ATA5749-6DQ [ATMEL]

Fractional-N PLL Transmitter IC; 小数N分频PLL发射器IC
ATA5749-6DQ
型号: ATA5749-6DQ
厂家: ATMEL    ATMEL
描述:

Fractional-N PLL Transmitter IC
小数N分频PLL发射器IC

电信集成电路 电信电路 光电二极管 异步传输模式 ATM
文件: 总26页 (文件大小:581K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Features  
Fully Integrated Fractional-N PLL  
ASK and Closed Loop FSK Modulation  
Output Power Up to +12.5 dBm from 300 MHz to 450 MHz  
Current Consumption is Scaled by Output Power Programming  
Fast Crystal Oscillator Start-up Time of Typically 200 µs  
Low Current Consumption of Typically 7.3 mA at 5.5 dBm  
Only One 13.0000 MHz Crystal for 314.1 MHz to 329.5 MHz and 424.5 MHz to 439.9 MHz  
Operation  
Fractional-N  
PLL Transmitter  
IC  
Single Ended RF Power Amplifier Output  
Many Software Programmable Options Using SPI:  
– Output Power from –0.5 dBm to +12.5 dBm  
– RF Frequency from 300 MHz to 450 MHz with Different Crystals  
– FSK Deviation with 396 Hz Resolution  
– CLK Output Frequency 3.25 MHz or 1.625 MHz  
Data Rate Up to 40 kbit/s (Manchester)  
ATA5749  
4 KV HBM ESD Protection Including XTO  
Operating Temperature Range of –40°C to +125°C  
Supply Voltage Range of 1.9V to 3.6V  
TSSOP10 Package  
Preliminary  
Benefits  
Robust Crystal Oscillator with Fast Start Up and High Reliability  
Lower Inventory Costs and Reduced Part Number Proliferation  
Longer Battery Lifetime  
Supports Multi-channel Operation  
Wide Tolerance Crystal Possible with PLL Software Compensation  
1. Description  
The ATA5749 is a fractional-N-PLL transmitter IC for 300 MHz to 450 MHz operation  
and is especially targeted for Tire Pressure Sensor Gauges, Remote Keyless Entry,  
and Passive Entry and other automotive applications. It operates at data rates up to  
40 kbit/s Manchester for ASK and FSK with a typical 5.5 dBm output power at 7.3 mA.  
Transmitter parameters such as output power, output frequency, FSK deviation, and  
current consumption can be programmed using the SPI interface. This fully integrated  
PLL transmitter IC simplifies RF board design and results in very low material costs.  
9128D–RKE–01/09  
Figure 1-1. Block Diagram  
ATA5749  
1
2
3
4
5
10  
CLK  
XTO_RDY  
EN  
Power  
up/down  
CLK_DRV  
1
XTO Signal  
4 or 8  
Fractional-N-PLL  
CLK_ON  
DIV_CNTRL  
FSK_mod  
9
SDIN_TXDIN  
GND  
FREQ[0:14]  
FSEP[0:7]  
Frac.  
Div.  
Digital  
Control  
and  
433_N315  
Registers  
ASK_mod  
8
SCK  
PFD  
CP  
VS  
PWR[0:3]  
7
ANT2  
XTO1  
LP  
XTO  
(FOX)  
PA  
6
ANT1  
XTO2  
VCO  
2
ATA5749 [Preliminary]  
9128D–RKE–01/09  
ATA5749 [Preliminary]  
2. Pin Configuration  
Figure 2-1. TSSOP10 Package Pinout  
CLK  
1
2
3
4
5
10 EN  
SDIN_TXDIN  
SCK  
9
8
7
6
GND  
VS  
ATA5749  
ANT2  
XTO1  
XTO2  
ANT1  
Table 2-1.  
Pin Description  
Symbol  
CLK  
Pin  
1
Function  
CLK output  
2
SDIN_TXDIN  
SCK  
Serial bus data input and TX data input  
Serial bus clock input  
Antenna interface  
3
4
ANT2  
5
ANT1  
Antenna interface  
6
XTO2  
Crystal/CLOAD2 connection  
Crystal/CLOAD1 connection  
Supply input  
7
XTO1  
8
VS  
9
GND  
Supply GND  
10  
EN  
Enable input  
3
9128D–RKE–01/09  
3. Functional Description  
3.1  
Fractional-N PLL  
The ATA5749 block diagram is shown in Figure 1-1 on page 2. The operation of the PLL is  
determined by the contents of a 32-bit configuration register. The 15-bit value FREQ is used with  
the 1-bit 434_N315 flag to determine the RF carrier frequency. This results in a user-selectable  
frequency step size of 793 Hz (with 13.000 MHz crystal). With this level of resolution, it is possi-  
ble to compensate for crystal tolerance by adjusting the value of FREQ accordingly. This  
enables the use of lower cost crystals without compromising final accuracy. In addition, software  
programming of RF carrier frequency allows this device to be used in some multi-channel  
applications.  
Modulation type is selected with the 1-bit ASK_NFSK flag. FSK modulation is achieved by mod-  
ifying the divider block in the feedback loop. The benefit to this approach is that performance-  
reducing RF spurs (common in applications that create FSK by “pulling” the load capacitance in  
the crystal oscillator circuit) are completely eliminated. The 8-bit value FSEP establishes the  
FSK frequency deviation. It is possible to obtain FSK frequency deviations from ±396 Hz to  
±101 KHz in steps of ±396 Hz.  
The PLL lock time is 1280/(external crystal frequency) and amounts to 98.46 µs when using a  
13.0000 MHz crystal. When added to the crystal oscillator start-up time, a very fast  
time-to-transmit is possible (typically 300 µs). This feature extends battery life in applications like  
Tire Pressure Monitoring Systems, where the message length is often shorter than 10 ms and  
the time “wasted” during start-up and settling time becomes more significant.  
3.2  
Selecting the RF Carrier Frequency  
The fractional divider can be programmed to generate an RF output frequency fRF according to  
the formulas shown in Table 3-1. Note that in the case of fRF ASK, the FSEP/2 value is rounded  
down to the next integer value if FSEP is an odd number.  
Table 3-1.  
RF Output Parameter Formulas  
RF Output Parameter  
S434_N315 = LOW  
S434_N315 = HIGH  
fRF_FSK_LOW  
(24 + (FREQ + 0.5)/16384) × fXTO  
