AT90LS4434-4JI [ATMEL]

8-Bit Microcontroller with 4K/8K Bytes In-System Programmable Flash; 8 -bit微控制器4K / 8K字节的系统内可编程闪存
AT90LS4434-4JI
型号: AT90LS4434-4JI
厂家: ATMEL    ATMEL
描述:

8-Bit Microcontroller with 4K/8K Bytes In-System Programmable Flash
8 -bit微控制器4K / 8K字节的系统内可编程闪存

闪存 微控制器
文件: 总10页 (文件大小:485K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Features  
Utilizes the AVR ® Enhanced RISC Architecture  
AVR - High Performance and Low Power RISC Architecture  
118 Powerful Instructions - Most Single Clock Cycle Execution  
8K bytes of In-System Programmable Flash AT90S/LS8535  
4K bytes of In-System Programmable Flash AT90S/LS4434  
– SPI Serial Interface for In-System Programming  
– Endurance: 1,000 Write/Erase Cycles  
512 bytes EEPROM AT90S/LS8535  
256 bytes EEPROM AT90S/LS4434  
– Endurance: 100,000 Write/Erase Cycles  
512 bytes Internal SRAM AT90S/LS8535  
256 bytes Internal SRAM AT90S/LS4434  
8-Channel, 10-Bit ADC  
32 x 8 General Purpose Working Registers  
32 Programmable I/O Lines  
Programmable Serial UART  
VCC: 4.0 - 6.0V AT90S4434/AT90S8535  
VCC: 2.7 - 6.0V AT90LS4434/AT90LS8535  
Speed Grades:  
0 - 8 MHz AT90S4434/AT90S8535,  
8-Bit  
Microcontroller  
with 4K/8K  
BytesIn-System  
Programmable  
Flash  
0 - 4 MHz (AT90LS4434/AT90LS8535  
Power-On Reset Circuit  
Up to 8 MIPS Throughput at 8 MHz  
RTC with Separate Oscillator and Counter Mode  
Two 8-Bit Timer/Counters with Separate Prescaler and Compare Mode  
One 16-Bit Timer/Counter with Separate Prescaler and Compare and Capture Modes  
3 PWM channels  
External and Internal Interrupt Sources  
Programmable Watchdog Timer with On-Chip Oscillator  
On-Chip Analog Comparator  
AT90S4434  
AT90LS4434  
AT90S8535  
AT90LS8535  
Advance  
Three Sleep Modes: Idle, Power Save, and Power Down  
Programming Lock for Software Security  
Description  
The AT90S4434/8535 is a low-power CMOS 8-bit microcontroller based on the AVR®  
enhanced RISC architecture. By executing powerful instructions in a single clock  
cycle, the AT90S4434/8535 achieves throughputs approaching 1 MIPS per MHz  
allowing the system designer to optimize power consumption versus processing  
Information  
speed.  
(continued)  
Pin Configurations  
Rev. 1041AS–05/98  
Note: This is a summary document. For the complete 80 page  
document, please visit our website at www.atmel.com or e-mail at  
literature@atmel.com and request literature #1041A.  
Block Diagram  
PA0 - PA7  
PC0 - PC7  
VCC  
GND  
PORTA DRIVERS  
PORTC DRIVERS  
DATA REGISTER  
DATA DIR.  
REG. PORTA  
DATA REGISTER  
DATA DIR.  
REG. PORTC  
PORTA  
PORTC  
8-BIT DATA BUS  
AVCC  
ANALOG MUX  
ADC  
OSCILLATOR  
OSCILLATOR  
AGND  
AREF  
XTAL1  
XTAL2  
INTERNAL  
OSCILLATOR  
PROGRAM  
COUNTER  
STACK  
POINTER  
WATCHDOG  
TIMER  
TIMING AND  
CONTROL  
RESET  
PROGRAM  
FLASH  
MCU CONTROL  
REGISTER  
SRAM  
INSTRUCTION  
REGISTER  
GENERAL  
PURPOSE  
REGISTERS  
TIMER/  
COUNTERS  
X
Y
Z
INSTRUCTION  
DECODER  
INTERRUPT  
UNIT  
CONTROL  
LINES  
ALU  
EEPROM  
STATUS  
REGISTER  
PROGRAMMING  
LOGIC  
SPI  
UART  
DATA REGISTER  
PORTB  
DATA DIR.  
REG. PORTB  
DATA REGISTER  
PORTD  
DATA DIR.  
REG. PORTD  
PORTB DRIVERS  
PORTD DRIVERS  
PB0 - PB7  
PD0 - PD7  
The AVR core combines a rich instruction set with 32 gen-  
eral purpose working registers. All the 32 registers are  
directly connected to the Arithmetic Logic Unit (ALU),  
allowing two independent registers to be accessed in one  
single instruction executed in one clock cycle. The resulting  
architecture is more code efficient while achieving through-  
puts up to ten times faster than conventional CISC micro-  
controllers.  
external interrupts, a programmable serial UART, 8-chan-  
nel, 10-bit ADC, programmable Watchdog Timer with inter-  
nal oscillator, an SPI serial port and three software  
