AT80C51SND1C-ROTUL [ATMEL]

Single-Chip Flash Microcontroller with MP3 Decoder and Human Interface; 单芯片闪存微控制器与MP3解码器和人机接口
AT80C51SND1C-ROTUL
型号: AT80C51SND1C-ROTUL
厂家: ATMEL    ATMEL
描述:

Single-Chip Flash Microcontroller with MP3 Decoder and Human Interface
单芯片闪存微控制器与MP3解码器和人机接口

解码器 闪存 微控制器
文件: 总42页 (文件大小:404K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Features  
MPEG I/II-Layer 3 Hardwired Decoder  
– Stand-alone MP3 Decoder  
– 48, 44.1, 32, 24, 22.05, 16 kHz Sampling Frequency  
– Separated Digital Volume Control on Left and Right Channels (Software Control  
using 31 Steps)  
– Bass, Medium, and Treble Control (31 Steps)  
– Bass Boost Sound Effect  
– Ancillary Data Extraction  
– CRC Error and MPEG Frame Synchronization Indicators  
Programmable Audio Output for Interfacing with Common Audio DAC  
– PCM Format Compatible  
Single-Chip  
Flash  
Microcontroller  
with MP3  
Decoder and  
Human  
Interface  
– I2S Format Compatible  
8-bit MCU C51 Core Based (FMAX = 20 MHz)  
2304 Bytes of Internal RAM  
64K Bytes of Code Memory  
– AT89C51SND1C: Flash (100K Erase/Write Cycles)  
– AT83SND1C: ROM  
4K Bytes of Boot Flash Memory (AT89C51SND1C)  
– ISP: Download from USB (standard) or UART (option)  
External Code Memory  
– AT80C51SND1C: ROMless  
USB Rev 1.1 Controller  
– Full Speed Data Transmission  
Built-in PLL  
– MP3 Audio Clocks  
– USB Clock  
MultiMedia Card® Interface Compatibility  
Atmel DataFlash® SPI Interface Compatibility  
IDE/ATAPI Interface  
2 Channels 10-bit ADC, 8 kHz (8-true bit)  
– Battery Voltage Monitoring  
– Voice Recording Controlled by Software  
Up to 44 Bits of General-purpose I/Os  
– 4-bit Interrupt Keyboard Port for a 4 x n Matrix  
– SmartMedia® Software Interface  
2 Standard 16-bit Timers/Counters  
Hardware Watchdog Timer  
AT83SND1C  
AT89C51SND1C  
AT80C51SND1C  
Standard Full Duplex UART with Baud Rate Generator  
Two Wire Master and Slave Modes Controller  
SPI Master and Slave Modes Controller  
Power Management  
– Power-on Reset  
– Software Programmable MCU Clock  
– Idle Mode, Power-down Mode  
Operating Conditions:  
– 3V, 10%, 25 mA Typical Operating at 25°C  
– Temperature Range: -40°C to +85°C  
Packages  
– TQFP80, BGA81, PLCC84 (Development Board)  
– Dice  
4109JS–8051–10/06  
1. Description  
The AT8xC51SND1C are fully integrated stand-alone hardwired MPEG I/II-Layer 3 decoder with  
a C51 microcontroller core handling data flow and MP3-player control.  
The AT89C51SND1C includes 64K Bytes of Flash memory and allows In-System Programming  
through an embedded 4K Bytes of Boot Flash memory.  
The AT83SND1C includes 64K Bytes of ROM memory.  
The AT80C51SND1C does not include any code memory.  
The AT8xC51SND1C include 2304 Bytes of RAM memory.  
The AT8xC51SND1C provides the necessary features for human interface like timers, keyboard  
port, serial or parallel interface (USB, TWI, SPI, IDE), ADC input, I2S output, and all external  
memory interface (NAND or NOR Flash, SmartMedia, MultiMedia, DataFlash cards).  
2. Typical Applications  
MP3-Player  
PDA, Camera, Mobile Phone MP3  
Car Audio/Multimedia MP3  
Home Audio/Multimedia MP3  
3. Block Diagram  
Figure 3-1. AT8xC51SND1C Block Diagram  
INT0  
3
INT1  
3
VDD VSS UVDD UVSS AVDD AVSS AREF AIN1:0 TXD RXD  
T0  
T1  
SS MISO MOSI SCK SCL SDA  
3
3
3
3
4
4
4
4
1
1
Interrupt  
Handler Unit  
Flash  
ROM  
UART  
and  
BRG  
RAM  
2304 Bytes  
10-bit A to D  
Converter  
Timers 0/1  
Watchdog  
SPI/DataFlash  
Controller  
TWI  
Controller  
64 KBytes  
Flash Boot  
4 KBytes  
8-Bit Internal Bus  
C51 (X2 Core)  
I/O  
Ports  
MP3 Decoder  
Unit  
I2S/PCM  
Audio Interface  
USB  
Controller  
Keyboard  
Interface  
MMC  
Interface  
IDE  
Clock and PLL  
Unit  
Interface  
1
FILT  
X1 X2  
RST  
ISP  
ALE  
DOUT DCLK DSEL SCLK D+ D-  
MCLK MDAT MCMD  
KIN3:0  
P0-P5  
1 Alternate function of Port 1  
3 Alternate function of Port 3  
4 Alternate function of Port 4  
2
AT8xC51SND1C  
4109JS–8051–10/06  
AT8xC51SND1C  
4. Pin Description  
4.1  
Pinouts  
Figure 4-1. AT8xC51SND1C 80-pin QFP Package  
ALE  
ISP1/PSEN2/NC  
P1.0/KIN0  
P1.1/KIN1  
P1.2/KIN2  
P1.3/KIN3  
P1.4  
1
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
P4.5  
2
P4.4  
3
P2.2/A10  
P2.3/A11  
P2.4/A12  
P2.5/A13  
P2.6/A14  
P2.7/A15  
VSS  
4
5
6
7
P1.5  
8
P1.6/SCL  
P1.7/SDA  
VDD  
9
AT89C51SND1C-RO (FLASH)  
AT83SND1C-RO (ROM)  
AT80C51SND1C-RO (ROMLESS)  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
VDD  
MCLK  
MDAT  
MCMD  
RST  
PVDD  
FILT  
PVSS  
VSS  
SCLK  
X2  
DSEL  
X1  
DCLK  
DOUT  
VSS  
TST  
UVDD  
UVSS  
VDD  
Notes: 1. ISP pin is only available in AT89C51SND1C product.  
Do not connect this pin on AT83SND1C product.  
