AT91M63200-12AJ-1.8 [ATMEL]

RISC Microcontroller, 32-Bit, 12MHz, CMOS, PQFP176, TQFP-176;
AT91M63200-12AJ-1.8
型号: AT91M63200-12AJ-1.8
厂家: ATMEL    ATMEL
描述:

RISC Microcontroller, 32-Bit, 12MHz, CMOS, PQFP176, TQFP-176

时钟 微控制器 外围集成电路
文件: 总21页 (文件大小:255K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Features  
Utilizes the ARM7TDMIARM Thumb Processor Core  
– High-performance 32-bit RISC Architecture  
– High-density 16-bit Instruction Set  
– Leader in MIPS/Watt  
– Embedded ICE (In-circuit Emulation)  
2K Bytes (M63200) or 3K Bytes (M43300) Internal RAM  
Fully-programmable External Bus Interface (EBI)  
– Maximum External Address Space of 64M Bytes  
– Up to 8 Chip Selects  
– Software Programmable 8/16-bit External Data Bus  
Multi-processor Interface (M63200 Only)  
– High-performance External Processor Interface  
– 512 x 16-bit Dual-port RAM  
AT91  
ARM® Thumb®  
Microcontrollers  
8-channel Peripheral Data Controller  
8-level Priority, Individually Maskable, Vectored Interrupt Controller  
– 5 External Interrupts, Including a High-priority, Low-latency Interrupt Request  
58 Programmable I/O Lines  
6-channel 16-bit Timer/Counter  
AT91M63200  
AT91M43300  
– 6 External Clock Inputs  
– 2 Multi-purpose I/O Pins per Channel  
3 USARTs  
– 2 Dedicated Peripheral Data Controller (PDC) Channels per USART  
– Support for up to 9-bit Data Transfers  
Master/Slave SPI Interface  
– 2 Dedicated Peripheral Data Controller (PDC) Channels  
– 8- to 16-bit Programmable Data Length  
– 4 External Slave Chip Selects  
Electrical  
Characteristics  
Programmable Watchdog Timer  
Power Management Controller (PMC)  
– CPU and Peripherals Can be Deactivated Individually  
IEEE 1149.1 JTAG Boundary-scan on All Active Pins  
Fully Static Operation: 0 Hz to 25 MHz (12 MHz at 1.8V Core, 25 MHz at 2.7V Core)  
1.8V to 3.6V Core Operating Voltage Range  
2.7V to 5.5V I/O Operating Voltage Range  
-40°C to +85°C Operating Temperature Range  
AT91M63200 in a 176-lead TQFP Package; AT91M43300 in a 144-ball BGA Package  
Description  
The AT91M63200 and AT91M43300 are members of the Atmel AT91 16/32-bit micro-  
controller family which is based on the ARM7TDMI processor core.  
This processor has a high-performance 32-bit RISC architecture with a high-density  
16-bit instruction set and very low power consumption. In addition, a large number of  
internally banked registers result in very fast exception handling, making the device  
ideal for real-time control applications. The AT91 ARM-based MCU family also fea-  
tures Atmel’s high-density, in-system programmable, nonvolatile memory technology.  
Both products have a direct connection to off-chip memory, including Flash, through  
the External Bus Interface.  
For the AT91M63200, the Multi-processor Interface (MPI) provides a high-perfor-  
mance interface with an external coprocessor or a high bandwidth peripheral.  
Both products are manufactured using Atmel’s high-density CMOS technology. By  
combining the ARM7TDMI microcontroller core with on-chip SRAM, a multi-processor  
interface and a wide range of peripheral functions on a monolithic chip, the  
AT91M63200 and AT91M43300 provide a highly-flexible and cost-effective solution to  
many compute-intensive real-time applications.  
Rev. 1090B–06/00  
Absolute Maximum Ratings*  
Operating Temperature (Industrial) .....-40°C to +85°C  
*NOTICE:  
Stresses beyond those listed under “Absolute Maxi-  
mum Ratings” may cause permanent damage to  
the device. This is a stress rating only and func-  
tional operation of the device at these or other con-  
ditions beyond those indicated in the operational  
sections of this specification is not implied. Expo-  
sure to absolute maximum rating conditions for  
extended periods may affect device reliability.  
Voltage on Any Input Pin  
with Respect to Ground.......................-0.5V to +5.5V  
Maximum Operating Voltage (Core).....................3.6V  
Maximum Operating Voltage (I/Os) ......................5.5V  
DC Output Current ..............................................4 mA  
DC Characteristics  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
3.6  
Units  
(1)  
VDDCORE  
DC Supply Voltage Core  
1.8  
V
VDDCORE  
2.0 or 5.5  
+
2.7V VDDCORE 3.6V  
1.8V VDDCORE 2.7V  
VDDCORE  
VDDIO  
DC Supply I/Os  
V
2.7  
-40  
-0.3  
3.3  
TA  
Ambient Temperature  
Low-level Input Voltage  
85  
°C  
VIL  
0.8  
V
VDDIO  
0.3  
+
VIH  
High-level Input Voltage  
2
V
V
V
V
V
2.7 V  
3.6; IO(2) = 2 mA  
0.4  
0.4  
DDIO  
VOL  
Low-level Output Voltage  
VDDCORE V  
IO(2) = 4 mA  
5.5V;  
DDIO  
2.7 V  
3.6; IO(2) = 2 mA  
VDDIO - 0.4  
VDDIO - 0.4  
DDIO  
VOH  
High-level Output Voltage  
VDDCORE V  
IO(2) = 4 mA  
5.5V;  
DDIO  
ILEAK  
IPULL  
ICAP  
Input-leakage Current  
Input Pull-up Current  
Input Capacitance  
100  
100  
12  
nA  
µA  
pF  
V
= VDDCORE = 3.6V  
DDIO  
MCKI = 0 Hz, NRST = 1  
ISC  
Static Current  
60  
µA  
Notes: 1. See Table 4.  
2. IO = Output current.  
AT91M63200/M43300  
2
 
