AT89C51SND1A-ROTIL [ATMEL]

RISC Microcontroller, 8-Bit, FLASH, 8051 CPU, 20MHz, CMOS, PQFP80,;
AT89C51SND1A-ROTIL
型号: AT89C51SND1A-ROTIL
厂家: ATMEL    ATMEL
描述:

RISC Microcontroller, 8-Bit, FLASH, 8051 CPU, 20MHz, CMOS, PQFP80,

微控制器 外围集成电路
文件: 总55页 (文件大小:516K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Features  
MPEGI/II-Layer 3 Hardwired Decoder  
– Stand-alone MP3 Decoder  
– 48, 44.1, 32, 24, 22.05, 16 KHz Sampling Frequency  
– Separated Digital Volume Control on Left and Right Channels (Software Control  
Using 31 Steps)  
– Bass, Medium, and Treble Control (31 Steps)  
– Bass Boost Sound Effect  
– Ancillary Data Extraction  
– “CRC Error” and “MPEG Frame Synchronization” Indicators  
Programmable Audio Output for Interfacing With Common Audio DAC  
PCM Format Compatible  
Single Chip  
Microcontroller  
with MP3  
I2S Format Compatible  
8-bit MCU C51 Core Based (FMAX = 20 MHz)  
2304 bytes of Internal RAM  
64 Kbytes of Code Memory  
Flash: AT89C51SND1A, ROM: AT83C51SND1A  
4 Kbytes of Boot Flash Memory (AT89C51SND1A)  
ISP: Download from USB or UART to any External Memory Cards  
USB Rev 1.1 Controller  
– “Full SpeedData Transmission  
Built-in PLL  
Decoder and  
Man Machine  
Interface  
MP3 Audio Clocks  
USB Clock  
MultiMediaCardInterface Compatibility  
Atmel DataFlashSPI Interface Compatibility  
IDE/ATAPI Interface  
2 Channels 10-bit ADC, 8 KHz (8 True Bit)  
Battery Voltage Monitoring  
Voice Recording Controlled by Software  
Up to 44 bits of General-purpose I/Os for:  
4-bit Interrupt Keyboard Port for a 4 x n Matrix  
SmartmediaSoftware Interface  
Standard Two 16-bit Timers/Counters  
Hardware Watchdog Timer  
AT8xC51SND1A  
Preliminary  
Standard Full Duplex UART with Baud Rate Generator  
2-wire Master and Slave Modes Controller  
SPI Master and Slave Modes Controller  
Power Management  
Power-on reset  
Software Programmable MCU Clock  
Idle Mode, Power-down Mode  
Operating Conditions:  
3V, ±10%, 25 mA Typical Operating at 25°C  
Temperature Range: -40°C to +85°C  
Packages  
TQFP80, PLCC84 (Development Board)  
Dice  
Description  
The AT8xC51SND1A is a fully integrated stand-alone hardwired MPEGI/II-Layer 3  
decoder with a C51 microcontroller core handling data flow and MP3-player control.  
The AT89C51SND1A includes 64 Kbytes of Flash memory and allows In-System Pro-  
gramming through an embedded 4 Kbytes of Boot Flash Memory.  
Rev. 4106E–8051–03/02  
1
The AT83C51SND1A includes 64 Kbytes of ROM memory.  
The AT8xC51SND1A includes 2304 bytes of RAM memory.  
The AT8xC51SND1A provides all necessary features for man machine interface like  
timers, keyboard port, serial or parallel interface (USB, 2-wire, SPI, IDE), ADC input, I2S  
output, and all external memory interface (NAND or NOR Flash, SmartMedia,  
MultiMedia).  
Typical Applications  
MP3 Player  
PDA, Camera, Mobile Phone MP3  
Car Audio/Multimedia MP3  
Home Audio/Multimedia MP3  
2
AT8xC51SND1A  
4106E805103/02  
AT8xC51SND1A  
Pin Description  
Pinouts  
Figure 1. AT8xC51SND1A 80-pin TQFP Package  
ALE  
ISP#  
1
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
P4.5  
2
P4.4  
P1.0/KIN0  
P1.1/KIN1  
P1.2/KIN2  
P1.3/KIN3  
P1.4  
3
P2.2/A10  
P2.3/A11  
P2.4/A12  
P2.5/A13  
P2.6/A14  
P2.7/A15  
VSS  
4
5
6
7
P1.5  
8
AT89C51SND1A-RO (Flash)  
AT83C51SND1A-RO (ROM)  
P1.6/SCL  
P1.7/SDA  
VDD  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
VDD  
MCLK  
MDAT  
MCMD  
RST  
PVDD  
FILT  
PVSS  
VSS  
SCLK  
X2  
DSEL  
X1  
DCLK  
DOUT  
VSS  
TST#  
UVDD  
UVSS  
VDD  
3
4106E805103/02  
Figure 2. AT8xC51SND1A 84-pin PLCC Package  
ALE 12  
ISP# 13  
74 NC  
73 P4.5  
P1.0/KIN0 14  
P1.1/KIN1 15  
P1.2/KIN2 16  
P1.3/KIN3 17  
P1.4 18  
72 P4.4  
71 P2.2/A10  
70 P2.3/A11  
69 P2.4/A12  
68 P2.5/A13  
67 P2.6/A14  
66 P2.7/A15  
65 VSS  
P1.5 19  
P1.6/SCL 20  
P1.7/SDA 21  
VDD 22  
PAVDD 23  
FILT 24  
PAVSS 25  
VSS 26  
X2 27  
AT89C51SND1A-SR (Flash)  
64 VDD  
63 MCLK  
62 MDAT  
61 MCMD  
60 RST  
59 SCLK  
58 DSEL  
57 DCLK  
56 DOUT  
55 VSS  
NC 28  
X1 29  
TST# 30  
UVDD 31  
UVSS 32  
54 VDD  
Signals  
All AT8xC51SND1A signals are detailed by functionality in Table 1 to Table 14.  
Table 1. Ports Signal Description  
Signal  
Name  
Alternate  
Function  
Type  
Description  
Port 0  
P0 is an 8-bit open-drain bidirectional I/O port. Port 0 pins that have 1s  
written to them float and can be used as high impedance inputs. To  
avoid any parasitic current consumption, floating P0 inputs must be  
P0.7:0  
P1.7:0  
I/O  
AD7:0  
polarized to VDD or VSS  
.
KIN3:0  
SCL  
SDA  
Port 1  
I/O  
P1 is an 8-bit bidirectional I/O port with internal pull-ups.  
4
AT8xC51SND1A  
4106E805103/02  
AT8xC51SND1A  
Table 1. Ports Signal Description (Continued)  
Signal  
Name  
Alternate  
Function  
Type  
Description  
Port 2  
P2.7:0  
I/O  
A15:8  
P2 is an 8-bit bidirectional I/O port with internal pull-ups.  
RXD  
TXD  
INT0#  
INT1#  
T0  
Port 3  
P3.7:0  
I/O  
P3 is an 8-bit bidirectional I/O port with internal pull-ups.  
T1  
WR#  
RD#  
MISO  
MOSI  
SCK  
Port 4  
P4.7:0  
P5.3:0  
I/O  
I/O  
P4 is an 8-bit bidirectional I/O port with internal pull-ups.  
SS#  
Port 5  
-
P5 is a 4-bit bidirectional I/O port with internal pull-ups.  
Table 2. Clock Signal Description  
Signal  
Name  
Alternate  
Function  
Type  
Description  
Input to the on-chip inverting oscillator amplifier  
To use the internal oscillator, a crystal/resonator circuit is connected to  
this pin. If an external oscillator is used, its output is connected to this  
pin. X1 is the clock source for internal timing.  
X1  
I
-
Output of the on-chip inverting oscillator amplifier  
X2  
O
I
To use the internal oscillator, a crystal/resonator circuit is connected to  
this pin. If an external oscillator is used, leave X2 unconnected.  
-
-
PLL Low Pass Filter input  
FILT receives the RC network of the PLL low pass filter.  
FILT  
Table 3. Timer 0 and Timer 1 Signal Description  
Signal  
Name  
Alternate  
Function  
Type  
Description  
Timer 0 Gate Input  
INT0# serves as external run control for timer 0, when selected by  
GATE0 bit in TCON register.  
INT0#  
I
P3.2  
External Interrupt 0  
INT0# input sets IE0 in the TCON register. If bit IT0 in this register is  
set, bit IE0 is set by a falling edge on INT0#. If bit IT0 is cleared, bit IE0  
is set by a low level on INT0#.  
Timer 1 Gate Input  
INT1# serves as external run control for timer 1, when selected by  
GATE1 bit in TCON register.  
INT1#  
I
P3.3  
External Interrupt 1  
INT1# input sets IE1 in the TCON register. If bit IT1 in this register is  
set, bit IE1 is set by a falling edge on INT1#. If bit IT1 is cleared, bit IE1  
is set by a low level on INT1#.  
5
4106E805103/02  
Table 3. Timer 0 and Timer 1 Signal Description (Continued)  
Signal  
Name  
Alternate  
Function  
Type  
Description  
Timer 0 External Clock Input  
T0  
I
When timer 0 operates as a counter, a falling edge on the T0 pin  
increments the count.  
P3.4  
P3.5  
Timer 1 External Clock Input  
When timer 1 operates as a counter, a falling edge on the T1 pin  
increments the count.  
T1  
I
Table 4. Audio Interface Signal Description  
Signal  
Alternate  
Function  
Name  
DCLK  
DOUT  
Type  
O
Description  
DAC Data Bit Clock  
DAC Audio Data  
-
-
O
DAC Channel Select Signal  
DSEL is the sample rate clock output.  
DSEL  
SCLK  
O
O
-
-
DAC System Clock  
SCLK is the oversampling clock synchronized to the digital audio data  
(DOUT) and the channel selection signal (DSEL).  
Table 5. USB Controller Signal Description  
Signal  
Name  
Alternate  
Function  
Type  
I/O  
Description  
USB Positive Data Upstream Port  
This pin requires an external 1.5 kpull-up to VDD for full speed  
operation.  
D+  
-
-
D-  
I/O  
USB Negative Data Upstream Port  
Table 6. MutiMediaCard Interface Signal Description  
Signal  
Name  
Alternate  
Function  
Type  
Description  
MMC Clock output  
Data or command clock transfer.  
MCLK  
O
-
MMC Command line  
Bidirectional command channel used for card initialization and data  
transfer commands. To avoid any parasitic current consumption,  
MCMD  
MDAT  
I/O  
I/O  
-
unused MCMD input must be polarized to VDD or VSS  
.
MMC Data line  
Bidirectional data channel. To avoid any parasitic current consumption,  
unused MDAT input must be polarized to VDD or VSS  
-
.
6
AT8xC51SND1A  
4106E805103/02  
AT8xC51SND1A  
Table 7. UART Signal Description  
Signal  
Name  
Alternate  
Function  
Type  
Description  
Receive Serial Data  
RXD  
I/O  
RXD sends and receives data in serial I/O mode 0 and receives data in  
serial I/O modes 1, 2 and 3.  
P3.0  
P3.1  
Transmit Serial Data  
TXD outputs the shift clock in serial I/O mode 0 and transmits data in  
serial I/O modes 1, 2 and 3.  
TXD  
O
Table 8. SPI Controller Signal Description  
Signal  
Name  
Alternate  
Function  
Type  
Description  
SPI Master Input Slave Output Data Line  
MISO  
I/O  
When in master mode, MISO receives data from the slave peripheral.  
When in slave mode, MISO outputs data to the master controller.  
P4.0  
P4.1  
SPI Master Output Slave Input Data Line  
When in master mode, MOSI outputs data to the slave peripheral.  
When in slave mode, MOSI receives data from the master controller.  
MOSI  
I/O  
SPI Clock Line  
SCK  
SS#  
I/O  
I
When in master mode, SCK outputs clock to the slave peripheral. When  
in slave mode, SCK receives clock from the master controller.  
P4.2  
P4.3  
SPI Slave Select Line  
When in controlled slave mode, SS# enables the slave mode.  
Table 9. Two-wire Controller Signal Description  
Signal  
Name  
Alternate  
Function  
Type  
Description  
2-wire Serial Clock  
When 2-wire controller is in master mode, SCL outputs the serial clock  
to the slave peripherals. When 2-wire controller is in slave mode, SCL  
receives clock from the master controller.  
SCL  
I/O  
P1.6  
P1.7  
2-wire Serial Data  
SDA is the bidirectional 2-wire data line.  
SDA  
I/O  
Table 10. A/D Converter Signal Description  
Signal  
Alternate  
Function  
Name  
AIN1:0  
AREFP  
Type  
Description  
I
I
A/D Converter Analog Inputs  
Analog Positive Voltage Reference Input  
-
-
Analog Negative Voltage Reference Input  
This pin is internally connected to AVSS.  
AREFN  
I
-
7
4106E805103/02  
Table 11. Keypad Interface Signal Description  
Signal  
Name  
Alternate  
Function  
Type  
Description  
Keypad Input Lines  
KIN3:0  
I
Holding one of these pins high or low for 24 oscillator periods triggers a  
keypad interrupt.  
P1.3:0  
Table 12. External Access Signal Description  
Signal  
Name  
Alternate  
Function  
Type  
Description  
Address Lines  
A15:8  
I/O  
Upper address lines for the external bus.  
Multiplexed higher address and data lines for the IDE interface.  
P2.7:0  
P0.7:0  
Address/Data Lines  
Multiplexed lower address and data lines for the external memory or the  
IDE interface.  
AD7:0  
ALE  
I/O  
O
Address Latch Enable Output  
ALE signals the start of an external bus cycle and indicates that valid  
address information is available on lines A7:0. An external latch is used  
to demultiplex the address from address/data bus.  
-
-
ISP Enable Input  
This signal must be held to GND through a pull-down resistor at the  
