
1/2  
1/2  
1/2  
1/2  
1/2  
1/2  
1/2  
1/2  
1/2  
1/2  
1/2  
1/2  
1/2  
Rr, b  
P, b  
P, b  
s, k  
s, k  
k
BRBS  
BRBC  
BREQ  
BRNE  
BRCS  
BRCC  
BRSH  
BRLO  
BRMI  
BRPL  
BRGE  
BRLT  
BRHS  
BRHC  
BRTS  
BRTC  
BRVS  
BRVC  
k
Branch if Not Equal  
k
Branch if Carry Set  
k
Branch if Carry Cleared  
Branch if Same or Higher  
Branch if Lower  
k
k
k
Branch if Minus  
k
Branch if Plus  
k
Branch if Greater or Equal, Signed  
Branch if Less Than Zero, Signed  
Branch if Half Carry Flag Set  
Branch if Half Carry Flag Cleared  
Branch if T Flag Set  
k
k
k
k
k
Branch if T Flag Cleared  
Branch if Overflow Flag is Set  
Branch if Overflow Flag is Cleared  
k
k
12  
8160CS–AVR–07/09  
ATmega64A  
6. Instruction Set Summary (Continued)  
BRIE  
k
Branch if Interrupt Enabled  
if ( I = 1) then PC PC + k + 1  
if ( I = 0) then PC PC + k + 1  
None  
None  
1/2  
1/2  
BRID  
k
Branch if Interrupt Disabled  
DATA TRANSFER INSTRUCTIONS  
MOV  
MOVW  
LDI  
LD  
Rd, Rr  
Rd, Rr  
Rd, K  
Move Between Registers  
Copy Register Word  
Rd Rr  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3
3
3
-
Rd+1:Rd Rr+1:Rr  
Load Immediate  
Rd K  
Rd, X  
Load Indirect  
Rd (X)  
LD  
Rd, X+  
Rd, - X  
Rd, Y  
Load Indirect and Post-Inc.  
Load Indirect and Pre-Dec.  
Load Indirect  
Rd (X), X X + 1  
X X - 1, Rd (X)  
Rd (Y)  
LD  
LD  
LD  
Rd, Y+  
Rd, - Y  
Rd,Y+q  
Rd, Z  
Load Indirect and Post-Inc.  
Load Indirect and Pre-Dec.  
Load Indirect with Displacement  
Load Indirect  
Rd (Y), Y Y + 1  
Y Y - 1, Rd (Y)  
Rd (Y + q)  
Rd (Z)  
LD  
LDD  
LD  
LD  
Rd, Z+  
Rd, -Z  
Rd, Z+q  
Rd, k  
Load Indirect and Post-Inc.  
Load Indirect and Pre-Dec.  
Load Indirect with Displacement  
Load Direct from SRAM  
Store Indirect  
Rd (Z), Z Z+1  
Z Z - 1, Rd (Z)  
Rd (Z + q)  
Rd (k)  
LD  
LDD  
LDS  
ST  
X, Rr  
(X) Rr  
ST  
X+, Rr  
- X, Rr  
Y, Rr  
Store Indirect and Post-Inc.  
Store Indirect and Pre-Dec.  
Store Indirect  
(X) Rr, X X + 1  
X X - 1, (X) Rr  
(Y) Rr  
ST  
ST  
ST  
Y+, Rr  
- Y, Rr  
Y+q,Rr  
Z, Rr  
Store Indirect and Post-Inc.  
Store Indirect and Pre-Dec.  
Store Indirect with Displacement  
Store Indirect  
(Y) Rr, Y Y + 1  
Y Y - 1, (Y) Rr  
(Y + q) Rr  
ST  
STD  
ST  
(Z) Rr  
ST  
Z+, Rr  
-Z, Rr  
Z+q,Rr  
k, Rr  
Store Indirect and Post-Inc.  
Store Indirect and Pre-Dec.  
Store Indirect with Displacement  
Store Direct to SRAM  
Load Program Memory  
Load Program Memory  
Load Program Memory and Post-Inc  
Store Program Memory  
In Port  
(Z) Rr, Z Z + 1  
Z Z - 1, (Z) Rr  
(Z + q) Rr  
ST  
STD  
STS  
LPM  
LPM  
LPM  
SPM  
IN  
(k) Rr  
R0 (Z)  
Rd, Z  
Rd (Z)  
Rd, Z+  
Rd (Z), Z Z+1  
(Z) R1:R0  
Rd, P  
P, Rr  
Rr  
Rd P  
1
1
2
2
OUT  
PUSH  
POP  
Out Port  
P Rr  
Push Register on Stack  
Pop Register from Stack  
STACK Rr  
Rd STACK  
Rd  
BIT AND BIT-TEST INSTRUCTIONS  
SBI  
P,b  
P,b  
Rd  
Rd  
Rd  
Rd  
Rd  
Rd  
s
Set Bit in I/O Register  
Clear Bit in I/O Register  
Logical Shift Left  
I/O(P,b) 1  
None  
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
CBI  
I/O(P,b) 0  
None  
LSL  
Rd(n+1) Rd(n), Rd(0) 0  
Z,C,N,V  
LSR  
ROL  
ROR  
ASR  
SWAP  
BSET  
BCLR  
BST  
BLD  
SEC  
CLC  
SEN  
CLN  
SEZ  
CLZ  
SEI  
Logical Shift Right  
Rd(n) Rd(n+1), Rd(7) 0  
Z,C,N,V  
Rotate Left Through Carry  
Rotate Right Through Carry  
Arithmetic Shift Right  
Swap Nibbles  
Rd(0)C,Rd(n+1)Rd(n),CRd(7)  
Z,C,N,V  
Rd(7)C,Rd(n)Rd(n+1),CRd(0)  
Z,C,N,V  
Rd(n) Rd(n+1), n=0:6  
Z,C,N,V  