selectable power saving modes. The Idle mode stops the  
CPU while allowing the SRAM, timer/counters, SPI port  
and interrupt system to continue functioning. The Power  
Down mode saves the register contents but freezes the  
oscillator, disabling all other chip functions until the next  
interrupt or hardware reset. In Power Save mode, the timer  
oscillator continues to run, allowing the user to maintain a  
timer base while the rest of the device is sleeping.  
The AT90S4434/8535 provides the following features:  
4K/8K bytes of In-System Programmable Flash, 256/512  
bytes EEPROM, 256/512 bytes SRAM, 32 general purpose  
I/O lines, 32 general purpose working registers, RTC, three  
flexible timer/counters with compare modes, internal and  
The device is manufactured using Atmel’s high density  
non-volatile memory technology. The on-chip ISP Flash  
AT90S/LS4434 and AT90S/LS8535  
2
AT90S/LS4434 and AT90S/LS8535  
allows the program memory to be reprogrammed in-system  
through an SPI serial interface or by a conventional nonvol-  
atile memory programmer. By combining an 8-bit RISC  
CPU with In-System Programmable Flash on a monolithic  
chip, the Atmel AT90S4434/8535 is a powerful microcon-  
troller that provides a highly flexible and cost effective solu-  
tion to many embedded control applications.  
Port C is an 8-bit bi-directional I/O port with internal pullup  
resistors. The Port C output buffers can sink 20 mA. As  
inputs, Port C pins that are externally pulled low will source  
current if the pull-up resistors are activated. Two Port C  
pins can alternatively be used as oscillator for  
Timer/Counter2.  
Port D (PD7..PD0)  
The AT90S4434/8535 AVR is supported with a full suite of  
program and system development tools including: C com-  
pilers, macro assemblers, program debugger/simulators,  
in-circuit emulators, and evaluation kits.  
Port D is an 8-bit bidirectional I/O port with internal pull-up  
resistors. The Port D output buffers can sink 20 mA. As  
inputs, Port D pins that are externally pulled low will source  
current if the pull-up resistors are activated.  
Comparison between AT90S4434 and AT90S8535  
Port D also serves the functions of various special features  
of the AT90S4434/8535 as listed on page 59.  
The AT90S4434 has 4K bytes of In-System Programmable  
Flash, 256 bytes of EEPROM, and 256 bytes of internal  
SRAM.  
RESET  
Reset input. A low on this pin for two machine cycles while  
the oscillator is running resets the device.  
The AT90S8535 has 8K bytes of In-System Programmable  
Flash, 512 bytes of EEPROM, and 512 bytes of internal  
SRAM.  
XTAL1  
Input to the inverting oscillator amplifier and input to the  
internal clock operating circuit.  
Table 1 summarizes the different memory sizes for the two  
devices.  
XTAL2  
Output from the inverting oscillator amplifier  
Table 1. Memory Size Summary  
AVCC  
Part  
Flash  
EEPROM  
256 bytes  
512 bytes  
SRAM  
This is the supply voltage pin for the A/D Converter. It  
should be externally connected to VCC via a low-pass filter.  
See page 47 for details on operation of the ADC.  
AT90S4434  
AT90S8535  
4K bytes  
8K bytes  
256 bytes  
512 bytes  
AREF  
This is the analog reference input for the A/D Converter.  
For ADC operations, a voltage in the range AGND to AVCC  
must be applied to this pin.  
Pin Descriptions  
VCC  
Digital supply voltage  
GND  
AGND  
Analog ground. If the board has a separate analog ground  
plane, this pin should be connected to this ground plane.  
Otherwise, connect to GND.  
Digital ground  
Port A (PA7..PA0)  
Port A is an 8-bit bi-directional I/O port. Port pins can pro-  
vide internal pull-up resistors (selected for each bit). The  
Port A output buffers can sink 20mA and can drive LED dis-  
plays directly. When pins PA0 to PA7 are used as inputs  
and are externally pulled low, they will source current if the  