falling reset to force execution of the internal bootloader.  
ISP#  
I/O  
Read Signal  
RD#  
O
O
P3.7  
P3.6  
Read signal asserted during external data memory read operation.  
Write Signal  
WR#  
Write signal asserted during external data memory write operation.  
Table 13. System Signal Description  
Signal  
Name  
Alternate  
Function  
Type  
Description  
Reset Input  
Holding this pin high for 64 oscillator periods while the oscillator is  
running resets the device. The Port pins are driven to their reset  
conditions when a voltage lower than VIL is applied, whether or not the  
oscillator is running.  
RST  
I
-
This pin has an internal pull-down resistor which allows the device to be  
reset by connecting a capacitor between this pin and VDD  
.
Asserting RST when the chip is in Idle mode or Power-down mode  
returns the chip to normal operation.  
Test Input  
TST#  
I
-
Test mode entry signal. This pin must be set to VDD  
.
8
AT8xC51SND1A  
4106E805103/02  
AT8xC51SND1A  
Table 14. Power Signal Description  
Signal  
Name  
Alternate  
Function  
Type  
Description  
Digital Supply Voltage  
Connect these pins to +3V supply voltage.  
VDD  
PWR  
-
-
-
-
-
-
-
-
Circuit Ground  
Connect these pins to ground.  
VSS  
GND  
PWR  
GND  
PWR  
GND  
PWR  
GND  
Analog Supply Voltage  
Connect this pin to +3V supply voltage.  
AVDD  
AVSS  
PVDD  
PVSS  
UVDD  
UVSS  
Analog Ground  
Connect this pin to ground.  
PLL Supply voltage  
Connect this pin to +3V supply voltage.  
PLL Circuit Ground  
Connect this pin to ground.  
USB Supply Voltage  
Connect this pin to +3V supply voltage.  
USB Ground  
Connect this pin to ground.  
9
4106E805103/02  
Internal Pin Structure  
Table 15. Detailed Internal Pin Structure  
Circuit(1)  
Type  
Pins  
VDD  
Input  
TST#  
VDD  
P
Watchdog Output  
Input/Output  
RST  
VSS  
VDD  
VDD  
P2  
VDD  
P3  
2 osc  
periods  
P1(2)  
P2(3)  
P3  
Latch Output  
P1  
Input/Output  
P4  
N
P53:0  
VSS  
VDD  
P0  
MCMD  
MDAT  
P
Input/Output  
N
ISP#  
VSS  
VDD  
P
ALE  
SCLK  
DCLK  
Output  
DOUT  
DSEL  
MCLK  
N
VSS  
D+  
D-  
Input/Output  
D+  
D-  
Note:  
1. For information on resistors value, input/output levels, and drive capability, refer to the Section DC Characteristics,  
page 32.  
2. When the 2-wire controller is enabled, P1, P2, and P3 transistors are disabled allowing pseudo open-drain structure.  
3. In Port 2, P1 transistor is continuously driven when outputting a high level bit address (A15:8).  
10  
AT8xC51SND1A  
4106E805103/02  
AT8xC51SND1A  
Block Diagram  
Figure 3. AT8xC51SND1A Block Diagram  
INT0# INT1# VDD VSS UVDD UVSS AVDD AVSS AREF AIN1:0 TXD RXD  
T0  
T1 SS# MISO MOSI SCK SCL SDA  
3
3
3
3
4
4
4
4
1
1
3
3
Interrupt  
Handler Unit  
Flash  
ROM  
UART  
and  
BRG  
RAM  
2304 bytes  
10-bit A to D  
Converter  
or  
Timers 0/1  
Watchdog  
SPI/DataFlash  
Controller  
2-wire  
Controller  
64 Kbytes  
Flash Boot  
4 Kbytes  
10-bit ADC  
8-BIT INTERNAL BUS  
C51 (X2 CORE)  
I/O  
Ports  
MP3 Decoder  
Unit  
I2S / PCM  
Audio Interface  
USB  
Controller  
Keyboard  
Interface  
MMC  
Interface  
IDE  
Clock and PLL  
Unit  
Interface  
1
FILT  
X1 X2  
RST  
ISP# ALE  
DOUT DCLK DSEL SCLK D+ D-  
MCLK  
KIN3:0  
P0-P5  
MDAT MCMD  
1 Alternate function of Port 1  
3 Alternate function of Port 3  
4 Alternate function of Port 4  
11  
4106E805103/02  
Application Information  
Figure 4. AT8xC51SND1A Typical Application with On-board Atmel DataFlash and 2-wire LCD  
LCD  
Ref.  
P1.0/KIN0  
MMC1  
MMC2  
P1.1/KIN1  
P1.2/KIN2  
P1.3/KIN3  
MCLK  
MDAT  
MCMD  
P0.0  
P0.1  
P0.2  
AT8xC51SND1A  
P0.3  
UVDD  
X1  
D+  
D-  
X2  
USB PORT  
UVSS  
FILT  
PVSS  
DataFlash  
Memories  
Audio DAC  
Figure 5. AT8xC51SND1A Typical Application with On-board Atmel DataFlash and LCD  
LCD  
Ref.  
MMC1  
MMC2  
P1.0/KIN0  
P1.1/KIN1  
P1.2/KIN2  
MCLK  
MDAT  
MCMD  
P0.0  
P0.1  
P0.2  
AT8xC51SND1A  
UVDD  
P0.3  
D+  
D-  
X1  
X2  
USB PORT  
UVSS  
FILT  
PVSS  
DataFlash  
Memories  
Audio DAC  
12  
AT8xC51SND1A  
4106E805103/02  
AT8xC51SND1A  
Figure 6. AT8xC51SND1A Typical Application with On-board SSFDC Flash  
LCD  
Ref.  
P1.0/KIN0  
P1.1/KIN1  
P1.2/KIN2  
P1.3/KIN3  
P0.0  
MMC1  
MMC2  
MCLK  
MDAT  
MCMD  
P0.1  
P0.2  
AT8xC51SND1A  
UVDD  
P0.3  
D+  
D-  
X1  
X2  
USB PORT  
UVSS  
FILT  
PVSS  
Audio DAC  
SSFDC Memories  
or SmartMedia Cards  
SmartMedia  
Figure 7. AT8xC51SND1A Typical Application with IDE CD-ROM Drive  
LCD  
Ref.  
MMC1  
MMC2  
P1.0/KIN0  
P1.1/KIN1  
P1.2/KIN2  
P0.0  
MCLK  
MDAT  
MCMD  
P0.1  
P0.2  
AT8xC51SND1A  
P0.3  
UVDD  
X1  
D+  
D-  
X2  
USB PORT  
UVSS  
FILT  
PVSS  
Audio DAC  
IDE CD-ROM  
13  
4106E805103/02  
Address Spaces  
The AT8xC51SND1A derivatives implement four different address spaces:  
Program/Code Memory  
Boot Memory  
Data Memory  
Special Function Registers (SFRs)  
Code Memory  
The AT89C51SND1A and AT83C51SND1A implement 64 Kbytes of on-chip pro-  
gram/code memory. The AT83C51SND1A product provides the internal program/code  
memory in ROM technology while the AT89C51SND1A product provides it in Flash  
technology.  
The Flash memory increases ROM functionality by enabling in-circuit electrical erasure  
and programming. Thanks to the internal charge pump, the high voltage needed for pro-  
gramming or erasing Flash cells is generated on-chip using the standard VDD voltage.  
Thus, the AT89C51SND1A can be programmed using only one voltage and allows in  
application software programming commonly known as IAP. Hardware programming  
mode is also available using specific programming tool.  
Boot Memory  
Data Memory  
The AT89C51SND1A implements 4 Kbytes of on-chip boot memory provided in Flash  
technology. This boot memory is delivered programmed with a standard boot loader  
software allowing in system programming commonly known as ISP. It also contains  
some Application Programming Interfaces routines commonly known as API allowing  
user to develop his own boot loader.  
The T89C51CC01 derivatives implement 2304 bytes of on-chip data RAM. This memory  
is divided in two separate areas:  
256 bytes of on-chip RAM memory (standard C51 memory).  
2048 bytes of on-chip expanded RAM memory (ERAM accessible via MOVX  
instructions).  
14  
AT8xC51SND1A  
4106E805103/02  
AT8xC51SND1A  
Special Function  
Registers  
The Special Function Registers (SFRs) of the T89C51CC01 derivatives fall into the cat-  
egories detailed in Table 16 to Table 32. The relative addresses of these SFRs are  
provided together with their reset values in Table 33. In this table, the bit-addressable  
registers are identified by Note 1.  
Table 16. C51 Core SFRs  
Mnemonic Add Name  
7
6
5
4
3
2
1
0
ACC  
B
E0h Accumulator  
F0h B Register  
Program Status  
Word  
PSW  
SP  
D0h  
CY  
AC  
F0  
RS1  
RS0  
OV  
F1  
P
81h Stack Pointer  
Data Pointer Low  
byte  
DPL  
82h  
Data Pointer High  
byte  
DPH  
83h  
Table 17. System Management SFRs  
Mnemonic Add Name  
7
6
5
-
4
3
2
1
PD  
0
PCON  
AUXR  
87h Power Control  
SMOD1  
SMOD0  
EXT16  
-
-
DPHDIS  
-
GF1  
XRS1  
GF3  
NV3  
GF0  
XRS0  
0
IDL  
AO  
8Eh Auxiliary Register 0  
A2h Auxiliary Register 1  
FBh Version Number  
-
-
M0  
EXTRAM  
-
AUXR1  
NVERS  
ENBOOT  
NV5  
DPS  
NV0  
NV7  
NV6  
NV4  
NV2  
NV1  
Table 18. PLL and System Clock SFRs  
Mnemonic Add Name  
7
6
5
4
-
3
2
-
1
-
0
X2  
CKCON  
8Fh Clock Control  
-
-
-
-
PLLRES  
N3  
PLLCON  
PLLNDIV  
PLLRDIV  
E9h PLL Control  
EEh PLL N Divider  
EFh PLL R Divider  
R1  
-
R0  
N6  
R8  
-
-
-
PLLEN  
N1  
PLOCK  
N0  
N5  
R7  
N4  
R6  
N2  
R4  
R9  
R5  
R3  
R2  
15  
4106E805103/02  
Table 19. Interrupt SFRs  
Mnemonic Add Name  
7
6
5
4
3
2
1
0
Interrupt Enable  
Control 0  
IEN0  
IEN1  
IPH0  
IPL0  
IPH1  
IPL1  
A8h  
B1h  
B7h  
B8h  
B3h  
B2h  
EA  
EAUD  
EMP3  
ES  
ET1  
EX1  
ET0  
EX0  
Interrupt Enable  
Control 1  
-
-
-
-
-
EUSB  
IPHAUD  
IPLAUD  
IPHUSB  
IPLUSB  
-
EKB  
IPHS  
EADC  
IPHT1  
ESPI  
IPHX1  
IPLX1  
IPHSPI  
IPLSPI  
EI2C  
IPHT0  
IPLT0  
EMMC  
IPHX0  
Interrupt Priority  
Control High 0  
IPHMP3  
Interrupt Priority  
Control Low 0  
IPLMP3  
IPLS  
IPLT1  
IPLX0  
Interrupt Priority  
Control High 1  
-
-
IPHKB  
IPLKB  
IPHADC  
IPLADC  
IPHI2C  
IPLI2C  
IPHMMC  
IPLMMC  
Interrupt Priority  
Control Low 1  
Table 20. Port SFRs  
Mnemonic Add Name  
7
6
5
4
3
2
1
0
P0  
P1  
P2  
P3  
P4  
P5  
80h 8-bit Port 0  
90h 8-bit Port 1  
A0h 8-bit Port 2  
B0h 8-bit Port 3  
C0h 8-bit Port 4  
D8h 4-bit Port 5  
-
-
-
-
Table 21. Flash Memory SFR  
Mnemonic Add Name  
7
6
5
4
3
2
1
0
FCON  
D1h Flash Control  
FPL3  
FPL2  
FPL1  
FPL0  
FPS  
FMOD1  
FMOD0  
FBUSY  
Table 22. Timer SFRs  
Mnemonic Add Name  
7
6
5
4
3
2
1
0
Timer/Counter 0 and  
1 Control  
TCON  
TMOD  
TL0  
88h  
89h  
8Ah  
8Ch  
8Bh  
TF1  
TR1  
TF0  
TR0  
IE1  
IT1  
IE0  
IT0  
Timer/Counter 0 and  
1 Modes  
GATE1  
C/T1#  
M11  
M01  
GATE0  
C/T0#  
M10  
M00  
Timer/Counter 0 Low  
Byte  
Timer/Counter 0  
High Byte  
TH0  
Timer/Counter 1 Low  
Byte  
TL1  
16  
AT8xC51SND1A  
4106E805103/02  
AT8xC51SND1A  
Table 22. Timer SFRs (Continued)  
Mnemonic Add Name  
7
6
5
4
3
2
1
0
Timer/Counter 1  
High Byte  
TH1  
8Dh  
A6h  
A7h  
WatchDog Timer  
Reset  
WDTRST  
WDTPRG  
WatchDog Timer  
Program  
-
-
-
-
-
WTO2  
WTO1  
WTO0  
Table 23. MP3 Decoder SFRs  
Mnemonic Add Name  
7
6
5
4
3
2
1
0
MP3CON  
MP3STA  
MP3STA1  
MP3DAT  
MP3ANC  
AAh MP3 Control  
C8h MP3 Status  
MPEN  
MPANC  
-
MPBBST  
MPREQ  
-
CRCEN  
ERRLAY  
-
MSKANC  
ERRSYN  
MPFREQ  
MPD4  
MSKREQ  
ERRCRC  
MPBREQ  
MPD3  
MSKLAY  
MPFS1  
-
MSKSYN  
MPFS0  
-
MSKCRC  
MPVER  
-
AFh MP3 Status 1  
ACh MP3 Data  
MPD7  
AND7  
MPD6  
AND6  
MPD5  
AND5  
MPD2  
AND2  
MPD1  
AND1  
MPD0  
AND0  
ADh MP3 Ancillary Data  
AND4  
AND3  
MP3 Audio Volume  
9Eh  
MP3VOL  
MP3VOR  
MP3BAS  
MP3MED  
-
-
-
-
-
-
-
-
-
-
-
-
VOL4  
VOR4  
BAS4  
MED4  
VOL3  
VOR3  
BAS3  
MED3  
VOL2  
VOR2  
BAS2  
MED2  
VOL1  
VOR1  
BAS1  
MED1  
VOL0  
VOR0  
BAS0  
MED0  
Control Left  
MP3 Audio Volume  
9Fh  
Control Right  
MP3 Audio Bass  
Control  
B4h  
MP3 Audio Medium  
Control  
B5h  
MP3 Audio Treble  
Control  
MP3TRE  
MP3CLK  
B6h  
-
-
-
-
-
-
TRE4  
TRE3  
TRE2  
TRE1  
TRE0  
EBh MP3 Clock Divider  
MPCD4  
MPCD3  
MPCD2  
MPCD1  
MPCD0  
Table 24. Audio Interface SFRs  
Mnemonic Add Name  
7
6
5
4
3
JUST0  
-
2
1
0
AUDCON0  
AUDCON1  
AUDSTA  
AUDDAT  
AUDCLK  
9Ah Audio Control 0  
9Bh Audio Control 1  
9Ch Audio Status  
JUST4  
SRC  
SREQ  
AUD7  
-
JUST3  
DRQEN  
UDRN  
AUD6  
-
JUST2  
MSREQ  
AUBUSY  
AUD5  
-
JUST1  
MUDRN  
-
POL  
DUP1  
-
DSIZ  
DUP0  
-
HLR  
AUDEN  
-
-
9Dh Audio Data  
AUD4  
AUCD4  
AUD3  
AUCD3  
AUD2  
AUCD2  
AUD1  
AUCD1  
AUD0  
AUCD0  
ECh Audio Clock Divider  
Table 25. USB Controller SFRs  
Mnemonic Add Name  
7
6
5
4
3
2
1
0
USBCON  
BCh USB Global Control  
USBE  
SUSPCLK SDRMWUP  
-
UPRSM  
RMWUPE  
CONFG  
FADDEN  
17  
4106E805103/02  
Table 25. USB Controller SFRs  
Mnemonic Add Name  
7
FEN  
-
6
5
4
3
2
1
0
USBADDR  
USBINT  
C6h USB Address  
UADD6  
-
UADD5  
WUPCPU  
UADD4  
EORINT  
UADD3  
SOFINT  
UADD2  
-
UADD1  
-
UADD0  
SPINT  
BDh USB Global Interrupt  
USB Global Interrupt  
Enable  
USBIEN  
BEh  
-
-
-
-
-
EWUPCPU  
EEORINT  
ESOFINT  
-
-
ESPINT  