Rd(3:0)Rd(7:4),Rd(7:4)Rd(3:0)  
None  
Flag Set  
SREG(s) 1  
SREG(s) 0  
T Rr(b)  
Rd(b) T  
C 1  
SREG(s)  
s
Flag Clear  
SREG(s)  
Rr, b  
Rd, b  
Bit Store from Register to T  
Bit load from T to Register  
Set Carry  
T
None  
C
C
N
N
Z
Clear Carry  
C 0  
Set Negative Flag  
N 1  
Clear Negative Flag  
Set Zero Flag  
N 0  
Z 1  
Clear Zero Flag  
Z 0  
Z
Global Interrupt Enable  
Global Interrupt Disable  
Set Signed Test Flag  
Clear Signed Test Flag  
Set Twos Complement Overflow.  
Clear Twos Complement Overflow  
Set T in SREG  
I 1  
I
CLI  
I 0  
I
SES  
CLS  
SEV  
CLV  
SET  
CLT  
SEH  
S 1  
S
S
V
V
T
S 0  
V 1  
V 0  
T 1  
Clear T in SREG  
T 0  
T
Set Half Carry Flag in SREG  
H 1  
H
13  
8160CS–AVR–07/09  
ATmega64A  
6. Instruction Set Summary (Continued)  
CLH  
Clear Half Carry Flag in SREG  
H 0  
H
1
MCU CONTROL INSTRUCTIONS  
NOP  
No Operation  
Sleep  
None  
None  
None  
None  
1
1
SLEEP  
WDR  
(see specific descr. for Sleep function)  
(see specific descr. for WDR/timer)  
For On-chip Debug Only  
Watchdog Reset  
Break  
1
BREAK  
N/A  
14  
8160CS–AVR–07/09  
ATmega64A  
7. Ordering Information  
Speed (MHz)  
Power Supply  
Ordering Code(2)  
Package(1)  
Operation Range  
ATmega64A-AU  
ATmega64A-MU  
64A  
Industrial  
16  
2.7 - 5.5  
64M1  
(-40°C to 85°C)  
Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information  
and minimum quantities.  
2. Pb-free packaging complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also  
Halide free and fully Green.  
Package Type  
64A  
64-lead, Thin (1.0 mm) Plastic Gull Wing Quad Flat Package (TQFP)  
64M1  
64-pad, 9 x 9 x 1.0 mm body, lead pitch 0.50 mm, Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)  
15  
8160CS–AVR–07/09  
ATmega64A  
8. Packaging Information  
8.1  
64A  
PIN 1  
B
PIN 1 IDENTIFIER  
E1  
E
e
D1  
D
C
0°~7°  
A2  
A
A1  
L
COMMON DIMENSIONS  
(Unit of Measure = mm)  
MIN  
MAX  
1.20  
NOM  
NOTE  
SYMBOL  
A
A1  
A2  
D
0.05  
0.95  
15.75  
13.90  
15.75  
13.90  
0.30  
0.09  
0.45  
0.15  
1.00  
16.00  
14.00  
16.00  
14.00  
1.05  
16.25  
D1  
E
14.10 Note 2  
16.25  
Notes:  
E1  
B
14.10 Note 2  
0.45  
1.This package conforms to JEDEC reference MS-026, Variation AEB.  
2. Dimensions D1 and E1 do not include mold protrusion. Allowable  
protrusion is 0.25 mm per side. Dimensions D1 and E1 are maximum  
plastic body size dimensions including mold mismatch.  
C
0.20  
3. Lead coplanarity is 0.10 mm maximum.  
L
0.75  
e
0.80 TYP  
10/5/2001  
TITLE  
DRAWING NO. REV.  
2325 Orchard Parkway  
San Jose, CA 95131  
64A, 64-lead, 14 x 14 mm Body Size, 1.0 mm Body Thickness,  
0.8 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP)  
64A  
B
R
16  
8160CS–AVR–07/09  
ATmega64A  
8.2  
64M1  
D
Marked Pin# 1 ID  
E
SEATING PLANE  
C
A1  
TOP VIEW  
A
K
0.08  
C
L
Pin #1 Corner  
SIDE VIEW  
D2  
Pin #1  
Triangle  
Option A  
1
2
3
COMMON DIMENSIONS  
(Unit of Measure = mm)  
MIN  
0.80  
MAX  
1.00  
0.05  
0.30  
9.10  
NOM  
0.90  
0.02  
0.25  
9.00  
NOTE  
SYMBOL  
E2  
Option B  
Option C  
A
Pin #1  
Chamfer  
(C 0.30)  
A1  
b
0.18  
8.90  
D
D2  
E
5.20  
5.40  
9.00  
5.60  
9.10  
K
Pin #1  
Notch  
(0.20 R)  
8.90  
e
b
E2  
e
5.20  
5.40  
0.50 BSC  
0.40  
5.60  
BOTTOM VIEW  
L
0.35  
0.45  
1.55  
K
1.25  
1.40  
1. JEDEC Standard MO-220, (SAW Singulation) Fig. 1, VMMD.  
2. Dimension and tolerance conform to ASMEY14.5M-1994.  
Note:  
5/25/06  
DRAWING NO. REV.  
64M1  
TITLE  
2325 Orchard Parkway  