(32.5 + (FREQ + 0.5)/16384) × fXTO  
(24 + (FREQ + FSEP + 0.5)/16384)  
(32.5 + (FREQ + FSEP + 0.5)/16384)  
fRF_FSK_HIGH  
fDEV__FSK  
fRF ASK  
× fXTO  
× fXTO  
FSEP/32768 × fXTO  
FSEP/32768 × fXTO  
(24 + (FREQ + FSEP/2 + 0.5)/16384) (32.5 + (FREQ + FSEP/2 + 0.5)/16384)  
× fXTO × fXTO  
FSEP can take on the values of 1 to 255. Using a 13.000 MHz crystal, the range of frequency  
deviation fDEV_FSK is programmable from ±396 Hz to ±101.16 kHz in steps of ±396 Hz. For  
example, with FSEP = 100 the output frequency is FSK modulated with fDEV_FSK = ±39.6 kHz.  
FREQ can take values in the range of values 2500 and 22000. Using a 13.0000 MHz crystal, the  
output frequency fRF can be programmed to 315 MHz by setting FREQ[0:14] = 3730,  
FSEP[0:7] = 100 and S434_N315 = 0. By setting FREQ[0:14] = 14342, FSEP[0:7] = 100 and  
S434_N315 = 1, 433.92 MHz can be realized.  
4
ATA5749 [Preliminary]  
9128D–RKE–01/09  
ATA5749 [Preliminary]  
The PA is enabled when the PLL is locked and the configuration register programming is com-  
pleted. Upon enabling PA at FSK-mode, the RF output power will be switched on. At ASK mode,  
the input signal must be additionally set high for RF at output pins. The output power is user pro-  
grammable from –0.5 dBm to +12.5 dBm in steps of approximately 1 dB. Changing the output  
power requirements, you also modify the current consumption. This gives the user the option to  
optimize system performance (RF link budget versus battery life). The PA is implemented as a  
Class-C amplifier, which uses an open-collector output to deliver a current pulse that is nearly  
independent from supply voltage and temperature. The working principle is shown in Figure 3-1.  
Figure 3-1. Class C Power Amplifier Output  
VANT1  
VS  
IANT2  
IPulse = (PWR[0:3])  
VS  
VANT1  
L1  
Power Meter  
ANT1  
5
C2  
IANT2  
50Ω  
ZLOPT  
ANT2  
4
The peak value of this current pulse IPulse is calibrated during ATA5749 production to about  
±20%, which corresponds to about 1.5 dB variation in output power for a given power setting  
under typical conditions. The actual value of IPulse can be programmed with the 4-bit value in  
PWR. This allows the user to scale both the output power and current consumption to optimal  
levels.  
ASK modulation is achieved by using the SDIN_TXDIN signal where a HIGH on this pin corre-  
sponds to RF carrier “ON” and a LOW corresponds to RF “OFF”. FSK uses the same signal path  
but HIGH switch on the upper FSK-frequency.  
5
9128D–RKE–01/09  
3.3  
Crystal Oscillator  
The crystal oscillator (XTO) is an amplitude-regulated Pierce oscillator. It has fixed function and  
is not programmable. The oscillator is enabled when the EN is “set”. After the oscillator’s output  
amplitude reaches an acceptable level, the XTO_RDY flag is “set”. The CLK-pin becomes active  
if CLK_ON is set. The PLL receives its reference frequency.  
Typically, this process takes about 200 µs when using a small sized crystal with a motional  
capacitance of 4 fF. This start-up time strongly depends on the motional capacitance of the crys-  
tal and is lower with higher motional capacitance.  
The high negative starting impedance of RXTO12_START > 1500Ω is important to minimize the fail-  
ure rate due to the “sleeping crystal” phenomena (more common among very small sized  
3.2 mm × 2.5 mm crystals).  
3.4  
Clock Driver  
The clock driver block shown in Figure 1-1 on page 2 is programmed using the CLK_ONLY,  
CLK_ON, and DIV_CNTRL bits in the configuration register. When CLK_ONLY is “clear”, normal  
operation is selected and the fractional-N PLL is operating. When CLK_ON is “set”, the CLK out-  
put is enabled. The crystal clock divider ratio can be set to divide by 4 when DIV_CNTRL is “set”  
and divide by 8 when DIV_CNTRL is “clear”. With a 13.0000 MHz crystal, this yields an output of  
3.25 MHz or 1.625 MHz, respectively. When CLK_ON is “clear”, no clock is available at CLK and  
the transmitter has less current consumption.  
The CLK signal can be used to clock a microcontroller. It is CMOS compatible and can drive up  
to 20 pF of load capacitance at 1.625 MHz and up to 10 pF at 3.25 MHz. When the device is in  
power-down mode, the CLK output stays low. Upon power up, CLK output remains low until the  
amplitude detector of the crystal oscillator detects sufficient amplitude and XTO_RDY and  
CLK_ON are “set”. After this takes place, CLK output becomes active. The CLK output is syn-  
chronized with the XTO_RDY signal so that the first period of the CLK output is always a full  
period (no CLK output spike at activation).  
To lower overall current consumption, it is possible to power down the entire chip except for the  
crystal oscillator block. This can be achieved when the CLK_ONLY is “set”.  
6
ATA5749 [Preliminary]  
9128D–RKE–01/09  
ATA5749 [Preliminary]  
4. Application  
4.1  
Typical Application  
Figure 4-1. Typical Application Circuit  
IO1  
ATA5749  
1
10  
CLK  
XTO_RDY  
EN  
Power  
up/down  
CLK_DRV  
CLK  
Micro-  
1
XTO Signal  
controller  
4 or 8  
IO2  
Fractional-N-PLL  
CLK_ON  
DIV_CNTRL  
FSK_mod  
IO3  
2
9
8
7
6
GND  
FREQ[0:14]  
SDIN_TXDIN  
FSEP[0:7]  
Frac.  
Div.  
Digital  
C6  
Control  
and  
433_N315  
Registers  
3
ASK_mod  
SCK  
PFD  
