AT80C51RD2_08 [ATMEL]

80C51 High Performance ROM 8-bit Microcontroller; 80C51高性能ROM的8位微控制器
AT80C51RD2_08
型号: AT80C51RD2_08
厂家: ATMEL    ATMEL
描述:

80C51 High Performance ROM 8-bit Microcontroller
80C51高性能ROM的8位微控制器

微控制器
文件: 总86页 (文件大小:918K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Features  
80C52 Compatible  
– Four 8-bit I/O Ports  
– Three 16-bit Timer/Counters  
– 256 Bytes Scratch Pad RAM  
– 8 Interrupt Sources with 4 Priority Levels  
– Dual Data Pointer  
Variable Length MOVX for Slow RAM/Peripherals  
High-speed Architecture  
80C51 High  
Performance  
ROM 8-bit  
– 10 to 40 MHz in Standard Mode  
16K/32K Bytes On-Chip ROM Program  
T80C51RD2 ROMless Versions  
On-Chip 1024 bytes Expanded RAM (XRAM)  
– Software Selectable Size (0, 256, 512, 768, 1024 bytes)  
– 256 Bytes Selected at Reset for AT87C51RB2/RC2 Compatibility  
Keyboard Interrupt Interface on Port P1  
8-bit Clock Prescaler  
Microcontroller  
64K Program and Data Memory Spaces  
Improved X2 Mode with Independant Selection for CPU and Each Peripheral  
Programmable Counter Array 5 Channels with:  
– High-speed Output  
AT80C51RD2  
AT83C51RB2  
AT83C51RC2  
– Compare/Capture  
– Pulse Width Modulator  
– Watchdog Timer Capabilities  
Asynchronous Port Reset  
Full Duplex Enhanced UART  
Dedicated Baud Rate Generator for UART  
Low EMI (Inhibit ALE)  
Hardware Watchdog Timer (One-time Enabled with Reset-out)  
Power Control Modes  
– Idle Mode  
– Power-down Mode  
– Power-off Flag  
Power Supply: 2.7V to 5.5V or 2.7V to 3.6V  
Temperature Ranges: Commercial (0 to +70°C) and Industrial (-40°C to +85°C)  
Packages: PDIL40, PLCC44, VQFP44  
1. Description  
AT8xC51Rx2 microcontrollers are high performance ROM versions of the 80C51 8-bit microcon-  
trollers. They contain a 0K, 16K or 32K bytes ROM memory block for program.  
The microcontrollers retain all features of the Atmel 80C52 with 256 bytes of internal RAM, a 7-  
source 4-level interrupt controller and three timer/counters.  
In addition, the microcontrollers have a Programmable Counter Array, an XRAM of 1024 byte, a  
Hardware Watchdog Timer, a Keyboard Interface, a more versatile serial channel that facilitates  
multiprocessor communication (EUART) and a speed improvement mechanism (X2 mode).  
The microcontrollers have 2 software-selectable modes of reduced activity and 8 bit clock pres-  
caler for further reduction in power consumption. In Idle mode, the CPU is frozen while the  
peripherals and the interrupt system are still operating. In the Power-down mode, the RAM is  
saved and all other functions are inoperative.  
Table 1. Memory Size  
TOTAL RAM  
(Bytes)  
ROM (Bytes)  
16K  
XRAM (Bytes)  
1024  
I/O  
32  
32  
32  
AT83C51RB2  
AT83C51RC2  
AT80C51RD2  
1280  
32K  
1024  
1280  
ROMless  
1024  
1280  
2. Block Diagram  
(2) (2)  
(1)  
(1) (1)  
(1)  
XTAL1  
XTAL2  
EUART  
+
BRG  
ROM  
32Kx8 or  
16Kx8  
RAM  
256x8  
XRAM  
1Kx8  
PCA  
Timer2  
ALE/PROG  
PSEN  
C51  
CORE  
IB-bus  
CPU  
EA  
(2)  
(2)  
Key  
Board  
Timer 0  
Timer 1  
Parallel I/O Ports & Ext. Bus  
Port 0Port 1 Port 3  
Watch  
Dog  
INT  
Ctrl  
RD  
Port 2  
WR  
(2) (2)  
(2) (2)  
Notes: 1. Alternate function of Port 1  
2. Alternate function of Port 3  
2
AT8xc51Rx2  
4113C–8051–01/08  
AT8xc51Rx2  
3. Pin Configurations  
3.1  
P1.0/T2  
40  
1
2
VCC  
39  
38  
P0.0/AD0  
P0.1/AD1  
P1.1/T2EX  
P1.2/ECI  
3
4
37 P0.2/AD2  
P1.3CEX0  
P1.4/CEX1  
P0.3/AD3  
P0.4/AD4  
36  
35  
34  
33  
32  
31  
30  
5
6
P1.5/CEX2  
P1.6/CEX3  
P1.7CEX4  
RST  
P0.5/AD5  
P0.6/AD6  
P0.7/AD7  
7
8
9
EA  
P3.0/RxD 10  
PDIL40  
ALE/PROG  
PSEN  
P3.1/TxD  
P3.2/INT0  
11  
12  
29  
28  
P2.7/AD15  
P2.6/AD14  
P3.3/INT1 13  
P3.4/T0 14  
27  
26  
P2.5/AD13  
15  
16  
P3.5/T1  
6
5 4 3 2 1  
44 43 42 41 40  
P2.4/AD12  
P2.3/AD11  
25  
24  
23  
22  
21  
P3.6/WR  
P1.5/CEX2  
P1.6/CEX3  
P1.7/CEx4  
RST  
39  
38  
7
8
P0.4/AD4  
P0.5/AD5  
P0.6/AD6  
P0.7/AD7  
EA  
17  
18  
19  
20  
P3.7/RD  
XTAL2  
P2.2/AD10  
P2.1/AD9  
P2.0/AD8  
37  
36  
9
XTAL1  
VSS  
10  
P3.0/RxD  
NIC*  
11  
12  
13  
35  
34  
33  
PLCC44  
NIC*  
P3.1/TxD  
P3.2/INT0  
P3.3/INT1  
P3.4/T0  
ALE/PROG  
PSEN  
14  
15  
16  
32  
31  
30  
29  
P2.7/A15  
P2.6/A14  
P2.5/A13  
P3.5/T1  
17  
18 19 20 21 22 23 24 25 26 27 28  
44 43 42 41 40 39 38 37 36 35 34  
P0.4/AD4  
P0.5/AD5  
P0.6/AD6  
P0.7/AD7  
EA  
P1.5/CEX2  
P1.6/CEX3  
P1.7/CEX4  
RST  
33  
32  
1
2
31  
30  
3
4
29  
28  
27  
P3.0/RxD  
NIC*  
5
6
VQFP44 1.4  
NIC*  
P3.1/TxD  
P3.2/INT0  
P3.3/INT1  
P3.4/T0  
ALE/PROG  
PSEN  
7
8
26  
25  
24  
23  
P2.7/A15  
P2.6/A14  
P2.5/A13  
9
10  
11  
P3.5/T1  
1213141516171819202122  
*NIC: No Internal Connection  
3
4113C–8051–01/08  
Table 3-1.  
Pin Description  
Pin Number  
PLCC44  
Mnemonic  
DIL  
VQFP44 1.4  
Type  
Name and Function  
VSS  
20  
22  
44  
16  
I
Ground: 0V reference  
Power Supply: This is the power supply voltage for normal, idle and power-down  
VCC  
40  
38  
I
operation  
P0.0 - P0.7  
39 - 32  
43 - 36  
37 - 30  
I/O  
Port 0: Port 0 is an open-drain, bi-directional I/O port. Port 0 pins that have 1s  
written to them float and can be used as high impedance inputs. Port 0 must be  
polarized to VCC or VSS in order to prevent any parasitic current consumption. Port  
0 is also the multiplexed low-order address and data bus during access to external  
program and data memory. In this application, it uses strong internal pull-up when  
emitting 1s. Port 0 also inputs the code bytes during EPROM programming.  
External pull-ups are required during program verification during which P0 outputs  
the code bytes.  
P1.0 - P1.7  
1 - 8  
2 - 9  
40 - 44  
1 - 3  
I/O  
Port 1: Port 1 is an 8-bit bi-directional I/O port with internal pull-ups. Port 1 pins  
that have 1s written to them are pulled high by the internal pull-ups and can be  
used as inputs. As inputs, Port 1 pins that are externally pulled low will source  
current because of the internal pull-ups. Port 1 also receives the low-order address  
byte during memory programming and verification.  
Alternate functions for T89C51RB2/RC2 Port 1 include:  
1
2
3
4
5
6
7
8
2
3
4
5
6
7
8
9
40  
41  
42  
43  
44  
1
I/O  
I/O  
I/O  
I
P1.0: Input/Output  
T2 (P1.0): Timer/Counter 2 external count input/Clockout  
P1.1: Input/Output  
T2EX: Timer/Counter 2 Reload/Capture/Direction Control  
P1.2: Input/Output  
I/O  
I
ECI: External Clock for the PCA  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
P1.3: Input/Output  
CEX0: Capture/Compare External I/O for PCA module 0  
P1.4: Input/Output  
CEX1: Capture/Compare External I/O for PCA module 1  
P1.5: Input/Output  
CEX2: Capture/Compare External I/O for PCA module 2  
P1.6: Input/Output  
2
CEX3: Capture/Compare External I/O for PCA module 3  
P1.7: Input/Output:  
3
CEX4: Capture/Compare External I/O for PCA module 4  
Crystal 1: Input to the inverting oscillator amplifier and input to the internal clock  
generator circuits.  
XTAL1  
XTAL2  
19  
18  
21  
20  
15  
14  
I
O
Crystal 2: Output from the inverting oscillator amplifier  
4
AT8xc51Rx2  
4113C–8051–01/08  
AT8xc51Rx2  
Table 3-1.  
Pin Description (Continued)  
Pin Number  
Mnemonic  
DIL  
PLCC44  
VQFP44 1.4  
Type  
Name and Function  
P2.0 - P2.7  
21 - 28  
24 - 31  
18 - 25  
I/O  
Port 2: Port 2 is an 8-bit bi-directional I/O port with internal pull-ups. Port 2 pins  
that have 1s written to them are pulled high by the internal pull-ups and can be  
used as inputs. As inputs, Port 2 pins that are externally pulled low will source  
current because of the internal pull-ups. Port 2 emits the high-order address byte  
during fetches from external program memory and during accesses to external  
data memory that use 16-bit addresses (MOVX @DPTR). In this application, it  
uses strong internal pull-ups emitting 1s. During accesses to external data memory  
that use 8-bit addresses (MOVX @Ri), Port 2 emits the contents of the P2 SFR.  
Some Port 2 pins receive the high order address bits during ROM reading and  
verification:  
P2.0 to P2.5 for 16 KB devices  
P2.0 to P2.6 for 32 KB devices  
P3.0 - P3.7  
10 - 17  
11,  
13 - 19  
5,  
7 - 13  
I/O  
Port 3: Port 3 is an 8-bit bi-directional I/O port with internal pull-ups. Port 3 pins  
that have 1s written to them are pulled high by the internal pull-ups and can be  
used as inputs. As inputs, Port 3 pins that are externally pulled low will source  
current because of the internal pull-ups. Port 3 also serves the special features of  
the 80C51 family, as listed below.  
10  
11  
12  
13  
14  
15  
16  
17  
11  
13  
14  
15  
16  
17  
18  
19  
5
7
I
O
I
RXD (P3.0): Serial input port  
TXD (P3.1): Serial output port  
8
INT0 (P3.2): External interrupt 0  
INT1 (P3.3): External interrupt 1  
T0 (P3.4): Timer 0 external input  
T1 (P3.5): Timer 1 external input  
WR (P3.6): External data memory write strobe  
RD (P3.7): External data memory read strobe  
9
I
10  
11  
12  
13  
I
I
O
O
Reset: A high on this pin for two machine cycles while the oscillator is running,  
resets the device. An internal diffused resistor to VSS permits a power-on reset  
using only an external capacitor to VCC. This pin is an output when the hardware  
watchdog forces a system reset.  
RST  
9
10  
33  
4
I/O  
ALE/PROG  
30  
27  
O (I)  
Address Latch Enable/Program Pulse: Output pulse for latching the low byte of  
the address during an access to external memory. In normal operation, ALE is  
emitted at a constant rate of 1/6 (1/3 in X2 mode) the oscillator frequency, and can  
be used for external timing or clocking. Note that one ALE pulse is skipped during  
each access to external data memory. This pin is also the program pulse input  
(PROG) during Flash programming. ALE can be disabled by setting SFR’s AUXR.0  
bit. With this bit set, ALE will be inactive during internal fetches.  
PSEN  
29  
32  
26  
O
Program Strobe Enable: The read strobe to external program memory. When  
executing code from the external program memory, PSEN is activated twice each  
machine cycle, except that two PSEN activations are skipped during each access  
to external data memory. PSEN is not activated during fetches from internal  
program memory.  
External Access Enable: EA must be externally held low to enable the device to  
fetch code from external program memory locations 0000H to 3FFFH (16K),  
7FFFH (32K). If security level 1 is programmed, EA will be internally latched on  
Reset.  
EA  
31  
35  
29  
I
5
4113C–8051–01/08  
4. SFR Mapping  
The Special Function Registers (SFRs) of the microcontroller fall into the following categories:  
• C51 core registers: ACC, B, DPH, DPL, PSW, SP  
• I/O port registers: P0, P1, P2, P3  
• Timer registers: T2CON, T2MOD, TCON, TH0, TH1, TH2, TMOD, TL0, TL1, TL2, RCAP2L,  
RCAP2H  
• Serial I/O port registers: SADDR, SADEN, SBUF, SCON  
• PCA (Programmable Counter Array) registers: CCON, CCAPMx, CL, CH, CCAPxH,  
CCAPxL (x: 0 to 4)  
• Power and clock control registers: PCON  
• Hardware Watchdog Timer registers: WDTRST, WDTPRG  
• Interrupt system registers: IE0, IPL0, IPH0, IE1, IPL1, IPH1  
• Keyboard Interface registers: KBE, KBF, KBLS  
• BRG (Baud Rate Generator) registers: BRL, BDRCON  
• Clock Prescaler register: CKRL  
• Others: AUXR, AUXR1, CKCON0, CKCON1  
6
AT8xc51Rx2  
4113C–8051–01/08  
AT8xc51Rx2  
Table 3 shows all SFRs with their address and their reset value.  
SFR Mapping  
Table 4-1.  
Bit  
Addressable  
Non-bit Addressable  
0/8  
1/9  
2/A  
3/B  
4/C  
5/D  
6/E  
7/F  
CH  
CCAP0H  
CCAP1H  
CCAPL2H  
CCAPL3H  
CCAPL4H  
F8h  
F0h  
E8h  
E0h  
D8h  
FFh  
F7h  
EFh  
E7h  
DFh  
0000 0000  
XXXX XXXX  
XXXX XXXX  
XXXX XXXX  
XXXX XXXX  
XXXX XXXX  
B
0000 0000  
CL  
CCAP0L  
CCAP1L  
CCAPL2L  
CCAPL3L  
CCAPL4L  
0000 0000  
XXXX XXXX  
XXXX XXXX  
XXXX XXXX  
XXXX XXXX  
XXXX XXXX  
ACC  
0000 0000  
CCON  
CMOD  
CCAPM0  
CCAPM1  
CCAPM2  
CCAPM3  
CCAPM4  
00X0 0000  
00XX X000  
X000 0000  
X000 0000  
X000 0000  
X000 0000  
X000 0000  
PSW  
0000 0000  
D0h  
C8h  
C0h  
D7h  
CFh  
C7h  
T2CON  
0000 0000  
T2MOD  
XXXX XX00  
RCAP2L  
0000 0000  
RCAP2H  
0000 0000  
TL2  
0000 0000  
TH2  
0000 0000  
IPL0  
SADEN  
B8h  
B0h  
A8h  
A0h  
98h  
90h  
88h  
80h  
BFh  
B7h  
AFh  
A7h  
9Fh  
97h  
8Fh  
87h  
X000 000  
0000 0000  
P3  
IE1  
IPL1  
IPH1  
IPH0  
1111 1111  
XXXX XXX0b  
XXXX XXX0b  
XXXX XXX0b  
X000 0000  
IE0  
SADDR  
0000 0000  
0000 0000  
P2  
AUXR1  
WDTRST  
WDTPRG  
1111 1111  
XXXX XXX0  
XXXX XXXX  
XXXX X000  
SCON  
SBUF  
BRL  
BDRCON  
KBLS  
KBE  
KBF  
0000 0000  
XXXX XXXX  
0000 0000  
XXX0 0000  
0000 0000  
0000 0000  
0000 0000  
P1  
CKRL  
1111 1111  
1111 1111  
TCON  
TMOD  
TL0  
TL1  
TH0  
TH1  
CKCON0  
AUXR  
XX0X 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
P0  
PCON  
SP  
0000 0111  
DPL  
0000 0000  
DPH  
0000 0000  
1111 1111  
00X1 0000  
0/8  
1/9  
2/A  
3/B  
4/C  
5/D  
6/E  
7/F  
Reserved  
7
4113C–8051–01/08  
5. Oscillators  
5.1  
Overview  
One oscillator is available for CPU:  
• OSC used for high frequency (3 MHz to 40 MHz)  
In order to optimize the power consumption and the execution time needed for a specific task,  
an internal prescaler feature has been implemented between the selected oscillator and the  
CPU.  
5.2  
Registers  
Table 5-1.  
Clock Reload Register  
7
-
6
-
5
-
4
-
3
-
2
-
1
-
0
-
Bit Bit  
Number Mnemonic Description  
7:0 CKRL Clock Reload Register: Prescaler value  
Reset Value = 1111 1111b  
Not bit addressable  
5.2.1  
Prescaler Divider  
A hardware RESET puts the prescaler divider in the following state:  
• CKRL = FFh: FCLK CPU = FCLK PERIPH = FOSC/2 (Standard C51 feature)  
KS signal selects OSC: FCLK OUT = FOSC  
• Any value between FFh down to 00h can be written by software into CKRL register in order to  
divide frequency of the selected oscillator:  
– CKRL = 00h: minimum frequency  
F
F
CLK CPU = FCLK PERIPH = FOSC/1020 (Standard Mode)  
CLK CPU = FCLK PERIPH = FOSC/510 (X2 Mode)  
– CKRL = FFh: maximum frequency  
FCLK CPU = FCLK PERIPH = FOSC/2 (Standard Mode)  
FCLK CPU = FCLK PERIPH = FOSC (X2 Mode)  
– FCLK CPU and FCLK PERIPH  
In X2 mode:  
FOSC  
---------------------------------------------  
=
FCPU  
=
FCLKPERIPH  
2 × (255 CKRL)  
FOSCA  
----------------------------------------------  
4 × (255 CKRL)  
In X1 mode:  
FCPU  
=
FCLKPERIPH  
=
8
AT8xc51Rx2  
4113C–8051–01/08  
AT8xc51Rx2  
6. Enhanced Features  
In comparison to the original 80C52, the microcontrollers implement the following new features:  
• X2 option  
• Dual Data Pointer  
• Extended RAM  
• Programmable Counter Array (PCA)  
• Hardware Watchdog  
• 4-level Interrupt Priority System  
• Power-off Flag  
• Power On Reset  
• ONCE mode  
• ALE disabling  
• Some enhanced features are also located in the UART and the Timer 2  
6.1  
X2 Feature and OSC Clock Generation  
The microcontroller core needs only 6 clock periods per machine cycle. This feature called ”X2”  
provides the following advantages:  
• Divides frequency crystals by 2 (cheaper crystals) while keeping same CPU power.  
• Saves power consumption while keeping same CPU power (oscillator power saving).  
• Saves power consumption by dividing dynamically the operating frequency by 2 in operating  
and idle modes.  
• Increases CPU power by 2 while keeping same crystal frequency.  
In order to keep the original C51 compatibility, a divider by 2 is inserted between the XTAL1 sig-  
nal and the main clock input of the core (phase generator). This divider may be disabled by  
software.  
6.1.1  
Description  
The clock for the whole circuit and peripherals is first divided by two before being used by the  
CPU core and the peripherals.  
This allows any cyclic ratio to be accepted on XTAL1 input. In X2 mode, as this divider is  
bypassed, the signals on XTAL1 must have a cyclic ratio between 40 to 60%.  
Figure 6-1 shows the clock generation block diagram. X2 bit is validated on the rising edge of  
the XTAL1 ÷ 2 to avoid glitches when switching from X2 to standard mode. Figure 6-2 shows the  
switching mode waveforms.  
Figure 6-1. Clock Generation Diagram  
CKRL  
FOSC  
XTAL1:2  
CLK Periph  
CLK CPU  
2
XTAL1  
0
1
8-bit Prescaler  
FXTAL  
Idle  
X2  
CKCON0  
9
4113C–8051–01/08  
Figure 6-2. Mode Switching Waveforms  
XTAL1  
XTAL1:2  
X2 Bit  
FOSC  
CPU Block  
STD Mode  
X2 Mode  
STD Mode  
The X2 bit in the CKCON0 register (see Table 6-1) allows to switch from 12 clock periods per  
instruction to 6 clock periods and vice versa. At reset, the speed is set according to X2 bit of  
Hardware Config Byte (HCB). By default, Standard mode is activated. Setting the X2 bit acti-  
vates the X2 feature (X2 mode).  
The T0X2, T1X2, T2X2, UARTX2, PCAX2 and WDX2 bits in the CKCON0 register (Table 6-1)  
allow to switch from standard peripheral speed (12 clock periods per peripheral clock cycle) to  
fast peripheral speed (6 clock periods per peripheral clock cycle). These bits are active only in  