 
AT91M63200/M43300  
Power Consumption  
The values in the following tables are measured values in the operating conditions indicated (i.e. VDDIO = 3.3V, VDDCORE  
=
3.3V or 1.8V; T = 25°). They represent the power consumption on the VDDCORE power supply.  
Table 1. Core Power Consumption  
VDDCORE  
Mode  
Conditions  
1.8V  
3.3V  
Unit  
Reset  
0.05  
0.41  
Fetch in ARM mode out of Internal SRAM  
All peripheral clocks activated  
3.1  
1.8  
13.3  
7.4  
Normal  
Idle  
Fetch in ARM mode out of Internal SRAM  
All peripheral clocks deactivated  
mW/MHz  
All peripheral clocks activated  
All peripheral clocks deactivated  
2.0  
8.7  
2.4  
0.54  
Table 2. Core Power Consumption per Peripheral  
VDDCORE  
Peripheral  
1.8V  
0.07  
0.07  
0.18  
0.22  
0.22  
3.3V  
0.32  
0.28  
0.75  
0.99  
1.02  
Unit  
PIO Controller  
Timer Counter channel  
Timer Counter Block (3 channels)  
USART  
mW/MHz  
SPI  
3
Conditions  
Environment Constraints  
The output delays are valid for a capacitive load of 50 pF as shown in Figure 1.  
Figure 1. Output/Bidir Pad Capacitive Load  
C
= 50 pF  
L
PAD  
Timing Results  
The output delays are for a capacitive load of 50 pF as shown in Figure 1.  
In order to obtain the timing for other capacitance values, the following equation should be used.  
t = tdatasheet + factor × (Cload 50pF)  
Table 3. Derating Factor Due to Capacitive Load Variation  
Parameter  
Industrial  
Units  
Factor  
0.058  
ns/pF  
In the tables that follow, the output delays are for industrial conditions only.  
Voltage Ranges  
Although the core may be supplied between 1.8V and 3.6V, there are two voltage ranges that have been characterized for  
timing purposes.  
These are from 1.8V to 2.2V (core at 2V), and 2.7V to 3.6V (core at 3.3V). Timing values are given for both sets of condi-  
tions, as in Table 4.  
Table 4. Voltage Ranges for Timing Characterization  
VDDCORE  
VDDIO  
Condition  
Core at 2V  
Core at 3.3V  
Minimum  
1.8  
Maximum  
2.2  
Minimum  
2.7  
Maximum  
3.3  
Unit  
V
2.7  
3.6  
2.7  
5.5  
AT91M63200/M43300  
4
 