2. PSEN pin is only available in AT80C51SND1C product.  
3
4109JS–8051–10/06  
Figure 4-2. AT8xC51SND1C 81-pin BGA Package  
9
8
7
6
5
4
3
2
1
P2.0/  
A8  
P4.0/  
MISO  
P4.2/  
SCK  
P0.2/  
AD2  
P0.3/  
AD3  
P4.6  
VDD  
P5.0  
ALE  
A
ISP1/  
PSEN2  
NC  
P4.1/  
MOSI  
P4.3/  
SS  
P0.1/  
AD1  
P0.4/  
AD4  
P0.0/  
AD0  
P4.4  
P4.7  
P1.1  
B
C
P2.5/  
A13  
P2.2/  
A10  
P2.1/  
A9  
P1.0/  
KIN0  
P1.3/  
KIN3  
P1.2/  
KIN2  
P0.6  
VSS  
P5.1  
P2.4/  
A12  
P2.6/  
A14  
P0.7/  
AD7  
P0.5/  
AD5  
P1.6/  
SCL  
P1.7/  
SDA  
P4.5  
VSS  
P1.5  
X1  
P1.4  
VDD  
X2  
D
E
F
P2.3/  
A11  
P2.7/  
A15  
VDD  
RST  
FILT  
PVDD  
UVSS  
VDD  
P3.4/  
T0  
MCMD  
SCLK  
VSS  
MCLK  
DOUT  
AIN1  
MDAT  
P5.3  
AVDD  
PVSS  
TST  
D-  
P3.7/  
RD  
P3.5/  
T1  
DSEL  
DCLK  
VDD  
VSS  
UVDD  
D+  
G
H
J
P3.3/  
INT1  
P3.1/  
TXD  
AVSS  
AREFN  
AIN0  
P3.6/  
WR  
P3.2/  
INT0  
P3.0/  
RXD  
P5.2  
AREFP  
VSS  
Notes: 1. ISP pin is only available in AT89C51SND1C product.  
Do not connect this pin on AT83SND1C and AT80C51SND1C product.  
2. PSEN pin is only available in AT80C51SND1C product.  
4
AT8xC51SND1C  
4109JS–8051–10/06  
AT8xC51SND1C  
Figure 4-3. AT8xC51SND1C 84-pin PLCC Package  
ALE 12  
ISP 13  
74 NC  
73 P4.5  
P1.0/KIN0 14  
P1.1/KIN1 15  
P1.2/KIN2 16  
P1.3/KIN3 17  
P1.4 18  
72 P4.4  
71 P2.2/A10  
70 P2.3/A11  
69 P2.4/A12  
68 P2.5/A13  
67 P2.6/A14  
66 P2.7/A15  
65 VSS  
P1.5 19  
P1.6/SCL 20  
P1.7/SDA 21  
AT89C51SND1C-SR (FLASH)  
VDD 22  
PAVDD 23  
FILT 24  
PAVSS 25  
VSS 26  
X2 27  
64 VDD  
63 MCLK  
62 MDAT  
61 MCMD  
60 RST  
59 SCLK  
58 DSEL  
57 DCLK  
56 DOUT  
55 VSS  
NC 28  
X1 29  
TST 30  
UVDD 31  
UVSS 32  
54 VDD  
4.2  
Signals  
All the AT8xC51SND1C signals are detailed by functionality in Table 1 to Table 14.  
Table 1. Ports Signal Description  
Signal  
Name  
Alternate  
Function  
Type  
Description  
Port 0  
P0 is an 8-bit open-drain bidirectional I/O port. Port 0 pins that have 1s  
written to them float and can be used as high impedance inputs. To  
avoid any parasitic current consumption, floating P0 inputs must be  
P0.7:0  
I/O  
AD7:0  
polarized to VDD or VSS  
.
KIN3:0  
SCL  
SDA  
Port 1  
P1.7:0  
P2.7:0  
I/O  
I/O  
P1 is an 8-bit bidirectional I/O port with internal pull-ups.  
Port 2  
A15:8  
P2 is an 8-bit bidirectional I/O port with internal pull-ups.  
5
4109JS–8051–10/06  
Signal  
Name  
Alternate  
Function  
Type  
Description  
RXD  
TXD  
INT0  
INT1  
T0  
Port 3  
P3.7:0  
I/O  
P3 is an 8-bit bidirectional I/O port with internal pull-ups.  
T1  
WR  
RD  
MISO  
MOSI  
SCK  
SS  
Port 4  
P4.7:0  
P5.3:0  
I/O  
I/O  
P4 is an 8-bit bidirectional I/O port with internal pull-ups.  
Port 5  
-
P5 is a 4-bit bidirectional I/O port with internal pull-ups.  
Table 2. Clock Signal Description  
Signal  
Name  
Alternate  
Function  
Type  
Description  
Input to the on-chip inverting oscillator amplifier  
To use the internal oscillator, a crystal/resonator circuit is connected to  
this pin. If an external oscillator is used, its output is connected to this  
pin. X1 is the clock source for internal timing.  
X1  
I
-
Output of the on-chip inverting oscillator amplifier  
X2  
O
I
To use the internal oscillator, a crystal/resonator circuit is connected to  
this pin. If an external oscillator is used, leave X2 unconnected.  
-
-
PLL Low Pass Filter input  
FILT receives the RC network of the PLL low pass filter.  
FILT  
Table 3. Timer 0 and Timer 1 Signal Description  
Signal  
Name  
Alternate  
Function  
Type  
Description  
Timer 0 Gate Input  
INT0 serves as external run control for timer 0, when selected by  
GATE0 bit in TCON register.  
INT0  
I
P3.2  
External Interrupt 0  
INT0 input sets IE0 in the TCON register. If bit IT0 in this register is set,  
bit IE0 is set by a falling edge on INT0. If bit IT0 is cleared, bit IE0 is set  
by a low level on INT0.  
Timer 1 Gate Input  
INT1 serves as external run control for timer 1, when selected by  
GATE1 bit in TCON register.  
INT1  
I
P3.3  
External Interrupt 1  
INT1 input sets IE1 in the TCON register. If bit IT1 in this register is set,  
bit IE1 is set by a falling edge on INT1. If bit IT1 is cleared, bit IE1 is set  
by a low level on INT1.  
6
AT8xC51SND1C  
4109JS–8051–10/06  
AT8xC51SND1C  
Signal  
Name  
Alternate  
Function  
Type  
Description  
Timer 0 External Clock Input  
T0  
T1  
I
When timer 0 operates as a counter, a falling edge on the T0 pin  
increments the count.  
P3.4  
P3.5  
Timer 1 External Clock Input  
When timer 1 operates as a counter, a falling edge on the T1 pin  
increments the count.  
I
Table 4. Audio Interface Signal Description  
Signal  
Alternate  
Function  
Name  
DCLK  
DOUT  
Type  
O
Description  
DAC Data Bit Clock  
DAC Audio Data  
-
-
O
DAC Channel Select Signal  
DSEL is the sample rate clock output.  
DSEL  
SCLK  
O
O
-
-
DAC System Clock  
SCLK is the oversampling clock synchronized to the digital audio data  
(DOUT) and the channel selection signal (DSEL).  
Table 5. USB Controller Signal Description  
Signal  
Name  
Alternate  
Function  
Type  
I/O  
Description  
USB Positive Data Upstream Port  
This pin requires an external 1.5 KΩ pull-up to VDD for full speed  
operation.  
D+  
-
-
D-  
I/O  
USB Negative Data Upstream Port  
Table 6. MutiMediaCard Interface Signal Description  
Signal  
Name  
Alternate  
Function  
Type  
Description  
MMC Clock output  
Data or command clock transfer.  