X2 mode.  
Table 6-1.  
CKCON0 Register  
CKCON0 - Clock Control Register (8Fh)  
7
-
6
5
4
3
2
1
0
WDX2  
PCAX2  
SIX2  
T2X2  
T1X2  
T0X2  
X2  
Bit  
Bit  
Number  
Mnemonic  
Description  
Reserved  
Do not set this bit.  
7
6
-
Watchdog clock (This control bit is validated when the CPU clock X2 is set;  
when X2 is low, this bit has no effect).  
Cleared to select 6 clock periods per peripheral clock cycle.  
WDX2  
Set to select 12 clock periods per peripheral clock cycle.  
10  
AT8xc51Rx2  
4113C–8051–01/08  
AT8xc51Rx2  
Bit  
Bit  
Number  
Mnemonic  
Description  
Programmable Counter Array clock (This control bit is validated when the  
CPU clock X2 is set; when X2 is low, this bit has no effect).  
Cleared to select 6 clock periods per peripheral clock cycle.  
5
4
3
2
1
PCAX2  
SIX2  
Set to select 12 clock periods per peripheral clock cycle.  
Enhanced UART clock (Mode 0 and 2) (This control bit is validated when the  
CPU clock X2 is set; when X2 is low, this bit has no effect).  
Cleared to select 6 clock periods per peripheral clock cycle.  
Set to select 12 clock periods per peripheral clock cycle.  
Timer 2 clock (This control bit is validated when the CPU clock X2 is set; when  
X2 is low, this bit has no effect).  
Cleared to select 6 clock periods per peripheral clock cycle.  
T2X2  
T1X2  
T0X2  
Set to select 12 clock periods per peripheral clock cycle.  
Timer 1 clock (This control bit is validated when the CPU clock X2 is set; when  
X2 is low, this bit has no effect).  
Cleared to select 6 clock periods per peripheral clock cycle.  
Set to select 12 clock periods per peripheral clock cycle  
Timer 0 clock (This control bit is validated when the CPU clock X2 is set; when  
X2 is low, this bit has no effect).  
Cleared to select 6 clock periods per peripheral clock cycle.  
Set to select 12 clock periods per peripheral clock cycle  
CPU clock  
Cleared to select 12 clock periods per machine cycle (STD mode) for CPU and  
all the peripherals.  
0
X2  
Set to select 6clock periods per machine cycle (X2 mode) and to enable the  
individual peripherals "X2" bits.  
Programmed by hardware after Power-up regarding Hardware Config Byte  
(HCB).  
Reset Value = 0000 000’HCB.X2’b (see Hardware Config Byte)  
Not bit addressable  
11  
4113C–8051–01/08  
7. Dual Data Pointer Register  
The additional data pointer can be used to speed up code execution and reduce code size.  
The dual DPTR structure is a way by which the chip will specify the address of an external data  
memory location. There are two 16-bit DPTR registers that address the external memory, and a  
single bit called DPS = AUXR1.0 (see Table 7-1) that allows the program code to switch  
between them (Refer to Figure 7-1).  
Figure 7-1. Use of Dual Pointer  
External Data Memory  
7
0
DPS  
DPTR1  
DPTR0  
AUXR1(A2H)  
DPH(83H) DPL(82H)  
Table 7-1.  
AUXR1 Register  
AUXR1- Auxiliary Register 1(0A2h)  
7
-
6
-
5
-
4
-
3
2
0
1
-
0
GF3  
DPS  
Bit  
Number  
Bit  
Mnemonic Description  
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
7
-
Reserved  
6
5
4
-
-
-
The value read from this bit is indeterminate. Do not set this bit.  
Reserved  
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
3
2
GF3  
0
This bit is a general purpose user flag.  
Always cleared(1)  
.
Reserved  
1
0
-
The value read from this bit is indeterminate. Do not set this bit.  
Data Pointer Selection  
Cleared to select DPTR0.  
Set to select DPTR1.  
DPS  
Reset Value: XXXX XXXX0b  
Not bit addressable  
Note:  
1. Bit 2 stuck at 0; this allows to use INC AUXR1 to toggle DPS without changing GF3.  
12  
AT8xc51Rx2  
4113C–8051–01/08  
AT8xc51Rx2  
7.1  
Assembly Language  
; Block move using dual data pointers  
; Modifies DPTR0, DPTR1, A and PSW  
; note: DPS exits opposite of entry state  
; unless an extra INC AUXR1 is added  
;
00A2 AUXR1 EQU 0A2H  
;
0000 909000MOV DPTR,#SOURCE ; address of SOURCE  
0003 05A2 INC AUXR1 ; switch data pointers  
0005 90A000 MOV DPTR,#DEST ; address of DEST  
0008 LOOP:  
0008 05A2 INC AUXR1 ; switch data pointers  
000A E0 MOVX A,@DPTR ; get a byte from SOURCE  
000B A3 INC DPTR ; increment SOURCE address  
000C 05A2 INC AUXR1 ; switch data pointers  
000E F0 MOVX @DPTR,A ; write the byte to DEST  
000F A3 INC DPTR ; increment DEST address  
0010 70F6JNZ LOOP ; check for 0 terminator  
0012 05A2 INC AUXR1 ; (optional) restore DPS  
INC is a short (2 bytes) and fast (12 clocks) way to manipulate the DPS bit in the AUXR1 SFR.  
However, note that the INC instruction does not directly force the DPS bit to a particular state,  
but simply toggles it. In simple routines, such as the block move example, only the fact that DPS  
is toggled in the proper sequence matters, not its actual value. In other words, the block move  
routine works the same whether DPS is '0' or '1' on entry. Observe that without the last instruc-  
tion (INC AUXR1), the routine will exit with DPS in the opposite state.  
13  
4113C–8051–01/08  
8. Expanded RAM (XRAM)  
The AT8xc51Rx2 devices provide additional Bytes of Random Access Memory (RAM) space for  
increased data parameter handling and high level language usage.  
The devices have expanded RAM in external data space; maximum size and location are  
described in Table 8-1.  
Table 8-1.  
Expanded RAM  
Address  
XRAM size  
Start  
End  
T83C51RB2/RC2  
T80C51RD2  
1024  
00h  
3FFh  
The AT8xc51Rx2 has internal data memory that is mapped into four separate segments.  
The four segments are:  
1. The Lower 128 bytes of RAM (addresses 00h to 7Fh) are directly and indirectly  
addressable.  
2. The Upper 128 bytes of RAM (addresses 80h to FFh) are indirectly addressable only.  
3. The Special Function Registers (SFRs) (addresses 80h to FFh) are directly address-  
able only.  
4. The expanded RAM bytes are indirectly accessed by MOVX instructions, and with the  
EXTRAM bit cleared in the AUXR register (see Table 8-1).  
The lower 128 bytes can be accessed by either direct or indirect addressing. The Upper 128  
bytes can be accessed by indirect addressing only. The Upper 128 bytes occupy the same  
address space as the SFR. That means they have the same address, but are physically sepa-  
rate from SFR space.  
Figure 8-1. Internal and External Data Memory Address  
0FFh or 3FFh  
0FFh  
0FFh  
0FFFFh  
Upper  
128 Bytes  
Internal  
Special  
Function  
Register  
External  
Data  
Memory  
RAM  
indirect accesses  
Direct Accesses  
80h  
7Fh  
80h  
XRAM  
Lower  
128 Bytes  
Internal  
RAM  
Direct or Indirect  
Accesses  
00FFh up to 03FFh  
0000  
00  
00  
When an instruction accesses an internal location above address 7Fh, the CPU knows whether  
the access is to the upper 128 bytes of data RAM or to SFR space by the addressing mode used  
in the instruction.  
• Instructions that use direct addressing access SFR space. For example: MOV 0A0H, # data,  
accesses the SFR at location 0A0h (which is P2).  
14  
AT8xc51Rx2  
4113C–8051–01/08  
AT8xc51Rx2  
• Instructions that use indirect addressing access the Upper 128 bytes of data RAM. For  
example: MOV @R0, # data where R0 contains 0A0h, accesses the data byte at address  
0A0h, rather than P2 (whose address is 0A0h).  
• The XRAM bytes can be accessed by indirect addressing, with EXTRAM bit cleared and  
MOVX instructions. This part of memory which is physically located on-chip, logically  
occupies the first bytes of external data memory. The bits XRS0 and XRS1 are used to hide a  
part of the available XRAM as explained in Table 8-1. This can be useful if external  
peripherals are mapped at addresses already used by the internal XRAM.  
• With EXTRAM = 0, the XRAM is indirectly addressed, using the MOVX instruction in  
combination with any of the registers R0, R1 of the selected bank or DPTR. An access to  
XRAM will not affect ports P0, P2, P3.6 (WR) and P3.7 (RD). For example, with EXTRAM =  
0, MOVX @R0, # data where R0 contains 0A0H, accesses the XRAM at address 0A0H  
rather than external memory. An access to external data memory locations higher than the  
accessible size of the XRAM will be performed with the MOVX DPTR instructions in the same  
way as in the standard 80C51, with P0 and P2 as data/address busses, and P3.6 and P3.7  
as write and read timing signals. Accesses to XRAM above 0FFH can only be done by the  
use of DPTR.  
• With EXTRAM = 1, MOVX @Ri and MOVX @DPTR will be similar to the standard 80C51.  
MOVX @ Ri will provide an eight-bit address multiplexed with data on Port 0 and any output  
port pins can be used to output higher order address bits. This is to provide the external  
paging capability. MOVX @DPTR will generate a sixteen-bit address. Port2 outputs the high-  
order eight address bits (the contents of DPH) while Port0 multiplexes the low-order eight  
address bits (DPL) with data. MOVX @ Ri and MOVX @DPTR will generate either read or  
write signals on P3.6 (WR) and P3.7 (RD).  
The stack pointer (SP) may be located anywhere in the 256 bytes RAM (lower and upper RAM)  
internal data memory. The stack may not be located in the XRAM.  
The M0 bit allows to stretch the XRAM timings; if M0 is set, the read and write pulses are  
extended from 6 to 30 clock periods. This is useful to access external slow peripherals.  
Table 8-2.  
AUXR Register  
AUXR - Auxiliary Register (8Eh)  
7
-
6
-
5
4
-
3
2
1
0
M0  
XRS1  
XRS0  
EXTRAM  
AO  
Bit  
Bit  
Number  
Mnemonic Description  
Reserved  
7
6
-
The value read from this bit is indeterminate. Do not set this bit  
Reserved  
-
M0  
-
The value read from this bit is indeterminate. Do not set this bit  
Pulse length  
Cleared to stretch MOVX control: the RD and the WR pulse length is 6 clock  
periods (default).  
5
4
Set to stretch MOVX control: the RD and the WR pulse length is 30 clock periods.  
Reserved  
The value read from this bit is indeterminate. Do not set this bit  
15  
4113C–8051–01/08  
Bit  
Bit  
Number  
Mnemonic Description  
3
2
XRS1  
XRS0  
XRAM Size  
XRS1  
0
XRS0  
XRAM Size  
0
1
0
1
256 bytes (default)  
0
1
1
512 bytes  
768 bytes  
1024 bytes  
EXTRAM bit  
Cleared to access internal XRAM using MOVX @ Ri/ @ DPTR.  
EXTRAM Set to access external memory.  
Programmed by hardware after Power-up regarding Hardware Security Byte  
1
0
(HSB), default setting, XRAM selected.  
ALE Output bit  
Cleared, ALE is emitted at a constant rate of 1/6 the oscillator frequency (or 1/3 if  
X2 mode is used) (default). Set, ALE is active only if a MOVX or MOVC  
instruction is used.  
AO  
Reset Value = XX0X 00’HSB.XRAM’0b (see Table 8-1)  
Not bit addressable  
16  
AT8xc51Rx2  
4113C–8051–01/08  
AT8xc51Rx2  
9. Timer 2  
The Timer 2 in the AT8xc51Rx2 is the standard C52 Timer 2.  
It is a 16-bit timer/counter: the count is maintained by two eight-bit timer registers, TH2 and TL2  
are cascaded. It is controlled by T2CON (Table 9-1) and T2MOD (Table 9-2) registers. Timer 2  
operation is similar to Timer 0 and Timer 1. C/T2 selects FOSC/12 (timer operation) or external  
pin T2 (counter operation) as the timer clock input. Setting TR2 allows TL2 to be incremented by  
the selected input.  
Timer 2 has 3 operating modes: capture, auto-reload and Baud Rate Generator. These modes  
are selected by the combination of RCLK, TCLK and CP/RL2 (T2CON).  
Refer to the Atmel 8-bit Microcontroller Hardware description for Capture and Baud Rate Gen-  
erator Modes.  
Timer 2 includes the following enhancements:  
• Auto-reload mode with up or down counter  
• Programmable clock-output  
9.1  
Auto-reload Mode  
The auto-reload mode configures Timer 2 as a 16-bit timer or event counter with automatic  
reload. If DCEN bit in T2MOD is cleared, Timer 2 behaves as in 80C52 (refer to the Atmel 8-bit  
Microcontroller Hardware description). If DCEN bit is set, Timer 2 acts as an Up/down  
timer/counter as shown in Figure 9-1. In this mode the T2EX pin controls the direction of count.  
When T2EX is high, Timer 2 counts up. Timer overflow occurs at FFFFh which sets the TF2 flag  
and generates an interrupt request. The overflow also causes the 16-bit value in RCAP2H and  
RCAP2L registers to be loaded into the timer registers TH2 and TL2.  
When T2EX is low, Timer 2 counts down. Timer underflow occurs when the count in the timer  
registers TH2 and TL2 equals the value stored in RCAP2H and RCAP2L registers. The under-  
flow sets TF2 flag and reloads FFFFh into the timer registers.  
The EXF2 bit toggles when Timer 2 overflows or underflows according to the direction of the  
count. EXF2 does not generate any interrupt. This bit can be used to provide 17-bit resolution.  
17  
4113C–8051–01/08  
Figure 9-1. Auto-Reload Mode Up/Down Counter (DCEN = 1)  
FCLK PERIPH  
:6  
0
1
T2  
TR2  
C/T2  
T2CON  
T2CON  
T2EX:  
(DOWN COUNTING RELOAD VALUE)  
if DCEN = 1, 1 = UP  
FFh  
(8-bit)  
FFh  
(8-bit)  
if DCEN = 1, 0 = DOWN  
if DCEN = 0, up counting  
T2CON  
EXF2  
TOGGLE  
TL2  
(8-bit)  
TH2  
(8-bit)  
TIMER 2  
INTERRUPT  
TF2  
T2CON  
RCAP2L  
(8-bit)  
RCAP2H  
(8-bit)  
(UP COUNTING RELOAD VALUE)  
9.2  
Programmable Clock-Output  
In the clock-out mode, Timer 2 operates as a 50% duty-cycle, programmable clock generator  
(see Figure 9-2). The input clock increments TL2 at frequency FCLK PERIPH/2. The timer repeat-  
edly counts to overflow from a loaded value. At overflow, the contents of RCAP2H and RCAP2L  
registers are loaded into TH2 and TL2. In this mode, Timer 2 overflows do not generate inter-  
rupts. The formula gives the clock-out frequency as a function of the system oscillator frequency  
and the value in the RCAP2H and RCAP2L registers:  
FCLKPERIPH  
----------------------------------------------------------------------------------------  
Clock OutFrequency =  
4 × (65536 RCAP2H RCAP2L)  
For a 16 MHz system clock, Timer 2 has a programmable frequency range of 61 Hz  
(FCLK PERIPH/216) to 4 MHz (FCLK PERIPH/4). The generated clock signal is brought out to T2 pin  
(P1.0).  
Timer 2 is programmed for the clock-out mode as follows:  
• Set T2OE bit in T2MOD register.  
• Clear C/T2 bit in T2CON register.  
• Determine the 16-bit reload value from the formula and enter it in RCAP2H/RCAP2L  
registers.  
• Enter a 16-bit initial value in timer registers TH2/TL2. It can be the same as the reload value  
or a different one depending on the application.  
To start the timer, set TR2 run control bit in T2CON register.  
18  
AT8xc51Rx2  
4113C–8051–01/08  
AT8xc51Rx2  
It is possible to use Timer 2 as a baud rate generator and a clock generator simultaneously. For  
this configuration, the baud rates and clock frequencies are not independent since both func-  
tions use the values in the RCAP2H and RCAP2L registers.  
Figure 9-2. Clock-Out Mode C/T2 = 07  
:6  
FCLK PERIPH  
TR2  
T2CON  
TH2  
(8-bit)  
TL2  
(8-bit)  
OVEFLOW  
RCAP2H  
(8-bit)  
RCAP2L  
(8-bit)  
Toggle  
T2  
Q
D
T2OE  
T2MOD  
TIMER 2  
INTERRUPT  
T2EX  
EXF2  
T2CON  
EXEN2  
T2CON  
Table 9-1.  
T2CON Register  
T2CON - Timer 2 Control Register (C8h)  
7
6
5
4
3
2
1
0
TF2  
EXF2  
RCLK  
TCLK  
EXEN2  
TR2  
C/T2#  
CP/RL2#  
19  
4113C–8051–01/08  
Bit  
Bit  
Number  
Mnemonic Description  
Timer 2 overflow Flag  
7
6
TF2  
Must be cleared by software.  
Set by hardware on Timer 2 overflow, if RCLK = 0 and TCLK = 0.  
Timer 2 External Flag  
Set when a capture or a reload is caused by a negative transition on T2EX pin  
if EXEN2 = 1.  
EXF2  
When set, causes the CPU to vector to Timer 2 interrupt routine when Timer 2  
interrupt is enabled.  
Must be cleared by software. EXF2 doesn’t cause an interrupt in Up/down  
counter mode (DCEN = 1)  
Receive Clock bit  
Cleared to use timer 1 overflow as receive clock for serial port in mode 1 or 3.  
Set to use Timer 2 overflow as receive clock for serial port in mode 1 or 3.  
5
4
RCLK  
TCLK  
Transmit Clock bit  
Cleared to use timer 1 overflow as transmit clock for serial port in mode 1 or 3.  
Set to use Timer 2 overflow as transmit clock for serial port in mode 1 or 3.  
Timer 2 External Enable bit  
Cleared to ignore events on T2EX pin for Timer 2 operation.  
Set to cause a capture or reload when a negative transition on T2EX pin is  
detected, if Timer 2 is not used to clock the serial port.  
3
2
1
EXEN2  
TR2  
Timer 2 Run control bit  
Cleared to turn off Timer 2.  
Set to turn on Timer 2.  
Timer/Counter 2 select bit  
Cleared for timer operation (input from internal clock system: FCLK PERIPH).  
Set for counter operation (input from T2 input pin, falling edge trigger). Must be  
0 for clock out mode.  
C/T2#  
Timer 2 Capture/Reload bit  
If RCLK = 1 or TCLK = 1, CP/RL2# is ignored and timer is forced to auto-reload  
on Timer 2 overflow.  
0
CP/RL2#  
Cleared to auto-reload on Timer 2 overflows or negative transitions on T2EX  
pin if EXEN2 = 1.  
Set to capture on negative transitions on T2EX pin if EXEN2 = 1.  
Reset Value = 0000 0000b  
Bit addressable  
Table 9-2.  
T2MOD Register  
T2MOD - Timer 2 Mode Control Register (C9h)  
7
-
6