CP  
VS  
PWR[0:3]  
VS  
C3  
C4  
4
ANT2  
XTO1  
Loop  
antenna  
LP  
XTAL  
XTO  
(FOX)  
5
PA  
ANT1  
XTO2  
VCO  
C5  
C2  
L1  
C1  
VS  
Figure 4-1 shows the typical application circuit. For C6, the supply-voltage blocking capacitor,  
value of 68 nF X7R is recommended. C2 and C3 are NPO capacitors used to match the loop  
antenna impedance to the power amplifier optimum load impedance. They are based on the  
PCB trace antenna and are 20 pF NPO capacitors. C1 (typically 1 nF X7R) is needed for the  
supply blocking of the PA. In combination with L1 (200 nH to 300 nH), they prevent the power  
amplifier from coupling to the supply voltage and disturbing PLL operation. They should be  
placed close to pin 5. L1 also provides a low resistive path to VS to deliver the DC current to  
ANT1.  
7
9128D–RKE–01/09  
The PCB loop antenna should not exceed a trace width of 1.5 mm otherwise the Q-factor of the  
loop antenna is too high. C4 and C5 should be selected so that the XTO runs on the load reso-  
nance frequency of the crystal. A crystal with a load capacitance of 9 pF is recommended for  
proper start-up behavior and low current consumption. When determining values for C4 and C5,  
a parasitic capacitance of 3 pF should be included. With value of 15 pF for C4 and C5, an effec-  
tive load capacitance of 9 pF can be achieved e.g. 9 pF = (15 pF + 3 pF)/2. The supply VS is  
typically delivered from a single Li-Cell.  
4.1.1  
Antenna Impedance Matching  
The maximum output power is achieved by using load impedances according to Table 4-1 and  
Table 4-2 on page 9 and the output power. The load impedance ZLOPT is defined as the imped-  
ance seen from the ATA5749 ANT1, ANT2 into the matching network. This is not the output  
impedance of the IC but essentially the peak voltage divided by the peak current with some addi-  
tional parasitic effects (Cpar). Table 4-1 and Table 4-2 do not contain information pertaining to  
C3 in Figure 4-2, which is an option for better matching at low power steps.  
Figure 4-2 is the circuit that was used to obtain the typical output power measurements in Figure  
4-3 on page 10 and typical current consumption in Figure 4-4 on page 10. Table 4-1 and Table  
4-2 on page 9 provide recommended values and performance info at various output power lev-  
els. For reference, ZLOPT is defined as the impedance seen from the ATA5749 ANT1, ANT2 into  
the matching network.  
Figure 4-2. Output Power Measurement Circuit  
ZLOPT  
ANT2  
4
Power Meter  
ANT1  
5
C2  
PA  
50Ω  
C3  
L1  
C1  
VS  
8
ATA5749 [Preliminary]  
9128D–RKE–01/09  
ATA5749 [Preliminary]  
The used parts at Table 4-1 and Table 4-2 on page 9 are:  
Inductors: high Q COILCRAFT 0805CS; Capacitors: AVX ACCU-P 0402  
Table 4-1.  
Measured PA Matching at 315 MHz (CLK_ON = “LOW”) at Typ. Samples  
PWR  
Register  
Desired  
Power (dBm)  
L1  
(nH)  
C1  
(pF)  
C2  
(pF)  
RLOPT  
(Ω)  
ZLOPT  
(Ω)  
Cpar  
(pF)  
Actual Power  
(dBm)  
3
4
–0.5  
1.0  
110  
100  
100  
100  
82  
1.2  
1.5  
1.5  
1.5  
1.8  
2.2  
2.7  
2.7  
3.3  
3.6  
4.7  
5.6  
5.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
2950  
1940  
1550  
1250  
1000  
730  
110 + 540j  
150 + 520j  
190 + 520j  
220 + 480j  
240 + 430j  
280 + 360j  
290 + 300j  
290 + 290j  
280 + 225j  
250 + 150j  
215 + 85j  
0.9  
0.9  
0.9  
0.9  
0.9  
0.9  
0.9  
0.9  
0.9  
0.9  
0.9  
0.9  
0.9  
–0.37  
1.12  
2.11  
3.23  
4.38  
5.42  
7.14  
8.22  
8.63  
9.79  
10.52  
11.67  
13  
5
2.5  
6
3.5  
7
4.5  
8
5.5  
82  
9
6.5  
68  
580  
10  
11  
12  
13  
14  
15  
7.5  
68  
460  
8.5  
68  
350  
9.5  
56  
320  
10.5  
11.5  
12.5  
47  
250  
47  
190  
180 + 50j  
47  
160  
160 + 45j  
Table 4-2.  
Measured PA Matching at 433.92 MHz (CLK_ON = “LOW”) at Typ. Samples  
PWR  
Register  
Desired  
Power (dBm)  
L1  
(nH)  
C1  
(pF)  
C2  
(pF)  
RLOPT  
(Ω)  
ZLOPT  
(Ω)  
Cpar  
(pF)  
Actual Power  
(dBm)  
3
4
–0.5  
1.0  
68  
56  
56  
47  
47  
47  
43  
36  
33  
36  
36  
27  
27  
0,9  
2.7 + 2.2  
1.2  
1.5  
1.5  
1.5  
5.6  
5.6  
5.6  
1
2800  
1850  
1450  
1150  
950  
60 + 400j  
90 + 390j  
110 + 380j  
130 + 370j  
150 + 350j  
180 + 300j  
200 + 270j  
210 + 230j  
200 + 170j  
195 + 150j  
175 + 100j  
150 + 70j  
130 + 50j  
0.9  
0.9  
0.9  
0.9  
0.9  
0.9  
0.9  
0.9  
0.9  
0.9  
0.9  
0.9  
0.9  
–0.62  
1.3  
5
2.5  
2.73  
3.03  
4.63  
6.18  
6.66  
7.91  
8.68  
9.8  
6
3.5  
1.8  
7
4.5  
1.6  
8
5.5  
1.8  
680  
9
6.5  
2.2  
560  
10  
11  
12  
13  
14  
15  
7.5  
2.4  
1
450  
8.5  
3
1
340  
9.5  
2.7  
1
310  
10.5  
11.5  
12.5  
3.6  
1
230  
10.49  
11.6  
12.5  
4.7  
1
180  
4.7  
1
150  
9
9128D–RKE–01/09  
Figure 4-3. Typical Measured Output Power  
15  
V
S = 3.6V, PWR[0:15] = 15]  
315 MHz  
433 MHz  
13  
11  
VS = 3.0V, PWR[0:15] = 15  
9
7
V
S = 1.9V, PWR[0:15] = 15  
VS = 3.6V, PWR[0:15] = 8  
VS = 3.0V, PWR[0:15] = 8  
VS = 1.9V, PWR[0:15] = 8  
5
3
1
-40  
27  
85  
125  
Temperature [ C]  
˚
Figure 4-4. Typical Current Consumption I at Port VS  
23  
315MHz  
433MHz  
VS = 3.6V, PWR[0:15] = 15  
21  
19  
17  
15  
13  
11  
9
VS = 3.0V, PWR[0:15] = 15  
S = 1.9V, PWR[0:15] = 15  
V
VS = 3.6V, PWR[0:15] = 8  
S = 3.0V, PWR[0:15] = 8  
V
7
VS = 1.9V, PWR[0:15] = 8  
5
-40  