San Jose, CA 95131  
64M1, 64-pad, 9 x 9 x 1.0 mm Body, Lead Pitch 0.50 mm,  
5.40 mm Exposed Pad, Micro Lead Frame Package (MLF)  
G
R
17  
8160CS–AVR–07/09  
ATmega64A  
9. Errata  
The revision letter in this section refers to the revision of the ATmega64A device.  
9.1  
ATmega64A, rev. D  
First Analog Comparator conversion may be delayed  
Interrupts may be lost when writing the timer registers in the asynchronous timer  
Stabilizing time needed when changing XDIV Register  
Stabilizing time needed when changing OSCCAL Register  
IDCODE masks data from TDI input  
Reading EEPROM by using ST or STS to set EERE bit triggers unexpected interrupt request  
1. First Analog Comparator conversion may be delayed  
If the device is powered by a slow rising VCC, the first Analog Comparator conversion will  
take longer than expected on some devices.  
Problem Fix/Workaround  
When the device has been powered or reset, disable then enable theAnalog Comparator  
before the first conversion.  
2. Interrupts may be lost when writing the timer registers in the asynchronous timer  
The interrupt will be lost if a timer register that is synchronous timer clock is written when the  
asynchronous Timer/Counter register (TCNTx) is 0x00.  
Problem Fix / Workaround  
Always check that the asynchronous Timer/Counter register neither have the value 0xFF nor  
0x00 before writing to the asynchronous Timer Control Register (TCCRx), asynchronous  
Timer Counter Register (TCNTx), or asynchronous Output Compare Register (OCRx).  
3. Stabilizing time needed when changing XDIV Register  
After increasing the source clock frequency more than 2% with settings in the XDIV register,  
the device may execute some of the subsequent instructions incorrectly.  
Problem Fix / Workaround  
The NOP instruction will always be executed correctly also right after a frequency change.  
Thus, the next 8 instructions after the change should be NOP instructions. To ensure this,  
follow this procedure:  
1.Clear the I bit in the SREG Register.  
2.Set the new pre-scaling factor in XDIV register.  
3.Execute 8 NOP instructions  
4.Set the I bit in SREG  
This will ensure that all subsequent instructions will execute correctly.  
Assembly Code Example:  
CLI  
; clear global interrupt enable  
; set new prescale value  
; no operation  
OUT XDIV, temp  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
; no operation  
; no operation  
; no operation  
; no operation  
; no operation  
18  
8160CS–AVR–07/09  
ATmega64A  
NOP  
NOP  
SEI  
; no operation  
; no operation  
; clear global interrupt enable  
4. Stabilizing time needed when changing OSCCAL Register  
After increasing the source clock frequency more than 2% with settings in the OSCCAL reg-  
ister, the device may execute some of the subsequent instructions incorrectly.  
Problem Fix / Workaround  
The behavior follows errata number 3., and the same Fix / Workaround is applicable on this  
errata.  
5. IDCODE masks data from TDI input  
The JTAG instruction IDCODE is not working correctly. Data to succeeding devices are  
replaced by all-ones during Update-DR.  
Problem Fix / Workaround  
If ATmega64A is the only device in the scan chain, the problem is not visible.  
Select the Device ID Register of the ATmega64A by issuing the IDCODE instruction  
or by entering the Test-Logic-Reset state of the TAP controller to read out the  
contents of its Device ID Register and possibly data from succeeding devices of the  