-
5
-
4
-
3
-
2
-
1
0
T2OE  
DCEN  
20  
AT8xc51Rx2  
4113C–8051–01/08  
AT8xc51Rx2  
Bit  
Bit  
Number  
Mnemonic Description  
Reserved  
7
6
5
4
3
2
-
The value read from this bit is indeterminate. Do not set this bit.  
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
-
-
-
-
-
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
Timer 2 Output Enable bit  
1
0
T2OE  
DCEN  
Cleared to program P1.0/T2 as clock input or I/O port.  
Set to program P1.0/T2 as clock output.  
Down Counter Enable bit  
Cleared to disable Timer 2 as up/down counter.  
Set to enable Timer 2 as up/down counter.  
Reset Value = XXXX XX00b  
Not bit addressable  
21  
4113C–8051–01/08  
10. Programmable Counter Array (PCA)  
The PCA provides more timing capabilities with less CPU intervention than the standard  
timer/counters. Its advantages include reduced software overhead and improved accuracy. The  
PCA consists of a dedicated timer/counter which serves as the time base for an array of five  
compare/capture modules. Its clock input can be programmed to count any one of the following  
signals:  
• Peripheral clock frequency (FCLK PERIPH  
• Peripheral clock frequency (FCLK PERIPH  
• Timer 0 overflow  
)
)
÷
÷
6
2
• External input on ECI (P1.2)  
Each compare/capture modules can be programmed in any one of the following modes:  
• Rising and/or falling edge capture  
• Software timer  
• High-speed output  
• Pulse width modulator  
Module 4 can also be programmed as a Watchdog Timer (see Section "PCA Watchdog Timer",  
page 33).  
When the compare/capture modules are programmed in the capture mode, software timer, or  
high-speed output mode, an interrupt can be generated when the module executes its function.  
All five modules plus the PCA timer overflow share one interrupt vector.  
The PCA timer/counter and compare/capture modules share Port 1 for external I/O. These pins  
are listed below. If the port is not used for the PCA, it can still be used for standard I/O.  
PCA Component  
16-bit Counter  
External I/O Pin  
P1.2/ECI  
16-bit Module 0  
16-bit Module 1  
16-bit Module 2  
16-bit Module 3  
P1.3/CEX0  
P1.4/CEX1  
P1.5/CEX2  
P1.6/CEX3  
The PCA timer is a common time base for all five modules (see Figure 10-1). The timer count  
source is determined from the CPS1 and CPS0 bits in the CMOD register (Table 10-1) and can  
be programmed to run at:  
• 1/6 the peripheral clock frequency (FCLK PERIPH  
• 1/2 the peripheral clock frequency (FCLK PERIPH  
• The Timer 0 overflow  
)
)
• The input on the ECI pin (P1.2)  
22  
AT8xc51Rx2  
4113C–8051–01/08  
AT8xc51Rx2  
Figure 10-1. PCA Timer/Counter  
To PCA  
Modules  
FCLK PERIPH /6  
FCLK PERIPH/2  
T0 OVF  
Overflow  
It  
CH  
CL  
16-Bit Up/Down Counter  
P1.2  
CMOD  
0xD9  
CIDL WDTE  
CPS1 CPS0 ECF  
Idle  
CCON  
0xD8  
CF  
CR  
CCF4 CCF3 CCF2 CCF1 CCF0  
Table 10-1. CMOD Register  
CMOD - PCA Counter Mode Register (D9h)  
7
6
5
-
4
-
3
-
2
1
0
CIDL  
WDTE  
CPS1  
CPS0  
ECF  
23  
4113C–8051–01/08  
Bit  
Bit  
Number  
Mnemonic Description  
Counter Idle Control  
7
6
CIDL  
Cleared to program the PCA Counter to continue functioning during idle Mode.  
Set to program PCA to be gated off during idle.  
Watchdog Timer Enable  
WDTE  
Cleared to disable Watchdog Timer function on PCA Module 4.  
Set to enable Watchdog Timer function on PCA Module 4.  
Reserved  
5
4
-
-
The value read from this bit is indeterminate. Do not set this bit.  
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
3
2
-
CPS1  
PCA Count Pulse Select  
CPS1CPS0  
Selected PCA input  
0
0
1
1
0
1
Internal clock fCLK PERIPH/6  
Internal clock fCLK PERIPH/2  
1
CPS0  
0 Timer 0 Overflow  
External clock at ECI/P1.2 pin (max rate = fCLK PERIPH/4  
1
)
PCA Enable Counter Overflow Interrupt  
Cleared to disable CF bit in CCON to inhibit an interrupt.  
Set to enable CF bit in CCON to generate an interrupt.  
0
ECF  
Reset Value = 00XX X000b  
Not bit addressable  
The CMOD register includes three additional bits associated with the PCA (see Figure 10-4 and  
Table 10-1).  
• The CIDL bit which allows the PCA to stop during idle mode.  
• The WDTE bit which enables or disables the watchdog function on module 4.  
• The ECF bit which when set causes an interrupt and the PCA overflow flag CF (in the CCON  
SFR) to be set when the PCA timer overflows.  
The CCON register contains the run control bit for the PCA and the flags for the PCA timer (CF)  
and each module (see Table 10-2).  
• Bit CR (CCON.6) must be set by software to run the PCA. The PCA is shut off by clearing this  
bit.  
• Bit CF: The CF bit (CCON.7) is set when the PCA counter overflows and an interrupt will be  
generated if the ECF bit in the CMOD register is set. The CF bit can only be cleared by  
software.  
• Bits 0 through 4 are the flags for the modules (bit 0 for module 0, bit 1 for module 1, etc.) and  
are set by hardware when either a match or a capture occurs. These flags can only be  
cleared by software.  
Table 10-2. CCON Register  
24  
AT8xc51Rx2  
4113C–8051–01/08  
AT8xc51Rx2  
CCON - PCA Counter Control Register (D8h)  
7
6
5
-
4
3
2
1
0
CF  
CR  
CCF4  
CCF3  
CCF2  
CCF1  
CCF0  
Bit  
Bit  
Number  
Mnemonic Description  
PCA Counter Overflow flag  
Set by hardware when the counter rolls over. CF flags an interrupt if bit ECF in  
CMOD is set. CF may be set by either hardware or software but can only be  
cleared by software.  
7
CF  
PCA Counter Run control bit  
6
5
4
CR  
-
Must be cleared by software to turn the PCA counter off.  
Set by software to turn the PCA counter on.  
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
PCA Module 4 interrupt flag  
CCF4  
Must be cleared by software.  
Set by hardware when a match or capture occurs.  
PCA Module 3 interrupt flag  
3
2
1
0
CCF3  
CCF2  
CCF1  
CCF0  
Must be cleared by software.  
Set by hardware when a match or capture occurs.  
PCA Module 2 interrupt flag  
Must be cleared by software.  
Set by hardware when a match or capture occurs.  
PCA Module 1 interrupt flag  
Must be cleared by software.  
Set by hardware when a match or capture occurs.  
PCA Module 0 interrupt flag  
Must be cleared by software.  
Set by hardware when a match or capture occurs.  
Reset Value = 000X 0000b  
Not bit addressable  
The watchdog timer function is implemented in module 4 (see Figure 10-4).  
The PCA interrupt system is shown in Figure 10-2.  
25  
4113C–8051–01/08  
Figure 10-2. PCA Interrupt System  
CCON  
0xD8  
CF  
CR  
CCF4 CCF3 CCF2 CCF1 CCF0  
PCA Timer/Counter  
Module 0  
Module 1  
Module 2  
Module 3  
Module 4  
To Interrupt  
Priority Decoder  
IE.6  
EC  
IE.7  
EA  
CMOD.0  
CCAPMn.0  
ECCFn  
ECF  
PCA Modules: each one of the five compare/capture modules has six possible functions. It can  
perform:  
• 16-bit Capture, positive-edge triggered  
• 16-bit Capture, negative-edge triggered  
• 16-bit Capture, both positive and negative-edge triggered  
• 16-bit Software Timer  
• 16-bit High-speed Output  
• 8-bit Pulse Width Modulator  
In addition, module 4 can be used as a Watchdog Timer.  
Each module in the PCA has a special function register associated with it. These registers are:  
CCAPM0 for module 0, CCAPM1 for module 1, etc. (see Table 10-3). The registers contain the  
bits that control the mode that each module will operate in.  
• The ECCF bit (CCAPMn.0 where n = 0, 1, 2, 3, or 4 depending on the module) enables the  
CCF flag in the CCON SFR to generate an interrupt when a match or compare occurs in the  
associated module.  
• PWM (CCAPMn.1) enables the pulse width modulation mode.  
• The TOG bit (CCAPMn.2) when set causes the CEX output associated with the module to  
toggle when there is a match between the PCA counter and the module's capture/compare  
register.  
• The match bit MAT (CCAPMn.3) when set will cause the CCFn bit in the CCON register to be  
set when there is a match between the PCA counter and the module's capture/compare  
register.  
• The next two bits CAPN (CCAPMn.4) and CAPP (CCAPMn.5) determine the edge that a  
capture input will be active on. The CAPN bit enables the negative edge, and the CAPP bit  
enables the positive edge. If both bits are set both edges will be enabled and a capture will  
occur for either transition.  
• The last bit in the register ECOM (CCAPMn.6) when set enables the comparator function.  
26  
AT8xc51Rx2  
4113C–8051–01/08  
AT8xc51Rx2  
Table 10-3 shows the CCAPMn settings for the various PCA functions.  
Table 10-3. CCAPMn Registers (n = 0-4)  
CCAPM0 - PCA Module 0 Compare/Capture Control Register (0DAh)  
CCAPM1 - PCA Module 1 Compare/Capture Control Register (0DBh)  
CCAPM2 - PCA Module 2 Compare/Capture Control Register (0DCh)  
CCAPM3 - PCA Module 3 Compare/Capture Control Register (0DDh)  
CCAPM4 - PCA Module 4 Compare/Capture Control Register (0DEh)  
7
-
6
5
4
3
2
1
0
ECOMn  
CAPPn  
CAPNn  
MATn  
TOGn  
PWMn  
ECCFn  
Bit  
Bit  
Number  
Mnemonic Description  
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
7
6
-
Enable Comparator  
ECOMn  
CAPPn  
CAPNn  
Cleared to disable the comparator function.  
Set to enable the comparator function.  
Capture Positive  
5
4
Cleared to disable positive edge capture.  
Set to enable positive edge capture.  
Capture Negative  
Cleared to disable negative edge capture.  
Set to enable negative edge capture.  
Match  
When MATn = 1, a match of the PCA counter with this module's  
compare/capture register causes the CCFn bit in CCON to be set, flagging an  
interrupt.  
3
MATn  
Toggle  
2
1
TOGn  
When TOGn = 1, a match of the PCA counter with this module's  
compare/capture register causes the CEXn pin to toggle.  
Pulse Width Modulation Mode  
PWMn  
Cleared to disable the CEXn pin to be used as a pulse width modulated output.  
Set to enable the CEXn pin to be used as a pulse width modulated output.  
Enable CCF interrupt  
Cleared to disable compare/capture flag CCFn in the CCON register to generate  
an interrupt.  
0
CCF0  
Set to enable compare/capture flag CCFn in the CCON register to generate an  
interrupt.  
Reset Value = X000 0000b  
Not bit addressable  
27  
4113C–8051–01/08  
Table 10-4. PCA Module Modes (CCAPMn Registers)  
ECOMn CAPPn CAPNn  
MATn  
TOGn  
PWMm ECCFn Module Function  
0
0
1
0
0
0
0
0
0
0
No Operation  
16-bit capture by a positive-edge  
trigger on CEXn  
X
0
0
0
1
0
0
0
0
X
16-bit capture by a negative trigger  
on CEXn  
X
X
1
0
1
0
1
1
0
0
0
0
X
X
X
16-bit capture by a transition on  
CEXn  
16-bit Software Timer/Compare  
mode.  
1
1
1
0
0
0
0
0
0
1
0
1
1
0
0
1
0
X
0
16-bit High-speed Output  
8-bit PWM  
X
X
Watchdog Timer (module 4 only)  
There are two additional registers associated with each of the PCA modules. They are CCAPnH  
and CCAPnL and these are the registers that store the 16-bit count when a capture occurs or a  
compare should occur. When a module is used in the PWM mode these registers are used to  
control the duty cycle of the output (see Table 10-5 and Table 10-6).  
Table 10-5. CCAPnH Registers (n = 0-4)  
CCAP0H - PCA Module 0 Compare/Capture Control Register High (0FAh)  
CCAP1H - PCA Module 1 Compare/Capture Control Register High (0FBh)  
CCAP2H - PCA Module 2 Compare/Capture Control Register High (0FCh)  
CCAP3H - PCA Module 3 Compare/Capture Control Register High (0FDh)  
CCAP4H - PCA Module 4 Compare/Capture Control Register High (0FEh)  
7
6
5
4
3
2
1
0
-
-
-
-
-
-
-
-
Bit  
Bit  
Number  
Mnemonic Description  
PCA Module n Compare/Capture Control  
CCAPnH Value  
7-0  
-
Reset Value = 0000 0000b  
Not bit addressable  
Table 10-6. CCAPnL Registers (n = 0-4)  
CCAP0L - PCA Module 0 Compare/Capture Control Register Low (0EAh)  
CCAP1L - PCA Module 1 Compare/Capture Control Register Low (0EBh)  
CCAP2L - PCA Module 2 Compare/Capture Control Register Low (0ECh)  
CCAP3L - PCA Module 3 Compare/Capture Control Register Low (0EDh)  
28  
AT8xc51Rx2  
4113C–8051–01/08  
AT8xc51Rx2  
CCAP4L - PCA Module 4 Compare/Capture Control Register Low (0EEh)  
7
-
6
-
5
-
4
-
3
-
2
-
1
-
0
-
Bit  
Bit  
Number  
Mnemonic Description  
PCA Module n Compare/Capture Control  
7-0  
-
CCAPnL Value  
Reset Value = 0000 0000b  
Not bit addressable  
Table 10-7. CH Register  
CH - PCA Counter Register High (0F9h)  
7
-
6
-
5
-
4
-
3
-
2
-
1
-
0
-
Bit  
Bit  
Number  
Mnemonic Description  
PCA counter  
7-0  
-
CH Value  
Reset Value = 0000 0000b  
Not bit addressable  
Table 10-8. CL Register  
CL - PCA Counter Register Low (0E9h)  
7
-
6
-
5
-
4
-
3
-
2
-
1
-
0
-
Bit  
Bit  
Number  
Mnemonic Description  
PCA Counter  
7-0  
-
CL Value  
Reset Value = 0000 0000b  
Not bit addressable  
10.1 PCA Capture Mode  
To use one of the PCA modules in the capture mode either one or both of the CCAPM bits  
CAPN and CAPP for that module must be set. The external CEX input for the module (on port 1)  
is sampled for a transition. When a valid transition occurs the PCA hardware loads the value of  
the PCA counter registers (CH and CL) into the module's capture registers (CCAPnL and  
CCAPnH). If the CCFn bit for the module in the CCON SFR and the ECCFn bit in the CCAPMn  
SFR are set then an interrupt will be generated (see Figure 10-3).  
29  
4113C–8051–01/08  
Figure 10-3. PCA Capture Mode  
CCON  
0xD8  
CF  
CR  
CCF4 CCF3 CCF2 CCF1 CCF0  
PCA IT  
PCA Counter/Timer  
Cex.n  
CH  
CL  
Capture  
CCAPnH  
CCAPnL  
CCAPMn, n= 0 to 4  
0xDA to 0xDE  
ECOMnCAPPn CAPNn MATn TOGn PWMn ECCFn  
10.2 16-bit Software Timer/ Compare Mode  
The PCA modules can be used as software timers by setting both the ECOM and MAT bits in  
the modules CCAPMn register. The PCA timer will be compared to the module's capture regis-  
ters and when a match occurs an interrupt will occur if the CCFn (CCON SFR) and the ECCFn  
(CCAPMn SFR) bits for the module are both set (see Figure 10-4).  
30  
AT8xc51Rx2  
4113C–8051–01/08  
AT8xc51Rx2  
Figure 10-4. PCA Compare Mode and PCA Watchdog Timer  
CCON  
0xD8  
CF  
CCF4 CCF3 CCF2 CCF1 CCF0  
CR  
Write to  
CCAPnL Reset  
PCA IT  
Write to  
CCAPnH  
CCAPnH  
CCAPnL  
Enable  
1
0
Match  
16 bit comparator  
RESET *  
CH  
CL  
PCA counter/timer  
CCAPMn, n = 0 to 4  
0xDA to 0xDE  
ECOMn CAPPn CAPNn MATn TOGn PWMn ECCFn  
CMOD  
0xD9  
CIDL WDTE  
CPS1 CPS0 ECF  
Before enabling ECOM bit, CCAPnL and CCAPnH should be set with a non zero value, other-  
wise an unwanted match could happen. Writing to CCAPnH will set the ECOM bit.  
Once ECOM set, writing CCAPnL will clear ECOM so that an unwanted match doesn’t occur  
while modifying the compare value. Writing to CCAPnH will set ECOM. For this reason, user  
software should write CCAPnL first, and then CCAPnH. Of course, the ECOM bit can still be  
controlled by accessing to CCAPMn register.  
10.3 High-speed Output Mode  
In this mode, the CEX output (on port 1) associated with the PCA module will toggle each time a  
match occurs between the PCA counter and the module's capture registers. To activate this  
mode the TOG, MAT, and ECOM bits in the module's CCAPMn SFR must be set (see  
Figure 10-5).  
A prior write must be done to CCAPnL and CCAPnH before writing the ECOMn bit.  
31  
4113C–8051–01/08  
Figure 10-5. PCA High-speed Output Mode  
CCON  
0xD8  
CF  
CR  
CCF4 CCF3 CCF2 CCF1 CCF0  
Write to  
CCAPnL  
Reset  
PCA IT  
Write t
CCAPn
CCAPnH  
CCAPnL  
0
1
Enable  
Match  
16 bit comparator  
CEXn  
CH  
CL  
PCA counter/timer  
CCAPMn, n = 0 to 4  
0xDA to 0xDE  
ECOMnCAPPn CAPNn MATn TOGn PWMn ECCFn  
Before enabling ECOM bit, CCAPnL and CCAPnH should be set with a non zero value, other-  
wise an unwanted match could occur.  
Once ECOM is set, writing CCAPnL will clear ECOM so that an unwanted match doesn’t occur  
while modifying the compare value. Writing to CCAPnH will set ECOM. For this reason, user  
software should write CCAPnL first, and then CCAPnH. Of course, the ECOM bit can still be  
controlled by accessing the CCAPMn register.  
10.4 Pulse Width Modulator Mode  
All of the PCA modules can be used as PWM outputs. Figure 10-6 shows the PWM function.  
The frequency of the output depends on the source for the PCA timer. All of the modules will  
have the same frequency of output because they all share the PCA timer. The duty cycle of each  
module is independently variable using the module's capture register CCAPLn. When the value  
of the PCA CL SFR is less than the value in the module's CCAPLn SFR the output will be low,  
when it is equal to or greater than the output will be high. When CL overflows from FF to 00,  
CCAPLn is reloaded with the value in CCAPHn. This allows updating the PWM without glitches.  
The PWM and ECOM bits in the module's CCAPMn register must be set to enable the PWM  
mode.  
32  
AT8xc51Rx2  
4113C–8051–01/08  
AT8xc51Rx2  
Figure 10-6. PCA PWM Mode  
CCAPnH  
Overflow  
CCAPnL  
“0”  
CEXn  
Enable  
8-Bit Comparator  
“1”  
CL  
PCA Counter/Timer  
CCAPMn, n= 0 to 4  
0xDA to 0xDE  
ECOMnCAPPn CAPNn MATn TOGn PWMn ECCFn  
10.5 PCA Watchdog Timer  
An on-board watchdog timer is available with the PCA to improve the reliability of the system  