27  
85  
125  
Temperature [ C]  
˚
10  
ATA5749 [Preliminary]  
9128D–RKE–01/09  
ATA5749 [Preliminary]  
5. Pulling of Frequency due to ASK Modulation (PA Switching)  
The switching effect on VCO frequency in ASK Mode is very low if a correct PCB layout and  
decoupling is used. Therefore, power ramping is not needed to achieve a clean spectrum (see  
Figure 5-1).  
Figure 5-1. Typical RF Spectrum of 40 kHz ASK Modulation at Pout = 12.5 dBm  
11  
9128D–RKE–01/09  
6. Configuration Register  
6.1  
General Description  
The user must program all 32 bits of the configuration register upon power up (EN = HIGH) or  
whenever changes to operating parameters are desired. The configuration register bit assign-  
ments and descriptions can be found in Table 6-1 and Table 6-2.  
Table 6-1.  
MSB  
Organization of the Control Register  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
CLK_ S434_ FREQ FREQ FREQ FREQ FREQ FREQ FREQ FREQ FREQ FREQ FREQ FREQ FREQ FREQ  
ONLY N315 [14] [13] [12] [11] [10] [9] [8] [7] [6] [5] [4] [3] [2] [1]  
Frequency Adjust = FREQ[0..14]  
FREQ[0] + 2 × FREQ[1] + 4 × FREQ[2] + ... + FREQ[14] × 16384 = 0..32767  
LSB  
15  
FREQ FSEP FSEP FSEP FSEP FSEP FSEP FSEP FSEP DIV_  
[0] [7] [6] [5] [4] [3] [2] [1] [0] CNTRL  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
PWR PWR PWR PWR ASK_ CLK_  
[3] [2] [1] [0] NFSK ON  
0
FSK Shift = FSEP[0..7]  
Output Power = PWR[0..3]  
FSEP[0] + ... + FSEP[7] × 128 = 0..255  
PWR[0] + .. + PWR[3] × 8 = 0..15  
Table 6-2.  
Name  
Control Register Functional Descriptions  
Bit No.  
Size  
Remarks  
Activates/deactivates CLK_ONLY Mode  
Low = Normal Mode  
High = Clock Only Mode (Figure 4-1 on page 7)  
CLK_ONLY  
S434_N315  
31  
1
VCO band selection  
High = 367 MHz to 450 MHz  
Low = 300 MHz to 368 MHz  
30  
1
PLL frequency adjust  
See Table 6-1 for formula  
FREQ[0:14]  
FSEP[0:7]  
15 ... 29  
7 ... 14  
15  
8
FSK deviation adjust  
See Table 6-1 for formula  
CLK output divider ratio  
Low = fXTO/8  
High = fXTO/4  
DIV_CNTRL  
PWR[0:3]  
6
2 ... 5  
1
1
4
1
PA output power adjustment  
See Table 4-1 and Table 4-2 on page 9  
Modulation type  
Low = FSK  
ASK_NFSK  
High = ASK  
CLK_DRV port control  
HIGH = CLK port is ON  
LOW = CLK port is OFF  
CLK_ON  
0
1
12  
ATA5749 [Preliminary]  
9128D–RKE–01/09  
ATA5749 [Preliminary]  
6.2  
Programming  
The configuration register is programmed serially using the SPI bus, starting with the MSB. It  
consists of the Enable line (EN), the Data line (SDIN_TXDIN), and the SPI-Bus Clock (SCK).  
The SDIN_TXDIN data is loaded on the positive edge of the SCK. The contents of the configura-  
tion register become programmed on the negative SCK edge of the last bit (LSB) of the  
programming sequence. The timing of this bus is shown in Figure 6-1. Note that the maximum  
usable clock speed on the SPI bus is limited to 2 MHz.  
Figure 6-1. SPI Bus Timing  
EN  
TSCK_High  
TSDIN_TXDIN_setup  
TEN_setup  
TSCK_Cycle  
TSCK_Low  
SCK  
THold  
TSetup  
SDIN_TXDIN  
MSB  
X
MSB-1  
X
At the conclusion of the 32 bit programming sequence, the SDIN_TXDIN line becomes the mod-  
ulation input for the RF transmitter. After programming is complete, the SCK signal has no effect  
on the device. To disable the transmitter and enter the OFF Mode, EN and SDIN_TXDIN must  
be returned to the LOW state. For clarity, several additional timing diagrams are included. Figure  
6-2 shows the situation when the programming terminates faster then the XTO is ready.  
Figure 6-2. Timing Diagram if Register Programming is Faster than ΔTXTO  
ΔTXTO  
EN (Input)  
SDIN_TXDIN  
(Input)  
32-bit Configuration  
TX-Data  
SCK (Input)  
X
X
X
TPLL  
CLK (Output)  
PA (Output  
Power)  
FSK;  
TX_Mode2  
ASK:  
TX_Mode1 and  
TX_Mode2  
OFF_  
Mode  
Start_Up_  
Mode_1  
Start_Up_  
Mode_2  
TX_  
Mode1  
OFF_Mode  
13  
9128D–RKE–01/09  
Figure 6-3 shows the combination with slow programming and a faster ramp up of XTO. A dia-  
gram of the operating modes is shown in Figure 6-5 and a description of which circuit blocks are  
active is provided in Table 6-3 on page 15. This also contains the information needed for the cal-  
culation of consumed charge for one operation cycle.  
Figure 6-3. Timing Diagram if Programming is Slower than TXTO  
ΔTXTO  
EN (Input)  
TPLL  
SDIN_TXDIN  
(Input)  
32-bit Configuration  
TX-Data  
SCK (Input)  
X
X
CLK (Output)  
PA (Output  
Power)  
FSK;  
TX_Mode2  
ASK:  
TX_Mode1 and  
TX_Mode2  
OFF_  
Mode  
Start_Up_  
Mode_1  
Start_Up_  
Mode_2  
TX_  
Mode1  
OFF_Mode  
6.3  
Reprogramming without Stopping the Crystal Oscillator  
After the configuration register is programmed and RF data transmission is completed, the OFF  
mode is normally entered. This stops the crystal oscillator and PLL. If it is desirable to modify the  
contents of the configuration register without entering the OFF mode, the Reset_Register_Mode  
can be used. To enter the Reset_Register_Mode, the SDIN_TXDIN must be asserted HIGH  
while the EN is asserted LOW for at least 10 µs Reset_min time. This state is shown in Figure  
6-4 on page 15, State Diagram of Operating Modes. In Reset_Register_Mode, the PA and frac-  
tional PLL remain OFF but the XTO remains active. This state must stay for minimum 10 µs. At  