 
AT91M63200/M43300  
Clock Waveforms  
Table 5. Clock Waveform Parameters  
Minimum  
Maximum  
Core at  
2V  
Core at  
3.3V  
Core at  
2V  
Core at  
3.3V  
Symbol  
Parameter  
Units  
1/(tCP  
tCP  
tCH  
tCL  
tr  
)
Oscillator Frequency  
Main Clock Period  
High Time  
12  
25  
MHz  
83  
40  
18  
18  
TBD  
TBD  
Low Time  
ns  
Rising Edge  
TBD  
TBD  
7
7
tf  
Falling Edge  
Table 6. Clock Propagation Times  
Minimum  
Maximum  
Core at  
2V  
Core at  
3.3V  
Core at  
2V  
Core at  
3.3V  
Symbol  
tCDLH  
Parameter  
Units  
Rising Edge Propagation Time  
Falling Edge Propagation Time  
TBD  
TBD  
20  
18  
TBD  
TBD  
TBD  
TBD  
ns  
tCDHL  
Figure 2. Clock Waveform  
tCH  
tr  
tf  
MCKI  
0.7 VDDIO  
0.3 VDDIO  
tCL  
tCP  
MCKO  
tCDLH  
tCDHL  
5
AC Characteristics  
EBI Signals Relative to MCKI  
The following tables show timings relative to operating condition limits defined in Table 4. See Figure 3.  
Table 7. General Purpose EBI Signals  
Minimum  
Maximum  
Symbol  
EBI1  
Parameter  
Core at 2V  
Core at 3.3V  
Core at 2V  
Core at 3.3V  
Units  
ns  
MCKI Falling to NUB Valid  
MCKI Falling to NLB/A0 Valid  
MCKI Falling to A7 - A1 Valid  
MCKI Falling to A23 - A8 Valid  
MCKI Falling to Chip Select  
NWAIT Setup before MCKI Rising  
NWAIT Hold after MCKI Rising  
TBD  
TBD  
TBD  
TBD  
TBD  
20  
20  
20  
20  
20  
EBI2  
ns  
EBI3  
ns  
EBI4  
ns  
EBI5  
TBD  
TBD  
TBD  
5
5
4
ns  
EBI6  
ns  
EBI7  
ns  
Table 8. EBI Write Signals  
Minimum  
Maximum  
Symbol  
Parameter  
Core at 2V  
Core at 3.3V  
Core at 2V  
Core at 3.3V  
Units  
EBI8  
MCKI Rising to NWR Active (No Wait  
States)  
TBD  
20  
ns  
EBI9  
MCKI Rising to NWR Active (Wait  
States)  
TBD  
TBD  
TBD  
TBD  
20  
20  
20  
20  
ns  
ns  
ns  
EBI10  
EBI11  
MCKI Falling to NWR Inactive (No  
Wait States)  
MCKI Rising to NWR Inactive (Wait  
States)  
EBI12  
EBI19  
MCKI Rising to D0 - D15 Out Valid  
ns  
ns  
NWR High to A23 - A1, NUB/NLB/A0,  
NCS, CS Changes (No Wait States)  
TBD  
2
EBI20  
NWR High to A23 - A1, NCS, CS  
Changes (Wait States)  
tCP/2  
ns  
EBI21  
EBI22  
Data Out Valid before NWR High  
Data Out Valid after NWR High  
tCH - 5  
tCP/2  
ns  
ns  
AT91M63200/M43300  
6
AT91M63200/M43300  
Table 9. EBI Read Signals  
Minimum  
Maximum  
Symbol  
EBI13  
EBI14  
EBI15  
EBI16  
EBI17  
Parameter  
Core at 2V  
Core at 3.3V  
Core at 2V  
TBD  
Core at 3.3V  
Units  
MCKI Falling to NRD Valid(1)  
MCKI Rising to NRD Valid(2)  
D0 - D15 in Setup before MCKI Falling  
D0 - D15 in Hold after MCKI Falling  
TBD  
5
18  
20  
TBD  
TBD  
TBD  
TBD  
0
3
0
ns  
NRD High to A23 - A1, NCS, CS  
Changes  
EBI18  
Data Hold after NRD High  
TBD  
0
Notes: 1. Early Read Protocol  
2. Standard Read Protocol  
7
 