internal pull-up resistors are activated.  
Crystal Oscillators  
XTAL1 and XTAL2 are input and output, respectively, of an  
inverting amplifier which can be configured for use as an  
on-chip oscillator, as shown in Figure 1. Either a quartz  
crystal or a ceramic resonator may be used. To drive the  
device from an external clock source, XTAL2 should be left  
unconnected while XTAL1 is driven as shown in Figure 2.  
For the Timer Oscillator pins, PC6(OSC1) and PC7(OSC2),  
the crystal is connected directly between the pins. No  
external capacitors are needed. The oscillator is optimized  
for use with a 32,768 Hz watch crystal. An external clock  
signal applied to this pin goes through the same amplifier  
having a bandwidth of 256 kHz. The external clock signal  
should therefore be in the interval 0 Hz - 256 kHz.  
Port A also serves as the analog inputs to the A/D Con-  
verter.  
Port B (PB7..PB0)  
Port B is an 8-bit bi-directional I/O pins with internal pull-up  
resistors. The Port B output buffers can sink 20 mA. As  
inputs, Port B pins that are externally pulled low will source  
current if the pull-up resistors are activated.  
Port B also serves the functions of various special features  
of the AT90S4434/8535 as listed on page 52.  
Port C (PC7..PC0)  
3
Figure 1. Oscillator Connections  
Figure 2. External Clock Drive Configuration  
Architectural Overview  
The fast-access register file concept contains 32 x 8-bit  
general purpose working registers with a single clock cycle  
access time. This means that during one single clock cycle,  
one Arithmetic Logic Unit (ALU) operation is executed. Two  
operands are output from the register file, the operation is  
executed, and the result is stored back in the register file -  
in one clock cycle.  
Six of the 32 registers can be used as three 16-bits indirect  
address register pointers for Data Space addressing -  
enabling efficient address calculations. One of the three  
address pointers is also used as the address pointer for the  
constant table look up function. These added function reg-  
isters are the 16-bits X-register, Y-register and Z-register.  
Figure 3. The AT90S4434/8535 AVR Enhanced RISC Architecture  
AVR AT90S4434/8535 Architecture  
Data Bus 8-bit  
Program  
Counter  
Status  
and Control  
Interrupt  
Unit  
2K/4K X 16  
Program  
Memory  
SPI  
Unit  
32 x 8  
General  
Purpose  
Registrers  
Instruction  
Register  
Serial  
UART  
Instruction  
Decoder  
8-bit  
Timer/Counter  
ALU  
Control Lines  
16-bit  
Timer/Counter  
with PWM  
8-bit  
Timer/Counter  
with PWM  
256/512 x 8  
Data  
SRAM  
Watchdog  
Timer  
256/512 x 8  
EEPROM  
Analog to Digital  
Converter  
32  
I/O Lines  
Analog  
Comparator  
AT90S/LS4434 and AT90S/LS8535  
4
AT90S/LS4434 and AT90S/LS8535  
The ALU supports arithmetic and logic functions between  
registers or between a constant and a register. Single reg-  
ister operations are also executed in the ALU. Figure 3  
shows the AT90S4434/8535 AVR Enhanced RISC micro-  
controller architecture.  
enables instructions to be executed in every clock cycle.  
The program memory is in-system downloadable Flash  
memory.  
With the relative jump and call instructions, the whole  
2K/4K address space is directly accessed. Most AVR  
instructions have a single 16-bit word format. Every pro-  
gram memory address contains a 16- or 32-bit instruction.  
In addition to the register operation, the conventional mem-  
ory addressing modes can be used on the register file as  
well. This is enabled by the fact that the register file is  
assigned the 32 lowermost Data Space addresses ($00 -  
$1F), allowing them to be accessed as though they were  
ordinary memory locations.  
During interrupts and subroutine calls, the return address  
program counter (PC) is stored on the stack. The stack is  