the next step you must rise first EN and SDIN_TXDIN 10 µs delayed. While in this mode, the  
32 bit configuration register data can be sent on the SPI bus as shown in Figure 6-2 on page 13.  
After data transmission, the device can be switched back to OFF_Mode by asserting EN, SCK,  
and SDIN_TXDIN to a LOW state. An example of programming from the Reset_Register_Mode  
is shown in Figure 6-4 on page 15.  
14  
ATA5749 [Preliminary]  
9128D–RKE–01/09  
ATA5749 [Preliminary]  
Figure 6-4. Timing Diagram when using Reset_Register_Mode  
TEN_Reset  
TPLL  
TPLL  
EN (Input)  
TEN_setup  
TSDIN_TXDIN_setup  
SDIN_TXDIN  
(Input)  
32-bit  
TX_  
32-bit  
TX_  
Configuration  
Data  
Configuration  
Data  
SCK (Input)  
CLK (Output)  
PA (Output  
Power)  
FSK;  
FSK;  
TX_Mode2  
ASK:  
TX_Mode1 and  
TX_Mode2  
TX_Mode2  
ASK:  
TX_Mode1 and  
TX_Mode2  
Start_Up_ Start_Up_  
Reset_  
Con-  
Con-  
OFF_  
Mode  
Mode_1  
Mode_2  
Register_ figuration_ figuration_  
Mode  
Mode_1  
Mode_2  
TX_Mode1  
TX_Mode1  
Table 6-3.  
Active Circuits as a Function of Operating Mode  
Operating Mode  
OFF_Mode  
Active Circuit Blocks  
-none-  
Start_Up_Mode_1  
Start_Up_Mode_2  
TX_Mode1  
Power up/down; XTO; digital control  
Power up/down; XTO; digital control; fractional-N-PLL  
Power up/down; XTO; digital control; fractional-N-PLL; CLK_DRV(1)  
Power up/down; XTO; digital control; fractional-N-PLL; CLK_DRV(1); PA  
Power up/down; XTO; digital control; CLK_DRV(1)  
Power up/down; XTO; digital control; CLK_DRV(1)  
Power up/down; XTO; digital control; CLK_DRV(1)  
TX_Mode2  
Clock_Only_Mode  
Reset_Register_Mode  
Configuration_Mode_1  
Configuration_Mode_2  
Power up/down; XTO; digital control; CLK_DRV(1); fractional-N-PLL  
Note:  
1. Only if activated with CLK_ON = HIGH  
15  
9128D–RKE–01/09  
Figure 6-5. State Diagram of Operating Modes  
OFF_Mode  
EN = 'High'  
SDIN_TXDIN = 'Low'  
EN = 'Low'  
SDIN_TXDIN = 'Low'  
EN = 'Low'  
SDIN_TXDIN = 'Low'  
EN = 'Low'  
SDIN_TXDIN = 'Low'  
Start-Up_Mode_1  
EN = 'Low'  
SDIN_TXDIN = 'Low'  
CLK_Only = 'Low'  
register parity programmed  
CLK_Only = 'High'  
register programmed  
XTO_RDY = 'High'  
1
2
CLK_Only = 'Low'  
register programmed  
XTO_RDY = 'High'  
2
ASK_NFSK = 'Low' or  
(ASK_NFSK = 'High' and  
SDIN_TXDIN = 'High')  
Start-Up_Mode_2  
3
PLL locked  
TX_Mode_2  
TX_Mode_1  
Clock_only_Mode  
CLK_Only = 'Low'  
register programmed  
2
ASK_NFSK = 'High' and  
SDIN_TXDIN = 'Low'  
CLK_Only = 'High'  
register programmed  
2
Configuration_Mode_2  
CLK_Only = 'Low'  
register parity programmed  
1
EN = 'Low'  
SDIN_TXDIN = 'High'  
EN = 'Low'  
SDIN_TXDIN = 'High'  
EN = 'Low'  
SDIN_TXDIN = 'High'  
Configuration_Mode_1  
1 )"register partly programmed": negative SCK  
edge of 32-bit register programming MSB-1  
(S433_N315)  
EN = 'High'  
SDIN_TXDIN = 'Low'  
2 ) "register programmed'" negative SCK  
edge of 32-bit register programming LSB  
(CLK_ON)  
Reset_Register_Mode  
3 ) "PLL locked" 1280 XTO cycles (TPLL) after  
register programmed and XTO_RDY = 'High'  
To transition from one state to another, only the  
conditions next to the transition arrows must be  
fulfilled. No additional settings are required.  
16  
ATA5749 [Preliminary]  
9128D–RKE–01/09  
ATA5749 [Preliminary]  
7. ESD Protection Circuit  
Figure 7-1. ESD Protection Circuit  
VS  
ANT1  
ANT2  
CLK  
SCK  
EN  
XTO2  
XTO1  
SDIN_TXDIN  
GND  
8. Absolute Maximum Ratings  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating  
only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this  
specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.  
Parameters  
Symbol  
VS  
Min.  
Max.  
+4.0  
100  
Unit  
V
Supply voltage  
–0.3  
Power dissipation  
Junction temperature  
Storage temperature  
Ambient temperature  
Ptot  
mW  
°C  
Tj  
150  
Tstg  
–55  
–40  
+125  
+125  
°C  
Tamb1  
°C  
Ambient temperature in power-down mode for 30 minutes  
without damage with VS 3.2V, VENABLE < 0.25V or  
ENABLE is open, VASK < 0.25V, VFSK < 0.25V  
Tamb2  
175  
°C  
ESD (Human Body Model ESD S5.1) every pin  
excluding pin 5 (ANT1)  
HBM  
HBM  
MM  
–4  
–2  
+4  
+2  
kV  
kV  
V
ESD (Human Body Model ESD S5.1) for pin 5 (ANT1)  
ESD (Machine Model JEDEC A115A) every pin  
excluding pin 5 (ANT1)  
–200  
–150  
+200  
ESD (Machine Model JEDEC A115A) for pin 5 (ANT1)  
ESD – STM 5.3.1-1999 every pin  
MM  
+150  
750  
V
V
CDM  
9. Thermal Resistance  
Parameters  
Symbol  
Value  
Unit  
Thermal resistance, junction ambient  
RthJA  
170  
K/W  
17  
9128D–RKE–01/09  
10. Electrical Characteristics  
VS = 1.9V to 3.6V Tamb = –40°C to +125°C, CLK_ON = “High”; DIV_CNTRL = “Low”, CLOAD_CLK = 10 pF. fXTO = 13.0000 MHz,  
f
CLK = 1.625 MHz unless otherwise specified. If crystal parameters are important values correspond to a crystal with CM = 4.0 fF,  
C0 = 1.5 pF, CLOAD = 9 pF and RM 170Ω. Typical values are given at VS = 3.0V and Tamb = 25°C  
No. Parameters  
Test Conditions  
Pin  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Type*  
1
Current Consumption  
V(SDIN_TXDIN,SCK,EN) = Low  
Supply current,  
OFF_Mode  
1.1  
T
T
T
amb +25°C  
amb +85°C  
amb +125°C  
5, 8  
IS_Off_Mode  
1
20  
265  
100  
350  
7000  
nA  
nA  
nA  
A
Supply current,  