 
Figure 3. EBI Signals Relative to MCKI  
MCKI  
EBI5  
EBI5  
NCS  
CS  
A1 - A23  
NWAIT  
EBI3/EBI4  
No Wait  
EBI7  
Wait  
EBI6  
EBI1/EBI2  
NUB/NLB/A0  
EBI13  
EBI13  
EBI17  
NRD(1)  
NRD(2)  
EBI14  
EBI18  
EBI15  
EBI16  
D0 - D15 read  
EBI10  
EBI8  
EBI19  
NWR (No Wait States)  
NWR (Wait States)  
D0 - D15 to Write  
EBI20  
EBI9  
EBI11  
EBI12  
EBI21  
EBI22  
EBI22  
No Wait  
Wait  
Notes: 1. Early Read Protocol  
2. Standard Read Protocol  
AT91M63200/M43300  
8
AT91M63200/M43300  
Peripheral Signals Relative to MCKI  
USART Signals  
Table 10. USART Outputs  
Minimum  
Maximum  
Symbol  
Parameter  
Core at 2V  
Core at 3.3V  
Core at 2V  
Core at 3.3V  
Units  
US1  
MCKI Rising to SCK Output  
Rising/Falling  
TBD  
TBD  
TBD  
25  
ns  
US2  
US3  
US4  
MCKI Rising to TXD Toggling  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
35  
10  
ns  
ns  
ns  
SCK Output Falling to TXD Toggling  
SCK Input Falling to TXD Toggling  
2(tCP) + 35  
The inputs can be used synchronously or asynchronously (in relation to MCKI).  
For synchronous and asynchronous USART inputs, certain setup/hold constraints must be met. These constraints are  
shown in Tables 11 and 12 and are represented in Figure 4.  
For asynchronous inputs, a minimum pulse-width is necessary as shown in Table 13 and as represented in Figure 4.  
Table 11. USART Synchronous Input Setup/Hold Constraints  
Symbol  
US5  
Type of Input  
Synchronous  
Synchronous  
Synchronous  
Parameter  
Setup  
Hold  
Units  
ns  
RXD Toggling Relative to MCKI Falling  
SCK Input Rising Relative to MCKI Rising  
SCK Input Falling Relative to MCKI Rising  
0
0
0
5
5
5
US6  
ns  
US7  
ns  
Table 12. USART Asynchronous Input Setup/Hold Constraints  
Symbol  
Type of Input  
Parameter  
Setup  
Hold  
Units  
US8  
Asynchronous RXD Toggling Relative to SCK Input Rising  
tCP/2 - 2  
tCP/2 + 2  
ns  
Table 13. USART Asynchronous Input Minimum Pulse-width  
Symbol  
Type of Input  
Parameter  
Pulse-width  
3(tCP/2)  
Units  
US9  
Asynchronous RXD/SCK Minimum Pulse-width  
ns  
9
 
 
 