effectively allocated in the general data SRAM, and conse-  
quently the stack size is only limited by the total SRAM size  
and the usage of the SRAM. All user programs must initial-  
ize the SP in the reset routine (before subroutines or inter-  
rupts are executed). The 9-bit stack pointer SP is read/write  
accessible in the I/O space.  
The I/O memory space contains 64 addresses for CPU  
peripheral functions as Control Registers, Timer/Counters,  
A/D-converters, and other I/O functions. The I/O Memory  
can be accessed directly, or as the Data Space locations  
following those of the register file, $20 - $5F.  
The 256/512 bytes data SRAM can be easily accessed  
through the five different addressing modes supported in  
the AVR architecture.  
The AVR uses a Harvard architecture concept - with sepa-  
rate memories and buses for program and data. The pro-  
gram memory is executed with a single level pipelining.  
While one instruction is being executed, the next instruction  
is pre-fetched from the program memory. This concept  
The memory spaces in the AVR architecture are all linear  
and regular memory maps.  
Figure 4. Memory Maps  
Program Memory  
Data Memory  
Data Memory  
$0000  
$0000  
$000  
32 Gen. Purpose  
Working Registers  
$001F  
$0020  
64 I/O Registers  
EEPROM  
Program Flash  
(2K/4K x 16)  
(256/512 x 8)  
$005F  
$0060  
$1F/$FF  
Internal SRAM  
(256/512 x 8)  
$015F/$025F  
$7FF/$FFF  
5
AT90S4434/8535 Register Summary  
Address  
Name  
SREG  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Page  
$3F ($5F)  
$3E ($5E)  
$3D ($5D)  
$3C ($5C)  
$3B ($5B)  
$3A ($5A)  
$39 ($59)  
$38 ($58)  
$37 ($57)  
$36 ($56)  
$35 ($55)  
$34 ($54)  
$33 ($53)  
$32 ($52)  
$31 ($51)  
$30 ($50)  
$2F ($4F)  
$2E ($4E)  
$2D ($4D)  
$2C ($4C)  
$2B ($4B)  
$2A ($4A)  
$29 ($49)  
$28 ($48)  
$27 ($47)  
$26 ($46)  
$25 ($45)  
$24 ($44)  
$23 ($43)  
$22 ($42)  
$21 ($41)  
$20 ($40)  
$1F ($3F)  
$1E ($3E)  
$1D ($3D)  
$1C ($3C)  
$1B ($3B)  
$1A ($3A)  
$19 ($39)  
$18 ($38)  
$17 ($37)  
$16 ($36)  
$15 ($35)  
$14 ($34)  
$13 ($33)  
$12 ($32)  
$11 ($31)  
$10 ($30)  
$0F ($2F)  
$0E ($2E)  
$0D ($2D)  
$0C ($2C)  
$0B ($2B)  
$0A ($2A)  
$09 ($29)  
$08 ($28)  
$07 ($27)  
$06 ($26)  
$05 ($25)  
$04 ($24)  
$03 ($20)  
$02 ($22)  
$01 ($21)  
$00 ($20)  
I
-
T
-
SP6  
H
-
SP5  
S
-
SP4  
V
-
SP3  
N
-
SP2  
Z
C
21  
22  
22  
SPH  
SPL  
SP9  
SP1  
SP8  
SP0  
SP7  
Reserved  
GIMSK  
GIFR  
TIMSK  
TIFR  
INT1  
INTF1  
OCIE2  
OCF2  
INT0  
INTF0  
TOIE2  
TOV2  
-
-
-
-
-
-
28  
28  
29  
30  
TICIE1  
ICF1  
OCIE1A  
OCF1A  
OCIE1B  
OCF1B  
TOIE1  
TOV1  
-
-
TOIE0  
TOV0  
Reserved  
Reserved  
MCUCR  
MCUSR  
TCCR0  
TCNT0  
Reserved  
Reserved  
TCCR1A  
TCCR1B  
TCNT1H  
TCNT1L  
OCR1AH  
OCR1AL  
OCR1BH  
OCR1BL  
ICR1H  
ICR1L  
-
-
-
SE  
-
-
SM1  
-
-
SM0  
-
-
ISC11  
-
-
ISC10  
-
CS02  
ISC01  
EXTRF  
CS01  
ISC00  
PORF  
CS00  
31  
27  
35  
36  
Timer/Counter0 (8 Bits)  
COM1A1  
ICNC1  
COM1A0  
ICES1  
COM1B1  
-
COM1B0  
-
-
-
PWM11  
CS11  
PWM10  
CS10  
38  
39  
40  
40  
41  
41  
41  
41  
41  
41  
45  
46  
46  
48  
50  
CTC1  
CS12  
Timer/Counter1 - Counter Register High Byte  
Timer/Counter1 - Counter Register Low Byte  
Timer/Counter1 - Output Compare Register A High Byte  
Timer/Counter1 - Output Compare Register A Low Byte  
Timer/Counter1 - Output Compare Register B High Byte  
Timer/Counter1 - Output Compare Register B Low Byte  
Timer/Counter1 - Input Capture Register High Byte  
Timer/Counter1 - Input Capture Register Low Byte  
TCCR2  
TCNT2  
OCR2  
-
PWM2  
Timer/Counter2 (8 Bits)  
Timer/Counter2 Output Compare Register  
COM21  
COM20  
CTC2  
CS22  
CS21  
CS20  
ASSR  
-
-
-
-
-
-
-
AS2  
WDE  
TCN2UB  
WDP2  
OCR2UB  
WDP1  
TCR2UB  
WDP0  
WDTCR  
Reserved  
EEARH  
EEARL  
EEDR  
EECR  