without increasing chip count. Watchdog timers are useful for systems that are susceptible to  
noise, power glitches, or electrostatic discharge. Module 4 is the only PCA module that can be  
programmed as a watchdog. However, this module can still be used for other modes if the  
watchdog is not needed. Figure 10-4 shows a diagram of how the watchdog works. The user  
pre-loads a 16-bit value in the compare registers. Just like the other compare modes, this 16-bit  
value is compared to the PCA timer value. If a match is allowed to occur, an internal reset will be  
generated. This will not cause the RST pin to be driven high.  
In order to hold off the reset, the user has three options:  
1. Periodically change the compare value so it will never match the PCA timer.  
2. Periodically change the PCA timer value so it will never match the compare values.  
3. Disable the watchdog by clearing the WDTE bit before a match occurs and then re-  
enable it.  
The first two options are more reliable because the watchdog timer is never disabled as in option  
#3. If the program counter ever goes astray, a match will eventually occur and cause an internal  
reset. The second option is also not recommended if other PCA modules are being used.  
Remember, the PCA timer is the time base for all modules; changing the time base for other  
modules would not be a good idea. Thus, in most applications the first solution is the best option.  
This watchdog timer won’t generate a reset out on the reset pin.  
33  
4113C–8051–01/08  
11. Serial I/O Port  
The serial I/O port in the AT8xc51Rx2 is compatible with the serial I/O port in the 80C52.  
It provides both synchronous and asynchronous communication modes. It operates as a Univer-  
sal Asynchronous Receiver and Transmitter (UART) in three full-duplex modes (Modes 1, 2 and  
3). Asynchronous transmission and reception can occur simultaneously and at different baud  
rates  
Serial I/O port includes the following enhancements:  
• Framing error detection  
• Automatic address recognition  
11.1 Framing Error Detection  
Framing bit error detection is provided for the three asynchronous modes (modes 1, 2 and 3). To  
enable the framing bit error detection feature, set SMOD0 bit in PCON register (see Figure 11-  
1).  
Figure 11-1. Framing Error Block diagram  
SM0/FE SM1  
SM2  
REN  
TB8  
RB8  
TI  
RI  
SCO N (98h)  
Set FE bit if stop bit is 0 (framing error) (SMOD0 = 1)  
SM0 to UART mode control (SMOD0 = 0)  
SMODSMOD0  
1
-
PO F  
GF1  
GF0  
PD  
IDL  
PCON (87h)  
To UART framing error control  
When this feature is enabled, the receiver checks each incoming data frame for a valid stop bit.  
An invalid stop bit may result from noise on the serial lines or from simultaneous transmission by  
two CPUs. If a valid stop bit is not found, the Framing Error bit (FE) in SCON register (see Table  
11-4) bit is set.  
Software may examine FE bit after each reception to check for data errors. Once set, only soft-  
ware or a reset can clear FE bit. Subsequently, received frames with valid stop bits cannot clear  
FE bit. When FE feature is enabled, RI rises on stop bit instead of the last data bit (see Figure  
11-2 and Figure 11-3).  
Figure 11-2. UART Timings in Mode 1  
RXD  
D0  
D1  
D2 D3  
D4  
D5  
D6  
D7  
Start  
bit  
Data byte  
Stop  
bit  
RI  
SMOD0=X  
FE  
SMOD0=1  
34  
AT8xc51Rx2  
4113C–8051–01/08  
AT8xc51Rx2  
Figure 11-3. UART Timings in Modes 2 and 3  
RXD  
D2  
D0  
D1  
D3  
D4 D5  
D6  
D7  
D8  
.Start  
Bit  
Data Byte  
Ninth Stop  
Bit Bit  
RI  
SMOD0 = 0  
RI  
SMOD0 = 1  
FE  
SMOD0 = 1  
11.2 Automatic Address Recognition  
The automatic address recognition feature is enabled when the multiprocessor communication  
feature is enabled (SM2 bit in SCON register is set).  
Implemented in hardware, automatic address recognition enhances the multiprocessor commu-  
nication feature by allowing the serial port to examine the address of each incoming command  
frame. Only when the serial port recognizes its own address, the receiver sets RI bit in SCON  
register to generate an interrupt. This ensures that the CPU is not interrupted by command  
frames addressed to other devices.  
If desired, you may enable the automatic address recognition feature in mode 1. In this configu-  
ration, the stop bit takes the place of the ninth data bit. Bit RI is set only when the received  
command frame address matches the device’s address and is terminated by a valid stop bit.  
To support automatic address recognition, a device is identified by a given address and a broad-  
cast address.  
Note:  
The multiprocessor communication and automatic address recognition features cannot be  
enabled in mode 0 (i.e. setting SM2 bit in SCON register in mode 0 has no effect).  
11.2.1  
Given Address  
Each device has an individual address that is specified in SADDR register; the SADEN register  
is a mask byte that contains don’t care bits (defined by zeros) to form the device’s given  
address. The don’t care bits provide the flexibility to address one or more slaves at a time. The  
following example illustrates how a given address is formed.  
To address a device by its individual address, the SADEN mask byte must be 1111 1111b.  
For example:  
SADDR0101 0110b  
SADEN1111 1100b  
Given0101 01XXb  
The following is an example of how to use given addresses to address different slaves:  
Slave A:SADDR1111 0001b  
SADEN1111 1010b  
Given1111 0X0Xb  
Slave B:SADDR1111 0011b  
SADEN1111 1001b  
35  
4113C–8051–01/08  
Given1111 0XX1b  
Slave C:SADDR1111 0010b  
SADEN1111 1101b  
Given1111 00X1b  
The SADEN byte is selected so that each slave may be addressed separately.  
For slave A, bit 0 (the LSB) is a don’t-care bit; for slaves B and C, bit 0 is a 1. To communicate  
with slave A only, the master must send an address where bit 0 is clear (e.g. 1111 0000b).  
For slave A, bit 1 is a 1; for slaves B and C, bit 1 is a don’t care bit. To communicate with slaves  
B and C, but not slave A, the master must send an address with bits 0 and 1 both set (e.g. 1111  
0011b).  
To communicate with slaves A, B and C, the master must send an address with bit 0 set, bit 1  
clear, and bit 2 clear (e.g. 1111 0001b).  
11.2.2  
Broadcast Address  
A broadcast address is formed from the logical OR of the SADDR and SADEN registers with  
zeros defined as don’t-care bits, e.g.:  
SADDR0101 0110b  
SADEN1111 1100b  
Broadcast  
= SADDR OR SADEN1111 111Xb  
The use of don’t-care bits provides flexibility in defining the broadcast address, however in most  
applications, a broadcast address is FFh. The following is an example of using broadcast  
addresses:  
Slave A:SADDR1111 0001b  
SADEN1111 1010b  
Broadcast1111 1X11b,  
Slave B:SADDR1111 0011b  
SADEN1111 1001b  
Broadcast1111 1X11B,  
Slave C:SADDR = 1111 0010b  
SADEN1111 1101b  
Broadcast1111 1111b  
For slaves A and B, bit 2 is a don’t care bit; for slave C, bit 2 is set. To communicate with all of  
the slaves, the master must send an address FFh. To communicate with slaves A and B, but not  
slave C, the master can send and address FBh.  
36  
AT8xc51Rx2  
4113C–8051–01/08  
AT8xc51Rx2  
11.2.3  
Reset Addresses  
On reset, the SADDR and SADEN registers are initialized to 00h, i.e. the given and broadcast  
addresses are XXXX XXXXb(all don’t-care bits). This ensures that the serial port will reply to any  
address, and so, that it is backwards compatible with the 80C51 microcontrollers that do not  
support automatic address recognition.  
Table 11-1. SADEN Register  
SADEN - Slave Address Mask Register (B9h)  
7
6
5
4
3
2
1
0
Reset Value = 0000 0000b  
Not bit addressable  
Table 11-2. SADDR Register  
SADDR - Slave Address Register (A9h)  
7
6
5
4
3
2
1
0
Reset Value = 0000 0000b  
Not bit addressable  
11.3 Baud Rate Selection for UART for Mode 1 and 3  
The Baud Rate Generator for transmit and receive clocks can be selected separately via the  
T2CON and BDRCON registers.  
Figure 11-4. Baud Rate selection  
TIMER1  
TIMER_BRG_RX  
0
1
0
1
TIMER2  
/ 16  
Rx Clock  
RCLK  
RBCK  
INT_BRG  
TIMER1  
TIMER2  
TIMER_BRG_TX  
0
1
0
1
/ 16  
Tx Clock  
TCLK  
TBCK  
INT_BRG  
37  
4113C–8051–01/08  
Table 11-3. Baud Rate Selection Table UART  
TCLK  
RCLK  
TBCK  
RBCK  
Clock Source  
UART Tx  
Clock Source  
UART Rx  
(T2CON)  
(T2CON)  
(BDRCON)  
(BDRCON)  
0
1
0
1
X
X
0
1
X
0
0
1
1
0
1
X
X
X
0
0
0
0
1
1
0
0
1
0
0
0
0
0
0
1
1
1
Timer 1  
Timer 2  
Timer 1  
Timer 1  
Timer 1  
Timer 2  
Timer 2  
Timer 2  
INT_BRG  
INT_BRG  
Timer 1  
Timer 1  
Timer 2  
INT_BRG  
INT_BRG  
INT_BRG  
Timer 2  
INT_BRG  
11.3.1  
Internal Baud Rate Generator (BRG)  
When the internal Baud Rate Generator is used, the Baud Rates are determined by the BRG  
overflow depending on the BRL reload value, the value of SPD bit (Speed Mode) in BDRCON  
register and the value of the SMOD1 bit in PCON register.  
Figure 11-5. Internal Baud Rate  
/2  
auto reload counter  
BRG  
overflow  
Peripheral clock  
0
1
/6  
0
1
INT_BRG  
BRL  
SPD  
BRR  
• The baud rate for UART is token by formula:  
2
SMOD × FCLKPERIPH  
---------------------------------------------------------------------------------------------------------  
BaudRate =  
2 × 2 × 6 1 SPD× 16 × [256 (BRL)]  
2SMOD1 × FCLKPERIPH  
----------------------------------------------------------------------------------------  
(BRL) = 256 –  
2 × 2 × 6( SPD) × 16 × BaudRate  
1
38  
AT8xc51Rx2  
4113C–8051–01/08  
AT8xc51Rx2  
Table 11-4. SCON Register  
SCON - Serial Control Register (98h)  
7
6
5
4
3
2
1
0
FE/SM0  
SM1  
SM2  
REN  
TB8  
RB8  
TI  
RI  
Bit  
Bit  
Number  
Mnemonic Description  
Framing Error bit (SMOD0 = 1  
)
Clear to reset the error state, not cleared by a valid stop bit.  
Set by hardware when an invalid stop bit is detected.  
7
FE  
SMOD0 must be set to enable access to the FE bit  
Serial port Mode bit 0  
Refer to SM1 for serial port mode selection.  
SM0  
SMOD0 must be cleared to enable access to the SM0 bit  
Serial port Mode bit 1  
SM1ModeDescriptionBaud Rate  
0
1
0
1
0Shift RegisterfCPUPERIPH/6  
18-bit UARTVariable  
6
5
SM1  
SM2  
29-bit UARTfCPU PERIPH /32 or /16  
39-bit UARTVariable  
Serial port Mode 2 bit/Multiprocessor Communication Enable bit  
Clear to disable multiprocessor communication feature.  
Set to enable multiprocessor communication feature in mode 2 and 3, and  
eventually mode 1. This bit should be cleared in mode 0.  
Reception Enable bit  
Clear to disable serial reception.  
Set to enable serial reception.  
4
3
REN  
TB8  
Transmitter Bit 8/Ninth bit to transmit in modes 2 and 3  
o transmit a logic 0 in the 9th bit.  
Set to transmit a logic 1 in the 9th bit.  
Receiver Bit 8/Ninth bit received in modes 2 and 3  
Cleared by hardware if 9th bit received is a logic 0.  
Set by hardware if 9th bit received is a logic 1.  
2
1
0
RB8  
In mode 1, if SM2=0, RB8 is the received stop bit. In mode 0 RB8 is not used.  
Transmit Interrupt flag  
Clear to acknowledge interrupt.  
TI  
Set by hardware at the end of the 8th bit time in mode 0 or at the beginning of  
the stop bit in the other modes.  
Receive Interrupt flag  
Clear to acknowledge interrupt.  
RI  
Set by hardware at the end of the 8th bit time in mode 0, see Figure 11-2. and  
Figure 11-3. in the other modes.  
Reset Value = 0000 0000b  
Bit addressable  
39  
4113C–8051–01/08  
Table 11-5. Example of Computed Value when X2 = 1, SMOD1 = 1, SPD = 1  
Baud Rates  
FOSC=16.384 MHz  
FOSC=24 MHz  
Error (%)  
BRL  
Error (%)  
1.23  
BRL  
243  
230  
217  
204  
178  
100  
-
115200  
57600  
38400  
28800  
19200  
9600  
247  
238  
229  
220  
203  
149  
43  
0.16  
0.16  
0.16  
0.16  
0.16  
0.16  
-
1.23  
1.23  
1.23  
0.63  
0.31  
4800  
1.23  
Table 11-6. Example of Computed Value when X2 = 0, SMOD1 = 0, SPD = 0  
Baud Rates  
FOSC=16.384 MHz  
FOSC=24 MHz  
BRL  
Error (%)  
1.23  
BRL  
243  
230  
202  
152  
Error (%)  
0.16  
4800  
2400  
1200  
600  
247  
238  
220  
185  
1.23  
0.16  
1.23  
3.55  
0.16  
0.16  
The baud rate generator can be used for mode 1 or 3 (see Figure 11-4.), but also for mode 0 for  
UART, thanks to the bit SRC located in BDRCON register (Table 11-13.)  
11.4 UART Registers  
Table 11-7. SADEN Register  
SADEN - Slave Address Mask Register for UART (B9h)  
7
6
5
4
3
2
1
0
Reset Value = 0000 0000b  
Table 11-8. SADDR Register  
SADDR - Slave Address Register for UART (A9h)  
7
6
5
4
3
2
1
0
Reset Value = 0000 0000b  
40  
AT8xc51Rx2  
4113C–8051–01/08  
AT8xc51Rx2  
Table 11-9. SBUF Register  
SBUF - Serial Buffer Register for UART (99h)  
7
6
5
4
3
2
1
0
Reset Value = XXXX XXXXb  
Table 11-10. BRL Register  
BRL - Baud Rate Reload Register for the internal baud rate generator, UART (9Ah)  
7
6
5
4
3
2
1
0
Reset Value = 0000 0000b  
41  
4113C–8051–01/08  
Table 11-11. T2CON Register  
T2CON - Timer 2 Control Register (C8h)  
7
6
5
4
3
2
1
0
TF2  
EXF2  
RCLK  
TCLK  
EXEN2  
TR2  
C/T2#  
CP/RL2#  
Bit  
Bit  
Number  
Mnemonic Description  
Timer 2 overflow Flag  
Must be cleared by software.  
7
6
TF2  
Set by hardware on Timer 2 overflow, if RCLK=0 and TCLK=0.  
Timer 2 External Flag  
Set when a capture or a reload is caused by a negative transition on T2EX pin if  
EXEN2 = 1.  
EXF2  
When set, causes the CPU to vector to Timer 2 interrupt routine when Timer 2  
interrupt is enabled.  
Must be cleared by software. EXF2 doesn’t cause an interrupt in Up/down  
counter mode (DCEN=1)  
Receive Clock bit for UART  
Cleared to use timer 1 overflow as receive clock for serial port in mode 1 or 3.  
Set to use Timer 2 overflow as receive clock for serial port in mode 1 or 3.  
5
4
RCLK  
TCLK  
Transmit Clock bit for UART  
Cleared to use timer 1 overflow as transmit clock for serial port in mode 1 or 3.  
Set to use Timer 2 overflow as transmit clock for serial port in mode 1 or 3.  
Timer 2 External Enable bit  
Cleared to ignore events on T2EX pin for Timer 2 operation.  
Set to cause a capture or reload when a negative transition on T2EX pin is  
detected, if Timer 2 is not used to clock the serial port.  
3
2
1
EXEN2  
TR2  
Timer 2 Run control bit  
Cleared to turn off Timer 2.  
Set to turn on Timer 2.  
Timer/Counter 2 select bit  
Cleared for timer operation (input from internal clock system: FCLK PERIPH).  
Set for counter operation (input from T2 input pin, falling edge trigger). Must be  
0 for clock out mode.  
C/T2#  
Timer 2 Capture/Reload bit  
If RCLK = 1 or TCLK = 1, CP/RL2# is ignored and timer is forced to auto-reload  
on Timer 2 overflow.  
0
CP/RL2#  
Cleared to auto-reload on Timer 2 overflows or negative transitions on T2EX pin  
if EXEN2 = 1.  
Set to capture on negative transitions on T2EX pin if EXEN2 = 1.  
Reset Value = 0000 0000b  
Bit addressable  
42  
AT8xc51Rx2  
4113C–8051–01/08  
AT8xc51Rx2  
Table 11-12. PCON Register  
PCON - Power Control Register (87h)  
7
6
5
4
3
2
1
0
SMOD1  
SMOD0  
-
POF  
GF1  
GF0  
PD  
IDL  
Bit  
Bit  
Number  
Mnemonic Description  
Serial Port Mode bit 1 for UART  
Set to select double baud rate in mode 1, 2 or 3.  
7
6
5
SMOD1  
SMOD0  
-
Serial Port Mode bit 0 for UART  
Cleared to select SM0 bit in SCON register.  
Set to select FE bit in SCON register.  
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
Power-off Flag  
Cleared to recognize next reset type.  
4
POF  
Set by hardware when VCC rises from 0 to its nominal voltage. Can also be set  
by software.  
General purpose Flag  
Cleared by user for general purpose usage.  
Set by user for general purpose usage.  
3
2
1
0
GF1  
GF0  
PD  
General purpose Flag  
Cleared by user for general purpose usage.  
Set by user for general purpose usage.  
Power-down mode bit  
Cleared by hardware when reset occurs.  
Set to enter power-down mode.  
Idle mode bit  
Cleared by hardware when interrupt or reset occurs.  
Set to enter idle mode.  
IDL  
Reset Value = 00X1 0000b  
Not bit addressable  
Power-off flag reset value will be 1 only after a power on (cold reset). A warm reset doesn’t affect  
the value of this bit.  
43  
4113C–8051–01/08  
Table 11-13. BDRCON Register  
BDRCON - Baud Rate Control Register (9Bh)  
7
-
6
-
5
-
4
3
2
1
0
BRR  
TBCK  
RBCK  
SPD  
SRC  
Bit  
Number  
Bit  
Mnemonic Description  
Reserved  
7
6
5
-
The value read from this bit is indeterminate. Do not set this bit  
Reserved  
The value read from this bit is indeterminate. Do not set this bit  
-
-
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
Baud Rate Run Control bit  
4
3
2
1
BRR  
TBCK  
RBCK  
SPD  
Cleared to stop the internal Baud Rate Generator.  
Set to start the internal Baud Rate Generator.  
Transmission Baud rate Generator Selection bit for UART  
Cleared to select Timer 1 or Timer 2 for the Baud Rate Generator.  
Set to select internal Baud Rate Generator.  
Reception Baud Rate Generator Selection bit for UART  
Cleared to select Timer 1 or Timer 2 for the Baud Rate Generator.  
Set to select internal Baud Rate Generator.  