EPNUM0  
EPTYPE0  
USB Endpoint  
C7h  
UEPNUM  
UEPCONX  
-
-
-
-
-
-
EPNUM1  
EPTYPE1  
Number  
USB Endpoint X  
Control  
D4h  
EPEN  
DTGL  
EPDIR  
USB Endpoint X  
Status  
UEPSTAX  
UEPRST  
UEPINT  
CEh  
DIR  
-
-
-
STALLRQ  
TXRDY  
STLCRC  
EP3RST  
EP3INT  
RXSETUP  
EP2RST  
EP2INT  
RXOUT  
EP1RST  
EP1INT  
TXCMP  
EP0RST  
EP0INT  
D5h USB Endpoint Reset  
-
-
-
-
-
-
USB Endpoint  
F8h  
Interrupt  
USB Endpoint  
C2h  
UEPIEN  
-
-
-
-
EP3INTE  
FDAT3  
EP2INTE  
FDAT2  
EP1INTE  
FDAT1  
EP0INTE  
FDAT0  
Interrupt Enable  
USB Endpoint X Fifo  
Data  
UEPDATX  
UBYCTX  
UFNUML  
CFh  
FDAT7  
-
FDAT6  
BYCT6  
FNUM6  
FDAT5  
BYCT5  
FNUM5  
FDAT4  
BYCT4  
FNUM4  
USB Endpoint X Byte  
Counter  
E2h  
BYCT3  
FNUM3  
BYCT2  
FNUM2  
BYCT1  
FNUM1  
BYCT0  
FNUM0  
USB Frame Number  
BAh  
Low  
FNUM7  
USB Frame Number  
UFNUMH  
USBCLK  
BBh  
High  
-
-
-
-
CRCOK  
-
CRCERR  
-
-
-
FNUM10  
-
FNUM9  
FNUM8  
EAh USB Clock Divider  
USBCD1  
USBCD0  
Table 26. MMC Controller SFRs  
Mnemonic Add Name  
7
6
5
4
3
2
1
0
MMCON0  
MMCON1  
MMCON2  
E4h MMC Control 0  
E5h MMC Control 1  
E6h MMC Control 2  
DRPTR  
BLEN3  
MMCEN  
DTPTR  
BLEN2  
DCR  
CRPTR  
BLEN1  
CCR  
CTPTR  
BLEN0  
-
MBLOCK  
DATDIR  
-
DFMT  
DATEN  
DATD1  
RFMT  
CRCDIS  
CMDEN  
FLOWC  
RESPEN  
DATD0  
MMC Control and  
Status  
MMSTA  
MMINT  
MMMSK  
DEh  
-
-
CBUSY  
EOCI  
CRC16S  
EOFI  
DATFS  
F2FI  
CRC7S  
F1FI  
RESPFS  
F2EI  
CFLCK  
F1EI  
E7h MMC Interrupt  
MCBI  
MCBM  
EORI  
EORM  
MMC Interrupt  
Mask  
DFh  
EOCM  
EOFM  
F2FM  
F1FM  
F2EM  
F1EM  
MMCMD  
MMDAT  
MMCLK  
DDh MMC Command  
DCh MMC Data  
MC7  
MD7  
MC6  
MD6  
MC5  
MD5  
MC4  
MD4  
MC3  
MD3  
MC2  
MD2  
MC1  
MD1  
MC0  
MD0  
EDh MMC Clock Divider  
MMCD7  
MMCD6  
MMCD5  
MMCD4  
MMCD3  
MMCD2  
MMCD1  
MMCD0  
18  
AT8xC51SND1A  
4106E805103/02  
AT8xC51SND1A  
Table 27. IDE Interface SFR  
Mnemonic Add Name  
7
6
5
4
3
2
1
0
High Order Data  
Byte  
DAT16H  
F9h  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
Table 28. Serial I/O Port SFRs  
Mnemonic Add Name  
7
6
5
4
3
2
1
0
SCON  
SBUF  
98h Serial Control  
FE/SM0  
SM1  
SM2  
REN  
TB8  
RB8  
TI  
RI  
99h Serial Data Buffer  
B9h Slave Address Mask  
A9h Slave Address  
SADEN  
SADDR  
BDRCON  
BRL  
92h Baud Rate Control  
91h Baud Rate Reload  
BRR  
TBCK  
RBCK  
SPD  
SRC  
Table 29. SPI Controller SFRs  
Mnemonic Add Name  
7
6
5
4
3
2
1
0
SPCON  
SPSTA  
SPDAT  
C3h SPI Control  
C4h SPI Status  
C5h SPI Data  
SPR2  
SPIF  
SPD7  
SPEN  
WCOL  
SPD6  
SSDIS  
-
MSTR  
MODF  
SPD4  
CPOL  
CPHA  
-
SPR1  
-
SPR0  
-
-
SPD5  
SPD3  
SPD2  
SPD1  
SPD0  
Table 30. 2-wire Controller SFRs  
Mnemonic Add Name  
7
6
5
4
3
2
1
0
Synchronous Serial  
Control  
SSCON  
SSSTA  
SSDAT  
SSADR  
93h  
94h  
95h  
96h  
SSCR2  
SSPE  
SSSTA  
SSSTO  
SSI  
SSAA  
SSCR1  
SSCR0  
Synchronous Serial  
Status  
SSC4  
SSD7  
SSA7  
SSC3  
SSD6  
SSA6  
SSC2  
SSD5  
SSA5  
SSC1  
SSD4  
SSA4  
SSC0  
SSD3  
SSA3  
0
0
0
Synchronous Serial  
Data  
SSD2  
SSA2  
SSD1  
SSA1  
SSD0  
SSGC  
Synchronous Serial  
Address  
Table 31. Keyboard Interface SFRs  
Mnemonic Add Name  
7
6
5
4
3
2
1
0
KBCON  
KBSTA  
A3h Keyboard Control  
A4h Keyboard Status  
KINL3  
KPDE  
KINL2  
-
KINL1  
-
KINL0  
-
KINM3  
KINF3  
KINM2  
KINF2  
KINM1  
KINF1  
KINM0  
KINF0  
19  
4106E805103/02  
Table 32. A/D Controller SFRs  
Mnemonic Add Name  
7
6
5
4
3
2
1
0
ADCON  
ADCLK  
ADDL  
F3h ADC Control  
-
ADIDL  
ADEN  
ADEOC  
ADCD4  
-
ADSST  
ADCD3  
-
-
-
ADCS  
ADCD0  
ADAT0  
ADAT2  
F2h ADC Clock Divider  
F4h ADC Data Low Byte  
F5h ADC Data High Byte  
-
-
-
ADCD2  
-
ADCD1  
ADAT1  
ADAT3  
-
-
-
ADDH  
ADAT9  
ADAT8  
ADAT7  
ADAT6  
ADAT5  
ADAT4  
20  
AT8xC51SND1A  
4106E805103/02  
AT8xC51SND1A  
Table 33. SFR Addresses and Reset Values  
0/8  
1/9  
2/A  
3/B  
4/C  
5/D  
6/E  
7/F  
UEPINT  
0000 0000  
DAT16H  
XXXX XXXX  
NVERS2  
1000 0010  
F8h  
F0h  
E8h  
E0h  
D8h  
D0h  
C8h  
C0h  
B8h  
B0h  
A8h  
A0h  
98h  
90h  
88h  
80h  
FFh  
F7h  
EFh  
E7h  
DFh  
D7h  
CFh  
C7h  
BFh  
B7h  
AFh  
A7h  
9Fh  
97h  
8Fh  
87h  
B1  
ADCLK  
0000 0000  
ADCON  
0000 0000  
ADDL  
0000 0000  
ADDH  
0000 0000  
0000 0000  
PLLCON  
0000 1000  
USBCLK  
0000 0000  
MP3CLK  
0000 0000  
AUDCLK  
0000 0000  
MMCLK  
0000 0000  
PLLNDIV  
0000 0000  
PLLRDIV  
0000 0000  
ACC1  
0000 0000  
UBYCTLX  
0000 0000  
MMCON0  
0000 0000  
MMCON1  
0000 0000  
MMCON2  
0000 0000  
MMINT  
0000 0011  
P51  
XXXX 1111  
MMDAT  
1111 1111  
MMCMD  
1111 1111  
MMSTA  
0000 0000  
MMMSK  
1111 1111  
PSW1  
0000 0000  
FCON3  
UEPCONX  
0000 0000  
UEPRST  
0000 0000  
1111 00004  
MP3STA1  
0000 0001  
UEPSTAX  
0000 0000  
UEPDATX  
0000 0000  
P41  
1111 1111  
UEPIEN  
0000 0000  
SPCON  
0001 0100  
SPSTA  
0000 0000  
SPDAT  
XXXX XXXX  
USBADDR  
1000 0000  
UEPNUM  
0000 0000  
IPL01  
X000 0000  
SADEN  
0000 0000  
UFNUML  
0000 0000  
UFNUMH  
0000 0000  
USBCON  
0000 0000  
USBINT  
0000 0000  
USBIEN  
0001 0000  
P31  
1111 1111  
IEN1  
0000 0000  
IPL1  
0000 0000  
IPH1  
0000 0000  
MP3BAS  
0000 0000  
MP3MED  
0000 0000  
MP3TRE  
0000 0000  
IPH0  
X000 0000  
IEN01  
0000 0000  
SADDR  
0000 0000  
MP3CON  
0011 1111  
MP3DAT  
0000 0000  
MP3ANC  
0000 0000  
MP3STA1  
0100 0001  
P21  
1111 1111  
AUXR1  
XXXX 00X0  
KBCON  
0000 1111  
KBSTA  
0000 0000  
WDTRST  
0000 1000  
WDTPRG  
0000 1000  
SCON  
0000 0000  
SBUF  
XXXX XXXX  
AUDCON0  
0000 1000  
AUDCON1  
1011 0010  
AUDSTA  
1100 0000  
AUDDAT  
1111 1111  
MP3VOL  
0000 0000  
MP3VOR  
0000 0000  
P11  
1111 1111  
BRL  
0000 0000  
BDRCON  
XXX0 0000  
SSCON  
0000 0000  
SSSTA  
1111 1000  
SSDAT  
1111 1111  
SSADR  
1111 1110  
TCON1  
0000 0000  
TMOD  
0000 0000  
TL0  
0000 0000  
TL1  
0000 0000  
TH0  
0000 0000  
TH1  
0000 0000  
AUXR  
X000 1101  
CKCON  
0000 000X5  
P01  
1111 1111  
SP  
0000 0111  
DPL  
0000 0000  
DPH  
0000 0000  
PCON  
XXXX 0000  
0/8  
1/9  
2/A  
3/B  
4/C  
5/D  
6/E  
7/F  
Reserved  
Notes: 1. SFR registers with least significant nibble address equal to 0 or 8 are bit-addressable.  
2. NVERS reset value depends on the silicon version.  
3. FCON register is only available in AT89C51SND1A product.  
4. FCON reset value is 00h in case of reset with hardware condition.  
5. CKCON reset value depends on the X2B bit (programmed or unprogrammed) in the Hardware Byte.  
21  
4106E805103/02  
In-System and  
In-application  
Programming  
As described in the section Program/Code Memoryof the AT8xC51SND1A design  
guide, The AT89C51SND1A implements a 4 Kbytes Flash boot memory. This boot  
memory is delivered programmed with a standard boot loader software allowing In-Sys-  
tem Programming (ISP). It also contains some Application Programming Interface  
routines named API routines allowing In Application Programming (IAP) by using users  
own boot loader.  
In-System Programming The ISP boot process is divided in two different processes: the hardware and software  
boot process detailed in the following sections.  
Hardware Boot Process  
As detailed in Figure 8 there are two hardware conditions that allow the user to execute  
the boot loader: the hardware and the programmed conditions.  
Hardware Condition  
The hardware condition is based on the ISP# pin. When driving this pin to low level, the  
chip reset forces the execution of the boot loader software.  
The hardware condition takes precedence on the programmed condition and always  
allows in-system recovery when the users memory has been corrupted.  
Programmed Condition  
The programmed condition is based on the Boot Loader Jump Bit (BLJB) in the hard-  
ware security bytes (HSB). When this bit is programmed (by hardware or software  
programming mode), the chip reset forces the execution of the boot loader software.  
Software Boot Process  
Whatever the physical medium may be, the boot loader software always starts execu-  
tion by testing FCON to know if execution comes from hardware or programmed  
condition. If it is from hardware condition, Atmels boot loader is executed. If it is from  
programmed condition, the Software Boot Vector (SBV) is used to build a 16-bit  
address, SBV content being the MSB and the LSB at 00h. If this address is valid (<  
F000h), a jump occurs at this address to execute the users boot loader. Otherwise,  
jump is performed to Atmels boot loader. This implies that the users boot loader does  
not execute any code mapped from F000h to FFFFh.  
22  
AT8xC51SND1A  
4106E805103/02  
AT8xC51SND1A  
Figure 8. Boot Process Algorithm  
RESET  
Hard Cond?  
ISP#= L?  
Prog Cond?  
BLJB= P?  
Hard Cond Init  
ENBOOT= 1  
PC= F000h  
FCON= 00h  
Standard Init  
ENBOOT= 0  
PC= 0000h  
FCON= F0h  
Prog Cond Init  
ENBOOT= 1  
PC= F000h  
FCON= F0h  
Hard Cond?  
FCON= 00h?  
User Vector?  
SBV< F0h?  
User Init  
PCH= SBV  
PCL= 00h  
User’s  
User’s  
Atmel’s  
Application  
Boot Loader  
Boot Loader  
23  
4106E805103/02  
Serial Boot Loader  
Configuration  
The serial boot loader is based on the internal UART and needs only 3 pins: the TXD  
and RXD pins of the UART and the VSS pin.  
The data transmission format on the serial link must be set to 8 data bits with 1 stop bit.  
The baud rate is automatically recognized during the synchronization phase.  
Synchronization Phase  
Before any data may be sent to the boot loader, a synchronization must be achieved  
with the host so that both sides converse at the same baud rate. This is done by sending  
the Ucharacter (ASCII 35h) to the boot loader. The boot loader acknowledges the syn-  
chronization by responding the same Ucharacter.  
At this time, the boot loader is able to receive data, then all data received are echoed to  
the host.  
Command Protocol  
Definition  
The protocol is based on the INTELHEX type records. These records are composed of  
seven fields of ASCII characters as detailed in Table 34. All fields except SOR (Start Of  
Record) end EOR (End Of Record) are ASCII coded hexadecimal values. The SOR field  
is always a :character. The EOR field is always a Carriage Return (ASCII 13h) fol-  
lowed by a Line Feed (ASCII 0Ah). The SIZE field is the size of the DATA field. The  
ADDRESS field is the address where to store data contained in the DATA field. The  
TYPE field is the record type detailed in Table 35. The DATA field contains the data and  
must never exceed 128 data bytes (256 ASCII characters). The CKSUM field is the  
checksum computed on the SIZE, ADDRESS, TYPE, DATA fields.  
Table 34. Hex Record Format  
SOR  
SIZE  
ADDRESS  
TYPE  
DATA  
CKSUM  
EOR  
:
NN  
AAAA  
RR  
DDDD  
CC  
CR LF  
Error Handling  
All received records that present a checksum error, a data length greater than 128 bytes  
or a bad type record are immediately acknowledged to the host by sending an Xchar-  
acter followed by a CRLF sequence.  
Command Description  
Table 35. Hex Record Commands  
TYPE  
SIZE  
ADDRESS  
Description  
Program Data  
Program the data in the DATA field at the address contained in the ADDRESS field.  
0000h to  
FFFFh  
00h  
01h to 80h  
Return  
.Done.  
PNot done. Part protected (secured by level 1 or 2).  
End of File  
No operation.  
01h  
00h  
0000h  
Return  
.”  
24  
AT8xC51SND1A  
4106E805103/02  
 