PORTA  
DDRA  
PINA  
PORTB  
DDRB  
PINB  
PORTC  
DDRC  
WDTOE  
EEAR9  
EEAR0  
EEAR7  
EEPROM Data Register  
EEAR6  
EEAR5  
EEAR4  
EEAR3  
EEAR2  
EEAR1  
51  
51  
52  
70  
70  
70  
72  
72  
72  
78  
78  
78  
81  
81  
81  
57  
56  
56  
60  
60  
61  
-
-
-
-
EERIE  
PORTA3  
DDA3  
PINA3  
PORTB3  
DDB3  
PINB3  
PORTC3  
DDC3  
PINC3  
PORTD3  
DDD3  
EEMWE  
PORTA2  
DDA2  
PINA2  
PORTB2  
DDB2  
PINB2  
PORTC2  
DDC2  
PINC2  
PORTD2  
DDD2  
EEWE  
PORTA1  
DDA1  
PINA1  
PORTB1  
DDB1  
PINB1  
PORTC1  
DDC1  
PINC1  
PORTD1  
DDD1  
EERE  
PORTA0  
DDA0  
PINA0  
PORTB0  
DDB0  
PINB0  
PORTC0  
DDC0  
PINC0  
PORTD0  
DDD0  
PORTA7  
DDA7  
PINA7  
PORTB7  
DDB7  
PINB7  
PORTC7  
DDC7  
PINC7  
PORTD7  
DDD7  
PORTA6  
DDA6  
PINA6  
PORTB6  
DDB6  
PINB6  
PORTC6  
DDC6  
PINC6  
PORTD6  
DDD6  
PORTA5  
DDA5  
PINA5  
PORTB5  
DDB5  
PINB5  
PORTC5  
DDC5  
PINC5  
PORTD5  
DDD5  
PORTA4  
DDA4  
PINA4  
PORTB4  
DDB4  
PINB4  
PORTC4  
DDC4  
PINC4  
PORTD4  
DDD4  
PINC  
PORTD  
DDRD  
PIND  
SPDR  
PIND7  
SPI Data Register  
PIND6  
PIND5  
PIND4  
PIND3  
PIND2  
PIND1  
PIND0  
SPSR  
SPCR  
UDR  
USR  
UCR  
UBRR  
SPIF  
SPIE  
WCOL  
SPE  
-
-
-
-
-
-
DORD  
MSTR  
CPOL  
CPHA  
SPR1  
SPR0  
UART I/O Data Register  
RXC  
RXCIE  
UART Baud Rate Register  
TXC  
TXCIE  
UDRE  
UDRIE  
FE  
RXEN  
OR  
TXEN  
-
-
-
CHR9  
RXB8  
TXB8  
ACSR  
ACD  
-
ADEN  
-
ADC7  
-
-
ACO  
-
ADFR  
-
ADC5  
ACI  
-
ADIF  
-
ADC4  
ACIE  
-
ADIE  
-
ADC3  
ACIC  
MUX2  
ADPS2  
-
ACIS1  
MUX1  
ADPS1  
ADC9  
ADC1  
ACIS0  
MUX0  
ADPS0  
ADC8  
ADC0  
67  
67  
67  
68  
68  
ADMUX  
ADCSR  
ADCH  
ADSC  
-
ADC6  
ADCL  
ADC2  
Reserved  
Reserved  
Reserved  
Reserved  
AT90S/LS4434  
6
AT90S/LS4434 and AT90S/LS8535  
AT90S4434/8535 Instruction Set Summary  
Mnemonics  
Operands  
Description  
Operation  
Flags  
#Clocks  
ARITHMETIC AND LOGIC INSTRUCTIONS  
ADD  
ADC  
ADIW  
SUB  
SUBI  
SBC  
SBCI  
SBIW  
AND  
ANDI  
OR  
Rd, Rr  
Rd, Rr  
Rdl,K  
Rd, Rr  
Rd, K  
Rd, Rr  
Rd, K  
Rdl,K  
Rd, Rr  
Rd, K  
Rd, Rr  
Rd, K  
Rd, Rr  
Rd  
Add two Registers  
Rd Rd + Rr  
Rd Rd + Rr + C  
Rdh:Rdl Rdh:Rdl + K  
Rd Rd - Rr  
Z,C,N,V,H  
Z,C,N,V,H  
Z,C,N,V,S  
Z,C,N,V,H  
Z,C,N,V,H  
Z,C,N,V,H  
Z,C,N,V,H  
Z,C,N,V,S  
Z,N,V  
1
1
2
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Add with Carry two Registers  
Add Immediate to Word  
Subtract two Registers  
Subtract Constant from Register  
Subtract with Carry two Registers  
Subtract with Carry Constant from Reg.  
Subtract Immediate from Word  
Logical AND Registers  
Logical AND Register and Constant  
Logical OR Registers  
Logical OR Register and Constant  
Exclusive OR Registers  
One’s Complement  
Two’s Complement  
Set Bit(s) in Register  
Rd Rd - K  
Rd Rd - Rr - C  
Rd Rd - K - C  
Rdh:Rdl Rdh:Rdl - K  
Rd Rd Rr  
Rd Rd K  
Rd Rd v Rr  
Z,N,V  
Z,N,V  
Z,N,V  
ORI  
Rd Rd v K  
EOR  
COM  
NEG  
SBR  
CBR  
INC  
Rd Rd Rr  
Rd $FF Rd  
Rd $00 Rd  
Rd Rd v K  
Rd Rd ($FF - K)  
Rd Rd + 1  
Z,N,V  
Z,C,N,V  
Z,C,N,V,H  
Z,N,V  
Z,N,V  
Z,N,V  
Rd  
Rd,K  
Rd,K  
Rd  
Clear Bit(s) in Register  
Increment  
DEC  
TST  
CLR  
SER  
Rd  
Rd  
Rd  
Rd  
Decrement  
Test for Zero or Minus  
Clear Register  
Rd Rd 1  
Z,N,V  
Z,N,V  
Z,N,V  
None  
Rd Rd Rd  
Rd Rd Rd  
Rd $FF  
Set Register  
BRANCH INSTRUCTIONS  
RJMP  
IJMP  
RCALL  
ICALL  
RET  
k
k
Relative Jump  
PC PC + k + 1  
None  
None  
None  
None  
None  
I
2
Indirect Jump to (Z)  
Relative Subroutine Call  
Indirect Call to (Z)  
Subroutine Return  
Interrupt Return  
PC Z  
PC PC + k + 1  
PC Z  
PC STACK  
2
3
3
4
RETI  
PC STACK  
4
CPSE  
CP  
CPC  
Rd,Rr  
Compare, Skip if Equal  
Compare  
Compare with Carry  
if (Rd = Rr) PC PC + 2 or 3  
Rd Rr  
Rd Rr C  
None  
Z, N,V,C,H  
Z, N,V,C,H  
Z, N,V,C,H  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