Baud Rate Speed Control bit for UART  
Cleared to select the SLOW Baud Rate Generator.  
Set to select the FAST Baud Rate Generator.  
Baud Rate Source select bit in Mode 0 for UART  
Cleared to select FOSC/12 as the Baud Rate Generator (FCLK PERIPH/6 in X2  
mode).  
0
SRC  
Set to select the internal Baud Rate Generator for UARTs in mode 0.  
Reset Value = XXX0 0000b  
Not bit addressable  
44  
AT8xc51Rx2  
4113C–8051–01/08  
AT8xc51Rx2  
12. Interrupt System  
The AT8xc51Rx2 have a total of 8 interrupt vectors: two external interrupts (INT0 and INT1),  
three timer interrupts (timers 0, 1 and 2), the serial port interrupt, Keyboard interrupt and the  
PCA global interrupt. These interrupts are shown in Figure 12-1.  
Figure 12-1. Interrupt Control System  
High Priority  
Interrupt  
IPH, IPL  
3
0
INT0  
IE0  
3
0
3
0
3
TF0  
Interrupt  
Polling  
INT1  
IE1  
Sequence, Decreasing from  
High to Low Priority  
TF1  
0
3
PCA IT  
0
3
0
RI  
TI  
3
TF2  
EXF2  
0
3
KBD IT  
0
Individual Enable  
Low Priority  
Interrupt  
Global Disable  
Each of the interrupt sources can be individually enabled or disabled by setting or clearing a bit  
in the Interrupt Enable register (Table 12-5 and Table 12-3). This register also contains a global  
disable bit, which must be cleared to disable all interrupts at once.  
Each interrupt source also can be individually programmed to one out of four priority levels by  
setting or clearing a bit in the Interrupt Priority register (Table 12-6) and in the Interrupt Priority  
High register (Table 12-4 and Table 12-5) shows the bit values and priority levels associated  
with each combination.  
12.1 Registers  
The PCA interrupt vector is located at address 0033H, the Keyboard interrupt vector is located  
at address 004BH. All other vectors addresses are the same as standard C52 devices.  
45  
4113C–8051–01/08  
Table 12-1. Priority Level Bit Values  
IPH.x  
IPL.x  
Interrupt Level Priority  
0
0
1
1
0
1
0
1
0 (Lowest)  
1
2
3 (Highest)  
A low-priority interrupt can be interrupted by a high priority interrupt, but not by another low-prior-  
ity interrupt. A high-priority interrupt can’t be interrupted by any other interrupt source.  
If two interrupt requests of different priority levels are received simultaneously, the request of  
higher priority level is serviced. If interrupt requests of the same priority level are received simul-  
taneously, an internal polling sequence determines which request is serviced. Thus within each  
priority level there is a second priority structure determined by the polling sequence.  
Table 12-2. IEO Register  
IE0 - Interrupt Enable Register (A8h)  
7
6
5
4
3
2
1
0
EA  
EC  
ET2  
ES  
ET1  
EX1  
ET0  
EX0  
Bit  
Bit  
Number  
Mnemonic Description  
Enable All interrupt bit  
Cleared to disable all interrupts.  
Set to enable all interrupts.  
7
6
EA  
EC  
PCA interrupt enable bit  
Cleared to disable.  
Set to enable.  
Timer 2 overflow interrupt enable bit  
5
4
3
2
1
0
ET2  
ES  
Cleared to disable Timer 2 overflow interrupt.  
Set to enable Timer 2 overflow interrupt.  
Serial port enable bit  
Cleared to disable serial port interrupt.  
Set to enable serial port interrupt.  
Timer 1 overflow interrupt enable bit  
Cleared to disable timer 1 overflow interrupt.  
Set to enable timer 1 overflow interrupt.  
ET1  
EX1  
ET0  
EX0  
External interrupt 1 enable bit  
Cleared to disable external interrupt 1.  
Set to enable external interrupt 1.  
Timer 0 overflow interrupt enable bit  
Cleared to disable timer 0 overflow interrupt.  
Set to enable timer 0 overflow interrupt.  
External interrupt 0 enable bit  
Cleared to disable external interrupt 0.  
Set to enable external interrupt 0.  
46  
AT8xc51Rx2  
4113C–8051–01/08  
AT8xc51Rx2  
Reset Value = 0000 0000b  
Bit addressable  
Table 12-3. IPL0 Register  
IPL0 - Interrupt Priority Register (B8h)  
7
-
6
5
4
3
2
1
0
PPCL  
PT2L  
PSL  
PT1L  
PX1L  
PT0L  
PX0L  
Bit  
Bit  
Number  
Mnemonic Description  
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
7
6
5
4
3
2
1
0
-
PCA interrupt priority bit  
Refer to PPCH for priority level.  
PPCL  
PT2L  
PSL  
Timer 2 overflow interrupt priority bit  
Refer to PT2H for priority level.  
Serial port priority bit  
Refer to PSH for priority level.  
Timer 1 overflow interrupt priority bit  
Refer to PT1H for priority level.  
PT1L  
PX1L  
PT0L  
PX0L  
External interrupt 1 priority bit  
Refer to PX1H for priority level.  
Timer 0 overflow interrupt priority bit  
Refer to PT0H for priority level.  
External interrupt 0 priority bit  
Refer to PX0H for priority level.  
Reset Value = X000 0000b  
Bit addressable  
Table 12-4. IPH0 Register  
IPH0 - Interrupt Priority High Register (B7h)  
7
6
5
4
3
2
1
0
-
PPCH  
PT2H  
PSH  
PT1H  
PX1H  
PT0H  
PX0H  
47  
4113C–8051–01/08  
Bit  
Bit  
Number  
Mnemonic Description  
Reserved  
7
6
-
The value read from this bit is indeterminate. Do not set this bit.  
PCA interrupt priority high bit.  
PPCHPPCLPriority Level  
0
0
1
1
0Lowest  
PPCH  
PT2H  
PSH  
1
0
1Highest  
Timer 2 overflow interrupt priority high bit  
PT2HPT2LPriority Level  
0
0
1
1
0Lowest  
1
5
4
3
2
1
0
0
1Highest  
Serial port priority high bit  
PSH PSLPriority Level  
0
0
1
1
0Lowest  
1
0
1Highest  
Timer 1 overflow interrupt priority high bit  
PT1HPT1LPriority Level  
0
0
1
1
0 Lowest  
PT1H  
PX1H  
PT0H  
PX0H  
1
0
1Highest  
External interrupt 1 priority high bit  
PX1HPX1LPriority Level  
0
0
1
1
0Lowest  
1
0
1Highest  
Timer 0 overflow interrupt priority high bit  
PT0HPT0LPriority Level  
0
0
1
1
0Lowest  
1
0
1Highest  
External interrupt 0 priority high bit  
PX0H PX0LPriority Level  
0
0
1
1
0Lowest  
1
0
1Highest  
Reset Value = X000 0000b  
Not bit addressable  
Table 12-5. IE1 Register  
IE1 - Interrupt Enable Register (B1h)  
7
6
5
4
3
2
1
0
-
-
-
-
-
-
-
KBD  
48  
AT8xc51Rx2  
4113C–8051–01/08  
AT8xc51Rx2  
Bit  
Bit  
Number  
Mnemonic Description  
7
6
5
4
3
2
1
-
-
-
-
-
-
-
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Keyboard interrupt Enable bit  
Cleared to disable keyboard interrupt.  
Set to enable keyboard interrupt.  
0
KBD  
Reset Value = XXXX XXX0b  
Bit addressable  
Table 12-6. IPL1 Register  
IPL1 - Interrupt Priority Register (B2h)  
7
-
6
-
5
-
4
-
3
-
2
-
1
-
0
KBDL  
Bit  
Bit  
Number  
Mnemonic Description  
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
7
6
5
4
3
2
1
0
-
Reserved  
-
The value read from this bit is indeterminate. Do not set this bit.  
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
-
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
-
Reserved  
-
The value read from this bit is indeterminate. Do not set this bit.  
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
-
-
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
Keyboard Interrupt Priority bit  
Refer to KBDH for priority level.  
KBDL  
Reset Value = XXXX XXX0b  
Bit addressable  
Table 12-7. IPH1 Register  
49  
4113C–8051–01/08  
IPH1 - Interrupt Priority High Register (B3h)  
7
-
6
-
5
-
4
-
3
-
2
-
1
-
0
KBDH  
Bit  
Bit  
Number  
Mnemonic Description  
Reserved  
7
6
5
4
3
2
1
-
The value read from this bit is indeterminate. Do not set this bit.  
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
-
-
-
-
-
-
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
Keyboard interrupt Priority High bit  
KB DHKBDLPriority Level  
0
0
1
1
0 Lowest  
0
KBDH  
1
0
1Highest  
Reset Value = XXXX XXX0b  
Not bit addressable  
12.2 Interrupt Sources and Vector Addresses  
Table 12-8. Interrupt Sources and Vector Addresses  
Vector  
Interrupt  
Request  
Number  
Polling Priority  
Interrupt Source  
Reset  
Address  
0000h  
0003h  
000Bh  
0013h  
001Bh  
0023h  
002Bh  
0033h  
003Bh  
0
1
2
3
4
5
6
7
8
0
1
2
3
4
6
7
5
8
INT0  
IE0  
Timer 0  
INT1  
TF0  
IE1  
Timer 1  
UART  
IF1  
RI+TI  
Timer 2  
PCA  
TF2+EXF2  
CF + CCFn (n = 0-4)  
KBDIT  
Keyboard  
50  
AT8xc51Rx2  
4113C–8051–01/08  
AT8xc51Rx2  
51  
4113C–8051–01/08  
13. Keyboard Interface  
The AT8xc51Rx2 implement a keyboard interface allowing the connection of a 8 x n matrix key-  
board. It is based on 8 inputs with programmable interrupt capability on both high or low level.  
These inputs are available as alternate function of P1 and allow to exit from idle and power-  
down modes.  
The keyboard interfaces with the C51 core through 3 special function registers: KBLS, the Key-  
board Level Selection register (Table 13-3), KBE, The Keyboard Interrupt Enable register  
(Table 13-2), and KBF, the Keyboard Flag register (Table 13-1).  
13.0.1  
Interrupt  
The keyboard inputs are considered as 8 independent interrupt sources sharing the same inter-  
rupt vector. An interrupt enable bit (KBD in IE1) allows global enable or disable of the keyboard  
interrupt (see Figure 13-1). As detailed in Figure 13-2 each keyboard input has the capability to  
detect a programmable level according to KBLS.x bit value. Level detection is then reported in  
interrupt flags KBF.x that can be masked by software using KBE.x bits.  
This structure allow keyboard arrangement from 1 x n to 8 x n matrix and allows usage of P1  
inputs for other purpose.  
Figure 13-1. Keyboard Interface Block Diagram  
VCC  
0
P1:x  
KBF.x  
1
KBE.x  
Internal Pull-up  
KBLS.x  
Figure 13-2. Keyboard Input Circuitry  
P1.0  
P1.1  
P1.2  
P1.3  
P1.4  
P1.5  
P1.6  
P1.7  
Input Circuitry  
Input Circuitry  
Input Circuitry  
Input Circuitry  
Input Circuitry  
Input Circuitry  
Input Circuitry  
Input Circuitry  
KBDIT  
Keyboard Interface  
Interrupt Request  
KBD  
IE1  
13.0.2  
Power Reduction Mode  
P1 inputs allow exit from idle and power-down modes as detailed in Section “Power-down  
Mode”, page 56.  
52  
AT8xc51Rx2  
4113C–8051–01/08  
AT8xc51Rx2  
13.1 Registers  
Table 13-1. KBF Register  
KBF - Keyboard Flag Register (9Eh)  
7
6
5
4
3
2
1
0
KBF7  
KBF6  
KBF5  
KBF4  
KBF3  
KBF2  
KBF1  
KBF0  
Bit  
Number  
Bit  
Mnemonic Description  
Keyboard line 7 flag  
Set by hardware when the Port line 7 detects a programmed level. It generates a  
Keyboard interrupt request if the KBKBIE.7 bit in KBIE register is set.  
Must be cleared by software.  
7
6
5
4
3
2
1
0
KBF7  
KBF6  
KBF5  
KBF4  
KBF3  
KBF2  
KBF1  
KBF0  
Keyboard line 6 flag  
Set by hardware when the Port line 6 detects a programmed level. It generates a  
Keyboard interrupt request if the KBIE.6 bit in KBIE register is set.  
Must be cleared by software.  
Keyboard line 5 flag  
Set by hardware when the Port line 5 detects a programmed level. It generates a  
Keyboard interrupt request if the KBIE.5 bit in KBIE register is set.  
Must be cleared by software.  
Keyboard line 4 flag  
Set by hardware when the Port line 4 detects a programmed level. It generates a  
Keyboard interrupt request if the KBIE.4 bit in KBIE register is set.  
Must be cleared by software.  
Keyboard line 3 flag  
Set by hardware when the Port line 3 detects a programmed level. It generates a  
Keyboard interrupt request if the KBIE.3 bit in KBIE register is set.  
Must be cleared by software.  
Keyboard line 2 flag  
Set by hardware when the Port line 2 detects a programmed level. It generates a  
Keyboard interrupt request if the KBIE.2 bit in KBIE register is set.  
Must be cleared by software.  
Keyboard line 1 flag  
Set by hardware when the Port line 1 detects a programmed level. It generates a  
Keyboard interrupt request if the KBIE.1 bit in KBIE register is set.  
Must be cleared by software.  
Keyboard line 0 flag  
Set by hardware when the Port line 0 detects a programmed level. It generates a  
Keyboard interrupt request if the KBIE.0 bit in KBIE register is set.  
Must be cleared by software.  
Reset Value = 0000 0000b  
53  
4113C–8051–01/08  
Table 13-2. KBE Register  
KBE - Keyboard Input Enable Register (9Dh)  
7
6
5
4
3
2
1
0
KBE7  
KBE6  
KBE5  
KBE4  
KBE3  
KBE2  
KBE1  
KBE0  
Bit  
Number  
Bit  
Mnemonic Description  
Keyboard line 7 enable bit  
Cleared to enable standard I/O pin.  
Set to enable KBF.7 bit in KBF register to generate an interrupt request.  
7
6
5
4
3
2
1
0
KBE7  
KBE6  
KBE5  
KBE4  
KBE3  
KBE2  
KBE1  
KBE0  
Keyboard line 6 enable bit  
Cleared to enable standard I/O pin.  
Set to enable KBF.6 bit in KBF register to generate an interrupt request.  
Keyboard line 5 enable bit  
Cleared to enable standard I/O pin.  
Set to enable KBF.5 bit in KBF register to generate an interrupt request.  
Keyboard line 4 enable bit  
Cleared to enable standard I/O pin.  
Set to enable KBF.4 bit in KBF register to generate an interrupt request.  
Keyboard line 3 enable bit  
Cleared to enable standard I/O pin.  
Set to enable KBF.3 bit in KBF register to generate an interrupt request.  
Keyboard line 2 enable bit  
Cleared to enable standard I/O pin.  
Set to enable KBF.2 bit in KBF register to generate an interrupt request.  
Keyboard line 1 enable bit  
Cleared to enable standard I/O pin.  
Set to enable KBF.1 bit in KBF register to generate an interrupt request.  
Keyboard line 0 enable bit  
Cleared to enable standard I/O pin.  
Set to enable KBF.0 bit in KBF register to generate an interrupt request.  
Reset Value = 0000 0000b  
54  
AT8xc51Rx2  
4113C–8051–01/08  
AT8xc51Rx2  
Table 13-3. KBLS Register  
KBLS - Keyboard Level Selector Register (9Ch)  
7
6
5
4
3
2
1
0
KBLS7  
KBLS6  
KBLS5  
KBLS4  
KBLS3  
KBLS2  
KBLS1  
KBLS0  
Bit  
Number  
Bit  
Mnemonic Description  
Keyboard line 7 level selection bit  
7
6
5
4
3
2
1
0
KBLS7  
KBLS6  
KBLS5  
KBLS4  
KBLS3  
KBLS2  
KBLS1  
KBLS0  
Cleared to enable a low level detection on Port line 7.  
Set to enable a high level detection on Port line 7.  
Keyboard line 6 level selection bit  
Cleared to enable a low level detection on Port line 6.  
Set to enable a high level detection on Port line 6.  
Keyboard line 5 level selection bit  
Cleared to enable a low level detection on Port line 5.  
Set to enable a high level detection on Port line 5.  
Keyboard line 4 level selection bit  
Cleared to enable a low level detection on Port line 4.  
Set to enable a high level detection on Port line 4.  
Keyboard line 3 level selection bit  
Cleared to enable a low level detection on Port line 3.  
Set to enable a high level detection on Port line 3.  
Keyboard line 2 level selection bit  
Cleared to enable a low level detection on Port line 2.  
Set to enable a high level detection on Port line 2.  
Keyboard line 1 level selection bit  
Cleared to enable a low level detection on Port line 1.  
Set to enable a high level detection on Port line 1.  
Keyboard line 0 level selection bit  
Cleared to enable a low level detection on Port line 0.  
Set to enable a high level detection on Port line 0.  
Reset Value = 0000 0000b  
55  
4113C–8051–01/08  
14. Power Management  
14.1 Idle Mode  
An instruction that sets PCON.0 indicates that it is the last instruction to be executed before  
going into Idle mode. In Idle mode, the internal clock signal is gated off to the CPU, but not to the  
interrupt, Timer, and Serial Port functions. The CPU status is preserved in its entirety: the Stack  
Pointer, Program Counter, Program Status Word, Accumulator and all other registers maintain  
their data during idle. The port pins hold the logical states they had at the time Idle was acti-  
vated. ALE and PSEN hold at logic high level.  
There are two ways to terminate the Idle mode. Activation of any enabled interrupt will cause  
PCON.0 to be cleared by hardware, terminating the Idle mode. The interrupt will be serviced,  
and following RETI the next instruction to be executed will be the one following the instruction  
that put the device into idle.  
The flag bits GF0 and GF1 can be used to give an indication if an interrupt occurred during nor-  
mal operation or during idle. For example, an instruction that activates idle can also set one or  
both flag bits. When idle is terminated by an interrupt, the interrupt service routine can examine  
the flag bits.  
The other way of terminating the Idle mode is with a hardware reset. Since the clock oscillator is  
still running, the hardware reset needs to be held active for only two machine cycles (24 oscilla-  
tor periods) to complete the reset.  
14.2 Power-down Mode  
To save maximum power, a power-down mode can be invoked by software (refer to Table 11-  
12, PCON register).  
In power-down mode, the oscillator is stopped and the instruction that invoked power-down  
mode is the last instruction executed. The internal RAM and SFRs retain their value until the  
power-down mode is terminated. VCC can be lowered to save further power. Either a hardware  
reset or an external interrupt can cause an exit from power-down. To properly terminate power-  
down, the reset or external interrupt should not be executed before VCC is restored to its normal  
operating level and must be held active long enough for the oscillator to restart and stabilize.  
Only external interrupts INT0, INT1 and Keyboard Interrupts are useful to exit from power-down.  