TX_Mode1  
1.2  
1.3  
1.4  
VS 3.0V  
5, 8  
5, 8  
5, 8  
IS_TX_Mode1  
IS_TX_Mode2  
3.6  
7.3  
480  
4.7  
8.8  
mA  
mA  
µA  
A
A
A
Supply current,  
TX_Mode2  
VS 3.0V  
PWR[0:3] = 8 (5.5 dBm)  
Supply current,  
CLK_Only_Mode  
IS_CLK_Only _  
VS 3.0V  
680  
Mode  
VS 3.0V  
CLK_ON = “Low”  
IS = IS_any_Mode + ΔICLKoff1  
Supply current  
1.5 reduction, Clock Driver  
off  
5, 8  
ΔICLKoff1  
–250  
150  
–300  
µA  
B
(can be applied to all modes  
except Off_Mode, add Typ. to  
Typ. and Max. to Max. values)  
VS 3.0V  
DIV_CNTRL = “High”  
fCLK = 3.24 MHz  
Supply current  
1.6 increase, Clock Driver  
higher frequency  
IS= IS_any__Mode + ΔICLKhigh  
5, 8  
5, 8  
ΔICLKhigh  
190  
680  
µA  
µA  
B
A
(can be applied to all modes  
except Off_Mode add Typ. to  
Typ. and Max. to Max. values)  
IS_Reset_  
Reset_Register_Mode /  
1.7  
Register_Mode /  
IS_Configuration  
VS 3.0V  
Configuration_Mode_1  
_ Mode_1  
IS_Configuration  
Configuration_Mode_2/  
1.8  
/
_Mode_2  
VS 3.0V  
VS 3.0V  
5, 8  
5, 8  
4.7  
mA  
µA  
A
A
Start_Up_Mode_2  
IS_Start_Up  
_Mode_2  
IS_Start_Up  
_Mode_1  
1.9 Start_Up_Mode_1  
300  
2
Power Amplifier (PA)  
VS = 3.0V, Tamb = 25°C  
PWR[0:3] = 4  
ZLOAD = ZLOPT according Table  
4-1 and Table 4-2 on page 9  
Output power 1,  
TX_Mode2  
2.1  
(5)  
POUT_1  
–1.0  
+1.0  
+3.0  
dBm  
A
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter  
Note:  
(Pin Number) in brackets mean they are measured matched to 50Ω according to Figure 4-2 on page 8 with component values  
and optimum load impedances according to Table 4-1 and Table 4-2 on page 9  
18  
ATA5749 [Preliminary]  
9128D–RKE–01/09  
ATA5749 [Preliminary]  
10. Electrical Characteristics (Continued)  
VS = 1.9V to 3.6V Tamb = –40°C to +125°C, CLK_ON = “High”; DIV_CNTRL = “Low”, CLOAD_CLK = 10 pF. fXTO = 13.0000 MHz,  
fCLK = 1.625 MHz unless otherwise specified. If crystal parameters are important values correspond to a crystal with CM = 4.0 fF,  
C0 = 1.5 pF, CLOAD = 9 pF and RM 170Ω. Typical values are given at VS = 3.0V and Tamb = 25°C  
No. Parameters  
Test Conditions  
Pin  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Type*  
VS = 3.0V  
PWR[0:3] = 4  
5, 8  
IS_P1  
5.4  
6.7  
mA  
A
Supply current 1,  
TX_Mode2  
2.2  
2.3  
2.4  
2.5  
2.6  
VS = 3.6V  
PWR[0:3] = 4  
5, 8  
(5)  
IS_P1  
7.0  
7.0  
mA  
A
A
VS = 3.0V, Tamb = 25°C  
PWR[0:3] = 8  
ZLOAD = ZLOPT according to Table  
4-1 and Table 4-2 on page 9  
Output power 2,  
TX_Mode2  
POUT_2  
4.0  
5.5  
7.3  
dBm  
VS = 3.0V, PWR[0:3] = 8  
[typ. 5.5 dBm; see 2.3]  
5, 8  
5, 8  
IS_P2  
IS_P2  
8.8  
9.1  
mA  
mA  
A
A
Supply current 2,  
TX_Mode2  
VS = 3.6V, PWR[0:3] = 8  
[typ. 5.5 dBm; see 2.3]  
VS = 3.0V, Tamb = 25°C  
PWR[0:3] = 15  
ZLOAD = ZLOPT according to Table  
4-1 and Table 4-2 on page 9  
Output power 3,  
TX_Mode2  
(5)  
POUT_3  
11.0  
12.5  
20.2  
14.0  
dBm  
A
VS = 3.0V  
PWR[0:3] = 15  
5, 8  
5, 8  
IS_P3  
IS_P3  
23.5  
24.5  
mA  
mA  
A
A
Supply current 3,  
TX_Mode2  
VS = 3.6V  
PWR[0:3] = 15  
Tamb = –40°C to +125°C  
VS = 1.9V to 3.6V  
Output Power Variation  
Pout = POUT_x + ΔPOUT  
2.7 for full temperature and  
supply voltage range  
(5)  
ΔPOUT  
–4.0  
+1.5  
dB  
B
(can be applied to all power  
levels)  
3
Crystal Oscillator (XTO)  
Maximum series  
3.1 resistance RM of XTAL C0 < 2.0 pF  
after start-up  
6, 7  
6, 7  
RM_MAX  
170  
15  
Ω
D
D
Motional capacitance of  
3.2  
Recommended values  
CM  
2
4.0  
fF  
XTAL  
C0 < 2.0 pF  
CM = 4.0 fF  
RM = 20Ω  
Stabilized Amplitude  
XTAL  
3.3  
6, 7  
6, 7  
mVpp  
ppm  
A
C
CLOAD = 9 pF  
V(XTO2) – V(XTO1)  
V(XTO1)  
VppXTO21  
VppXTO1  
640  
320  
1.0 < C0 < 2.0 pF  
RM < 170Ω  
3.4 temperature and supply CLOAD = 9 pF  
change 4 fF < CM < 10 fF  
CM < 15 fF  
Pulling of fXTO versus  
ΔfRF  
–3  
–5  
+3  
+5  
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter  
Note:  
(Pin Number) in brackets mean they are measured matched to 50Ω according to Figure 4-2 on page 8 with component values  
and optimum load impedances according to Table 4-1 and Table 4-2 on page 9  
19  
9128D–RKE–01/09  
10. Electrical Characteristics (Continued)  
VS = 1.9V to 3.6V Tamb = –40°C to +125°C, CLK_ON = “High”; DIV_CNTRL = “Low”, CLOAD_CLK = 10 pF. fXTO = 13.0000 MHz,  
fCLK = 1.625 MHz unless otherwise specified. If crystal parameters are important values correspond to a crystal with CM = 4.0 fF,  
C0 = 1.5 pF, CLOAD = 9 pF and RM 170Ω. Typical values are given at VS = 3.0V and Tamb = 25°C  
No. Parameters  
Test Conditions  
Pin  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Type*  
DC voltage after XTAL V(XTO2) – V(XTO1)  
3.5  
6, 7  
VDC_XTO  
40  
mV  
C
amplitude stable  
XTO running  
This value is important for  
crystal oscillator start-up  
behavior  
Negative real part of  
3.6 XTO impedance at  
begin of start-up  
C0 < 2.0 pF,  
8 pF < CLOAD < 10 pF  
6, 7 RXTO12_START –1500  
–2200  
Ω
B
D
FXTAL = 13.000 MHz  
11.0 MHz < FXTAL < 14.8 MHz  
–1300  
Recommended values for proper  
start-up and low current  
consumption  
External Capacitors  
Quality NPO  
C4  
C5  
3.7  
6, 7  
–5%  
15  
+5%  
pF  
C4, C5  
CLOAD = (C4 + CXTO1) ×  
(C5 + CXTO2) /  
(C4 + C5 + CXTO1 + CXTO2  
)
CLoad_nom = 9 pF (inc. PCB)  