Figure 4. USART Signals Relative to MCKI  
MCKI  
US1  
US1  
SCK Output  
US3  
US7H  
US7S  
US6H  
US6S  
SCK Input  
US2  
US4  
US8S  
US8H  
TXD  
RXD  
US5S  
US5H  
US9  
RXD/SCK  
(Asynchronous)  
AT91M63200/M43300  
10  
AT91M63200/M43300  
SPI Signals  
Table 14. SPI Signals in Master Mode  
Minimum  
Core at 2V Core at 3.3V  
Maximum  
Symbol  
tSPCK  
fSPCK  
SP1  
Parameter  
Core at 2V  
16320(tCP  
1/4(tCP  
261120(tCP)  
Core at 3.3V  
Units  
ns  
SPI Operating Period  
SPI Operating Frequency  
Delay before NPCS[3:0]  
Delay between Chip Selects  
Delay before SPCK  
4(tCP  
)
)
1/16320(tCP  
)
)
GHz  
ns  
4(tCP  
6(tCP  
2(tCP  
)
)
)
SP2  
8160(tCP  
)
)
ns  
SP3  
8160(tCP  
ns  
SP4  
MISO/SPCK Setup Time  
MISO/SPCK Hold Time  
MOSI Valid after SPCK Edge  
TBD  
TBD  
18  
7
ns  
SP5  
TBD  
0
ns  
SP6  
ns  
Figure 5. SPI Signals  
SP1  
SP3  
NPCS[3:0]  
output  
SP2  
tSPCK  
SPCK  
Output  
CPOL = 0  
SPCK  
Output  
CPOL = 1  
SP4  
SP5  
MISO  
Input  
MSB In  
LSB In  
Data  
SP6  
MSB Out  
MOSI  
Output  
LSB Out  
Data  
11  
Timer Counter Signals  
Due to internal synchronization of input signals, there is a delay between an input event and a corresponding output event.  
This delay is 3(tCP) in Waveform Event Detection mode and 4(tCP) in Waveform Total-count Detection mode. In addition  
there are the following delays relative to MCKI waveforms.  
Table 15. Timer Outputs  
Maximum  
Symbol  
TC1  
Parameter  
Core at 2V  
TBD  
Core at 3.3V  
Units  
MCKI Rising to TIOA Rising  
MCKI Rising to TIOA Falling  
MCKI Rising to TIOB Rising  
MCKI Rising to TIOB Falling  
22  
22  
22  
22  
TC2  
TBD  
ns  
TC3  
TBD  
TC4  
TBD  
The inputs can be used synchronously or asynchronously (in relation to MCKI).  
For synchronous Timer inputs, certain setup/hold constraints must be met. These constraints are shown in the Table 16  
and are represented in Figure 6.  
For asynchronous inputs, a minimum pulse-width and a minimum input period are necessary as shown in Tables 17 and 18  
and as represented in Figure 6.  
Table 16. Synchronous Timer Inputs  
Setup  
Hold  
Core at  
2V  
Core at  
3.3V  
Core at  
2V  
Core at  
3.3V  
Symbol  
TC5  
Type of Input  
Synchronous  
Synchronous  
Parameter  
Units  
TIOA/TIOB Rising Relative to MCKI Rising  
TBD  
TBD  
2
2
TBD  
TBD  
5
5
TC6  
TIOA/TIOB Falling Relative to MCKI  
Rising  
ns  
TC7  
TC8  
Synchronous  
Synchronous  
TCLK Rising Relative to MCKI Rising  
TCLK Falling Relative to MCKI Rising  
TBD  
TBD  
2
2
TBD  
TBD  
5
5
Table 17. Asynchronous Timer Input Minimum Pulse-width  
Symbol  
Type of Inputs  
Parameter  
TCLK/TIOA/TIOB Minimum Pulse-width  
Pulse-width  
Units  
TC9  
Asynchronous  
3(tCP/2)  
ns  
Table 18. Asynchronous Timer Input Minimum Input Period  
Symbol  
Type of Inputs  
Parameter  
Input Period  
Units  
TC10  
Asynchronous  
TCLK/TIOA/TIOB Minimum Input Period  
5(tCP/2)  
ns  
AT91M63200/M43300  
12  
 
 
 
AT91M63200/M43300  
Figure 6. Timer Relative to MCKI  
TC10  
3(tCP/2)  
1(tCP)  
MCKI  
Detect  
TC9  
Detect  
TIOA/TIOB/TCLK  
Asynchronous In  
TC7H  
TC7S  
TC8H  
TC8S  
TCLK  
Synchronous Input  
TC5H  
TC5S  
TC6H  
TC6S  
TIOA/TIOB  
Synchronous Inputs  
TC1  
TC2  
TIOA  
Output  
TC3  
TC4  
TIOB  
Output  
13  
Watchdog Timer Signals  
Table 19. Watchdog Timer Outputs  
Maximum  
Symbol  
WD1  
Parameter  
Core at 2V  
TBD  
Core at 3.3V  
Units  
MCKI Rising to NWDOVF Rising  
MCKI Rising to NWDOVF Falling  
20  
20  
ns  
WD2  
TBD  
Figure 7. Watchdog Signals Relative to MCKI  
MCKI  
WD1  
WD2  
Z
Z
NWDOVF Output  
Reset Signals  
Certain setup constraints must be met. These constraints are shown in Table 20 and are represented in Figure 8.  
Table 20. Reset Setup Constraints  
Setup  
Symbol  
Parameter  
Core at 2V  
Core at 3.3V  
Units  
RST1  
NRST Rising Related to MCKI Rising  
TBD  
5
ns  
A minimum pulse width is necessary as shown in Table 21 and as represented in Figure 8.  
Table 21. Reset Minimum Pulse-width  
Symbol  
Parameter  
Pulse-width  
10(tCP  
Units  
RST3  
NRST Minimum Pulse-width  
)
ns  
Figure 8. Reset Signals Relative to MCKI  
MCKI  
RST1H  
RST1S  
RST3  
NRST  
Only the NRST rising edge is synchronized. The falling edge is asynchronous.  
AT91M63200/M43300  
14  
 