Thus, the interrupt must be enabled and configured as level - or edge - sensitive interrupt input.  
When Keyboard Interrupt occurs after a power-down mode, 1024 clocks are necessary to exit to  
power-down mode and enter in operating mode.  
Holding the pin low restarts the oscillator but bringing the pin high completes the exit as detailed  
in Figure 14-1. When both interrupts are enabled, the oscillator restarts as soon as one of the  
two inputs is held low and power-down exit will be completed when the first input is released. In  
this case, the higher priority interrupt service routine is executed. Once the interrupt is serviced,  
the next instruction to be executed after RETI will be the one following the instruction that put  
AT8xc51Rx2 into power-down mode.  
56  
AT8xc51Rx2  
4113C–8051–01/08  
AT8xc51Rx2  
Figure 14-1. Power-down Exit Waveform  
INT0  
INT1  
XTAL  
Active Phase  
Power-down Phase OscillatoR Restart  
Active Phase  
Exit from power-down by reset redefines all the SFRs, exit from power-down by external inter-  
rupt does no affect the SFRs.  
Exit from power-down by either reset or external interrupt does not affect the internal RAM  
content.  
Note:  
If idle mode is activated with power-down mode (IDL and PD bits set), the exit sequence is  
unchanged, when execution is vectored to interrupt, PD and IDL bits are cleared and idle mode is  
not entered.  
Table 14-1 shows the state of ports during idle and power-down modes.  
Table 14-1. State of Ports  
Mode  
Program Memory  
ALE  
PSEN  
PORT0  
Port Data(1)  
Floating  
PORT1  
Port Data  
Port Data  
Port Data  
Port Data  
PORT2  
Port Data  
Address  
Port Data  
Port Data  
PORT3  
Port Data  
Port Data  
Port Data  
Port Data  
Idle  
Internal  
1
1
0
0
1
1
0
0
Idle  
External  
Power-down  
Power-down  
Internal  
Port Dat(1)  
Floating  
External  
Note:  
1. Port 0 can force a 0 level. A "one" will leave port floating.  
57  
4113C–8051–01/08  
15. Hardware Watchdog Timer  
The WDT is intended as a recovery method in situations where the CPU may be subjected to  
software upset. The WDT consists of a 14-bit counter and the WatchDog Timer Reset  
(WDTRST) SFR. The WDT is by default disabled from exiting reset. To enable the WDT, user  
must write 01EH and 0E1H in sequence to the WDTRST, SFR location 0A6H. When WDT is  
enabled, it will increment every machine cycle while the oscillator is running and there is no way  
to disable the WDT except through reset (either hardware reset or WDT overflow reset). When  
WDT overflows, it will drive an output RESET HIGH pulse at the RST-pin.  
15.1 Using the WDT  
To enable the WDT, user must write 01EH and 0E1H in sequence to the WDTRST, SFR loca-  
tion 0A6H. When WDT is enabled, the user needs to service it by writing to 01EH and 0E1H to  
WDTRST to avoid WDT overflow. The 14-bit counter overflows when it reaches 16383 (3FFFH)  
and this will reset the device. When WDT is enabled, it will increment every machine cycle while  
the oscillator is running. Therefore, the user must reset the WDT at least every 16383 machine  
cycles. To reset the WDT the user must write 01EH and 0E1H to WDTRST. WDTRST is a write  
only register. The WDT counter cannot be read or written. When WDT overflows, it will generate  
an output RESET pulse at the RST-pin. The RESET pulse duration is 96 x TCLK PERIPH, where  
TCLK PERIPH= 1/FCLK PERIPH. To make the best use of the WDT, it should be serviced in those sec-  
tions of code that will periodically be executed within the time required to prevent a WDT reset.  
To have a more powerful WDT, a 27 counter has been added to extend the Time-out capability,  
ranking from 16 ms to 2s @ Fosc = 12 MHz. To manage this feature, refer to WDTPRG register  
description, Table 15-1.  
Table 15-1. WDTRST Register  
WDTRST - Watchdog Reset Register (0A6h)  
7
-
6
-
5
-
4
-
3
-
2
-
1
-
0
-
Reset Value = XXXX XXXXb  
Write only, this SFR is used to reset/enable the WDT by writing 01EH then 0E1H in sequence.  
58  
AT8xc51Rx2  
4113C–8051–01/08  
AT8xc51Rx2  
Table 15-2. WDTPRG Register  
WDTPRG - Watchdog Timer Out Register (0A7h)  
7
-
6
-
5
-
4
-
3
-
2
1
0
S2  
S1  
S0  
Bit  
Bit  
Number  
Mnemonic Description  
7
6
5
4
3
2
1
0
-
-
Reserved  
-
The value read from this bit is undetermined. Do not try to set this bit.  
-
-
S2  
S1  
S0  
WDT Time-out select bit 2  
WDT Time-out select bit 1  
WDT Time-out select bit 0  
S2S1 S0Selected Time-out  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
(214 - 1) machine cycles, 16. 3 ms @ Fosc =12 MHz  
(215 - 1) machine cycles, 32.7 ms @ Fosc=12 MHz  
1
0 (216 - 1) machine cycles, 65. 5 ms @ Fosc=12 MHz  
1
(217 - 1) machine cycles, 131 ms @ Fosc=12 MHz  
(218 - 1) machine cycles, 262 ms @ Fosc=12 MHz  
0
1 (219 - 1) machine cycles, 542 ms @ Fosc=12 MHz  
0
1
(220 - 1) machine cycles, 1.05 s @ Fosc=12 MHz  
(221 - 1) machine cycles, 2.09 s @ Fosc=12 MHz  
Reset Value = XXXX X000  
15.2 WDT During Power-down and Idle  
In Power-down mode the oscillator stops, which means the WDT also stops. While in Power-  
down mode the user does not need to service the WDT. There are 2 methods of exiting Power-  
down mode: by a hardware reset or via a level activated external interrupt which is enabled prior  
to entering Power-down mode. When Power-down is exited with hardware reset, servicing the  
WDT should occur as normal, whenever the AT8xc51Rx2 is reset. Exiting Power-down with an  
interrupt is significantly different. The interrupt is held low long enough for the oscillator to stabi-  
lize. When the interrupt is brought high, the interrupt is serviced. To prevent the WDT from  
resetting the device while the interrupt pin is held low, the WDT is not started until the interrupt is  
pulled high. It is suggested that the WDT be reset during the interrupt service routine.  
To ensure that the WDT does not overflow within a few states of exiting of power-down, it is bet-  
ter to reset the WDT just before entering power-down.  
In the Idle mode, the oscillator continues to run. To prevent the WDT from resetting the  
AT8xc51Rx2 while in Idle mode, the user should always set up a timer that will periodically exit  
Idle, service the WDT, and re-enter Idle mode.  
59  
4113C–8051–01/08  
16. ROM  
16.1 ROM Structure  
The T89C51RB2/RC2 ROM memory is divided in two different arrays:  
• The code array:16/32K bytes.  
• The config byte: 1 byte.  
16.1.1  
Hardware Config Byte  
The config byte sets the starting microcontroller options and the security levels.  
The starting options are X2 mode, and XRAM.  
7
6
-
5
-
4
-
3
2
-
1
0
X2  
XRAM  
LB1  
LB0  
Bit  
Bit  
Number  
Mnemonic  
Description  
X2 Mode  
Cleared to force X2 mode (6 clocks per instruction)  
Set to force X1 mode, Standard Mode.  
7
X2  
6
5
4
-
-
-
Reserved  
Reserved  
Reserved  
XRAM config bit  
3
XRAM  
Set this bit to enable XRAM.  
Clear this bit to disable XRAM.  
2
-
Reserved  
User Program ROM Lock Bits  
see Table 16-1.  
1-0  
LB0-1  
16.2 ROM Lock System  
The program Lock system, when programmed, protects the on-chip program against software  
piracy.  
60  
AT8xc51Rx2  
4113C–8051–01/08  
AT8xc51Rx2  
16.2.1  
Program ROM Lock Bits  
Table 16-1. Program Lock bits  
Program Lock Bits  
Protection Description  
Security  
level  
LB0  
U
LB1  
U
1
2
No program lock features enabled.  
Reserved. Do not use.  
P
U
MOVC instruction executed from external program memory are disabled from  
fetching code bytes from internal memory, EA is sampled and latched on reset.  
Verify disable.  
3
U
P
Notes: 1. U: unprogrammed  
P: programmed  
2. The lock bits when programmed according to Table 16-1 will provide different level of protec-  
tion for the on-chip code and data.  
61  
4113C–8051–01/08  
17. Power-off Flag  
The Power-off flag allows the user to distinguish between a “cold start” reset and a “warm start”  
reset.  
A cold start reset is the one induced by VCC switch-on. A warm start reset occurs while VCC is still  
applied to the device and could be generated for example by an exit from power-down.  
The Power-off flag (POF) is located in PCON register (Table 17-1). POF is set by hardware  
when VCC rises from 0 to its nominal voltage. The POF can be set or cleared by software allow-  
ing the user to determine the type of reset.  
Table 17-1. PCON Register  
PCON - Power Control Register (87h)  
7
6
5
-
4
3
2
1
0
SMOD1  
SMOD0  
POF  
GF1  
GF0  
PD  
IDL  
Bit  
Bit  
Number  
Mnemonic Description  
Serial port Mode bit 1  
Set to select double baud rate in mode 1, 2 or 3.  
7
6
5
SMOD1  
SMOD0  
-
Serial port Mode bit 0  
Cleared to select SM0 bit in SCON register.  
Set to select FE bit in SCON register.  
Reserved  
The value read from this bit is indeterminate. Do not set this bit.  
Power-off Flag  
Cleared to recognize next reset type.  
Set by hardware when VCC rises from 0 to its nominal voltage. Can also be set by  
software.  
4
POF  
General purpose Flag  
3
2
1
0
GF1  
GF0  
PD  
Cleared by user for general purpose usage.  
Set by user for general purpose usage.  
General purpose Flag  
Cleared by user for general purpose usage.  
Set by user for general purpose usage.  
Power-down mode bit  
Cleared by hardware when reset occurs.  
Set to enter power-down mode.  
Idle mode bit  
IDL  
Cleared by hardware when interrupt or reset occurs.  
Set to enter idle mode.  
Reset Value = 00X1 0000b  
Not bit addressable  
62  
AT8xc51Rx2  
4113C–8051–01/08  
AT8xc51Rx2  
18. Reduced EMI Mode  
The ALE signal is used to demultiplex address and data buses on port 0 when used with exter-  
nal program or data memory. Nevertheless, during internal code execution, ALE signal is still  
generated. In order to reduce EMI, ALE signal can be disabled by setting AO bit.  
The AO bit is located in AUXR register at bit location 0. As soon as AO is set, ALE is no longer  
output but remains active during MOVX and MOVC instructions and external fetches. During  
ALE disabling, ALE pin is weakly pulled high.  
Table 18-1. AUXR Register  
AUXR - Auxiliary Register (8Eh)  
7
-
6
-
5
4
-
3
2
1
0
M0  
XRS1  
XRS0  
EXTRAM  
AO  
Bit  
Bit  
Number  
Mnemonic Description  
Reserved  
7
6
-
The value read from this bit is indeterminate. Do not set this bit  
Reserved  
-
The value read from this bit is indeterminate. Do not set this bit  
Pulse length  
Cleared to stretch MOVX control: the RD and the WR pulse length is 6 clock  
periods (default).  
5
M0  
Set to stretch MOVX control: the RD and the WR pulse length is 30 clock  
periods.  
Reserved  
4
3
-
The value read from this bit is indeterminate. Do not set this bit  
XRS1  
XRAM Size  
XRS1XRS0XRAM Size  
0
0
1
1
0256 bytes (default)  
1512 bytes  
2
XRS0  
0768 bytes  
11024 bytes  
EXTRAM bit  
Cleared to access internal XRAM using movx @ Ri/ @ DPTR.  
1
0
EXTRAM Set to access external memory.  
Programmed by hardware after Power-up regarding Hardware Security Byte  
(HSB), default setting, XRAM selected.  
ALE Output bit  
Cleared, ALE is emitted at a constant rate of 1/6 the oscillator frequency (or 1/3 if  
X2 mode is used) (default). Set, ALE is active only during a MOVX or MOVC  
instructione is used.  
AO  
63  
4113C–8051–01/08  
19.  
Electrical Characteristics  
Table 19-1. Absolute Maximum Ratings  
Note:  
Stresses at or above those listed under “Absolute  
Maximum Ratings” may cause permanent damage to  
the device. This is a stress rating only and functional  
operation of the device at these or any other condi-  
tions above those indicated in the operational sections  
of this specification is not implied. Exposure to abso-  
lute maximum rating conditions may affect device  
reliability.  
C = commercial......................................................0  
I = industrial ........................................................-40  
°
°
C to 70  
C to 85  
°
°
°
C
C
C
Storage Temperature.................................... -65°C to + 150  
Voltage on VCC to VSS (standard voltage).........-0.5V to + 6.5V  
Voltage on VCC to VSS (low voltage)..................-0.5V to + 4.5V  
Voltage on Any Pin to VSS..........................-0.5V to VCC + 0.5V  
Power Dissipation.............................................................. 1 W  
Power dissipation value is based on the maximum  
allowable die temperature and the thermal resistance  
of the package.  
19.1 DC Parameters for Standard Voltage  
TA = 0°C to +70°C; VSS = 0V; VCC = 4.5V to 5.5V; F = 10 to 40 MHz  
TA = -40°C to +85°C; VSS = 0V; VCC =4.5V to 5.5V; F = 10 to 40 MHz  
Symbol  
VIL  
Parameter  
Min  
-0.5  
Typ  
Max  
Unit  
V
Test Conditions  
Input Low Voltage  
0.2 VCC - 0.1  
VCC + 0.5  
VCC + 0.5  
VIH  
Input High Voltage except RST, XTAL1  
Input High Voltage RST, XTAL1  
0.2 VCC + 0.9  
0.7 VCC  
V
VIH1  
V
0.3  
0.45  
1.0  
V
V
V
IOL = 100 µ  
A(4)  
IOL = 1.6 mA(4)  
IOL = 3.5 mA(4)  
VOL  
Output Low Voltage, ports 1, 2, 3, 4 (6)  
0.3  
0.45  
1.0  
V
V
V
IOL = 200 µ  
A(4)  
IOL = 3.2 mA(4)  
IOL = 7.0 mA(4)  
VOL1  
Output Low Voltage, port 0, ALE, PSEN (6)  
IOH = -10  
IOH = -30  
IOH = -60  
µ
µ
µ
A
A
A
VCC - 0.3  
VCC - 0.7  
VCC - 1.5  
V
V
V
VOH  
Output High Voltage, ports 1, 2, 3, 4  
VCC = 5V 10%  
IOH = -200  
µ
A
VCC - 0.3  
VCC - 0.7  
VCC - 1.5  
V
V
V
IOH = -3.2 mA  
IOH = -7.0 mA  
VCC = 5V 10%  
VOH1  
Output High Voltage, port 0, ALE, PSEN  
RRST  
IIL  
RST Pull-down Resistor  
50  
200(5)  
250  
-50  
kΩ  
Logical 0 Input Current ports 1, 2, 3, 4 and 5  
Input Leakage Current  
µ
µ
µ
A
A
A
VIN = 0.45V  
ILI  
10  
0.45V < VIN < VCC  
VIN = 2.0 V  
ITL  
Logical 1 to 0 Transition Current, ports 1, 2, 3, 4  
-650  
Fc = 3 MHz  
CIO  
Capacitance of I/O Buffer  
10  
pF  
TA = 25°C  
IPD  
Power-down Current  
100  
150  
µ
A
4.5V < VCC < 5.5V(3)  
VCC = 5.5V(1)  
ICCOP  
ICCIDLE  
Power Supply Current on normal mode  
Power Supply Current on idle mode  
0.29 x Frequency (MHz) + 4  
0.16 x Frequency (MHz) + 4  
mA  
mA  
VCC = 5.5V(2)  
64  
AT8xc51Rx2  
4113C–8051–01/08  
AT8xc51Rx2  
19.2 DC Parameters for Standard Voltage (2)  
T
T
A
A
= 0°C to +70°C; VSS = 0 V; VCC = 2.7V to 5.5V; F = 10 to 40 MHz  
= -40°C to +85°C; VSS = 0 V; VCC = 2.7V to 5.5V; F = 10 to 40 MHz  
Symbol  
Parameter  
Min  
-0.5  
Typ(5)  
Max  
0.2 VCC - 0.1  
VCC + 0.5  
VCC + 0.5  
0.45  
Unit Test Conditions  
VIL  
VIH  
Input Low Voltage  
V
V
V
Input High Voltage except XTAL1, RST  
Input High Voltage, XTAL1, RST  
Output Low Voltage, ports 1, 2, 3, 4 and 5 (6)  
Output Low Voltage, port 0, ALE, PSEN (6)  
Output High Voltage, ports 1, 2, 3, 4 and 5  
Output High Voltage, port 0, ALE, PSEN  
Logical 0 Input Current ports 1, 2, 3, 4 and 5  
Input Leakage Current  
0.2 VCC + 0.9  
0.7 VCC  
VIH1  
VOL  
VOL1  
VOH  
VOH1  
IIL  
V
V
V
V
IOL = 0.8 mA(4)  
IOL = 1.6 mA(4)  
0.45  
0.9 VCC  
0.9 VCC  
IOH = -10  
IOH = -40  
µ
µ
A
A
-50  
10  
µ
A
A
VIN = 0.45V  
ILI  
µ
µ
0.45V < VIN < VCC  
Logical 1 to 0 Transition Current, ports 1, 2, 3, 4  
and 5  
ITL  
-650  
250  
10  
A
VIN = 2.0V  
RRST  
CIO  
RST Pulldown Resistor  
Capacitance of I/O Buffer  
50  
200  
120  
kΩ  
Fc = 3 MHz  
pF  
TA = 25°C  
IPD  
Power-down Current  
150  
µ
A
VCC =2.7V to 5.5V(3)  
VCC = 5.5V(1)  
ICCOP  
ICCIDLE  
Power Supply Current on normal mode  
Power Supply Current on idle mode  
0.29 x Frequency (MHz) + 4  
0.16 x Frequency (MHz) + 4  
mA  
mA  
VCC = 5.5V(2)  
65  
4113C–8051–01/08  
19.3 DC Parameters for Low Voltage  
T
T
A
A
= 0°C to +70°C; VSS = 0V; VCC = 2.7V to 3.6V; F = 10 to 40 MHz  
= -40°C to +85°C; VSS = 0V; VCC = 2.7V to 3.6V; F = 10 to 40 MHz  
Symbol  
Parameter  
Min  
-0.5  
Typ  
Max  
0.2 VCC - 0.1  
VCC + 0.5  
VCC + 0.5  
0.45  
Unit  
V
Test Conditions  
VIL  
VIH  
Input Low Voltage  
Input High Voltage except RST, XTAL1  
Input High Voltage, RST, XTAL1  
Output Low Voltage, ports 1, 2, 3, 4(6)  
Output Low Voltage, port 0, ALE, PSEN (6)  
Output High Voltage, ports 1, 2, 3, 4  
Output High Voltage, port 0, ALE, PSEN  
Logical 0 Input Current ports 1, 2, 3, 4  
Input Leakage Current  
0.2 VCC + 0.9  
0.7 VCC  
V
VIH1  
VOL  
VOL1  
VOH  
VOH1  
IIL  
V
V
IOL = 0.8 mA(4)  
IOL = 1.6 mA(4)  
0.45  
V
0.9 VCC  
0.9 VCC  
V
IOH = -10  
IOH = -40  
µ
µ
A
A
V
-50  
10  
µ
µ
µ
A
A
A
VIN = 0.45V  
ILI  
0.45V < VIN < VCC  
VIN = 2.0V  
ITL  
Logical 1 to 0 Transition Current, ports 1, 2, 3,  
RST Pulldown Resistor  
-650  
250  
RRST  
50  
200 (5)  
kΩ  
Fc = 3 MHz  
CIO  
IPD  
Capacitance of I/O Buffer  
Power-down Current  
10  
50  
pF  
TA = 25°C  
V
CC = 2.7V to  
10 (5)  
µA  
3.6V(3)  
ICCOP  
Power Supply Current on normal mode  
Power Supply Current on idle mode  
0.31 x Frequency (MHz) + 4  
0.2 x Frequency (MHz) + 4  
mA  
mA  
VCC = 3.6V(1)  
VCC = 3.6V(2)  
ICCIDLE  
Notes: 1. Operating ICC is measured with all output pins disconnected; XTAL1 driven with TCLCH, TCHCL = 5 ns (see Figure 19-4.),  
VIL = VSS + 0.5V,  
VIH = VCC - 0.5V; XTAL2 N.C.; EA = RST = Port 0 = VCC. ICC would be slightly higher if a crystal oscillator used (see Figure  