Pin Capacitance  
3.8  
The PCB Capacitance of about  
1 pF has to be added  
CXTO1  
CXTO2  
–15%  
–15%  
2
2
+15%  
+15%  
6, 7  
pF  
C
B
XTO1 and XTO2  
Time between EN = “High” and  
XTO_RDY = “High”  
C0 < 2.0 pF, 4 fF < CM < 15 fF  
C0 < 2.0 pF, 2 fF < CM < 15 fF  
RM < 170Ω  
Crystal oscillator  
3.9  
0.20  
0.32  
0.3  
0.5  
6, 7, 1  
ΔTXTO  
ms  
start-up time  
11.0 MHz < FXTAL < 14.8 MHz  
Maximum shunt  
3.10  
Required for stable operation of  
capacitance C0 of XTAL XTO, CLoad > 7. 5 pF  
6, 7  
6, 7  
C0_MAX  
fXTO  
1.5  
3.0  
pF  
D
C
Oscillator frequency  
XTO  
433.92 MHz and 315 MHz other  
frequencies  
13.0000  
3.11  
4
MHz  
11.0  
14.8  
Fractional-N-PLL  
Frequency range of RF S434_N315 = “LOW”  
300  
367  
368  
450  
4.1  
5
fRF  
MHz  
µs  
A
B
frequency  
S434_N315 = “HIGH”  
Time between  
XTO_RDY= “High” and Register  
98.46  
4.2 Locking time of the PLL programmed till PLL is locked  
XTO = 13.0000 MHz  
1, 5  
ΔTPLL  
1280/  
fXTO  
f
other fXTO  
Unity gain loop frequency of  
synthesizer  
4.3 PLL loop bandwidth  
5
5
fLoop_PLL  
LPLL  
140  
280  
–83  
380  
–76  
kHz  
B
A
In Loop phase noise  
4.4  
25 kHz distance to carrier  
dBc/Hz  
PLL  
A
C
Out of Loop Phase  
noise (VCO)  
At 1 MHz  
At 36 MHz  
Lat1M  
Lat36M  
–91  
–122  
–84  
–115  
dBc/Hz  
dBc/Hz  
4.5  
5
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter  
Note:  
(Pin Number) in brackets mean they are measured matched to 50Ω according to Figure 4-2 on page 8 with component values  
and optimum load impedances according to Table 4-1 and Table 4-2 on page 9  
20  
ATA5749 [Preliminary]  
9128D–RKE–01/09  
ATA5749 [Preliminary]  
10. Electrical Characteristics (Continued)  
VS = 1.9V to 3.6V Tamb = –40°C to +125°C, CLK_ON = “High”; DIV_CNTRL = “Low”, CLOAD_CLK = 10 pF. fXTO = 13.0000 MHz,  
fCLK = 1.625 MHz unless otherwise specified. If crystal parameters are important values correspond to a crystal with CM = 4.0 fF,  
C0 = 1.5 pF, CLOAD = 9 pF and RM 170Ω. Typical values are given at VS = 3.0V and Tamb = 25°C  
No. Parameters  
Test Conditions  
Pin  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Type*  
Duty cycle of the modulation  
signal = 50%, (this corresponds  
to 40 kBit/s Manchester coding  
and 80 kBit/s NRZ coding)  
FSK modulation  
frequency  
4.6  
2, 5  
FMOD_FSK  
0
40  
kHz  
B
Duty cycle of the modulation  
signal = 50%, (this corresponds  
to 40 kBit/s Manchester coding  
and 80 kBit/s NRZ coding)  
ASK modulation  
frequency  
4.7  
2, 5  
5
FMOD_ASK  
0
40  
kHz  
dBc  
B
B
At fRF ±fXTO / 8  
At fRF ±fXTO / 4  
At fRF ±fXTO  
–47  
–47  
–60  
4.8 Spurious emission  
Spur  
DIV_CNTRL = “High”  
At fRF ± fXTO / 4  
At fRF ± fXTO  
4.9 Spurious emission  
4.10 Spurious emission  
5
5
Spur  
Spur  
–47  
–58  
dBc  
dBc  
B
B
CLK_ON = “Low”  
At f0 ± fXTO  
–60  
ASK_NFSK = “High”  
TX_Mode_2  
FREQ[0:14] = 3730,  
FSEP[0:7] = 101  
S434_N315 = “Low”  
fRF ±3.00 MHz  
–50  
–50  
4.11 Fractional Spurious  
5
Spur  
dBc  
B
fRF ±6.00 MHz  
FREQ[0:14] = 14342,  
FSEP[0:7] = 101  
S434_N315 = “High”  
fRF ±3.159 MHz  
–50  
–50  
fRF ± 9,840MHz  
±0.396  
±101.16  
kHz  
Hz  
A
A
fXTO = 13.0000 MHz  
other fXTO  
see Table 3-1 on page 4  
FSK frequency  
4.12  
fXTO  
/
fXTO  
/
5
fdev  
deviation  
32768  
128.5  
793  
fXTO = 13.0000 MHz  
other fXTO  
fXTO  
16384  
/
4.13 Frequency resolution  
ΔfPLL  
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter  
Note:  
(Pin Number) in brackets mean they are measured matched to 50Ω according to Figure 4-2 on page 8 with component values  
and optimum load impedances according to Table 4-1 and Table 4-2 on page 9  
21  
9128D–RKE–01/09  
11. Timing Characteristics (ATA5749)  
VS = 1.9V to 3.6V, Tamb = –40°C to +125°C. Typical values are given at VS = 3.0V and Tamb = 25°C. All parameters are referred to GND  
(pin 9). Parameters where crystal relevant parameters are important correspond to a crystal with CM = 4.0 fF, C0 = 1.5 pF, CLOAD = 9 pF  
and RM 170Ω unless otherwise specified.  
No. Parameters  
Test Conditions  
Pin  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Type*  
EN set-up time to rising  
edge of SCK  
1.1  
1.2  
1.3  
1.4  
1, 10  
TEN_setup  
10  
µs  
C
SDIN_TXDIN set-up time  
to falling edge of EN  
TSDIN_TXDIN  
2, 10  
2, 3  
125  
10  
ns  
ns  
ns  
C
C
C
_setup  
SDIN_TXDIN set-up time  
to rising edge of SCK  
TSetup  
THold  
SDIN_TXDIN hold time  
from rising edge of SCK  
2, 3  
10  
1.5 SCK Cycle time  
3
3
3
TSCK_Cycle  
TSCK_High  
TSCK_Low  
500  
200  
200  
ns  
ns  
ns  
C
C
C
1.6 SCK high time period  
1.7 SCK low time period  
EN low time period with  
1.8 SDIN_TXDIN = “High” for  
register reset  
2, 10  
TEN_Reset  
10  
us  
C
f
XTO = 13.000 MHz  
Clock output frequency  
1.9 (CMOS microcontroller  
compatible)  
DIV_CNTRL = “High”  
(fCLK = fXTO / 4)  
DIV_CNTRL = “Low”  
(fCLK = fXTO / 8)  
3.25  
1
fCLK  
MHz  
A
1.625  
Cload 20 pF,  
DIV_CNTRL = “Low”  
(fclk = fXTO / 8)  
“High” = 0.8 × VS,  
“Low” = 0.2 × VS,  
fCLK < 1.625 MHz  
Clock output minimum  
1.10  
1
1
1
1
TCLKLH  
TCLKLH  
TCLKLH  
TCLKLH  
125  
62.5  
125  
220  
110  
180  
90  
ns  
ns  
ns  
ns  
A
A
C
C
“High” and “Low” time  
Cload 10 pF,  
DIV_CNTRL = “High”  
(fclk = fXTO / 4)  