MCLK  
O
-
MMC Command line  
Bidirectional command channel used for card initialization and data  
transfer commands. To avoid any parasitic current consumption,  
MCMD  
MDAT  
I/O  
I/O  
-
unused MCMD input must be polarized to VDD or VSS  
.
MMC Data line  
Bidirectional data channel. To avoid any parasitic current consumption,  
unused MDAT input must be polarized to VDD or VSS  
-
.
7
4109JS–8051–10/06  
Table 7. UART Signal Description  
Signal  
Name  
Alternate  
Function  
Type  
Description  
Receive Serial Data  
RXD  
I/O  
RXD sends and receives data in serial I/O mode 0 and receives data in  
serial I/O modes 1, 2 and 3.  
P3.0  
P3.1  
Transmit Serial Data  
TXD outputs the shift clock in serial I/O mode 0 and transmits data in  
serial I/O modes 1, 2 and 3.  
TXD  
O
Table 8. SPI Controller Signal Description  
Signal  
Name  
Alternate  
Function  
Type  
Description  
SPI Master Input Slave Output Data Line  
MISO  
I/O  
When in master mode, MISO receives data from the slave peripheral.  
When in slave mode, MISO outputs data to the master controller.  
P4.0  
P4.1  
SPI Master Output Slave Input Data Line  
When in master mode, MOSI outputs data to the slave peripheral.  
When in slave mode, MOSI receives data from the master controller.  
MOSI  
I/O  
SPI Clock Line  
SCK  
SS  
I/O  
I
When in master mode, SCK outputs clock to the slave peripheral. When  
in slave mode, SCK receives clock from the master controller.  
P4.2  
P4.3  
SPI Slave Select Line  
When in controlled slave mode, SS enables the slave mode.  
Table 9. TWI Controller Signal Description  
Signal  
Name  
Alternate  
Function  
Type  
Description  
TWI Serial Clock  
When TWI controller is in master mode, SCL outputs the serial clock to  
the slave peripherals. When TWI controller is in slave mode, SCL  
receives clock from the master controller.  
SCL  
I/O  
P1.6  
P1.7  
TWI Serial Data  
SDA is the bidirectional Two Wire data line.  
SDA  
I/O  
Table 10. A/D Converter Signal Description  
Signal  
Alternate  
Function  
Name  
AIN1:0  
AREFP  
Type  
Description  
I
I
A/D Converter Analog Inputs  
Analog Positive Voltage Reference Input  
-
-
Analog Negative Voltage Reference Input  
This pin is internally connected to AVSS.  
AREFN  
I
-
8
AT8xC51SND1C  
4109JS–8051–10/06  
AT8xC51SND1C  
Table 11. Keypad Interface Signal Description  
Signal  
Name  
Alternate  
Function  
Type  
Description  
Keypad Input Lines  
KIN3:0  
I
Holding one of these pins high or low for 24 oscillator periods triggers a  
keypad interrupt.  
P1.3:0  
Table 12. External Access Signal Description  
Signal  
Name  
Alternate  
Function  
Type  
Description  
Address Lines  
A15:8  
I/O  
Upper address lines for the external bus.  
Multiplexed higher address and data lines for the IDE interface.  
P2.7:0  
P0.7:0  
Address/Data Lines  
Multiplexed lower address and data lines for the external memory or the  
IDE interface.  
AD7:0  
ALE  
I/O  
O
Address Latch Enable Output  
ALE signals the start of an external bus cycle and indicates that valid  
address information is available on lines A7:0. An external latch is used  
to demultiplex the address from address/data bus.  
-
Program Store Enable Output (AT80C51SND1C Only)  
This signal is active low during external code fetch or external code  
read (MOVC instruction).  
PSEN  
ISP  
I/O  
I/O  
-
-
ISP Enable Input (AT89C51SND1C Only)  
This signal must be held to GND through a pull-down resistor at the  
falling reset to force execution of the internal bootloader.  
Read Signal  
RD  
O
O
P3.7  
P3.6  
Read signal asserted during external data memory read operation.  
Write Signal  
WR  
Write signal asserted during external data memory write operation.  
External Access Enable (Dice Only)  
EA must be externally held low to enable the device to fetch code from  
external program memory locations 0000h to FFFFh.  
EA(1)(2)  
I
-
Notes: 1. For ROM/Flash Dice product versions: pad EA must be connected to VCC.  
2. For ROMless Dice product versions: pad EA must be connected to VSS.  
Table 13. System Signal Description  
Signal  
Name  
Alternate  
Function  
Type  
Description  
Reset Input  
Holding this pin high for 64 oscillator periods while the oscillator is  
running resets the device. The Port pins are driven to their reset  
conditions when a voltage lower than VIL is applied, whether or not the  
oscillator is running.  
RST  
I
-
This pin has an internal pull-down resistor which allows the device to be  
reset by connecting a capacitor between this pin and VDD  
.
Asserting RST when the chip is in Idle mode or Power-Down mode  
returns the chip to normal operation.  
Test Input  
TST  
I
-
Test mode entry signal. This pin must be set to VDD  
.
9
4109JS–8051–10/06  
Table 14. Power Signal Description  
Signal  
Name  
Alternate  
Function  
Type  
Description  
Digital Supply Voltage  
Connect these pins to +3V supply voltage.  
VDD  
PWR  
-
-
-
-
-
-
-
-
Circuit Ground  
Connect these pins to ground.  
VSS  
GND  
PWR  
GND  
PWR  
GND  
PWR  
GND  
Analog Supply Voltage  
Connect this pin to +3V supply voltage.  
AVDD  
AVSS  
PVDD  
PVSS  
UVDD  
UVSS  
Analog Ground  
Connect this pin to ground.  
PLL Supply voltage  
Connect this pin to +3V supply voltage.  
PLL Circuit Ground  
Connect this pin to ground.  
USB Supply Voltage  
Connect this pin to +3V supply voltage.  
USB Ground  
Connect this pin to ground.  
10  
AT8xC51SND1C  
4109JS–8051–10/06  
AT8xC51SND1C  
4.3  
Internal Pin Structure  
Table 15. Detailed Internal Pin Structure  
Circuit(1)  
Type  
Pins  
VDD  
Input  
TST  
VDD  
Watchdog Output  
P
Input/Output  
RST  
VSS  
VDD  
VDD  
VDD  
2 osc  
periods  
P1(2)  
P2(3)  
P3  
Latch Output  
P1  
P2  
P3  
Input/Output  
P4  
N
P53:0  
VSS  
VDD  
P0  
P
MCMD  
MDAT  
Input/Output  
ISP  
N
PSEN  
VSS  
VDD  
ALE  
SCLK  
DCLK  
P
Output  
DOUT  
DSEL  
MCLK  
N
VSS  
D+  
D-  
Input/Output  
D+  
D-  
Notes: 1. For information on resistors value, input/output levels, and drive capability, refer to the  
Section “DC Characteristics”, page 180.  
2. When the Two Wire controller is enabled, P1, P2, and P3 transistors are disabled allowing  
pseudo open-drain structure.  
3. In Port 2, P1 transistor is continuously driven when outputting a high level bit address (A15:8).  
11  
4109JS–8051–10/06  
5. Application Information  
Figure 5-1. AT8xC51SND1C Typical Application with On-Board Atmel DataFlash and 2-wire  
LCD  
LCD  
Ref.  