scan chain. Issue the BYPASS instruction to the ATmega64A while reading the  
Device ID Registers of preceding devices of the boundary scan chain.  
If the Device IDs of all devices in the boundary scan chain must be captured  
simultaneously, the ATmega64A must be the first device in the chain.  
6. Reading EEPROM by using ST or STS to set EERE bit triggers unexpected interrupt  
request.  
Reading EEPROM by using the ST or STS command to set the EERE bit in the EECR reg-  
ister triggers an unexpected EEPROM interrupt request.  
Problem Fix / Workaround  
Always use OUT or SBI to set EERE in EECR.  
19  
8160CS–AVR–07/09  
ATmega64A  
10. Datasheet Revision History  
Please note that the referring page numbers in this section are referred to this document. The  
referring revision in this section refers to the document revision.  
10.1 8160C – 07/09  
10.2 8160B – 03/09  
1.  
Updated “Errata” on page 382.  
1.  
2.  
3.  
Updated “Typical Characteristics” view.  
Updated Figure 29-36 and Figure 29-37 on page 361 (BOD Thresholds Characteristics).  
Updated the last page.  
10.3 8160A – 08/08  
1.  
2.  
Initial revision (Based on the ATmega64/L datasheet 2490N-AVR-06/08).  
Changes done compared to ATmega64/L datasheet 2490N-AVR-06/08:  
– All Electrical Characteristics are moved to “Electrical Characteristics” on page 327.  
– Register descriptions are moved to sub section at the end of each chapter.  
Updated “DC Characteristics” on page 327 with new VOL Max (0.9V and 0.6V) and  
typical values for ICC  
.
– Added “Speed Grades” on page 329.  
– Added “System and Reset Characteristics” on page 330.  
– New graphics in “Typical Characteristics” on page 343.  
– New “Ordering Information” on page 15.  
20  
8160CS–AVR–07/09  
Headquarters  
International  
Atmel Corporation  
2325 Orchard Parkway  
San Jose, CA 95131  
USA  
Tel: 1(408) 441-0311  
Fax: 1(408) 487-2600  
Atmel Asia  
Atmel Europe  
Le Krebs  
Atmel Japan  
9F, Tonetsu Shinkawa Bldg.  
1-24-8 Shinkawa  
Chuo-ku, Tokyo 104-0033  
Japan  
Tel: (81) 3-3523-3551  
Fax: (81) 3-3523-7581  
Unit 1-5 & 16, 19/F  
BEA Tower, Millennium City 5  
418 Kwun Tong Road  
Kwun Tong, Kowloon  
Hong Kong  
8, Rue Jean-Pierre Timbaud  
BP 309  
78054 Saint-Quentin-en-  
Yvelines Cedex  
France  
Tel: (852) 2245-6100  
Fax: (852) 2722-1369  
Tel: (33) 1-30-60-70-00  
Fax: (33) 1-30-60-71-11  
Product Contact  
Web Site  
Technical Support  
Sales Contact  
www.atmel.com  
Enter Product Line E-mail  
www.atmel.com/contacts  
Literature Requests  
www.atmel.com/literature  
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any  
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMELS TERMS AND CONDI-  
TIONS OF SALE LOCATED ON ATMELS WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY  
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR  
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-  
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF  
THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no  
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications  
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided  
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use  
as components in applications intended to support or sustain life.  
© 2009 Atmel Corporation. All rights reserved. Atmel®, Atmel logo and combinations thereof, AVR® and others are registered trademarks or  
trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.  
8160CS–AVR–07/09  