AT8xC51SND1A  
Table 35. Hex Record Commands (Continued)  
TYPE  
SIZE  
ADDRESS  
Description  
Block Erase: DATA[0] = 01h  
DATA[1] = 00h  
Erase block 0 from address 0000h to 1FFFh.  
DATA[1] = 20h  
Erase block 1 from address 2000h to 3FFFh.  
DATA[1] = 40h  
Erase block 2 from address 4000h to 7FFFh.  
DATA[1] = 80h  
02h  
XXXX  
Erase block 3 from address 8000h to BFFFh.  
DATA[1] = C0h  
Erase block 4 from address C000h to FFFFh.  
Return  
.Done.  
PNot done. Part protected (secured by level 1 or 2).  
Reset Software Boot Vector and Boot Status Byte: DATA[0] = 04h  
Set SBV to F0h and BSB to FFh.  
01h  
02h  
XXXX  
XXXX  
Return  
.Done.  
PNot done. Part protected (secured by level 1 or 2).  
Program Software Security Bits: DATA[0] = 05h  
DATA[1] = 00h  
Program level 1. Disable Flash programming.  
DATA[1] = 01h  
Program level 2. Disable Flash programming and verifying.  
Return  
.Done.  
PNot done. Part protected (secured by level 1 or 2).  
03h  
Program Software Boot Vector or Boot Status Byte: DATA[0] = 06h  
DATA[1] = 00h  
Program BSB with DATA[2].  
DATA[1] = 01h  
Program SBV with DATA[2].  
03h  
XXXX  
Return  
.Done.  
PNot done. Part already protected (secured by level 2).  
Full Chip Erase: DATA[0] = 07h  
Erase user memory from address 0000h to FFFFh.  
Set SBV to F0h and BSB to FFh.  
Program software security to level 0.  
01h  
XXXX  
Return  
.”  
Program Fuse bits: DATA[0] = 0Ah  
DATA[1] = 04h  
DATA[2] = 00h  
Program BLJB bit.  
DATA[2] = 01h  
Erase BLJB bit.  
DATA[1] = 08h  
DATA[2] = 00h  
03h  
XXXX  
Program X2 bit.  
DATA[2] = 01h  
Erase X2 bit.  
Return  
.Done.  
PNot done. Part protected (secured by level 1 or 2).  
25  
4106E805103/02  
Table 35. Hex Record Commands (Continued)  
TYPE  
SIZE  
ADDRESS  
Description  
Read Data: DATA[4] = 00h  
Read data from address given by DATA[1:0] (start address) to address given by DATA[3:2] (end  
address).  
05h  
XXXX  
Return  
AAAA=DDDDup to 16 data bytes by line.  
04h  
Blank Check: DATA[4] = 01h  
Check blanked data from address given by DATA[1:0] (start address) to address given by  
DATA[3:2] (end address).  
05h  
XXXX  
Return  
.Done.  
XXXXFirst address not blanked.  
Read Id: DATA[0] = 00h  
DATA[1] = 00h  
Return manufacturer id.  
DATA[1] = 01h  
Return device id 1.  
DATA[1] = 02h  
02h  
XXXX  
Return device id 2.  
DATA[1] = 03h  
Return device id 3.  
Return  
XXSelected id value.  
Read Special Bytes: DATA[0] = 07h  
DATA[1] = 00h  
Return SSB.  
DATA[1] = 01h  
Return BSB.  
02h  
XXXX  
DATA[1] = 02h  
Return SBV.  
05h  
Return  
XXSelected byte value.  
Read HSB: DATA[0] = 0Bh  
Return HSB.  
01h  
02h  
01h  
XXXX  
XXXX  
XXXX  
Return  
XXHSB value.  
Read Boot Id: DATA[0] = 0Eh  
DATA[1] = 00h  
Return boot id 1.  
DATA[1] = 01h  
Return boot id 1.  
Return  
XXSelected id value.  
Read Boot Loader Version: DATA[0] = 0Fh  
Return boot loader version.  
Return  
XXBoot loader version.  
26  
AT8xC51SND1A  
4106E805103/02  
AT8xC51SND1A  
In-application  
Programming  
The IAP is based on several Application Program Interface routines (APIs) that may be  
called by the users boot loader to allow programming of the Flash memory.  
The APIs are executed by calling the API_CALL function at address FFF0h and by  
passing the API routine number in R1 register. Some other parameters may also be  
passed in registers as detailed in Table 36.  
Table 36. API Routines and Parameters  
R1  
Description  
PROGRAM DATA BYTE  
Program data in the Flash memory at a given address.  
Parameters  
02h  
DPTRAddress of the byte to program.  
ACCData to program.  
Return  
None.  
PROGRAM DATA PAGE  
Program a page of data in the Flash memory at a given page address.  
Parameters  
DPTR0Address of the page to program.  
DPTR1Address in ERAM of the first data to program.  
ACCNumber of bytes to program limited to 128.  
09h  
Return  
None.  
PROGRAM SOFTWARE SECURITY BYTE  
Program SSB.  
Parameters  
05h  
06h  
06h  
DPL00hProgram level 1. Disable Flash programming.  
01hProgram level 2. Disable Flash programming and verifying.  
Return  
None.  
PROGRAM BOOT STATUS BYTE  
Program BSB.  
Parameters  
DPL00hSelect BSB programming.  
ACCData to program in BSB.  
Return  
None.  
PROGRAM SOFTWARE BOOT VECTOR  
Program SBV.  
Parameters  
DPL01hSelect SBV programming.  
ACCData to program in SBV.  
Return  
None.  
PROGRAM BOOT LOADER JUMP BIT  
Program BLJB.  
Parameters  
DPL04hSelect BLJB programming.  
ACC00hProgram BLJB.  
01hErase BLJB.  
06h  
Return  
None.  
27  
4106E805103/02  
 