P1.0/KIN0  
MMC1  
MMC2  
P1.1/KIN1  
P1.2/KIN2  
P1.3/KIN3  
P0.0  
MCLK  
MDAT  
MCMD  
P0.1  
P0.2  
AT8xC51SND1C  
P0.3  
UVDD  
X1  
D+  
D-  
X2  
USB PORT  
UVSS  
FILT  
PVSS  
DataFlash  
Memories  
Audio DAC  
12  
AT8xC51SND1C  
4109JS–8051–10/06  
AT8xC51SND1C  
Figure 5-2. AT8xC51SND1C Typical Application with On-Board Atmel DataFlash and // LCD  
LCD  
Ref.  
MMC1  
P1.0/KIN0  
MCLK  
MMC2  
P1.1/KIN1  
P1.2/KIN2  
MDAT  
MCMD  
P0.0  
P0.1  
P0.2  
AT8xC51SND1C  
UVDD  
P0.3  
D+  
D-  
X1  
X2  
USB PORT  
UVSS  
FILT  
PVSS  
DataFlash  
Memories  
Audio DAC  
Figure 5-3. AT8xC51SND1C Typical Application with On-Board SSFDC Flash  
LCD  
Ref.  
P1.0/KIN0  
MMC1  
MMC2  
P1.1/KIN1  
P1.2/KIN2  
P1.3/KIN3  
MCLK  
MDAT  
MCMD  
P0.0  
P0.1  
P0.2  
AT8xC51SND1C  
UVDD  
P0.3  
D+  
D-  
X1  
X2  
USB PORT  
UVSS  
FILT  
PVSS  
Audio DAC  
SSFDC Memories  
or SmartMedia Cards  
SmartMedia  
13  
4109JS–8051–10/06  
Figure 5-4. AT8xC51SND1C Typical Application with IDE CD-ROM Drive  
LCD  
Ref.  
MMC1  
MMC2  
P1.0/KIN0  
P1.1/KIN1  
P1.2/KIN2  
MCLK  
MDAT  
MCMD  
P0.0  
P0.1  
P0.2  
AT8xC51SND1C  
P0.3  
UVDD  
X1  
D+  
D-  
X2  
USB PORT  
UVSS  
FILT  
PVSS  
Audio DAC  
IDE CD-ROM  
14  
AT8xC51SND1C  
4109JS–8051–10/06  
AT8xC51SND1C  
1. Peripherals  
The AT8xC51SND1C peripherals are briefly described in the following sections. For fur-  
ther details on how to interface (hardware and software) to these peripherals, please  
refer to the AT8xC51SND1C design guide.  
1.1 Clock Generator System  
The AT8xC51SND1C internal clocks are extracted from an on-chip PLL fed by an on-  
chip oscillator. Four clocks are generated respectively for the C51 core, the MP3  
decoder, the audio interface, and the other peripherals. The C51 and peripheral clocks  
are derived from the oscillator clock. The MP3 decoder clock is generated by dividing  
the PLL output clock. The audio interface sample rates are also obtained by dividing the  
PLL output clock.  
1.2 Ports  
The AT8xC51SND1C implements five 8-bit ports (P0 to P4) and one 4-bit port (P5). In  
addition to performing general-purpose I/O, some ports are capable of external data  
memory operations; others allow for alternate functions. All I/O Ports are bidirectional.  
Each Port contains a latch, an output driver and an input buffer. Port 0 and Port 2 output  
drivers and input buffers facilitate external memory operations. Some Port 1, Port 3 and  
Port 4 pins serve for both general-purpose I/O and alternate functions.  
1.3 Timers/Counters  
The AT8xC51SND1C implements the two general-purpose, 16-bit Timers/Counters of a  
standard C51. They are identified as Timer 0, Timer 1, and can independently be config-  
ured each to operate in a variety of modes as a Timer or as an event Counter. When  
operating as a Timer, a Timer/Counter runs for a programmed length of time, then  
issues an interrupt request. When operating as a Counter, a Timer/Counter counts neg-  
ative transitions on an external pin. After a preset number of counts, the Counter issues  
an interrupt request.  
1.4 Watchdog Timer  
1.5 MP3 Decoder  
The AT8xC51SND1C implements a hardware Watchdog Timer that automatically resets  
the chip if it is allowed to time out. The WDT provides a means of recovering from rou-  
tines that do not complete successfully due to software or hardware malfunctions.  
The AT8xC51SND1C implements a MPEG I/II audio layer 3 decoder (known as MP3  
decoder).  
In MPEG I (ISO 11172-3) three layers of compression have been standardized support-  
ing three sampling frequencies: 48, 44.1, and 32 KHz. Among these layers, layer 3  
allows highest compression rate of about 12:1 while still maintaining CD audio quality.  
For example, 3 minutes of CD audio (16-bit PCM, 44.1 KHz) data, which needs about 32  
MBytes of storage, can be encoded into only 2.7 MBytes of MPEG I audio layer 3 data.  
In MPEG II (ISO 13818-3), three additional sampling frequencies: 24, 22.05, and 16  
KHz are supported for low bit rates applications.  
The AT8xC51SND1C can decode in real-time the MPEG I audio layer 3 encoded data  
into a PCM audio data, and also supports MPEG II audio layer 3 additional frequencies.  
15  
4109JS–8051–10/06  
Additional features are supported by the AT8xC51SND1C MP3 decoder such as vol-  
ume, bass, medium, and treble controls, bass boost effect and ancillary data extraction.  
1.6 Audio Output Interface  
The AT8xC51SND1C implements an audio output interface allowing the decoded audio  
bitstream to be output in various formats. It is compatible with right and left justification  
PCM and I2S formats and thanks to the on-chip PLL (see Section 1.1) allows connection  
of almost all of the commercial audio DAC families available on the market.  
1.7 Universal Serial Bus Interface  
The AT8xC51SND1C implements a full speed Universal Serial Bus Interface. It can be  
used for the following purposes:  
Download of MP3 encoded audio files by supporting the USB mass storage class.  
In System Programming by supporting the USB firmware upgrade class.  
1.8 MultiMediaCard Interface  
The AT8xC51SND1C implements a MultiMediaCard (MMC) interface compliant to the  
V2.2 specification in MultiMediaCard Mode. The MMC allows storage of MP3 encoded  
audio files in removable flash memory cards that can be easily plugged or removed from  
the application. It can also be used for In System Programming.  
1.9 IDE/ATAPI interface  
1.10 Serial I/O Interface  
The AT8xC51SND1C provides an IDE/ATAPI interface allowing connexion of devices  
such as CD-ROM reader, CompactFlash cards, Hard Disk Drive… It consists in a 16-bit  
bidirectional bus part of the low-level ANSI ATA/ATAPI specification. It is provided for  
mass storage interface but could be used for In System Programming using CD-ROM.  
The AT8xC51SND1C implements a serial port with its own baud rate generator provid-  
ing one single synchronous communication mode and three full-duplex Universal  
Asynchronous Receiver Transmitter (UART) communication modes. It is provided for  
the following purposes:  
In System Programming.  