 
 
AT91M63200/M43300  
Advanced Interrupt Controller Signals  
The inputs can be used synchronously or asynchronously (in relation to MCKI).  
For synchronous AIC inputs, certain setup/hold constraints must be met. These constraints are shown in Table 22 and are  
represented in Figure 9.  
For asynchronous inputs, a minimum pulse width is necessary as shown in Table 23 and as represented in Figure 9.  
Table 22. AIC Synchronous Input Setup/Hold Constraints  
Setup  
Hold  
Core  
Core  
Core  
Core  
Symbol  
Type  
Parameter  
at 2V  
at 3.3V  
at 2V  
at 3.3V  
Units  
FIQ/IRQ0/IRQ1/IRQ2/IRQ3 Rising.  
Relative to MCKI Rising  
AIC1  
Synchronous  
TBD  
0
0
TBD  
4
4
ns  
FIQ/IRQ0/IRQ1/IRQ2/IRQ3 Falling.  
Related to MCKI Rising  
AIC2  
Synchronous  
TBD  
TBD  
ns  
Table 23. AIC Asynchronous Input Minimum Pulse-width  
Symbol  
Type  
Parameter  
FIQ/IRQ0/IRQ1/IRQ2/IRQ3 Minimum Pulse-width  
Pulse-width  
Units  
AIC5  
Asynchronous  
3(tCP/2)  
ns  
Table 24. AIC Asynchronous Input Minimum Input Period  
Symbol  
Type  
Parameter  
Input Period  
Units  
AIC6  
Asynchronous  
AIC Minimum Input Period  
5(tCP/2)  
ns  
Figure 9. AIC Signals Relative to MCKI  
AIC6  
MCKI  
AIC5  
FIQ/IRQ0/IRQ1/IRQ2/IRQ3  
Asynchronous Input  
AIC1H  
AIC1S  
AIC2H  
AIC1S  
FIQ/IRQ0/IRQ1/IRQ2/IRQ3  
Synchronous Input  
15  
 
 
 
Parallel I/O Signals  
Table 25. PIO Outputs  
Maximum  
Symbol  
PIO1  
Parameter  
Core at 2V  
Core at 3.3V  
Units  
ns  
MCKI Falling to PIO Output Rising  
MCKI Falling to PIO Output Falling  
TBD  
TBD  
22  
22  
PIO2  
ns  
The inputs can be used synchronously or asynchronously (in relation to MCKI).  
For synchronous PIO inputs, certain setup/hold constraints must be met. These constraints are shown in the Table 26 and  
are represented in Figure 10.  
For asynchronous inputs, a minimum pulse width is necessary as shown in Table 27 and as represented in Figure 10.  
Table 26. PIO Synchronous Input Setup/Hold Constraints  
Setup  
Hold  
Core  
Core  
Core  
Core  
Symbol  
PIO3  
Type  
Parameter  
at 2V  
at 3.3V  
at 2V  
at 3.3V  
Units  
ns  
Synchronous  
Synchronous  
PIO Input Rising Related to MCKI Rising  
PIO Input Falling Related to MCKI Rising  
TBD  
2
2
TBD  
5
5
PIO4  
TBD  
TBD  
ns  
Table 27. PIO Asynchronous Input Minimum Pulse-width  
Symbol  
Type  
Parameter  
Pulse-width  
Units  
PIO5  
Asynchronous  
PIO Input Minimum Pulse-width  
3(tCP/2)  
ns  
Figure 10. PIO Signals Relative to MCKI  
MCKI  
PIO3H  
PIO3S  
PIO4H  
PIO4S  
PIO  
Synchronous Inputs  
PIO5  
PIO  
Asynchronous Inputs  
PIO1  
PIO2  
PIO  
Outputs  
AT91M63200/M43300  
16  
 