Table 36. API Routines and Parameters (Continued)  
R1  
Description  
PROGRAM X2 BIT  
Program X2B.  
Parameters  
DPL08hSelect X2B programming.  
ACC00hProgram X2B.  
01hErase X2B.  
06h  
Return  
None.  
Erase BLOCK  
Erase one of the 5 available blocks.  
Parameters  
DPH00hErase block 0 from address 0000h to 1FFFh.  
20hErase block 1 from address 2000h to 3FFFh.  
40hErase block 2 from address 4000h to 7FFFh.  
80hErase block 3 from address 8000h to BFFFh.  
01h  
C0hErase block 4 from address C000h to FFFFh.  
Return  
None.  
ERASE SOFTWARE BOOT VECTOR and BOOT STATUS BYTE  
Erase SBV and BSB.  
Parameters  
None.  
04h  
03h  
00h  
00h  
00h  
Return  
None.  
READ DATA BYTE  
Read data at a given address.  
Parameters  
DPTRAddress of the byte to program.  
Return  
ACCData read.  
READ MANUFACTURER ID  
Read manufacturer Id.  
Parameters  
DPL00hSelect manufacturer Id.  
Return  
ACCId value.  
READ DEVICE ID 1  
Read device Id 1  
Parameters  
DPL01hSelect device Id 1.  
Return  
ACCId value.  
READ DEVICE ID 2  
Read device Id 2.  
Parameters  
DPL02hSelect device Id 2.  
Return  
ACCId value.  
28  
AT8xC51SND1A  
4106E805103/02  
AT8xC51SND1A  
Table 36. API Routines and Parameters (Continued)  
R1  
Description  
READ DEVICE ID 3  
Read device Id 3.  
Parameters  
DPL03hSelect device Id 3.  
00h  
Return  
ACCId value.  
READ SOFTWARE SECURITY BYTE  
Read SSB.  
Parameters  
DPL00hSelect SSB.  
07h  
07h  
07h  
0Bh  
0Eh  
0Eh  
0Fh  
Return  
ACCSSB value.  
READ BOOT STATUS BYTE  
Read BSB.  
Parameters  
DPL01hSelect BSB.  
Return  
ACCBSB value.  
READ SOFTWARE BOOT VECTOR  
Read SBV.  
Parameters  
DPL02hSelect SBV.  
Return  
ACCSBV value.  
READ HARDWARE SECURITY BYTE  
Read HSB.  
Parameters  
None.  
Return  
ACCHSB value.  
READ BOOT ID 1  
Read boot Id 1.  
Parameters  
DPL00hSelect boot Id 1.  
Return  
ACCId value.  
READ BOOT ID 2  
Read boot Id 2.  
Parameters  
DPL01hSelect boot Id 2.  
Return  
ACCId value.  
READ BOOT LOADER VERSION  
Read BLV.  
Parameters  
None.  
Return  
ACCBLV value.  
29  
4106E805103/02  
Peripherals  
The AT8xC51SND1A peripherals are briefly described in the following sections. For fur-  
ther details on how to interface (hardware and software) to these peripherals, please  
refer to the AT8xC51SND1A design guide.  
Clock Generator System The AT8xC51SND1A internal clocks are extracted from an on-chip PLL fed by an on-  
chip oscillator. Four clocks are generated respectively for the C51 core, the MP3  
decoder, the audio interface, and the other peripherals. The C51 and peripheral clocks  
are derived from the oscillator clock. The MP3 decoder clock is generated by dividing  
the PLL output clock. The audio interface sample rates are also obtained by dividing the  
PLL output clock.  
Ports  
The AT8xC51SND1A implements five 8-bit ports (P0 to P4) and one 4-bit port (P5). In  
addition to performing general-purpose I/O, some ports are capable of external data  
memory operations; others allow for alternate functions. All I/O Ports are bidirectional.  
Each Port contains a latch, an output driver and an input buffer. Port 0 and Port 2 output  
drivers and input buffers facilitate external memory operations. Some Port 1, Port 3 and  
Port 4 pins serve for both general-purpose I/O and alternate functions.  
Timers/Counters  
The AT8xC51SND1A implements the two general-purpose, 16-bit Timers/Counters of a  
standard C51. They are identified as Timer 0, Timer 1, and can independently be config-  
ured each to operate in a variety of modes as a Timer or as an event Counter. When  
operating as a Timer, a Timer/Counter runs for a programmed length of time, then  
issues an interrupt request. When operating as a Counter, a Timer/Counter counts neg-  
ative transitions on an external pin. After a preset number of counts, the Counter issues  
an interrupt request.  
Watchdog Timer  
MP3 Decoder  
The AT8xC51SND1A implements a hardware Watchdog Timer that automatically resets  
the chip if it is allowed to time out. The WDT provides a means of recovering from rou-  
tines that do not complete successfully due to software or hardware malfunctions.  
The AT8xC51SND1A implements a MPEG I/II audio layer 3 decoder (known as MP3  
decoder).  
In MPEG I (ISO 11172-3) three layers of compression have been standardized support-  
ing three sampling frequencies: 48, 44.1, and 32 KHz. Among these layers, layer 3  
allows highest compression rate of about 12:1 while still maintaining CD audio quality.  
For example, 3 minutes of CD audio (16-bit PCM, 44.1 KHz) data, which needs about 32  
MBytes of storage, can be encoded into only 2.7 MBytes of MPEG I audio layer 3 data.  
In MPEG II (ISO 13818-3), three additional sampling frequencies: 24, 22.05, and 16  
KHz are supported for low bit rates applications.  
The AT8xC51SND1A can decode in real-time the MPEG I audio layer 3 encoded data  
into a PCM audio data, and also supports MPEG II audio layer 3 additional frequencies.  
Additional features are supported by the AT8xC51SND1A MP3 decoder such as vol-  
ume, bass, medium, and treble controls, bass boost effect and ancillary data extraction.  
Audio Output Interface  
The AT8xC51SND1A implements an audio output interface allowing the decoded audio  
bitstream to be output in various formats. It is compatible with right and left justification  
PCM and I2S formats and the on-chip PLL (see Section ) allows connection of almost all  
of the commercial audio DAC families available on the market.  
Universal Serial Bus  
Interface  
The AT8xC51SND1A implements a full-speed Universal Serial Bus Interface. It can be  
used for the following purposes:  
30  
AT8xC51SND1A  
4106E805103/02  
 