Remote control of the AT8xC51SND1C by a host.  
1.11 Serial Peripheral Interface  
The AT8xC51SND1C implements a Serial Peripheral Interface (SPI) supporting master  
and slave modes. It is provided for the following purposes:  
Interfacing DataFlash memory for MP3 encoded audio files storage.  
Remote control of the AT8xC51SND1C by a host.  
In System Programming.  
16  
AT8xC51SND1C  
4109JS–8051–10/06  
AT8xC51SND1C  
1.12 2-wire Controller  
The AT8xC51SND1C implements a 2-wire controller supporting the four standard mas-  
ter and slave modes with multimaster capability. It is provided for the following  
purposes:  
Connection of slave devices like LCD controller, audio DAC…  
Remote control of the AT8xC51SND1C by a host.  
In System Programming.  
1.13 A/D Controller  
The AT8xC51SND1C implements a 2-channel 10-bit (8 true bits) analog to digital con-  
verter (ADC). It is provided for the following purposes:  
Battery monitoring.  
Voice recording.  
Corded remote control.  
1.14 Keyboard Interface  
The AT8xC51SND1C implements a keyboard interface allowing connection of 4 x n  
matrix keyboard. It is based on 4 inputs with programmable interrupt capability on both  
high or low level. These inputs are available as alternate function of P1.3:0 and allow  
exit from idle and power down modes.  
17  
4109JS–8051–10/06  
22. Electrical Characteristics  
22.1 Absolute Maximum Rating  
*NOTICE:  
Stressing the device beyond the “Absolute Maxi-  
mum Ratings” may cause permanent damage.  
These are stress ratings only. Operation beyond  
the “operating conditions” is not recommended  
and extended exposure beyond the “Operating  
Conditions” may affect device reliability.  
Storage Temperature......................................... -65 to +150°C  
Voltage on any other Pin to VSS .................................... -0.3 to +4.0 V  
IOL per I/O Pin ................................................................. 5 mA  
Power Dissipation............................................................. 1 W  
Operating Conditions  
Ambient Temperature Under Bias........................ -40 to +85°C  
VDD ........................................................................................................................4.0V  
22.2 DC Characteristics  
22.2.1  
Table 143. Digital DC Characteristics  
DD = 2.7 to 3.3 V, TA = -40 to +85°C  
Digital Logic  
V
Symbol  
Parameter  
Min  
-0.5  
Typ(1)  
Max  
0.2·VDD - 0.1  
VDD  
Units  
Test Conditions  
VIL  
Input Low Voltage  
V
V
V
(2)  
VIH1  
Input High Voltage (except RST, X1)  
Input High Voltage (RST, X1)  
0.2·VDD + 1.1  
0.7·VDD  
VIH2  
VDD + 0.5  
Output Low Voltage  
VOL1  
(except P0, ALE, MCMD, MDAT, MCLK,  
SCLK, DCLK, DSEL, DOUT)  
0.45  
0.45  
V
IOL= 1.6 mA  
Output Low Voltage  
(P0, ALE, MCMD, MDAT, MCLK, SCLK,  
DCLK, DSEL, DOUT)  
VOL2  
V
V
IOL= 3.2 mA  
Output High Voltage  
(P1, P2, P3, P4 and P5)  
VOH1  
VDD - 0.7  
IOH= -30 μA  
Output High Voltage  
(P0, P2 address mode, ALE, MCMD,  
MDAT, MCLK, SCLK, DCLK, DSEL,  
DOUT, D+, D-)  
VOH2  
VDD - 0.7  
V
IOH= -3.2 mA  
Logical 0 Input Current (P1, P2, P3, P4  
and P5)  
IIL  
-50  
10  
μA  
μA  
μA  
VIN= 0.45 V  
0.45< VIN< VDD  
VIN= 2.0 V  
Input Leakage Current (P0, ALE, MCMD,  
MDAT, MCLK, SCLK, DCLK, DSEL,  
DOUT)  
ILI  
Logical 1 to 0 Transition Current  
(P1, P2, P3, P4 and P5)  
ITL  
-650  
200  
RRST  
CIO  
Pull-Down Resistor  
Pin Capacitance  
50  
90  
10  
kΩ  
pF  
V
TA= 25°C  
VRET  
VDD Data Retention Limit  
1.8  
180  
AT8xC51SND1C  
4109JS–8051–10/06  
AT8xC51SND1C  
Table 143. Digital DC Characteristics  
DD = 2.7 to 3.3 V, TA = -40 to +85°C  
V
Symbol  
Parameter  
Min  
Typ(1)  
Max  
Units  
Test Conditions  
VDD < 3.3 V  
X1 / X2 mode  
6.5 / 10.5  
8 / 13.5  
AT89C51SND1C  
Operating Current  
12 MHz  
16 MHz  
20 MHz  
(3)  
mA  
9.5 / 17  
VDD < 3.3 V  
X1 / X2 mode  
6.5 / 10.5  
8 / 13.5  
AT83SND1C  
Operating Current  
12 MHz  
16 MHz  
20 MHz  
IDD  
mA  
mA  
mA  
mA  
mA  
9.5 / 17  
VDD < 3.3 V  
X1 / X2 mode  
6.5 / 10.5  
8 / 13.5  
AT80C51SND1C  
Idle Mode Current  
12 MHz  
16 MHz  
20 MHz  
9.5 / 17  
VDD < 3.3 V  
X1 / X2 mode  
5.3 / 8.1  
6.4 / 10.3  
7.5 / 13  
AT89C51SND1C  
Idle Mode Current  
12 MHz  
16 MHz  
20 MHz  
(3)  
VDD < 3.3 V  
X1 / X2 mode  
5.3 / 8.1  
6.4 / 10.3  
7.5 / 13  
AT83SND1C  
Idle Mode Current  
12 MHz  
16 MHz  
20 MHz  
IDL  
VDD < 3.3 V  
X1 / X2 mode  
5.3 / 8.1  
6.4 / 10.3  
7.5 / 13  
AT80C51SND1C  
Idle Mode Current  
12 MHz  
16 MHz  
20 MHz  
AT89C51SND1C  
Power-Down Mode Current  
20  
20  
20  
500  
500  
500  
15  
μA  
μA  
μA  
mA  
VRET < VDD < 3.3 V  
AT83SND1C  
Power-Down Mode Current  
IPD  
VRET < VDD < 3.3 V  
AT80C51SND1C  
Power-Down Mode Current  
V
RET < VDD < 3.3 V  
AT89C51SND1C  
Flash Programming Current  
IFP  
VDD < 3.3 V  
Notes: 1. Typical values are obtained using VDD= 3 V and TA= 25°C. They are not tested and there is no  
guarantee on these values.  