 
 
AT91M63200/M43300  
Multi-processor Interface Signals (AT91M63200 Only)  
Figure 11. External Arbitration  
MPI_BR  
t1  
t2  
MPI_BG  
MPI_D[15:0]  
Data Transfer  
Table 28. External Arbitration  
Minimum  
Core at 2V Core at 3.3V  
Maximum  
Symbol  
Parameter  
Core at 2V  
Core at 3.3V  
Units  
MPI_BR High to MPI_BG High Delay  
(30 pf)  
t1  
t2  
tCP  
2 x tCP + 12  
ns  
MPI_BR Low to MPI_BG Low  
TBD  
12  
17  
Table 29. MPI Read Access  
Minimum  
Maximum  
Symbol  
tRC  
Parameter  
Core at 2V  
Core at 3.3V  
Core at 2V  
Core at 3.3V  
Units  
ns  
Read Cycle Time  
TBD  
22  
tAA  
Address Access Time  
TBD  
TBD  
TBD  
TBD  
22  
22  
10  
10  
ns  
tACS  
tOE  
LB, tUB  
Chip Select Access Time  
Output Enable to Output Valid  
Byte Select to Output Valid  
Output Hold from Address Change  
Chip Select to Output in Low-Z  
Output Enable to Output in Low-Z  
ns  
ns  
t
ns  
tOH  
TBD  
TBD  
TBD  
0
0
0
ns  
tCLZ  
tOLZ  
tLBLZ,  
ns  
ns  
Byte Select to Output in Low-Z  
TBD  
0
ns  
tUBLZ  
tCHZ  
tOHZ  
tLBHZ,  
Chip Deselect to Output in High-Z  
Output Disable to Output in High-Z  
TBD  
TBD  
7
7
ns  
ns  
Byte Deselect to Output in High-Z  
TBD  
7
ns  
tUBHZ  
Figure 12. MPI Read Access  
tRC  
MPI_A[9:1]  
Valid Address  
tAA  
tOH  
tCHZ  
tACS  
MPI_NCS  
MPI_NOE  
tOE  
tOHZ  
tLB  
tUB  
tLBHZ tUBHZ  
MPI_NLB, MPI_NUB  
tOLZ tLBLZ tUBLZ  
tCLZ  
High Impedance  
MPI_D[15:0]  
Valid Data  
AT91M63200/M43300  
18  
AT91M63200/M43300  
Table 30. MPI Write Access  
Minimum  
Maximum  
Symbol  
tWC  
Parameter  
Core at 2V  
Core at 3.3V  
Core at 2V  
Core at 3.3V  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Write Cycle Time  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
10  
10  
10  
10  
10  
0
tAW  
Address Valid to End of Write  
Chip Select to End of Write  
Write pulse-width  
tCW  
tWP  
t
LBW, tUBW  
Byte Select to End of Write  
Address Setup Time  
tAS  
tWR  
tDW  
tDH  
Write Recovery Time  
0
Data Valid to End of Write  
Data Hold Time from End of Write  
Write Disable to Output in Low-Z  
Write Enable to Output in High-Z  
10  
0
tOW  
tWHZ  
10  
TBD  
7
Figure 13. MPI Write Access (MPI_RNW Controlled)  
tWC  
MPI_A[9:1]  
Valid Address  
tAW  
tWR  
tAS  
tWP  
MPI_RNW  
tCW  
MPI_NCS  
tLBW tUBW  
MPI_NLB, MPI_NUB  
MPI_Dout[15:0]  
tWHZ  
tOW  
high-Z  
tDW  
tDH  
High-Z  
High-Z  
MPI_Din[15:0]  
Valid Data  
19  
Figure 14. MPI Write Access (MPI_NCS Controlled)  
tWC  
MPI_A[9:1]  
Valid Address  
tAW  
tWR  
tAS  
tWP  
MPI_RNW  
tCW  
MPI_NCS  
tLBW tUBW  
MPI_NLB, MPI_NUB  
tDW  
tDH  
High-Z  
High-Z  
MPI_Din[15:0]  
Valid Data  
Figure 15. MPI Write Access (MPI_NLB, MPI_NUB Controlled)  
tWC  
MPI_A[9:1]  
MPI_RNW  
Valid Address  
tWP  
tAW  