AT8xC51SND1A  
Download of MP3 encoded audio files by supporting the USB mass storage class.  
In-System Programming by supporting the USB firmware upgrade class.  
MultiMediaCard Interface The AT8xC51SND1A implements a MultiMediaCard (MMC) interface compliant to the  
V2.2 specification in MultiMediaCard Mode. The MMC allows storage of MP3 encoded  
audio files in removable flash memory cards that can be easily plugged or removed from  
the application. It can also be used for In-System Programming.  
IDE/ATAPI interface  
The AT8xC51SND1A provides an IDE/ATAPI interface allowing connexion of devices  
such as CD-ROM reader, CompactFlashcards, Hard Disk Drive, etc. It consists in a  
16-bit bidirectional bus part of the low-level ANSI ATA/ATAPI specification. It is provided  
for mass storage interface but could be used for In-System Programming using CD-  
ROM.  
Serial I/O Interface  
The AT8xC51SND1A implements a serial port with its own baud rate generator provid-  
ing one single synchronous communication mode and three full-duplex Universal  
Asynchronous Receiver Transmitter (UART) communication modes. It is provided for  
the following purposes:  
In-System Programming.  
Remote control of the AT8xC51SND1A by a host.  
Serial Peripheral  
Interface  
The AT8xC51SND1A implements a Serial Peripheral Interface (SPI) supporting master  
and slave modes. It is provided for the following purposes:  
Interfacing DataFlash memory for MP3 encoded audio files storage.  
Remote control of the AT8xC51SND1A by a host.  
In-System Programming.  
Two-wire Controller  
The AT8xC51SND1A implements a two-wire controller supporting the four standard  
master and slave modes with multimaster capability. It is provided for the following  
purposes:  
Connection of slave devices like LCD controller, audio DAC…  
Remote control of the AT8xC51SND1A by a host.  
In-System Programming.  
A/D Controller  
The AT8xC51SND1A implements a 2-channel 10-bit (8 true bits) analog to digital con-  
verter (ADC). It is provided for the following purposes:  
Battery monitoring.  
Voice recording.  
Corded remote control.  
Keyboard Interface  
The AT8xC51SND1A implements a keyboard interface allowing connection of 4 x n  
matrix keyboard. It is based on 4 inputs with programmable interrupt capability on both  
high or low level. These inputs are available as alternate function of P1.3:0 and allow  
exit from idle and power down modes.  
31  
4106E805103/02  
Electrical Characterstics  
Absolute Maximum Rating and Operating Conditions  
*NOTICE:  
Stressing the device beyond the Absolute Maxi-  
mum Ratingsmay cause permanent damage.  
These are stress ratings only. Operation beyond  
the operating conditionsis not recommended  
and extended exposure beyond the Operating  
Conditionsmay affect device reliability.  
Storage Temperature......................................... -65 to +150°C  
Voltage on any other Pin to VSS ......................................-0.3 to+4.0V  
IOL per I/O Pin ................................................................. 5 mA  
Power Dissipation............................................................. 1 W  
Ambient Temperature Under Bias........................ -40 to +85°C  
VDD ...........................................................................................2.7 to 3.3V  
DC Characteristics  
Digital Logic  
Table 37. Digital DC Characteristics VDD = 2.7 to 3.3V , TA = -40° to +85°C  
Symbol Parameter  
Min  
Typ(1)  
Max  
Units Test Conditions  
VIL  
Input Low Voltage  
-0.5  
0.2·VDD - 0.1  
V
Input High Voltage (except  
RST)  
VIH1  
VIH2  
0.2·VDD + 0.9  
0.7·VDD  
VDD  
V
V
Input High Voltage (RST)  
VDD + 0.5  
Output Low Voltage  
(except P0, ALE, MCMD,  
MDAT, MCLK, SCLK, DCLK,  
DSEL, DOUT)  
VOL1  
0.45  
0.45  
V
IOL = 1.6 mA  
Output Low Voltage  
(P0, ALE, MCMD, MDAT,  
MCLK, SCLK, DCLK, DSEL,  
DOUT)  
VOL2  
V
V
IOL = 3.2 mA  
Output High Voltage  
(P1, P2, P3, P4 and P5)  
VOH1  
VDD - 0.7  
VDD - 0.7  
IOH = -30 µA  
Output High Voltage  
(P0, P2 address mode, ALE,  
VOH2 MCMD, MDAT, MCLK,  
SCLK, DCLK, DSEL, DOUT,  
D+, D-)  
V
IOH = -3.2 mA  
Logical 0 Input Current (P1,  
P2, P3, P4 and P5)  
IIL  
-50  
µA Vin = 0.45V  
32  
AT8xC51SND1A  
4106E805103/02  
AT8xC51SND1A  
Table 37. Digital DC Characteristics VDD = 2.7 to 3.3V , TA = -40° to +85°C  
Symbol Parameter  
Input Leakage Current (P0,  
Min  
Typ(1)  
Max  
Units Test Conditions  
ILI  
ALE, MCMD, MDAT, MCLK,  
SCLK, DCLK, DSEL, DOUT)  
10  
µA 0.45 < VIN < VDD  
Logical 1 to 0 Transition  
Current  
(P1, P2, P3, P4 and P5)  
ITL  
-650  
200  
µA Vin = 2.0V  
RRST Pull-Down Resistor  
CIO Pin Capacitance  
VRET VDD Data Retention Limit  
50  
90  
10  
kΩ  
pF TA = 25°C  
1.8  
V
12 MHz, VDD < 3.3V  
mA 16 MHz, VDD < 3.3V  
20 MHz, VDD < 3.3V  
IDD  
Operating Current  
TBD  
TBD  
12 MHz, VDD < 3.3V  
mA 16 MHz, VDD < 3.3V  
20 MHz, VDD < 3.3V  
IDL  
Idle Mode Current  
TBD  
TBD  
TBD  
TBD  
IPD  
Power-Down Current  
µA VRET < VDD < 3.3V  
Note:  
1. Typical values are obtained using VDD = 3V and TA = 25°C. They are not tested and  
there is no guarantee on these values.  
Figure 9. IDD/IDL Versus XTAL Frequency; VDD = 2.7 to 3.3V  
TBD  
TBD  
TBD  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
max Active mode (mA)  
typ Active mode (mA)  
max Idle mode (mA)  
typ Idle mode (mA)  
Frequency at XTAL (MHz)  
33  
4106E805103/02  
IDD, DL  
I
and IPD Test Conditions Figure 10. IDD Test Condition, Active Mode  
VDD  
RST  
VDD  
IDD  
VDD  
VDD  
P0  
(NC)  
Clock Signal  
X2  
X1  
TST#  
VSS  
VSS  
All other pins are unconnected  
Figure 11. IDL Test Condition, Idle Mode  
VDD  
IDL  
RST  
VSS  
VDD  
VDD  
P0  
(NC)  
Clock Signal  
X2  
X1  
TST#  
VSS  
VSS  
All other pins are unconnected  
Figure 12. IPD Test Condition, Power-Down Mode  
VDD  
IPD  
RST  
VDD  
VSS  
VDD  
P0  
(NC)  
X2  
X1  
MCMD  
MDAT  
TST#  
VSS  
VSS  
All other pins are unconnected  
34  
AT8xC51SND1A  
4106E805103/02  
AT8xC51SND1A  
A to D Converter  
Table 38. A to D Converter DC Characteristics VDD = 2.7 to 3.3V , TA = -40° to +85°C  
Symbol  
Parameter  
Min  
Typ  
Max  
Units Test Conditions  
AVDD  
Analog Supply Voltage  
2.7  
3.3  
V
Analog Operating Supply  
Current  
AVDD = 3.3V  
µA  
AIDD  
600  
AIN1:0 = 0 to AVDD  
AVDD = 3.3V  
µA  
AIPD  
AVIN  
Analog Standby Current  
Analog Input Voltage  
2
ADEN = 0 or PD = 1  
AVSS  
AVDD  
V
Reference Voltage  
AREFN  
AREFP  
AVREF  
AVSS  
2.4  
V
V
AVDD  
30  
RREF  
CIA  
AREF Input Resistance  
Analog Input capacitance  
10  
kΩ  
TA = 25°C  
TA = 25°C  
10  
pF  
Oscillator and Crystal  
Schematic  
Figure 13. Crystal Connection  
X1  
X2  
C1  
C2  
Q
VSS  
Note:  
For operation with most standard crystals, no external components are needed on X1  
and X2. It may be necessary to add external capacitors on X1 and X2 to ground in spe-  
cial cases (max 10 pF). X1 and X2 may not be used to drive other circuits.  
Parameters  
Table 39. Oscillator and Crystal Characteristics VDD = 2.7 to 3.3V , TA = -40° to +85°C  
Symbol  
CX1  
CX2  
CL  
Parameter  
Min  
Typ  
10  
10  
5
Max  
Unit  
pF  
Internal Capacitance (X1 - VSS)  
Internal Capacitance (X2 - VSS)  
Equivalent Load Capacitance (X1 - X2)  
Drive Level  
pF  
pF  
DL  
50  
20  
40  
6
µW  
MHz  
F
Crystal Frequency  
RS  
Crystal Series Resistance  
Crystal Shunt Capacitance  
CS  
pF  
35  
4106E805103/02  
Phase Lock Loop  
Schematic  
Figure 14. PLL Filter Connection  
PFILT  
R
C2  
C1  
VSS  
VSS  
Parameters  
Table 40. PLL Filter Characteristics  
VDD = 2.7 to 3.3V , TA = -40° to +85°C  
Symbol  
Parameter  
Min  
Typ  
100  
10  
Max  
Unit  
R
Filter Resistor  
C1  
C2  
Filter Capacitance 1  
Filter Capacitance 2  
nF  
nF  
2.2  
In-System Programming  
Schematic  
Figure 15. ISP Pull-down Connection  
ISP#  
RISP  
VSS  
Parameters  
Table 41. ISP Pull-Down Characteristics VDD = 2.7 to 3.3V , TA = -40° to +85°C  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
RISP  
ISP Pull-Down Resistor  
2.2  
kΩ  
36  
AT8xC51SND1A  
4106E805103/02  
AT8xC51SND1A  
AC Characteristics  
External 8-bit Bus Cycles  
Definition of Symbols  
Table 42. External 8-bit Bus Cycles Timing Symbol Definitions  
Signals  
Address  
Conditions  
High  
A
D
L
H
L
Data In  
ALE  
Low  
V
X
Z
Valid  
Q
R
W
Data Out  
RD#  
No Longer Valid  
Floating  
WR#  
Timings  
Test conditions: capacitive load on all pins = 50 pF.  
Table 43. External 8-bit Bus Cycle Data Read AC Timings  
VDD = 2.7 to 3.3V, TA = -40° to +85°C  
Variable Clock  
Standard Mode  
Variable Clock  
X2 Mode  
Symbol Parameter  
Min  
Max  
Min  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TCLCL Clock Period  
50  
50  
TLHLL  
TAVLL  
TLLAX  
TLLRL  
ALE Pulse Width  
2·TCLCL-15  
TCLCL-20  
TCLCL-20  
3·TCLCL-30  
6·TCLCL-25  
TCLCL-20  
TCLCL-15  
Address Valid to ALE Low  
Address hold after ALE Low  
ALE Low to RD# Low  
0.5·TCLCL-20  
0.5·TCLCL-20  
1.5·TCLCL-30  
3·TCLCL-25  
TRLRH RD# Pulse Width  
TRHLH RD# high to ALE High  
TAVDV Address Valid to Valid Data In  
TCLCL+20  
0.5·TCLCL-20 0.5·TCLCL+20  
9·TCLCL-65  
4.5·TCLCL-65  
TAVRL  
Address Valid to RD# Low  
4·TCLCL-30  
2·TCLCL-30  
TRLDV RD# Low to Valid Data  
TRLAZ RD# Low to Address Float  
TRHDX Data Hold After RD# High  
5·TCLCL-30  
2.5·TCLCL-30  
0
0
0
0
Instruction Float After RD#  
TRHDZ  
High  
2·TCLCL-25  
TCLCL-25  
ns  
37  
4106E805103/02  
Table 44. External 8-bit Bus Cycle Data Write AC Timings  
VDD = 2.7 to 3.3V, TA = -40° to +85°C  
Variable Clock  
Standard Mode  
Variable Clock  
X2 Mode  
Symbol Parameter  
Min  
50  
Max  
Min  
Max  
Unit  
ns  
TCLCL  
TLHLL  
TAVLL  
Clock Period  
50  
ALE Pulse Width  
Address Valid to ALE Low  
2·TCLCL-15  
TCLCL-20  
TCLCL-15  
0.5·TCLCL-20  
ns  
ns  
Address hold after ALE  
Low  
TLLAX  
TLLWL  
TCLCL-20  
0.5·TCLCL-20  
ns  
ALE Low to WR# Low  
3·TCLCL-30  
6·TCLCL-25  
TCLCL-20  
1.5·TCLCL-30  
3·TCLCL-25  
ns  
ns  
ns  
TWLWH WR# Pulse Width  
TWHLH WR# High to ALE High  
TCLCL+20  
0.5·TCLCL-20  
0.5·TCLCL+20  
Address Valid to WR#  
TAVWL  
Low  
4·TCLCL-30  
2·TCLCL-30  
ns  
TQVWH Data Valid to WR# High  
TWHQX Data Hold after WR# High  
7·TCLCL-20  
3.5·TCLCL-20  
0.5·TCLCL-15  
ns  
ns  
TCLCL-15  
Waveforms  
Figure 16. External 8-bit Bus Cycle Data Read Waveforms  
ALE  
TLHLL  
TLLRL  
TRLRH  
TRHLH  
RD#  
TRLDV  
TRHDZ  
TRHDX  
TRLAZ  
TLLAX  
TAVLL  
P0  
P2  
A7:0  
TAVRL  
TAVDV  
D7:0  
Data In  
A15:8  
38  
AT8xC51SND1A  
4106E805103/02  
AT8xC51SND1A  
Figure 17. External 8-bit Bus Cycle Data Write Waveforms  
ALE  
TLHLL  
TWHLH  
TLLWL  
TWLWH  
WR#  
TAVWL  
TLLAX  
A7:0  
TAVLL  
TQVWH  
TWHQX  
P0  
P2  
D7:0  
Data Out  
A15:8  
External IDE 16-bit Bus Cycles  
Definition of Symbols  
Table 45. External IDE 16-bit Bus Cycles Timing Symbol Definitions  
Signals  
Address  
Conditions  
A
D
L
H
L
High  
Data In  
ALE  
Low  
V
X
Z
Valid  
Q
R
W
Data Out  
RD#  
No Longer Valid  
Floating  
WR#  
Timings  
Test conditions: capacitive load on all pins = 50 pF.  
39  
4106E805103/02  
Table 46. External IDE 16-bit Bus Cycle Data Read AC Timings  
VDD = 2.7 to 3.3V, TA = -40° to +85°C  
Variable Clock  
Standard Mode  
Variable Clock  
X2 Mode  
Symbol Parameter  
Min  
Max  
Min  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TCLCL Clock Period  
50  
50  
TLHLL ALE Pulse Width  
2·TCLCL-15  
TCLCL-20  
TCLCL-20  
3·TCLCL-30  
6·TCLCL-25  
TCLCL-20  
TCLCL-15  
TAVLL Address Valid to ALE Low  
TLLAX Address hold after ALE Low  
TLLRL ALE Low to RD# Low  
TRLRH RD# Pulse Width  
0.5·TCLCL-20  
0.5·TCLCL-20  
1.5·TCLCL-30  
3·TCLCL-25  
TRHLH RD# high to ALE High  
TAVDV Address Valid to Valid Data In  
TAVRL Address Valid to RD# Low  
TRLDV RD# Low to Valid Data  
TRLAZ RD# Low to Address Float  
TRHDX Data Hold After RD# High  
TCLCL+20  
0.5·TCLCL-20  
0.5·TCLCL+20  
4.5·TCLCL-65  
9·TCLCL-65  
4·TCLCL-30  
2·TCLCL-30  
5·TCLCL-30  
2.5·TCLCL-30  
0
0
0
0
Instruction Float After RD#  
TRHDZ  
High  
2·TCLCL-25  
TCLCL-25  
ns  
Table 47. External IDE 16-bit Bus Cycle Data Write AC Timings  
VDD = 2.7 to 3.3V, TA = -40° to +85°C  
Variable Clock  
Standard Mode  
Variable Clock  
X2 Mode  
Symbol Parameter  
Min  
Max  
Min  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TCLCL Clock Period  
50  
50  
TLHLL ALE Pulse Width  
2·TCLCL-15  
TCLCL-20  
TCLCL-20  
3·TCLCL-30  
6·TCLCL-25  
TCLCL-20  
4·TCLCL-30  
7·TCLCL-20  
TCLCL-15  
TCLCL-15  
TAVLL Address Valid to ALE Low  
TLLAX Address hold after ALE Low  
TLLWL ALE Low to WR# Low  
TWLWH WR# Pulse Width  
0.5·TCLCL-20  
0.5·TCLCL-20  
1.5·TCLCL-30  
3·TCLCL-25  
TWHLH WR# High to ALE High  
TAVWL Address Valid to WR# Low  
TQVWH Data Valid to WR# High  
TWHQX Data Hold after WR# High  
TCLCL+20  
0.5·TCLCL-20 0.5·TCLCL+20  
2·TCLCL-30  
3.5·TCLCL-20  
0.5·TCLCL-15  
40  
AT8xC51SND1A  
4106E805103/02  
AT8xC51SND1A  
Waveforms  
Figure 18. External IDE 16-bit Bus Cycle Data Read Waveforms  
ALE  
TLHLL  
TLLRL  
TRLRH  
TRHLH  
RD#  
TRLDV  
TRHDZ  
TRHDX  
TRLAZ  
TLLAX  
TAVLL  
P0  
P2  
A7:0  
TAVRL  
TAVDV  
D7:0  
Data In  
A15:8  
D15:81  
Data In  
Note:  
D15:8 is written in DAT16H SFR.  
Figure 19. External IDE 16-bit Bus Cycle Data Write Waveforms  
ALE  
TLHLL  
TWHLH  
TLLWL  
TWLWH  
WR#  
TAVWL  
TLLAX  
A7:0  
TAVLL  
TQVWH  
TWHQX  
P0  
P2  
D7:0  
Data Out  
A15:8  
D15:81  
Data Out  
Note:  
D15:8 is the content of DAT16H SFR.  
SPI Interface  
Definition of Symbols  
Table 48. SPI Interface Timing Symbol Definitions  
Signals  
Conditions  
High  
C
I
Clock  
H
L
Data In  
Data Out  
Low  
O
V
X
Z
Valid  
No Longer Valid  
Floating  
41  
4106E805103/02  
Timings  
Test conditions: capacitive load on all pins = 100 pF  
Table 49. SPI Interface Master AC Timing  
VDD = 2.7 to 3.3V, TA = -40° to +85°C  
Symbol  
Parameter  
Min  
Max  
Unit  
Slave mode  
TCHCH  
Clock Period  
8
TOSC  
TOSC  
TOSC  
ns  
TCHCX  
Clock High Time  
Clock Low Time  
SS# Low to Clock edge  
3.2  
3.2  
200  
100  
100  
TCLCX  
TSLCH, TSLCL  
TIVCL, TIVCH  
TCLIX, TCHIX  
TCLOV, TCHOV  
TCLOX, TCHOX  
TCLSH, TCHSH  
TIVCL, TIVCH  