19-1).  
2. Idle ICC is measured with all output pins disconnected; XTAL1 driven with TCLCH, TCHCL = 5 ns, VIL = VSS + 0.5V,  
VIH = VCC - 0.5V; XTAL2 N.C; Port 0 = VCC; EA = RST = VSS (see Figure 19-2).  
3. Power-down ICC is measured with all output pins disconnected; EA = VSS, PORT 0 = VCC; XTAL2 NC.; RST = VSS (see Fig-  
ure 19-3).  
4. Capacitance loading on Ports 0 and 2 may cause spurious noise pulses to be superimposed on the VOLs of ALE and Ports 1  
and 3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins make 1 to 0  
transitions during bus operation. In the worst cases (capacitive loading 100pF), the noise pulse on the ALE line may exceed  
0.45V with maxi VOL peak 0.6V. A Schmitt Trigger use is not necessary.  
5. Typical are based on a limited number of samples and are not guaranteed. The values listed are at room temperature and  
5V.  
6. Under steady state (non-transient) conditions, IOL must be externally limited as follows:  
Maximum IOL per port pin: 10 mA  
Maximum IOL per 8-bit port:  
Port 0: 26 mA  
Ports 1, 2 and 3: 15 mA  
Maximum total IOL for all output pins: 71 mA  
If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current greater  
than the listed test conditions.  
7. For other values, please contact your sales office.  
66  
AT8xc51Rx2  
4113C–8051–01/08  
AT8xc51Rx2  
Figure 19-1. ICC Test Condition, Active Mode  
VCC  
ICC  
VCC  
VCC  
P0  
EA  
VCC  
RST  
XTAL2  
XTAL1  
(NC)  
CLOCK  
SIGNAL  
VSS  
All other pins are disconnected.  
Figure 19-2. ICC Test Condition, Idle Mode  
VCC  
ICC  
VCC  
VCC  
P0  
EA  
RST  
(NC)  
CLOCK  
SIGNAL  
XTAL2  
XTAL1  
VSS  
All other pins are disconnected.  
Figure 19-3. ICC Test Condition, Power-down Mode  
VCC  
ICC  
VCC  
VCC  
P0  
RST  
EA  
(NC)  
XTAL2  
XTAL1  
VSS  
All other pins are disconnected.  
Figure 19-4. Clock Signal Waveform for ICC Tests in Active and Idle Modes  
VCC-0.5V  
0.7VCC  
0.2VCC-0.1  
0.45V  
TCLCH  
TCHCL  
TCLCH = TCHCL = 5ns.  
67  
4113C–8051–01/08  
19.4 AC Parameters  
19.4.1  
Explanation of the AC Symbols  
Each timing symbol has 5 characters. The first character is always a “t” (stands for time). The  
other characters, depending on their positions, stand for the name of a signal or the logical sta-  
tus of that signal. The following is a list of all the characters and what they stand for.  
Example:TAVLL = Time for Address Valid to ALE Low.  
TLLPL = Time for ALE Low to PSEN Low.  
(Load Capacitance for port 0, ALE and PSEN = 100 pF; Load Capacitance for all other outputs =  
80 pF.)  
Table 19-1 Table 19-4, and Table 19-6 give the description of each AC symbols.  
Table 19-3, Table 19-5 and Table 19-7 give for each range the AC parameter.  
Table 19-2, Table 19-3 and Table 19-8 gives the frequency derating formula of the AC parame-  
ter for each speed range description. To calculate each AC symbols. take the x value in the  
correponding column (-M or -L) and use this value in the formula.  
Example: TLLIU for -M and 20 MHz, Standard clock.  
x = 35 ns  
T = 50 ns  
T
CCIV = 4T - x = 165 ns  
19.4.2  
External Program Memory Characteristics  
Table 19-2. Symbol Description  
Symbol  
T
Parameter  
Oscillator clock period  
TLHLL  
TAVLL  
TLLAX  
TLLIV  
TLLPL  
TPLPH  
TPLIV  
TPXIX  
TPXIZ  
TAVIV  
TPLAZ  
ALE pulse width  
Address Valid to ALE  
Address Hold After ALE  
ALE to Valid Instruction In  
ALE to PSEN  
PSEN Pulse Width  
PSEN to Valid Instruction In  
Input Instruction Hold After PSEN  
Input Instruction FloatAfter PSEN  
Address to Valid Instruction In  
PSEN Low to Address Float  
68  
AT8xc51Rx2  
4113C–8051–01/08  
AT8xc51Rx2  
Table 19-3. AC Parameters for a Fix Clock  
Symbol  
-M  
-L  
Units  
Min  
25  
35  
5
Max  
Min  
25  
35  
5
Max  
T
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TLHLL  
TAVLL  
TLLAX  
TLLIV  
TLLPL  
TPLPH  
TPLIV  
TPXIX  
TPXIZ  
TAVIV  
TPLAZ  
5
5
65  
30  
65  
30  
5
5
50  
50  
0
0
10  
80  
10  
10  
80  
10  
Table 19-4. AC Parameters for a Variable Clock  
Standard  
X Parameter for - X Parameter for  
Symbol  
TLHLL  
TAVLL  
TLLAX  
TLLIV  
Type  
Min  
Clock  
2 T - x  
T - x  
T - x  
4 T - x  
T - x  
3 T - x  
3 T - x  
x
X2 Clock  
T - x  
M Range  
-L Range  
Units  
15  
20  
20  
35  
15  
25  
45  
0
15  
20  
20  
35  
15  
25  
45  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Min  
0.5 T - x  
0.5 T - x  
2 T - x  
0.5 T - x  
1.5 T - x  
1.5 T - x  
x
Min  
Max  
Min  
TLLPL  
TPLPH  
TPLIV  
Min  
Max  
Min  
TPXIX  
TPXIZ  
TAVIV  
Max  
Max  
Max  
T - x  
5 T - x  
x
0.5 T - x  
2.5 T - x  
x
15  
45  
10  
15  
45  
10  
TPLAZ  
69  
4113C–8051–01/08  
19.4.3  
External Program Memory Read Cycle  
12 TCLCL  
TLHLL  
TLLIV  
TLLPL  
ALE  
PSEN  
TPLPH  
TPXAV  
TPXIZ  
TLLAX  
TAVLL  
TPLIV  
TPLAZ  
TPXIX  
INSTR IN  
PORT 0  
PORT 2  
INSTR IN  
A0-A7  
A0-A7  
INSTR IN  
TAVIV  
ADDRESS A8 - A15  
ADDRESS  
OR SFR-P2  
ADDRESS A8-A15  
19.4.4  
External Data Memory Characteristics  
Table 19-5. Symbol Description  
Symbol  
TRLRH  
TWLWH  
TRLDV  
TRHDX  
TRHDZ  
TLLDV  
Parameter  
RD Pulse Width  
WR Pulse Width  
RD to Valid Data In  
Data Hold After RD  
Data Float After RD  
ALE to Valid Data In  
Address to Valid Data In  
ALE to WR or RD  
Address to WR or RD  
TAVDV  
TLLWL  
TAVWL  
TQVWX  
TQVWH  
TWHQX  
TRLAZ  
Data Valid to WR Transition  
Data set-up to WR High  
Data Hold After WR  
RD Low to Address Float  
RD or WR High to ALE high  
TWHLH  
70  
AT8xc51Rx2  
4113C–8051–01/08  
AT8xc51Rx2  
Table 19-6. AC Parameters for a Fix Clock  
-M  
-L  
Symbol  
TRLRH  
TWLWH  
TRLDV  
TRHDX  
TRHDZ  
TLLDV  
Min  
125  
125  
Max  
Min  
125  
125  
Max  
Units  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
95  
95  
0
0
25  
25  
155  
160  
105  
155  
160  
105  
TAVDV  
TLLWL  
45  
70  
5
45  
70  
5
TAVWL  
TQVWX  
TQVWH  
TWHQX  
TRLAZ  
155  
10  
0
155  
10  
0
TWHLH  
5
45  
5
45  
71  
4113C–8051–01/08  
Standard  
Clock  
X parameter for - X parameter for -  
Symbol  
TRLRH  
TWLWH  
TRLDV  
TRHDX  
TRHDZ  
TLLDV  
Type  
Min  
Min  
Max  
Min  
Max  
Max  
Max  
Min  
Max  
Min  
Min  
Min  
Min  
Max  
Min  
Max  
X2 Clock  
3 T - x  
3 T - x  
2.5 T - x  
x
M range  
25  
25  
30  
0
L range  
25  
25  
30  
0
Units  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
6 T - x  
6 T - x  
5 T - x  
x
2 T - x  
8 T - x  
9 T - x  
3 T - x  
3 T + x  
4 T - x  
T - x  
T - x  
25  
45  
65  
30  
30  
30  
20  
20  
15  
0
25  
45  
65  
30  
30  
30  
20  
20  
15  
0
4T -x  
TAVDV  
TLLWL  
4.5 T - x  
1.5 T - x  
1.5 T + x  
2 T - x  
0.5 T - x  
3.5 T - x  
0.5 T - x  
x
TLLWL  
TAVWL  
TQVWX  
TQVWH  
TWHQX  
TRLAZ  
TWHLH  
TWHLH  
7 T - x  
T - x  
x
T - x  
0.5 T - x  
0.5 T + x  
20  
20  
20  
20  
T + x  
19.4.5  
External Data Memory Write Cycle  
TWHLH  
ALE  
PSEN  
WR  
TLLWL  
TWLWH  
TQVWX  
TWHQX  
TLLAX  
A0-A7  
TQVWH  
DATA OUT  
PORT 0  
PORT 2  
TAVWL  
ADDRESS  
OR SFR-P2  
ADDRESS A8 - A15 OR SFR P2  
72  
AT8xc51Rx2  
4113C–8051–01/08  
AT8xc51Rx2  
19.4.6  
External Data Memory Read Cycle  
TWHLH  
TLLDV  
ALE  
PSEN  
RD  
TLLWL  
TRLRH  
TRHDZ  
TAVDV  
TLLAX  
TRHDX  
DATA IN  
PORT 0  
PORT 2  
A0-A7  
TRLAZ  
TAVWL  
ADDRESS  
OR SFR-P2  
ADDRESS A8-A15 OR SFR P2  
19.4.7  
Serial Port Timing - Shift Register Mode  
Table 19-7. Symbol Description  
Symbol  
TXLXL  
Parameter  
Serial port clock cycle time  
TQVHX  
TXHQX  
TXHDX  
TXHDV  
Output data set-up to clock rising edge  
Output data hold after clock rising edge  
Input data hold after clock rising edge  
Clock rising edge to input data valid  
Table 19-8. AC Parameters for a Fix Clock  
-M  
-L  
Symbol  
TXLXL  
Min  
300  
200  
30  
Max  
Min  
300  
200  
30  
Max  
Units  
ns  
TQVHX  
TXHQX  
TXHDX  
TXHDV  
ns  
ns  
0
0
ns  
117  
117  
ns  
73  
4113C–8051–01/08  
Table 19-9. AC Parameters for a Variable Clock  
Standard  
Clock  
X Parameter for - X Parameter for -L  
Symbol  
TXLXL  
Type  
Min  
Min  
Min  
Min  
Max  
X2 Clock  
6 T  
M Range  
Range  
Units  
ns  
12 T  
10 T - x  
2 T - x  
x
TQVHX  
TXHQX  
TXHDX  
TXHDV  
5 T - x  
T - x  
50  
20  
0
50  
20  
0
ns  
ns  
x
ns  
10 T - x  
5 T- x  
133  
133  
ns  
19.4.8  
Shift Register Timing Waveforms  
0
1
2
3
4
5
6
7
8
INSTRUCTION  
ALE  
TXLXL  
CLOCK  
TXHQX  
1
TQVXH  
0
2
3
4
5
6
7
OUTPUT DATA  
TXHDX  
SET TI  
TXHDV  
WRITE to SBUF  
INPUT DATA  
VALID  
VALID  
VALID  
VALID  
VALID  
VALID  
VALID  
VALID  
SET RI  
CLEAR RI  
19.4.9  
External Clock Drive Waveforms  
VCC-0.5V  
0.45V  
0.7VCC  
0.2VCC-0.1  
TCHCX  
TCLCH  
TCLCX  
TCHCL  
TCLCL  
19.4.10 AC Testing Input/Output Waveforms  
VCC -0.5V  
0.45V  
0.2 VCC + 0.9  
0.2 VCC - 0.1  
INPUT/OUTPUT  
AC inputs during testing are driven at VCC - 0.5 for a logic “1” and 0.45V for a logic “0”. Timing  
measurement are made at VIH min for a logic “1” and VIL max for a logic “0”.  
74  
AT8xc51Rx2  
4113C–8051–01/08  
AT8xc51Rx2  
19.4.11 Float Waveforms  
FLOAT  
VLOAD  
VOH - 0.1 V  
VOL + 0.1 V  
VLOAD + 0.1 V  
LOAD - 0.1 V  
V
For timing purposes as port pin is no longer floating when a 100 mV changes from load voltage  
occurs and begins to float when a 100 mV change from the loaded VOH/VOL level occurs. IOL/IOH  
20 mA.  
19.4.12 Clock Waveforms  
Valid in normal clock mode. In X2 mode XTAL2 must be changed to XTAL2/2.  
75  
4113C–8051–01/08  
Figure 19-5. Internal Clock Signals  
STATE4  
STATE5  
STATE6  
P1 P2  
STATE1  
STATE2  
P1 P2  
STATE3  
P1 P2  
STATE4  
P1 P2  
STATE5  
P1 P2  
INTERNAL  
CLOCK  
P1 P2  
P1 P2  
P1  
P2  
XTAL2  
ALE  
THESE SIGNALS ARE NOT ACTIVATED DURING THE  
EXECUTION OF A MOVX INSTRUCTION  
EXTERNAL PROGRAM MEMORY FETCH  
PSEN  
P0  
DATA  
SAMPLED  
PCL OUT  
DATA  
SAMPLED  
PCL OUT  
DATA  
SAMPLED  
PCL OUT  
FLOAT  
FLOAT  
FLOAT  
P2 (EXT)  
INDICATES ADDRESS TRANSITIONS  
READ CYCLE  
RD  
PCL OUT (IF PROGRAM  
MEMORY IS EXTERNAL)  
DPL OR Rt OUT  
DATA  
SAMPLED  
P0  
FLOAT  
P2  
INDICATES DPH OR P2 SFR TO PCH TRANSITION  
WRITE CYCLE  
WR  
PCL OUT (EVEN IF PROGRAM  
MEMORY IS INTERNAL)  
DPL OR Rt OUT  
P0  
PCL OUT (IF PROGRAM  
MEMORY IS EXTERNAL)  
DATA OUT  
P2  
INDICATES DPH OR P2 SFR TO PCH TRANSITION  
PORT OPERATION  
MOV PORT SRC  
OLD DATA  
NEW DATA  
P0 PINS SAMPLED  
P0 PINS SAMPLED  
MOV DEST P0  
MOV DEST PORT (P1. P2. P3)  
(INCLUDES INTO. INT1. TO T1)  
P1, P2, P3 PINS SAMPLED  
RXD SAMPLED  
P1, P2, P3 PINS SAMPLED  
SERIAL PORT SHIFT CLOCK  
RXD SAMPLED  
TXD (MODE 0)  
This diagram indicates when signals are clocked internally. The time it takes the signals to propagate to the pins, however,  
ranges from 25 to 125 ns. This propagation delay is dependent on variables such as temperature and pin loading. Propa-  
gation also varies from output to output and component. Typically though (TA = 25°C fully loaded) RD and WR propagation  
delays are approximately 50 ns. The other signals are typically 85 ns. Propagation delays are incorporated in the AC  
specifications.  
76  
AT8xc51Rx2  
4113C–8051–01/08  
AT8xc51Rx2  
20. Ordering Information  
Table 20-1. Ordering Information  
Part Number  
Memory Size  
Supply Voltage  
Package  
Temperature Range  
Packing  
AT80C51RD2-3CSCM  
AT80C51RD2-3CSIM  
AT80C51RD2-SLSCM  
AT80C51RD2-SLSIM  
AT80C51RD2-RLTIM  
AT80C51RD2-3CSUM  
AT80C51RD2-SLSUM  
AT80C51RD2-RLTUM  
AT80C51RD2-SLSIL  
AT80C51RD2-RLTIL  
AT80C51RD2-SLSUL  
AT80C51RD2-RLTUL  
Not Recommended Use AT87C51RD12  
77  
4113C–8051–01/08  
Table 20-1. Ordering Information (Continued)  
Part Number  
Memory Size  
Supply Voltage  
Package  
PDIL40  
Temperature Range  
Commercial  
Packing  
Stick  
Stick  
Stick  
Stick  
Tray  
AT83C51RB2xxx-3CSCM  
AT83C51RB2xxx-3CSIM  
AT83C51RB2xxx-SLSCM  
AT83C51RB2xxx-SLSIM  
AT83C51RB2xxx-RLTIM  
AT83C51RB2xxx-3CSUM  
AT83C51RB2xxx-SLSUM  
AT83C51RB2xxx-RLTUM  
AT83C51RC2xxx-3CSUM  
AT83C51RC2xxx-SLSUM  
AT83C51RC2xxx-RLTUM  
AT83C51RB2xxx-SLSIL  
AT83C51RB2xxx-RLTIL  
AT83C51RB2xxx-SLSUL  
AT83C51RB2xxx-RLTUL  
PDIL40  
Industrial  
PLCC44  
PLCC44  
VQFP44  
PDIL40  
Commercial  
Industrial  
Industrial  
5V  
Industrial & Green  
Industrial & Green  
Industrial & Green  
Industrial & Green  
Industrial & Green  
Industrial & Green  
Industrial  
Stick  
Stick  
Tray  
PLCC44  
VQFP44  
PDIL40  
16K bytes  
Stick  
Stick  
Tray  
PLCC44  
VQFP44  
PLCC44  
VQFP44  
PLCC44  
VQFP44  
Stick  
Tray  
Industrial  
3V  
Industrial & Green  
Industrial & Green  
Stick  
Tray  
Part Number  
Memory Size  
Supply Voltage  
Package  
PDIL40  
Temperature Range  
Commercial  
Industrial  
Packing  
Stick  
Stick  
Stick  
Stick  
Tray  
AT83C51RC2xxx-3CSCM  
AT83C51RC2xxx-3CSIM  
AT83C51RC2xxx-SLSCM  
AT83C51RC2xxx-SLSIM  
AT83C51RC2xxx-RLTIM  
AT83C51RC2xxx-RLTIL  
AT83C51RC2xxx-SLSIL  
AT83C51RC2xxx-RLTUL  
AT83C51RC2xxx-SLSUL  
PDIL40  
5V  
PLCC44  
PLCC44  
VQFP44  
VQFP44  
PLCC44  
VQFP44  
PLCC44  
Commercial  
Industrial  
32K bytes  
Industrial  
Industrial  
Tray  
Industrial  
Stick  
Tray  
3V  
Industrial & Green  
Industrial & Green  
Stick  
78  
AT8xc51Rx2  
4113C–8051–01/08  
AT8xc51Rx2  
21. Package Information  
21.1 PDIL40  
79  
4113C–8051–01/08  
AT8xc51Rx2  
STANDARD NOTES FOR PLASTIC D.I.L  
1/ CONTROLLING DIMENSIONS : INCHES  
2/ DIMENSIONING AND TOLERANCING PER ANSI Y 14.5M - 1982.  
3/ DIMENSIONS "A./A1" AND L ARE MEASURED WITH THE PACKAGE SEATED  
IN JEDEC SEATING PLANE GAUGE GS-3.  
4/ "D AND E1" DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTUSIONS.  
MOLD FLASH OR PROTUSIONS SHALL NOT EXCEED .010 INCH (0.25 mm).  
5/ "E AND eA" MEASURED WITH THE LEADS CONSTRAINED TO BE PERPENDIC-  
ULAR TO THE BASE PLANE.  
6/ "eB" IS MEASURED AT THE LEAD TIPS WITH THE LEADS INCONSTRAINED.  
7/ CORNER LEADS MAY BE CONFIGURED AS SHOWN IN FIGURE 2.  
81  
4113C–8051–01/08  
21.2 PLCC44  
82  
AT8xc51Rx2  
4113C–8051–01/08  
STANDARD NOTES FOR PLCC  
1/ CONTROLLING DIMENSIONS : INCHES  
2/ DIMENSIONING AND TOLERANCING PER ANSI Y 14.5M - 1982.  
3/ "D" AND "E1" DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTUSIONS.  
MOLD FLASH OR PROTUSIONS SHALL NOT EXCEED 0.20 mm (.008 INCH) PER  
SIDE.  
84  
AT8xc51Rx2  
4113C–8051–01/08  
AT8xc51Rx2  
21.3 VQFP44  
85  
4113C–8051–01/08  
AT8xc51Rx2  
STANDARD NOTES FOR PQFP/ VQFP / TQFP / DQFP  
1/ CONTROLLING DIMENSIONS : INCHES  
2/ ALL DIMENSIONING AND TOLERANCING CONFORM TO ANSI Y 14.5M -  
1982.  
3/ "D1 AND E1" DIMENSIONS DO NOT INCLUDE MOLD PROTUSIONS.  
MOLD PROTUSIONS SHALL NOT EXCEED 0.25 mm (0.010 INCH).  
THE TOP PACKAGE BODY SIZE MAY BE SMALLER THAN THE BOTTOM  
PACKAGE BODY SIZE BY AS MUCH AS 0.15 mm.  
4/ DATUM PLANE "H" LOCATED AT MOLD PARTING LINE AND  
COINCIDENT WITH LEAD, WHERE LEAD EXITS PLASTIC BODY AT  
BOTTOM OF PARTING LINE.  
5/ DATUM "A" AND "D" TO BE DETERMINED AT DATUM PLANE H.  
6/ DIMENSION " f " DOES NOT INCLUDE DAMBAR PROTUSION ALLOWABLE  
DAMBAR PROTUSION SHALL BE 0.08mm/.003" TOTAL IN EXCESS OF THE  
" f " DIMENSION AT MAXIMUM MATERIAL CONDITION .  
DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT.  
87  
4113C–8051–01/08  
22. Datasheet Change Log  
22.1 Changes from 4113A - 09/02 to 4113B -03/05  
1. Added Green product ordering information.  
22.2 Changes from 4113B -03/05 to 4113C -01/08  
1. Removed AT80C51RD2 product offering Table 20-1 on page 77.  
2. Updated Package Drawings.  
88  
AT8xc51Rx2  
4113C–8051–01/08  
Headquarters  
International  
Atmel Corporation  
2325 Orchard Parkway  
San Jose, CA 95131  
USA  
Atmel Asia  
Room 1219  
Atmel Europe  
Le Krebs  
Atmel Japan  
9F, Tonetsu Shinkawa Bldg.  
1-24-8 Shinkawa  
Chinachem Golden Plaza  
77 Mody Road Tsimshatsui  
East Kowloon  
8, Rue Jean-Pierre Timbaud  
BP 309  
Chuo-ku, Tokyo 104-0033  
Japan  
Tel: 1(408) 441-0311  
Fax: 1(408) 487-2600  
78054 Saint-Quentin-en-  
Yvelines Cedex  
France  
Hong Kong  
Tel: (852) 2721-9778  
Fax: (852) 2722-1369  
Tel: (81) 3-3523-3551  
Fax: (81) 3-3523-7581  
Tel: (33) 1-30-60-70-00  
Fax: (33) 1-30-60-71-11  
Product Contact  
Web Site  
www.atmel.com  
Technical Support  
Enter Product Line E-mail  
Sales Contact  
www.atmel.com/contacts  
Literature Requests  
www.atmel.com/literature  
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any  
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDI-  
TIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY  
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR  
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-  
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT  
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no  
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications  
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided  
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use  
as components in applications intended to support or sustain life.  
© 2008 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, and others are registered trademarks or trademarks of  
Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.  
4113C–8051–01/08  