1 / 2  
1
1
Rd,Rr  
Rd,Rr  
Rd,K  
Rr, b  
CPI  
Compare Register with Immediate  
Skip if Bit in Register Cleared  
Skip if Bit in Register is Set  
Skip if Bit in I/O Register Cleared  
Skip if Bit in I/O Register is Set  
Branch if Status Flag Set  
Branch if Status Flag Cleared  
Branch if Equal  
Rd K  
1
SBRC  
SBRS  
SBIC  
SBIS  
if (Rr(b)=0) PC PC + 2 or 3  
if (Rr(b)=1) PC PC + 2 or 3  
if (P(b)=0) PC PC + 2 or 3  
if (P(b)=1) PC PC + 2 or 3  
if (SREG(s) = 1) then PCPC+k + 1  
if (SREG(s) = 0) then PCPC+k + 1  
if (Z = 1) then PC PC + k + 1  
if (Z = 0) then PC PC + k + 1  
if (C = 1) then PC PC + k + 1  
if (C = 0) then PC PC + k + 1  
if (C = 0) then PC PC + k + 1  
if (C = 1) then PC PC + k + 1  
if (N = 1) then PC PC + k + 1  
if (N = 0) then PC PC + k + 1  
if (N V= 0) then PC PC + k + 1  
if (N V= 1) then PC PC + k + 1  
if (H = 1) then PC PC + k + 1  
if (H = 0) then PC PC + k + 1  
if (T = 1) then PC PC + k + 1  
if (T = 0) then PC PC + k + 1  
if (V = 1) then PC PC + k + 1  
if (V = 0) then PC PC + k + 1  
if ( I = 1) then PC PC + k + 1  
if ( I = 0) then PC PC + k + 1  
1 / 2  
1 / 2  
1 / 2  
1 / 2  
1 / 2  
1 / 2  
1 / 2  
1 / 2  
1 / 2  
1 / 2  
1 / 2  
1 / 2  
1 / 2  
1 / 2  
1 / 2  
1 / 2  
1 / 2  
1 / 2  
1 / 2  
1 / 2  
1 / 2  
1 / 2  
1 / 2  
1 / 2  
Rr, b  
P, b  
P, b  
s, k  
s, k  
k
BRBS  
BRBC  
BREQ  
BRNE  
BRCS  
BRCC  
BRSH  
BRLO  
BRMI  
BRPL  
BRGE  
BRLT  
BRHS  
BRHC  
BRTS  
BRTC  
BRVS  
BRVC  
BRIE  
BRID  
k
k
Branch if Not Equal  
Branch if Carry Set  
k
k
k
k
k
k
Branch if Carry Cleared  
Branch if Same or Higher  
Branch if Lower  
Branch if Minus  
Branch if Plus  
Branch if Greater or Equal, Signed  
Branch if Less Than Zero, Signed  
Branch if Half Carry Flag Set  
Branch if Half Carry Flag Cleared  
Branch if T Flag Set  
Branch if T Flag Cleared  
Branch if Overflow Flag is Set  
Branch if Overflow Flag is Cleared  
Branch if Interrupt Enabled  
Branch if Interrupt Disabled  
k
k
k
k
k
k
k
k
k
7
Mnemonics  
Operands  
Description  
Operation  
Flags  
#Clocks  
DATA TRANSFER INSTRUCTIONS  
MOV  
LDI  
LD  
Rd, Rr  
Rd, K  
Rd, X  
Rd, X+  
Rd, - X  
Rd, Y  
Rd, Y+  
Rd, - Y  
Rd,Y+q  
Rd, Z  
Move Between Registers  
Load Immediate  
Load Indirect  
Load Indirect and Post-Inc.  
Load Indirect and Pre-Dec.  
Load Indirect  
Load Indirect and Post-Inc.  
Load Indirect and Pre-Dec.  
Load Indirect with Displacement  
Load Indirect  
Rd Rr  
Rd K  
Rd (X)  
Rd (X), X X + 1  
X X - 1, Rd (X)  
Rd (Y)  
Rd (Y), Y Y + 1  
Y Y - 1, Rd (Y)  
Rd (Y + q)  
Rd (Z)  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3
1
1
2
2
LD  
LD  
LD  
LD  
LD  
LDD  
LD  
LD  
LD  
LDD  
LDS  
ST  
Rd, Z+  
Rd, -Z  
Rd, Z+q  
Rd, k  
Load Indirect and Post-Inc.  
Load Indirect and Pre-Dec.  
Load Indirect with Displacement  
Load Direct from SRAM  
Store Indirect  
Store Indirect and Post-Inc.  
Store Indirect and Pre-Dec.  
Store Indirect  
Store Indirect and Post-Inc.  
Store Indirect and Pre-Dec.  
Store Indirect with Displacement  
Store Indirect  
Rd (Z), Z Z+1  
Z Z - 1, Rd (Z)  
Rd (Z + q)  
Rd (k)  
X, Rr  
(X) Rr  
ST  
X+, Rr  
- X, Rr  
Y, Rr  
Y+, Rr  
- Y, Rr  
Y+q,Rr  
Z, Rr  
(X) Rr, X X + 1  
X X - 1, (X) Rr  
(Y) Rr  
(Y) Rr, Y Y + 1  
Y Y - 1, (Y) Rr  
(Y + q) Rr  
ST  
ST  
ST  
ST  
STD  
ST  
(Z) Rr  
ST  
ST  
STD  
STS  
LPM  
IN  
Z+, Rr  
-Z, Rr  
Z+q,Rr  
k, Rr  
Store Indirect and Post-Inc.  
Store Indirect and Pre-Dec.  
Store Indirect with Displacement  
Store Direct to SRAM  
Load Program Memory  
In Port  
(Z) Rr, Z Z + 1  
Z Z - 1, (Z) Rr  
(Z + q) Rr  
(k) Rr  
R0 (Z)  
Rd, P  
P, Rr  
Rr  
Rd P  
OUT  
PUSH  
POP  
Out Port  
Push Register on Stack  
Pop Register from Stack  
P Rr  
STACK Rr  
Rd STACK  
Rd  
BIT AND BIT-TEST INSTRUCTIONS  
SBI  
CBI  
P,b  
P,b  
Rd  
Rd  
Rd  
Rd  
Rd  
Rd  
s
Set Bit in I/O Register  
Clear Bit in I/O Register  