TCLIX, TCHIX  
Input Data Valid to Clock Edge  
Input Data Hold after Clock Edge  
Output Data Valid after Clock Edge  
Output Data Hold Time after Clock Edge  
SS# High after Clock Edge  
Input Data Valid to Clock Edge  
Input Data Hold after Clock Edge  
SS# Low to Output Data Valid  
Output Data Hold after SS# High  
SS# High to SS# Low  
ns  
ns  
100  
ns  
0
ns  
0
ns  
100  
100  
ns  
ns  
TSLOV  
TSHOX  
TSHSL  
TILIH  
130  
130  
ns  
ns  
(1)  
Input Rise Time  
2
µs  
µs  
ns  
ns  
TIHIL  
Input Fall Time  
2
TOLOH  
TOHOL  
Output Rise time  
100  
100  
Output Fall Time  
Master mode  
TCHCH  
Clock Period  
4
TOSC  
TOSC  
TOSC  
ns  
TCHCX  
Clock High Time  
1.6  
1.6  
50  
50  
TCLCX  
Clock Low Time  
TIVCL, TIVCH  
Input Data Valid to Clock Edge  
Input Data Hold after Clock Edge  
Output Data Valid after Clock Edge  
Output Data Hold Time after Clock Edge  
Input Data Rise Time  
TCLIX, TCHIX  
TCLOV, TCHOV  
TCLOX, TCHOX  
ns  
65  
ns  
0
ns  
TILIH  
TIHIL  
2
2
µs  
Input Data Fall Time  
µs  
TOLOH  
TOHOL  
Note:  
Output Data Rise time  
50  
50  
ns  
Output Data Fall Time  
ns  
1. Value of this parameter depends on software.  
42  
AT8xC51SND1A  
4106E805103/02  
AT8xC51SND1A  
Waveforms  
Figure 20. SPI Slave Waveforms (SSCPHA = 0)  
SS#  
(input)  
TCLSH  
TCHSH  
TSLCH  
TSLCL  
TCHCH  
TSHSL  
TCLCH  
SCK  
(SSCPOL = 0)  
(input)  
TCHCX  
TCLCX  
TCHCL  
SCK  
(SSCPOL = 1)  
(input)  
TCLOX  
TCHOX  
TCLOV  
TCHOV  
TSLOV  
SLAVE MSB OUT  
TSHOX  
MISO  
(output)  
BIT 6  
SLAVE LSB OUT  
1
TCHIX  
TCLIX  
TIVCH  
TIVCL  
MOSI  
(input)  
MSB IN  
BIT 6  
LSB IN  
Note:  
Not Defined but generally the MSB of the character which has just been received.  
Figure 21. SPI Slave Waveforms (SSCPHA = 1)  
SS#1  
(output)  
TCHCH  
TCLCH  
SCK  
(SSCPOL = 0)  
(output)  
TCHCX  
TCLCX  
TCHCL  
SCK  
(SSCPOL = 1)  
(output)  
TIVCH  
TCHIX  
TIVCL TCLIX  
SI  
(input)  
MSB IN  
BIT 6  
TCLOV  
TCHOV  
LSB IN  
TCLOX  
TCHOX  
SO  
(output)  
Port Data  
MSB OUT  
BIT 6  
LSB OUT  
Port Data  
Note:  
Not Defined but generally the LSB of the character which has just been received.  
43  
4106E805103/02  
Figure 22. SPI Master Waveforms (SSCPHA = 0)  
SS#1  
(input)  
TSLCH  
TSLCL  
TCLSH  
TCHSH  
TCHCH  
TSHSL  
TCLCH  
SCK  
(SSCPOL = 0)  
(input)  
TCHCX  
TCLCX  
TCHCL  
SCK  
(SSCPOL = 1)  
(input)  
TCHOV  
TCLOV  
TCHOX  
TCLOX  
TSLOV  
SLAVE MSB OUT  
TSHOX  
MISO  
(output)  
BIT 6  
SLAVE LSB OUT  
1
TIVCH  
TIVCL  
TCHIX  
TCLIX  
MOSI  
(input)  
MSB IN  
BIT 6  
LSB IN  
Note:  
SS# handled by software using general purpose port pin.  
Figure 23. SPI Master Waveforms (SSCPHA = 1)  
SS#1  
(output)  
TCHCH  
TCLCH  
SCK  
(SSCPOL = 0)  
(output)  
TCHCX  
TCLCX  
TCHCL  
SCK  
(SSCPOL = 1)  
(output)  
TIVCH  
TCHIX  
TIVCL TCLIX  
SI  
(input)  
MSB IN  
TCLOV  
BIT 6  
TCLOX  
TCHOX  
BIT 6  
LSB IN  
TCHOV  
SO  
(output)  
Port Data  
MSB OUT  
LSB OUT  
Port Data  
Note:  
SS# handled by software using general purpose port pin.  
44  
AT8xC51SND1A  
4106E805103/02  
AT8xC51SND1A  
Two-wire Interface  
Timings  
Table 50. Two-wire Interface AC Timing  
VDD = 2.7 to 3.3V, TA = -40° to +85°C  
INPUT  
M in  
OUTPUT  
Min  
Symbol  
THD; STA  
TLOW  
Parameter  
Max  
Max  
(4)  
(4)  
(4)  
Start condition hold time  
SCL low time  
14·TCLCL  
16·TCLCL  
14·TCLCL  
1 µs  
4.0 µs(1)  
4.7 µs(1)  
4.0 µs(1)  
THIGH  
SCL high time  
(2)  
TRC  
SCL rise time  
-
TFC  
SCL fall time  
0.3 µs  
0.3 µs(3)  
20·TCLCL(4)- TRD  
1 µs(1)  
TSU; DAT1  
TSU; DAT2  
TSU; DAT3  
THD; DAT  
TSU; STA  
TSU; STO  
TBUF  
Data set-up time  
250 ns  
250 ns  
250 ns  
0 ns  
SDA set-up time (before repeated START condition)  
SDA set-up time (before STOP condition)  
Data hold time  
(4)  
8·TCLCL  
8·TCLCL(4) - TFC  
4.7 µs(1)  
(4)  
Repeated START set-up time  
STOP condition set-up time  
Bus free time  
14·TCLCL  
14·TCLCL  
14·TCLCL  
1 µs  
(4)  
(4)  
4.0 µs(1)  
4.7 µs(1)  
(2)  
TRD  
SDA rise time  
-
TFD  
SDA fall time  
0.3 µs  
0.3 µs(3)  
Notes: 1. At 100 kbit/s. At other bit-rates this value is inversely proportional to the bit-rate of  
100 kbit/s.  
2. Determined by the external bus-line capacitance and the external bus-line pull-up  
resistor, this must be < 1 µs.  
3. Spikes on the SDA and SCL lines with a duration of less than 3·TCLCL will be filtered  
out. Maximum capacitance on bus-lines SDA and  
SCL = 400 pF.  
4. TCLCL = TOSC = one oscillator clock period.  
Waveforms  
Figure 24. Two-wire Waveforms  
Repeated START condition  
START or Repeated START condition  
START condition  
Tsu;STA  
STOP condition  
Trd  
0.7 VDD  
0.3 VDD  
SDA  
(INPUT/OUTPUT)  
Tsu;STO  
Tbuf  
Tfd  
Tsu;DAT3  
Trc  
Tfc  
0.7 VDD  
0.3 VDD  
SCL  
(INPUT/OUTPUT)  
Thigh  
Tsu;DAT2  
Tlow  
Thd;STA  
Thd;DAT  
Tsu;DAT1  
45  
4106E805103/02  
MMC Interface  
Definition of Symbols  
Table 51. MMC Interface Timing Symbol Definitions  
Signals  
Conditions  
High  
C
D
O
Clock  
H
L
Data In  
Data Out  
Low  
V
X
Valid  
No Longer Valid  
Timings  
Table 52. MMC Interface AC timings  
VDD = 2.7 to 3.3V, TA = 0 to 70°C, CL 100pF (10 cards)  
Symbol  
TCHCH  
Parameter  
Min  
50  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Clock Period  
TCHCX  
TCLCX  
TCLCH  
TCHCL  
TDVCH  
TCHDX  
TCHOX  
TOVCH  
Clock High Time  
10  
Clock Low Time  
10  
Clock Rise Time  
10  
10  
Clock Fall Time  
Input Data Valid to Clock High  
Input Data Hold after Clock High  
Output Data Hold after Clock High  
Output Data Valid to Clock High  
3
3
5
5
Waveforms  
Figure 25. MMC Input-Output Waveforms  
TCHCH  
TCHCX  
TCLCX  
MCLK  
TCHCL  
TCLCH  
TIVCH  
TCHIX  
MCMD Input  
MDAT Input  
TCHOX  
TOVCH  
MCMD Output  
MDAT Output  
46  
AT8xC51SND1A  
4106E805103/02  
AT8xC51SND1A  
Audio Interface  
Definition of Symbols  
Table 53. Audio Interface Timing Symbol Definitions  
Signals  
Conditions  
High  
C
O
S
Clock  
H
L
Data Out  
Data Select  
Low  
V
X
Valid  
No Longer Valid  
Timings  
Table 54. Audio Interface AC timings  
VDD = 2.7 to 3.3V, TA = 0 to 70°C, CL 30pF  
Symbol  
TCHCH  
TCHCX  
TCLCX  
TCLCH  
TCHCL  
TCLSV  
Parameter  
Min  
Max  
Unit  
ns  
Clock Period  
325.5(1)  
Clock High Time  
Clock Low Time  
Clock Rise Time  
Clock Fall Time  
Clock Low to Select Valid  
30  
30  
ns  
ns  
10  
10  
10  
10  
ns  
ns  
ns  
TCLOV  
Note:  
Clock Low to Data Valid  
ns  
32-bit format with Fs = 48 KHz.  
Waveforms  
Figure 26. Audio Interface Waveforms  
TCHCH  
TCHCX  
TCLCX  
DCLK  
TCHCL  
TCLCH  
TCLSV  
DSEL  
DDAT  
Right  
Left  
TCLOV  
47  
4106E805103/02  
Analog to Digital Converter  
Definition of Symbols  
Table 55. Analog to Digital Converter Timing Symbol Definitions  
Signals  
Conditions  
High  
C
E
Clock  
H
L
Enable (ADEN bit)  
Low  
Start Conversion  
(ADSST bit)  
S
Characteristics  
Table 56. Analog to Digital Converter AC Characteristics  
VDD = 2.7 to 3.3V, TA = 0 to 70°C  
Symbol  
TCLCL  
Parameter  
Min  
Max  
Unit  
µs  
Clock Period  
Start-up Time  
Conversion Time  
1.43  
TEHSH  
TSHSL  
4
µs  
11·TCLCL  
µs  
Differential non-  
linearity error1, 2  
DLe  
TBD  
TBD  
LSB  
LSB  
Integral non-  
linearity error1, 3  
ILe  
OSe  
Offset error1, 4  
Gain error1, 5  
TBD  
TBD  
LSB  
%
Ge  
Note:  
1. AVDD = AVREFP = 3.0 V, AVSS = AVREFN = 0 V. ADC is monotonic with no missing code.  
2. The differential non-linearity is the difference between the actual step width and the  
ideal step width (see Figure 28).  
3. The integral non-linearity is the peak difference between the center of the actual step  
and the ideal transfer curve after appropriate adjustment of gain and offset errors  
(see Figure 28).  
4. The offset error is the absolute difference between the straight line which fits the  
actual transfer curve (after removing of gain error), and the straight line which fits the  
ideal transfer curve (see Figure 28).  
5. The gain error is the relative difference in percent between the straight line which fits  
the actual transfer curve (after removing of offset error), and the straight line which  
fits the ideal transfer curve (see Figure 28).  
Waveforms  
Figure 27. Analog to Digital Converter Internal Waveforms  
CLK  
TCLCL  
ADEN Bit  
TEHSH  
ADSST Bit  
TSHSL  
48  
AT8xC51SND1A  
4106E805103/02  
AT8xC51SND1A  
Figure 28. Analog to Digital Converter Characteristics  
Offset Gain  
Error Error  
Code Out  
OSe  
Ge  
1023  
1022  
1021  
1020  
1019  
1018  
Ideal Transfer curve  
7
6
5
4
Example of an actual transfer curve  
Center of a step  
Integral non-linearity (ILe)  
3
2
1
Differential non-linearity (DLe)  
1 LSB  
(ideal)  
0
0
AVIN (LSBideal)  
1
2
3
4
5
6
7
1018 1019 1020 1021 1022 1023 1024  
Offset  
Error  
OSe  
Flash Memory  
Definition of Symbols  
Table 57. Flash Memory Timing Symbol Definitions  
Signals  
Conditions  
S
R
B
ISP#  
L
Low  
RST  
V
X
Valid  
FBUSY flag  
No Longer Valid  
Timings  
Table 58. Flash Memory AC Timing  
VDD = 2.7 to 3.3V, TA = -40° to +85°C  
Symbol  
TSVRL  
Parameter  
Min  
Typ  
Max  
Unit  
Input ISP# Valid to RST Edge  
Input ISP# Hold after RST Edge  
Flash Internal Busy (Programming) Time  
50  
50  
ns  
ns  
TRLSX  
TBHBL  
10  
ms  
49  
4106E805103/02  
Waveforms  
Figure 29. Flash Memory ISP Waveforms  
RST  
TSVRL  
TRLSX  
ISP#1  
Note:  
ISP# must be driven through a pull-down resistor (see Section In-System Program-  
ming, page 36).  
Figure 30. Flash Memory Internal Busy Waveforms  
FBUSY bit  
TBHBL  
External Clock Drive and Logic Level References  
Definition of Symbols Table 59. External Clock Timing Symbol Definitions  
Signals  
Clock  
Conditions  
High  
C
H
L
Low  
X
No Longer Valid  
Timings  
Table 60. External Clock AC Timings  
VDD = 2.7 to 3.3V, TA= 0 to 70°C  
Symbol  
TCLCL  
Parameter  
Min  
50  
10  
10  
3
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
%
Clock Period  
High Time  
TCHCX  
TCLCX  
TCLCH  
TCHCL  
TCR  
Low Time  
Rise Time  
Fall Time  
3
Cyclic Ratio in X2 mode  
40  
60  
Waveforms  
Figure 31. External Clock Waveform  
TCLCH  
TCHCX  
VDD - 0.5  
VIH1  
TCLCX  
VIL  
0.45 V  
TCHCL  
TCLCL  
50  
AT8xC51SND1A  
4106E805103/02  
AT8xC51SND1A  
Figure 32. AC Testing Input/Output Waveforms  
INPUTS  
OUTPUTS  
VIH min  
VIL max  
VDD - 0.5  
0.7 VDD  
0.3 VDD  
0.45 V  
Note:  
1. During AC testing, all inputs are driven at VDD -0.5V for a logic 1 and 0.45V for a logic 0.  
2. Timing measurements are made on all outputs at VIH min for a logic 1 and VIL max for a logic 0.  
Figure 33. Float Waveforms  
V
LOAD + 0.1 V  
VOH - 0.1 V  
VOL + 0.1 V  
Timing Reference Points  
VLOAD  
VLOAD - 0.1 V  
Note:  
For timing purposes, a port pin is no longer floating when a 100 mV change from load voltage occurs and begins to float when a  
100 mV change from the loading VOH/VOL level occurs with IOL/IOH = ±20 mA.  
51  
4106E805103/02  
Ordering Information  
Table 61. Ordering Information  
Temperature  
Range  
Supply  
Voltage  
Part Number  
Memory Size  
Max Frequency  
40 MHz  
Package  
TQFP80  
TQFP80  
Packing  
Tray  
AT89C51SND1A-ROTIL  
AT83SND1Axxx(1)-ROTIL  
64K Flash  
3V  
3V  
Industrial  
Industrial  
64K ROM  
40 MHz  
Tray  
Note:  
(1)Refers to ROM code.  
PLCC84 package only available for development board.  
52  
AT8xC51SND1A  
4106E805103/02  
AT8xC51SND1A  
Package Information  
TQFP80  
53  
4106E805103/02  
Package Information  
PLCC84  
54  
AT8xC51SND1A  
4106E805103/02  
Atmel Headquarters  
Atmel Operations  
Corporate Headquarters  
2325 Orchard Parkway  
San Jose, CA 95131  
TEL 1(408) 441-0311  
FAX 1(408) 487-2600  
Memory  
RF/Automotive  
Atmel Corporate  
Atmel Heilbronn  
2325 Orchard Parkway  
San Jose, CA 95131  
TEL 1(408) 436-4270  
FAX 1(408) 436-4314  
Theresienstrasse 2  
Postfach 3535  
74025 Heilbronn, Germany  
TEL (49) 71-31-67-0  
FAX (49) 71-31-67-2340  
Europe  
Atmel SarL  
Microcontrollers  
Atmel Corporate  
2325 Orchard Parkway  
San Jose, CA 95131  
TEL 1(408) 436-4270  
FAX 1(408) 436-4314  
Route des Arsenaux 41  
Casa Postale 80  
CH-1705 Fribourg  
Switzerland  
TEL (41) 26-426-5555  
FAX (41) 26-426-5500  
Atmel Colorado Springs  
1150 East Cheyenne Mtn. Blvd.  
Colorado Springs, CO 80906  
TEL 1(719) 576-3300  
FAX 1(719) 540-1759  
Atmel Nantes  
La Chantrerie  
BP 70602  
44306 Nantes Cedex 3, France  
TEL (33) 2-40-18-18-18  
FAX (33) 2-40-18-19-60  
Biometrics/Imaging/Hi-Rel MPU/  
High Speed Converters/RF Data-  
com  
Asia  
Atmel Asia, Ltd.  
Room 1219  
Atmel Grenoble  
Chinachem Golden Plaza  
77 Mody Road Tsimhatsui  
East Kowloon  
Hong Kong  
TEL (852) 2721-9778  
FAX (852) 2722-1369  
Avenue de Rochepleine  
BP 123  
38521 Saint-Egreve Cedex, France  
TEL (33) 4-76-58-30-00  
FAX (33) 4-76-58-34-80  
ASIC/ASSP/Smart Cards  
Atmel Rousset  
Zone Industrielle  
13106 Rousset Cedex, France  
TEL (33) 4-42-53-60-00  
FAX (33) 4-42-53-60-01  
Japan  
Atmel Japan K.K.  
9F, Tonetsu Shinkawa Bldg.  
1-24-8 Shinkawa  
Chuo-ku, Tokyo 104-0033  
Japan  
Atmel Colorado Springs  
1150 East Cheyenne Mtn. Blvd.  
Colorado Springs, CO 80906  
TEL 1(719) 576-3300  
TEL (81) 3-3523-3551  
FAX (81) 3-3523-7581  
FAX 1(719) 540-1759  
Atmel Smart Card ICs  
Scottish Enterprise Technology Park  
Maxwell Building  
East Kilbride G75 0QR, Scotland  
TEL (44) 1355-803-000  
FAX (44) 1355-242-743  
e-mail  
literature@atmel.com  
Web Site  
http://www.atmel.com  
© Atmel Corporation 2002.  
Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Companys standard warranty  
which is detailed in Atmels Terms and Conditions located on the Companys web site. The Company assumes no responsibility for any errors  
which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does  
not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted  
by the Company in connection with the sale of Atmel products, expressly or by implication. Atmels products are not authorized for use as critical  
components in life support devices or systems.  
Atmel®, DataFlashare trademarks and/or registered trademarks of Atmel.  
Other terms and product names may be the trademarks of others.  
Printed on recycled paper.  
4106E805103/02  
/0M  