2. Flash retention is guaranteed with the same formula for VDD min down to 0V.  
3. See Table 144 for typical consumption in player mode.  
Table 144. Typical Reference Design AT89C51SND1C Power Consumption  
Player Mode  
IDD  
Test Conditions  
AT89C51SND1C at 16 MHz, X2 mode, VDD= 3 V  
No song playing  
Stop  
10 mA  
AT89C51SND1C at 16 MHz, X2 mode, VDD= 3 V  
MP3 Song with Fs= 44.1 KHz, at any bit rates (Variable Bit Rate)  
Playing  
30 mA  
181  
4109JS–8051–10/06  
22.2.1.1  
IDD, IDL and IPD Test Conditions  
Figure 22-1. IDD Test Condition, Active Mode  
VDD  
VDD  
VDD  
PVDD  
UVDD  
AVDD  
IDD  
RST  
(NC)  
Clock Signal  
X2  
X1  
VDD  
P0  
VSS  
PVSS  
UVSS  
AVSS  
TST  
VSS  
All other pins are unconnected  
Figure 22-2. IDL Test Condition, Idle Mode  
VDD  
VDD  
PVDD  
UVDD  
AVDD  
IDL  
RST  
VSS  
(NC)  
Clock Signal  
X2  
X1  
VDD  
P0  
VSS  
PVSS  
UVSS  
AVSS  
TST  
VSS  
All other pins are unconnected  
Figure 22-3. IPD Test Condition, Power-Down Mode  
VDD  
VDD  
PVDD  
UVDD  
AVDD  
IPD  
RST  
VSS  
(NC)  
VDD  
X2  
X1  
P0  
MCMD  
MDAT  
TST  
VSS  
PVSS  
UVSS  
AVSS  
VSS  
All other pins are unconnected  
182  
AT8xC51SND1C  
4109JS–8051–10/06  
AT8xC51SND1C  
22.2.2  
A to D Converter  
Table 145. A to D Converter DC Characteristics  
VDD = 2.7 to 3.3 V, TA = -40 to +85°C  
Symbol  
Parameter  
Min  
Typ  
Max  
Units  
Test Conditions  
AVDD  
Analog Supply Voltage  
2.7  
3.3  
V
AVDD= 3.3V  
AIDD  
Analog Operating Supply Current  
600  
μA  
AIN1:0= 0 to AVDD  
ADEN= 1  
AVDD= 3.3V  
ADEN= 0 or PD= 1  
AIPD  
AVIN  
Analog Standby Current  
Analog Input Voltage  
2
μA  
AVSS  
AVDD  
V
Reference Voltage  
AREFN  
AVREF  
AVSS  
2.4  
V
AREFP  
AVDD  
30  
RREF  
CIA  
AREF Input Resistance  
Analog Input capacitance  
10  
KΩ  
TA= 25°C  
TA= 25°C  
10  
pF  
22.2.3  
Oscillator & Crystal  
22.2.3.1  
Schematic  
Figure 22-4. Crystal Connection  
X1  
C1  
C2  
Q
VSS  
X2  
Note:  
For operation with most standard crystals, no external components are needed on X1 and X2. It  
may be necessary to add external capacitors on X1 and X2 to ground in special cases (max 10  
pF). X1 and X2 may not be used to drive other circuits.  
22.2.3.2  
Parameters  
Table 146. Oscillator & Crystal Characteristics  
VDD = 2.7 to 3.3 V, TA = -40 to +85°C  
Symbol  
CX1  
CX2  
CL  
Parameter  
Internal Capacitance (X1 - VSS)  
Internal Capacitance (X2 - VSS)  
Equivalent Load Capacitance (X1 - X2)  
Drive Level  
Min  
Typ  
10  
10  
5
Max  
Unit  
pF  
pF  
pF  
DL  
50  
20  
40  
6
μW  
MHz  
Ω
F
Crystal Frequency  
RS  
Crystal Series Resistance  
Crystal Shunt Capacitance  
CS  
pF  
183  
4109JS–8051–10/06  
22.2.4  
Phase Lock Loop  
22.2.4.1  
Schematic  
Figure 22-5. PLL Filter Connection  
FILT  
R
C2  
C1  
VSS  
VSS  
22.2.4.2  
Parameters  
Table 147. PLL Filter Characteristics  
VDD = 2.7 to 3.3 V, TA = -40 to +85°C  
Symbol  
Parameter  
Min  
Typ  
100  
10  
Max  
Unit  
Ω
R
Filter Resistor  
C1  
C2  
Filter Capacitance 1  
Filter Capacitance 2  
nF  
nF  
2.2  
22.2.5  
USB Connection  
22.2.5.1  
Schematic  
Figure 22-6. USB Connection  
VDD  
To Power  
Supply  
RFS  
VBUS  
D+  
D-  
D+  
D-  
RUSB  
RUSB  
GND  
VSS  
22.2.5.2  
Parameters  
Table 148. USB Characteristics  
VDD = 2.7 to 3.3 V, TA = -40 to +85°C  
Symbol  
RUSB  
Parameter  
USB Termination Resistor  
USB Full Speed Resistor  
Min  
Typ  
27  
Max  
Unit  
Ω
RFS  
1.5  
KΩ  
184  
AT8xC51SND1C  
4109JS–8051–10/06  
AT8xC51SND1C  
22.2.6  
In System Programming  
22.2.6.1  
Schematic  
Figure 22-7. ISP Pull-Down Connection  
ISP  
RISP  
VSS  
22.2.6.2  
Parameters  
Table 149. ISP Pull-Down Characteristics  
VDD = 2.7 to 3.3 V, TA = -40 to +85°C  
Symbol  
Parameter  
ISP Pull-Down Resistor  
Min  
Typ  
Max  
Unit  
RISP  
2.2  
KΩ  
185  
4109JS–8051–10/06  
22.3 AC Characteristics  
22.3.1  
External Program Bus Cycles  
22.3.1.1  
Definition of Symbols  
Table 150. External Program Bus Cycles Timing Symbol Definitions  
Signals  
Address  
Conditions  
High  
A
I
H
L
Instruction In  
ALE  
Low  
L
P
V
X
Z
Valid  
PSEN  
No Longer Valid  
Floating  
22.3.1.2  
Timings  
Test conditions: capacitive load on all pins= 50 pF.  
Table 151. External Program Bus Cycle - Read AC Timings  
VDD = 2.7 to 3.3 V, TA = -40 to +85°C  
Variable Clock  
Standard Mode  
Variable Clock  
X2 Mode  
Symbol  
Parameter  
Min  
Max  
Min  
Max  
Unit  
ns  
TCLCL Clock Period  
50  
50  
TLHLL  
TAVLL  
ALE Pulse Width  
2·TCLCL-15  
TCLCL-20  
TCLCL-20  
4·TCLCL-35  
3·TCLCL-25  
TCLCL-15  
ns  
Address Valid to ALE Low  
0.5·TCLCL-20  
0.5·TCLCL-20  
2·TCLCL-35  
1.5·TCLCL-25  
ns  
TLLAX Address hold after ALE Low  
TLLIV ALE Low to Valid Instruction  
TPLPH PSEN Pulse Width  
ns  
ns  
ns  
TPLIV  
TPXIX  
TPXIZ  
TAVIV  
PSEN Low to Valid Instruction  
3·TCLCL-35  
1.5·TCLCL-35 ns  
ns  
Instruction Hold After PSEN High  
Instruction Float After PSEN High  
Address Valid to Valid Instruction  
0
0
TCLCL-10  
5·TCLCL-35  
10  
0.5·TCLCL-10 ns  
2.5·TCLCL-35 ns  
TPLAZ PSEN Low to Address Float  
10  
ns  
186  
AT8xC51SND1C  
4109JS–8051–10/06  
AT8xC51SND1C  
22.3.1.3  
Waveforms  
Figure 22-8. External Program Bus Cycle - Read Waveforms  
ALE  
TLHLL  
TPLPH  
TLLPL  
PSEN  
TPLIV  
TPXAV  
TPXIZ  
TPLAZ  
TAVLL TLLAX  
TPXIX  
P0  
P2  
D7:0  
A7:0  
D7:0  
Instruction In  
A7:0  
D7:0  
Instruction In  
A15:8  
A15:8  
22.3.2  
External Data 8-bit Bus Cycles  
22.3.2.1  
Definition of Symbols  
Table 152. External Data 8-bit Bus Cycles Timing Symbol Definitions  
Signals  
Conditions  
High  
A
D
L
Address  
Data In  
ALE  
H
L
Low  
V
X
Z
Valid  
Q
R
W
Data Out  
RD  
No Longer Valid  
Floating  
WR  
22.3.2.2  
Timings  
Test conditions: capacitive load on all pins= 50 pF.  