Logical Shift Left  
Logical Shift Right  
Rotate Left Through Carry  
Rotate Right Through Carry  
Arithmetic Shift Right  
Swap Nibbles  
I/O(P,b) 1  
I/O(P,b) 0  
None  
None  
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
3
1
LSL  
Rd(n+1) Rd(n), Rd(0) 0  
Rd(n) Rd(n+1), Rd(7) 0  
Rd(0)C,Rd(n+1)Rd(n),CRd(7)  
Rd(7)C,Rd(n)Rd(n+1),CRd(0)  
Rd(n) Rd(n+1), n=0..6  
Rd(3..0)Rd(7..4),Rd(7..4)Rd(3..0)  
Z,C,N,V  
Z,C,N,V  
Z,C,N,V  
Z,C,N,V  
Z,C,N,V  
None  
LSR  
ROL  
ROR  
ASR  
SWAP  
BSET  
BCLR  
BST  
BLD  
SEC  
CLC  
SEN  
CLN  
SEZ  
CLZ  
SEI  
Flag Set  
Flag Clear  
Bit Store from Register to T  
Bit load from T to Register  
Set Carry  
SREG(s) 1  
SREG(s) 0  
T Rr(b)  
Rd(b) T  
C 1  
SREG(s)  
SREG(s)  
T
None  
C
C
s
Rr, b  
Rd, b  
Clear Carry  
C 0  
Set Negative Flag  
Clear Negative Flag  
Set Zero Flag  
N 1  
N 0  
Z 1  
Z 0  
I 1  
I 0  
N
N
Z
Z
I
I
Clear Zero Flag  
Global Interrupt Enable  
Global Interrupt Disable  
Set Signed Test Flag  
Clear Signed Test Flag  
Set Twos Complement Overflow.  
Clear Twos Complement Overflow  
Set T in SREG  
CLI  
SES  
CLS  
SEV  
CLV  
SET  
CLT  
SEH  
CLH  
NOP  
SLEEP  
WDR  
S 1  
S 0  
V 1  
V 0  
T 1  
T 0  
S
S
V
V
T
T
Clear T in SREG  
Set Half Carry Flag in SREG  
Clear Half Carry Flag in SREG  
No Operation  
Sleep  
Watchdog Reset  
H 1  
H 0  
H
H
None  
None  
None  
(see specific descr. for Sleep function)  
(see specific descr. for WDR/timer)  
AT90S/LS4434 and AT90S/LS8535  
8
AT90S/LS4434 and AT90S/LS8535  
Ordering Information  
Power Supply  
Speed (MHz)  
Ordering Code  
Package  
Operation Range  
2.7 - 6.0V  
4
8
4
8
AT90LS4434-4AC  
AT90LS4434-4JC  
AT90LS4434-4PC  
44A  
44J  
Commercial  
(0°C to 70°C)  
40P6  
AT90LS4434-4AI  
AT90LS4434-4JI  
AT90LS4434-4PI  
44A  
44J  
Industrial  
(-40°C to 85°C)  
40P6  
4.0 - 6.0V  
2.7 - 6.0V  
4.0 - 6.0V  
AT90S4434-8AC  
AT90S4434-8JC  
AT90S4434-8JC  
44A  
44J  
Commercial  
(0°C to 70°C)  
40P6  
AT90S4434-8AI  
AT90S4434-8JI  
AT90S4434-8PI  
44A  
44J  
Industrial  
(-40°C to 85°C)  
40P6  
AT90LS8535-4AC  
AT90LS8535-4JC  
AT90LS8535-4PC  
44A  
44J  
Commercial  
(0°C to 70°C)  
40P6  
AT90LS8535-4AI  
AT90LS8535-4JI  
AT90LS8535-4PI  
44A  
44J  
Industrial  
(-40°C to 85°C)  
40P6  
AT90S8535-8AC  
AT90S8535-8JC  
AT90S8535-8JC  
44A  
44J  
Commercial  
(0°C to 70°C)  
40P6  
AT90S8535-8AI  
AT90S8535-8JI  
AT90S8535-8PI  
44A  
44J  
Industrial  
(-40°C to 85°C)  
40P6  
Package Type  
44A  
44 Lead, Thin (1.0mm) Plastic Gull Wing Quad Flat Package (TQFP)  
44 Lead, Plastic J-Leaded Chip Carrier (PLCC)  
44J  
40P6  
40 Lead, 0.600" Wide, Plastic Dual in Line Package (PDIP)  
9
Packaging Information  
44A, 44-Lead, Thin (1.0 mm) Plastic Gull Wing Quad  
Flat Package (TQFP)  
44J, 44-Lead, Plastic J-Leaded Chip Carrier (PLCC)  
Dimensions in Inches and (Millimeters)  
Dimensions in Millimeters and (Inches)  
.045(1.14) X 30° - 45°  
.045(1.14) X 45°  
PIN NO. 1  
IDENTIFY  
.012(.305)  
.008(.203)  
.630(16.0)  
.590(15.0)  
.656(16.7)  
.650(16.5)  
SQ  
.032(.813)  
.026(.660)  
.021(.533)  
.013(.330)  
.695(17.7)  
.685(17.4)  
SQ  
.043(1.09)  
.020(.508)  
.120(3.05)  
.050(1.27) TYP  
.500(12.7) REF SQ  
.090(2.29)  
.180(4.57)  
.165(4.19)  
.022(.559) X 45° MAX (3X)  
*Controlling dimension: millimeters  
40P6, 40-Lead, 0.600" Wide,  
Plastic Dual Inline Package (PDIP)  
Dimensions in Inches and (Millimeters)  
JEDEC STANDARD MS-011 AC  
2.07(52.6)  
2.04(51.8)  
PIN  
1
.566(14.4)  
.530(13.5)  
.090(2.29)  
MAX  
1.900(48.26) REF  
.220(5.59)  
MAX  
.005(.127)  
MIN  
SEATING  
PLANE  
.065(1.65)  
.015(.381)  
.161(4.09)  
.125(3.18)  
.022(.559)  
.014(.356)  
.065(1.65)  
.041(1.04)  
.110(2.79)  
.090(2.29)  
.630(16.0)  
.590(15.0)  
0
15  
REF  
.012(.305)  
.008(.203)  
.690(17.5)  
.610(15.5)  
AT90S/LS4434 and AT90S/LS8535  
10  