相关型号:

AT80C51RD2_09

80C51 High Performance ROM 8-bit Microcontroller
ATMEL

AT80C51RD2_14

During UART Reception, Clearing REN May Generate Unexpected IT
ATMEL

AT80C51SND1C

Single-Chip Flash Microcontroller with MP3 Decoder and Human Interface
ATMEL

AT80C51SND1C-7HTIL

Single-Chip Flash Microcontroller with MP3 Decoder and Guman Interface
ATMEL

AT80C51SND1C-7HTJL

Single-Chip Flash Microcontroller with MP3 Decoder and Human Interface
ATMEL

AT80C51SND1C-DDV

Single-Chip Flash Microcontroller with MP3 Decoder and Guman Interface
ATMEL

AT80C51SND1C-ROTIL

Single-Chip Flash Microcontroller with MP3 Decoder and Guman Interface
ATMEL

AT80C51SND1C-ROTUL

Single-Chip Flash Microcontroller with MP3 Decoder and Human Interface
ATMEL

AT80C51UFXXX25

Microcontroller, 8-Bit, MROM, 8051 CPU, 25MHz, CMOS, PQFP44,
TEMIC

AT80C51UFXXX30

Microcontroller, 8-Bit, MROM, 8051 CPU, 30MHz, CMOS, PQFP44,
TEMIC

AT80C51UFXXX36

Microcontroller, 8-Bit, MROM, 8051 CPU, 36MHz, CMOS, PQFP44,
TEMIC

AT80C51UXXX25

Microcontroller, 8-Bit, MROM, 8051 CPU, 25MHz, CMOS, PQFP44,
TEMIC