相关型号:

ATMEGA64A_1

8-bit Microcontroller with 64K Bytes In-System Programmable Flash
ATMEL

ATMEGA64C1

8-bit Microcontroller with 16K/32K/64K Bytes In-System Programmable Flash
ATMEL

ATMEGA64C1-15AZ

IC MCU 8BIT 64KB FLASH 32TQFP
MICROCHIP

ATMEGA64C1-15MZ

Microcontroller, 8-Bit, FLASH, AVR RISC CPU, 16MHz, CMOS, PQCC32,
ATMEL

ATMEGA64L

8-bit AVR Microcontroller with 64K Bytes In-System Programmable Flash
ATMEL

ATMEGA64L-8AC

8-bit AVR Microcontroller with 64K Bytes In-System Programmable Flash
ATMEL

ATMEGA64L-8AI

8-bit AVR Microcontroller with 64K Bytes In-System Programmable Flash
ATMEL

ATMEGA64L-8AJ

RISC Microcontroller, 8-Bit, FLASH, 8MHz, CMOS, PQFP64, 14 X 14 MM, 1 MM HEIGHT, 0.80 MM PITCH, PLASTIC, MS-026AEB, TQFP-64
ATMEL

ATMEGA64L-8AL

RISC Microcontroller, 8-Bit, FLASH, 8MHz, CMOS, PQFP64, 14 X 14 MM, 1 MM HEIGHT, 0.80 MM PITCH, PLASTIC, MS-026AEB, TQFP-64
ATMEL

ATMEGA64L-8AQ

Microcontroller, 8-Bit, FLASH, AVR RISC CPU, 8MHz, CMOS, PQFP64,
ATMEL

ATMEGA64L-8AU

8-bit Microcontroller with 64K Bytes In-System Programmable Flash
ATMEL

ATMEGA64L-8MC

8-bit AVR Microcontroller with 64K Bytes In-System Programmable Flash
ATMEL