“High” = 0.8 × VS,  
“Low” = 0.2 × VS,  
fCLK < 3.25 MHz  
Clock output minimum  
1.11  
“High” and “Low” time  
Cload 20 pF,  
DIV_CNTRL = “Low”  
(fclk = fXTO / 8)  
“High” = 0.8 × VS,  
“Low” = 0.2 × VS,  
fCLK < 1.85 MHz  
Clock output minimum  
1.12  
“High” and “Low” time  
Cload 10 pF,  
DIV_CNTRL = “High”  
(fclk = fXTO / 4)  
“High” = 0.8 × VS,  
“Low” = 0.2 × VS,  
fCLK < 3.7 MHz  
Clock output minimum  
1.13  
62.6  
“High” and “Low” time  
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter  
22  
ATA5749 [Preliminary]  
9128D–RKE–01/09  
ATA5749 [Preliminary]  
12. Digital Port Characteristics  
VS = 1.9V to 3.6V, Tamb = 40°C to +125°C unless otherwise specified. Typical values are given at VS = 3.0V and Tamb = 25°C, all inputs are  
Schmitt trigger interfaces.  
No. Parameters  
Test Conditions  
Pin  
Symbol  
Min.  
Typ.  
250  
250  
250  
Max.  
Unit  
Type*  
“Low” level input voltage  
“High” level input voltage  
Internal pull-down resistor  
VII  
Vih  
RPDN  
0
0.25  
VS  
380  
V
V
kΩ  
1.1 SDIN_TXDIN  
VS – 0.25  
160  
A
“Low” level input voltage  
“High” level input voltage  
Internal pull-down resistor  
VII  
Vih  
RPDN  
0
0.25  
VS  
380  
V
V
kΩ  
1.2 SCK  
VS – 0.25  
160  
A
A
“Low” level input voltage  
“High” level input voltage  
Internal pull-down resistor  
VII  
Vih  
RPDN  
0
0.25  
VS  
380  
V
V
kΩ  
1.3 EN input  
VS – 0.25  
160  
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter  
23  
9128D–RKE–01/09  
13. Ordering Information  
Extended Type Number  
Package  
Remarks  
ATA5749-6DQ  
MSOP10  
-
14. Package Information  
Package: TSSOP 10  
(acc. to JEDEC Standard MO-187)  
Dimensions in mm  
Not indicated tolerances ± 0.05  
3±0.1  
3±0.1  
0.25  
3.8±0.3  
4.9±0.1  
0.5 nom.  
4 x 0.5 = 2 nom.  
10 9 8 7 6  
technical drawings  
according to DIN  
specifications  
Drawing-No.: 6.543-5095.01-4  
Issue: 3; 16.09.05  
1 2 3 4 5  
24  
ATA5749 [Preliminary]  
9128D–RKE–01/09  
ATA5749 [Preliminary]  
15. Revision History  
Please note that the following page numbers referred to in this section refer to the specific revision  
mentioned, not to this document.  
Revision No.  
History  
Features on page 1 changed  
9128D-RKE-01/09  
Section 8 “Absolute Maximum Ratings” on page 17 changed  
Features on page 1 changed  
9128C-RKE-10/08  
9128B-RKE-08/08  
Section 8 “Absolute Maximum Ratings” on page 17 changed  
Section 12 “Digital Port Characteristics” on page 23 changed  
Put datasheet in the newest template  
Features on page 1 changed  
Section 1 “Description” on page 1 changed  
Figure 1-1 “Block Diagram” on page 2 changed  
Section 3.1 “Fractional-N PLLon page 4 changed  
Section 3.4 “Clock Driver” on page 6 changed  
Figure 4-1 “Typical Application Circuit” on page 7 changed  
Figure 4-2 “Output Power Measurement Circuit” on page 8 changed  
Section 10 “Electrical Characteristics” numbers 4.2, 4.12 and 4.13 on  
pages 20 to 21 changed  
25  
9128D–RKE–01/09  
Headquarters  
International  
Atmel Corporation  
2325 Orchard Parkway  
San Jose, CA 95131  
USA  
Tel: 1(408) 441-0311  
Fax: 1(408) 487-2600  
Atmel Asia  
Atmel Europe  
Le Krebs  
8, Rue Jean-Pierre Timbaud  
BP 309  
Atmel Japan  
Unit 1-5 & 16, 19/F  
BEA Tower, Millennium City 5  
418 Kwun Tong Road  
Kwun Tong, Kowloon  
Hong Kong  
9F, Tonetsu Shinkawa Bldg.  
1-24-8 Shinkawa  
Chuo-ku, Tokyo 104-0033  
Japan  
78054  
Saint-Quentin-en-Yvelines Cedex Tel: (81) 3-3523-3551  
Tel: (852) 2245-6100  
Fax: (852) 2722-1369  
France  
Tel: (33) 1-30-60-70-00  
Fax: (33) 1-30-60-71-11  
Fax: (81) 3-3523-7581  
Product Contact  
Web Site  
Technical Support  
Sales Contact  
www.atmel.com  
tpms@atmel.com  
www.atmel.com/contacts  
Literature Requests  
www.atmel.com/literature  
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any  
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMELS TERMS AND CONDI-  
TIONS OF SALE LOCATED ON ATMELS WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY  
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR  
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-  
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF  
THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no  
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications  
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided  
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use  
as components in applications intended to support or sustain life.  
© 2009 Atmel Corporation. All rights reserved. Atmel®, Atmel logo and combinations thereof, and others are registered trademarks or trade-  
marks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.  
9128D–RKE–01/09  

相关型号:

ATA5749-6DQY

Telecom Circuit, 1-Func, PDSO10, MO-187, TSSOP-10
ATMEL

ATA5749C_14

Fractional-N PLL Transmitter IC
ATMEL

ATA5749_09

Fractional-N PLL Transmitter IC
ATMEL

ATA5749_10

Fractional-N PLL Transmitter IC
ATMEL

ATA5749_14

Fractional-N PLL Transmitter IC
ATMEL

ATA5756

UHF ASK/FSK TRANSMITTER
ATMEL

ATA5756-6DPY

UHF ASK/FSK Transmitter
ATMEL

ATA5756-6DQ

UHF ASK/FSK TRANSMITTER
ATMEL

ATA5756-6DQY

UHF ASK/FSK Transmitter
ATMEL

ATA5756C-6DQY-66

IC TX UHF ASKFSK 315MHZ 10MSOP
MICROCHIP

ATA5756_08

UHF ASK/FSK Transmitter
ATMEL

ATA5757

UHF ASK/FSK TRANSMITTER
ATMEL