tWR  
tAS  
tCW  
MPI_NCS  
tLBW tUBW  
MPI_NLB, MPI_NUB  
MPI_Din[15:0]  
tDW  
tDH  
High-Z  
High-Z  
Valid Data  
AT91M63200/M43300  
20  
Atmel Headquarters  
Atmel Operations  
Corporate Headquarters  
2325 Orchard Parkway  
San Jose, CA 95131  
TEL (408) 441-0311  
FAX (408) 487-2600  
Atmel Colorado Springs  
1150 E. Cheyenne Mtn. Blvd.  
Colorado Springs, CO 80906  
TEL (719) 576-3300  
FAX (719) 540-1759  
Europe  
Atmel Rousset  
Zone Industrielle  
13106 Rousset Cedex  
France  
Atmel U.K., Ltd.  
Coliseum Business Centre  
Riverside Way  
Camberley, Surrey GU15 3YL  
England  
TEL (33) 4-4253-6000  
FAX (33) 4-4253-6001  
TEL (44) 1276-686-677  
FAX (44) 1276-686-697  
Asia  
Atmel Asia, Ltd.  
Room 1219  
Chinachem Golden Plaza  
77 Mody Road Tsimhatsui  
East Kowloon  
Hong Kong  
TEL (852) 2721-9778  
FAX (852) 2722-1369  
Japan  
Atmel Japan K.K.  
9F, Tonetsu Shinkawa Bldg.  
1-24-8 Shinkawa  
Chuo-ku, Tokyo 104-0033  
Japan  
TEL (81) 3-3523-3551  
FAX (81) 3-3523-7581  
Fax-on-Demand  
North America:  
1-(800) 292-8635  
International:  
1-(408) 441-0732  
e-mail  
literature@atmel.com  
Web Site  
http://www.atmel.com  
BBS  
1-(408) 436-4309  
© Atmel Corporation 2000.  
Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Companys standard war-  
ranty which is detailed in Atmels Terms and Conditions located on the Companys web site. The Company assumes no responsibility for  
any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without  
notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual prop-  
erty of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmels products are  
not authorized for use as critical components in life support devices or systems.  
ARM, Thumb and ARM Powered are registered trademarks of ARM Limited.  
ARM7TDMI is a trademark of ARM Ltd.  
All other marks bearing and/or are registered trademarks and trademarks of Atmel Corporation.  
Terms and product names in this document may be trademarks of others.  
Printed on recycled paper.  
®
1090B06/00/0M  

相关型号:

AT91M63200-12AL

RISC Microcontroller, 32-Bit, 12MHz, CMOS, PQFP176, TQFP-176
ATMEL

AT91M63200-12AL-1.8

RISC Microcontroller, 32-Bit, 12MHz, CMOS, PQFP176, TQFP-176
ATMEL

AT91M63200-25AI

ARM Thumb Microcontrollers
ATMEL

AT91M63200_99

AT91 ARM Thumb Microcontrollers
ATMEL

AT91M63800-25AC

Microcontroller
ETC

AT91M63800-25AI

Microcontroller
ETC

AT91R40008

AT91 ARM Thumb Microcontroller
ATMEL

AT91R40008-66AI

AT91 ARM Thumb Microcontroller
ATMEL

AT91R40008-66AU

AT91 ARM Thumb-based Microcontroller
ATMEL

AT91R40008-66AU

IC MCU 32BIT ROMLESS 100LQFP
MICROCHIP

AT91R40008-66AU-999

IC MCU 32BIT ROMLESS 100LQFP
MICROCHIP

AT91R40008-66QI

RISC Microcontroller, 32-Bit, 66MHz, CMOS, PQFP100, TQFP-100
ATMEL