Table 153. External Data 8-bit Bus Cycle - Read AC Timings  
VDD = 2.7 to 3.3 V, TA = -40 to +85°C  
Variable Clock  
Standard Mode  
Variable Clock  
X2 Mode  
Symbol  
Parameter  
Min  
Max  
Min  
Max  
Unit  
ns  
TCLCL Clock Period  
50  
50  
TLHLL ALE Pulse Width  
2·TCLCL-15  
TCLCL-20  
TCLCL-20  
3·TCLCL-30  
TCLCL-15  
ns  
TAVLL  
Address Valid to ALE Low  
0.5·TCLCL-20  
0.5·TCLCL-20  
1.5·TCLCL-30  
ns  
TLLAX Address hold after ALE Low  
TLLRL ALE Low to RD Low  
ns  
ns  
187  
4109JS–8051–10/06  
Variable Clock  
Standard Mode  
Variable Clock  
X2 Mode  
Symbol  
Parameter  
Min  
Max  
Min  
3·TCLCL-25  
Max  
Unit  
TRLRH RD Pulse Width  
6·TCLCL-25  
TCLCL-20  
ns  
TRHLH RD high to ALE High  
TAVDV Address Valid to Valid Data In  
TAVRL Address Valid to RD Low  
TRLDV RD Low to Valid Data  
TRLAZ RD Low to Address Float  
TRHDX Data Hold After RD High  
TRHDZ Data Float After RD High  
TCLCL+20  
0.5·TCLCL-20 0.5·TCLCL+20 ns  
4.5·TCLCL-65 ns  
9·TCLCL-65  
4·TCLCL-30  
2·TCLCL-30  
ns  
5·TCLCL-30  
0
2.5·TCLCL-30 ns  
0
ns  
ns  
ns  
0
0
2·TCLCL-25  
TCLCL-25  
Table 154. External Data 8-bit Bus Cycle - Write AC Timings  
VDD = 2.7 to 3.3 V, TA = -40 to +85°C  
Variable Clock  
Standard Mode  
Variable Clock  
X2 Mode  
Symbol  
Parameter  
Min  
Max  
Min  
Max  
Unit  
ns  
TCLCL Clock Period  
50  
50  
TLHLL ALE Pulse Width  
2·TCLCL-15  
TCLCL-20  
TCLCL-20  
3·TCLCL-30  
6·TCLCL-25  
TCLCL-20  
4·TCLCL-30  
7·TCLCL-20  
TCLCL-15  
TCLCL-15  
ns  
TAVLL  
Address Valid to ALE Low  
0.5·TCLCL-20  
0.5·TCLCL-20  
1.5·TCLCL-30  
3·TCLCL-25  
ns  
TLLAX Address hold after ALE Low  
TLLWL ALE Low to WR Low  
TWLWH WR Pulse Width  
ns  
ns  
ns  
TWHLH WR High to ALE High  
TAVWL Address Valid to WR Low  
TQVWH Data Valid to WR High  
TWHQX Data Hold after WR High  
TCLCL+20  
0.5·TCLCL-20 0.5·TCLCL+20 ns  
2·TCLCL-30  
3.5·TCLCL-20  
0.5·TCLCL-15  
ns  
ns  
ns  
188  
AT8xC51SND1C  
4109JS–8051–10/06  
AT8xC51SND1C  
22.3.2.3  
Waveforms  
Figure 22-9. External Data 8-bit Bus Cycle - Read Waveforms  
ALE  
TLHLL  
TLLRL  
TRLRH  
TRHLH  
RD  
TRLDV  
TRHDZ  
TRHDX  
TRLAZ  
TLLAX  
TAVLL  
P0  
P2  
A7:0  
TAVRL  
TAVDV  
D7:0  
Data In  
A15:8  
Figure 22-10. External Data 8-bit Bus Cycle - Write Waveforms  
ALE  
TLHLL  
TWHLH  
TLLWL  
TWLWH  
WR  
TAVWL  
TLLAX  
TAVLL  
TQVWH  
TWHQX  
P0  
P2  
A7:0  
D7:0  
Data Out  
A15:8  
22.3.3  
External IDE 16-bit Bus Cycles  
22.3.3.1  
Definition of Symbols  
Table 155. External IDE 16-bit Bus Cycles Timing Symbol Definitions  
Signals  
Conditions  
High  
A
D
L
Address  
Data In  
ALE  
H
L
Low  
V
X
Z
Valid  
Q
R
W
Data Out  
RD  
No Longer Valid  
Floating  
WR  
189  
4109JS–8051–10/06  
22.3.3.2  
Timings  
Test conditions: capacitive load on all pins= 50 pF.  