相关型号:

AT89C51SND1C

Single-Chip Microcontroller with MP3 Decoder and Man-Machine Interface
ATMEL

AT89C51SND1C-7HTIL

Single-Chip Flash Microcontroller with MP3 Decoder and Guman Interface
ATMEL

AT89C51SND1C-7HTJL

Single-Chip Flash Microcontroller with MP3 Decoder and Human Interface
ATMEL
ATMEL

AT89C51SND1C-DDV

Single-Chip Flash Microcontroller with MP3 Decoder and Guman Interface
ATMEL

AT89C51SND1C-ROTIL

Single-Chip Microcontroller with MP3 Decoder and Man-Machine Interface
ATMEL

AT89C51SND1C-ROTUL

Single-Chip Flash Microcontroller with MP3 Decoder and Human Interface
ATMEL

AT89C51SND1_06

USB Microcontrollers
ATMEL

AT89C51SND2C

Single-Chip Flash Microcontroller with MP3 Decoder with Full Audio Interface
ATMEL

AT89C51SND2C-7FRIL

Single-Chip Flash Microcontroller with MP3 Decoder with Full Audio Interface
ATMEL

AT89C51SND2C-7FRJL

Single-Chip Flash Microcontroller with MP3 Decoder with Full Audio Interface
ATMEL

AT89C51SND2C-7FRUL

Microcontroller, 8-Bit, FLASH, 40MHz, CMOS, PBGA100, ROHS COMPLIANT, CTBGA-100
ATMEL