相关型号:

AT90LS4434-4PC

8-Bit Microcontroller with 4K/8K Bytes In-System Programmable Flash
ATMEL

AT90LS4434-4PI

8-Bit Microcontroller with 4K/8K Bytes In-System Programmable Flash
ATMEL

AT90LS8535

8-bit Microcontroller with 8K Bytes In-System Programmable Flash
ATMEL

AT90LS8535-4AC

8-bit Microcontroller with 8K Bytes In-System Programmable Flash
ATMEL

AT90LS8535-4AI

8-bit Microcontroller with 8K Bytes In-System Programmable Flash
ATMEL

AT90LS8535-4JC

8-bit Microcontroller with 8K Bytes In-System Programmable Flash
ATMEL

AT90LS8535-4JI

8-Bit Microcontroller with 4K/8K Bytes In-System Programmable Flash
ATMEL

AT90LS8535-4MC

8-bit Microcontroller with 8K Bytes In-System Programmable Flash
ATMEL

AT90LS8535-4MI

8-bit Microcontroller with 8K Bytes In-System Programmable Flash
ATMEL

AT90LS8535-4PC

8-Bit Microcontroller with 4K/8K Bytes In-System Programmable Flash
ATMEL

AT90LS8535-4PI

8-Bit Microcontroller with 4K/8K Bytes In-System Programmable Flash
ATMEL

AT90LS8535-8MC

8-bit Microcontroller with 8K Bytes In-System Programmable Flash
ATMEL