Table 156. External IDE 16-bit Bus Cycle - Data Read AC Timings  
VDD = 2.7 to 3.3 V, TA = -40 to +85°C  
Variable Clock  
Standard Mode  
Variable Clock  
X2 Mode  
Symbol  
Parameter  
Min  
Max  
Min  
Max  
Unit  
ns  
TCLCL Clock Period  
50  
50  
TLHLL ALE Pulse Width  
2·TCLCL-15  
TCLCL-20  
TCLCL-20  
3·TCLCL-30  
6·TCLCL-25  
TCLCL-20  
TCLCL-15  
ns  
TAVLL  
Address Valid to ALE Low  
0.5·TCLCL-20  
0.5·TCLCL-20  
1.5·TCLCL-30  
3·TCLCL-25  
ns  
TLLAX Address hold after ALE Low  
TLLRL ALE Low to RD Low  
TRLRH RD Pulse Width  
ns  
ns  
ns  
TRHLH RD high to ALE High  
TAVDV Address Valid to Valid Data In  
TAVRL Address Valid to RD Low  
TRLDV RD Low to Valid Data  
TRLAZ RD Low to Address Float  
TRHDX Data Hold After RD High  
TRHDZ Data Float After RD High  
TCLCL+20  
0.5·TCLCL-20 0.5·TCLCL+20 ns  
4.5·TCLCL-65 ns  
9·TCLCL-65  
4·TCLCL-30  
2·TCLCL-30  
ns  
5·TCLCL-30  
0
2.5·TCLCL-30 ns  
0
ns  
ns  
ns  
0
0
2·TCLCL-25  
TCLCL-25  
Table 157. External IDE 16-bit Bus Cycle - Data Write AC Timings  
VDD = 2.7 to 3.3 V, TA = -40 to +85°C  
Variable Clock  
Standard Mode  
Variable Clock  
X2 Mode  
Symbol  
Parameter  
Min  
Max  
Min  
Max  
Unit  
ns  
TCLCL Clock Period  
50  
50  
TLHLL ALE Pulse Width  
2·TCLCL-15  
TCLCL-20  
TCLCL-20  
3·TCLCL-30  
6·TCLCL-25  
TCLCL-20  
4·TCLCL-30  
7·TCLCL-20  
TCLCL-15  
TCLCL-15  
ns  
TAVLL  
Address Valid to ALE Low  
0.5·TCLCL-20  
0.5·TCLCL-20  
1.5·TCLCL-30  
3·TCLCL-25  
ns  
TLLAX Address hold after ALE Low  
TLLWL ALE Low to WR Low  
TWLWH WR Pulse Width  
ns  
ns  
ns  
TWHLH WR High to ALE High  
TAVWL Address Valid to WR Low  
TQVWH Data Valid to WR High  
TWHQX Data Hold after WR High  
TCLCL+20  
0.5·TCLCL-20 0.5·TCLCL+20 ns  
2·TCLCL-30  
3.5·TCLCL-20  
0.5·TCLCL-15  
ns  
ns  
ns  
190  
AT8xC51SND1C  
4109JS–8051–10/06  
AT8xC51SND1C  
22.3.3.3  
Waveforms  
Figure 22-11. External IDE 16-bit Bus Cycle - Data Read Waveforms  
ALE  
TLHLL  
TLLRL  
TRLRH  
TRHLH  
RD  
TRLDV  
TRHDZ  
TRHDX  
TRLAZ  
TLLAX  
TAVLL  
P0  
P2  
A7:0  
TAVRL  
TAVDV  
D7:0  
Data In  
A15:8  
D15:8(1)  
Data In  
Note:  
1. D15:8 is written in DAT16H SFR.  
Figure 22-12. External IDE 16-bit Bus Cycle - Data Write Waveforms  
ALE  
TLHLL  
TWHLH  
TLLWL  
TWLWH  
WR  
TAVWL  
TLLAX  
TAVLL  
TQVWH  
TWHQX  
P0  
P2  
A7:0  
D7:0  
Data Out  
A15:8  
D15:8(1)  
Data Out  
Note:  
1. D15:8 is the content of DAT16H SFR.  
22.4 SPI Interface  
22.4.0.4  
Definition of Symbols  
Table 158. SPI Interface Timing Symbol Definitions  
Signals  
Conditions  
High  
C
I
Clock  
H
L
Data In  
Data Out  
Low  
O
V
X
Z
Valid  
No Longer Valid  
Floating  
191  
4109JS–8051–10/06  
22.4.0.5  
Timings  
Test conditions: capacitive load on all pins= 50 pF.  
Table 159. SPI Interface Master AC Timing  
VDD = 2.7 to 3.3 V, TA = -40 to +85°C  
Symbol  
Parameter  
Slave Mode  
Min  
Max  
Unit  
TCHCH  
Clock Period  
2
TPER  
TPER  
TPER  
ns  
TCHCX  
Clock High Time  
Clock Low Time  
0.8  
0.8  
100  
40  
TCLCX  
TSLCH, TSLCL  
SS Low to Clock edge  
T
T
T
T
T
IVCL, TIVCH  
CLIX, TCHIX  
CLOV, TCHOV  
CLOX, TCHOX  
CLSH, TCHSH  
Input Data Valid to Clock Edge  
Input Data Hold after Clock Edge  
Output Data Valid after Clock Edge  
Output Data Hold Time after Clock Edge  
SS High after Clock Edge  
SS Low to Output Data Valid  
Output Data Hold after SS High  
SS High to SS Low  
ns  
40  
ns  
40  
ns  
0
0
ns  
ns  
TSLOV  
TSHOX  
TSHSL  
TILIH  
50  
50  
ns  
ns  
(1)  
Input Rise Time  
2
μs  
μs  
ns  
ns  
TIHIL  
Input Fall Time  
2
TOLOH  
TOHOL  
Output Rise time  
100  
100  
Output Fall Time  
Master Mode  
TCHCH  
Clock Period  
2
TPER  
TPER  
TPER  
ns  
TCHCX  
Clock High Time  
0.8  
0.8  
20  
20  
TCLCX  
Clock Low Time  
TIVCL, TIVCH  
Input Data Valid to Clock Edge  
Input Data Hold after Clock Edge  
Output Data Valid after Clock Edge  
Output Data Hold Time after Clock Edge  
Input Data Rise Time  
T
T
CLIX, TCHIX  
ns  
CLOV, TCHOV  
40  
ns  
TCLOX, TCHOX  
TILIH  
0
ns  
2
2
μs  
TIHIL  
Input Data Fall Time  
μs  
TOLOH  
Output Data Rise time  
50  
50  
ns  
TOHOL  
Output Data Fall Time  
ns  
Note:  
1. Value of this parameter depends on software.  
192  
AT8xC51SND1C  
4109JS–8051–10/06  
AT8xC51SND1C  
22.4.0.6  
Waveforms  
Figure 22-13. SPI Slave Waveforms (SSCPHA= 0)  
SS  
(input)  
TSLCH  
TCLSH  
TCHCH  
TSHSL  
TSLCL  
TCHSH  
TCLCH  
SCK  
(SSCPOL= 0)  
(input)  
TCHCX  
TCLCX  
TCHCL  
SCK  
(SSCPOL= 1)  
(input)  
TCLOX  
TCHOX  
TCLOV  
TCHOV  
TSLOV  
SLAVE MSB OUT  
TSHOX  
MISO  
(output)  
(1)  
BIT 6  
SLAVE LSB OUT  
TCHIX  
TCLIX  
TIVCH  
TIVCL  
MOSI  
(input)  
MSB IN  
BIT 6  
LSB IN  
Note:  
1. Not Defined but generally the MSB of the character which has just been received.  
Figure 22-14. SPI Slave Waveforms (SSCPHA= 1)  
SS  
(input)  
TSLCH  
TCLSH  
TCHSH  
TSLCL  
TCHCH  
TSHSL  
TCLCH  
SCK  
(SSCPOL= 0)  
(input)  
TCHCX  
TCLCX  
TCHCL  
SCK  
(SSCPOL= 1)  
(input)  
TCHOV  
TCLOV  
TCHOX  
TCLOX  
TSLOV  
TSHOX  
MISO  
(output)  
(1)  
SLAVE MSB OUT  
BIT 6  
SLAVE LSB OUT  
TIVCH  
TIVCL  
TCHIX  
TCLIX  
MOSI  
(input)  
MSB IN  
BIT 6  
LSB IN  
Note:  
1. Not Defined but generally the LSB of the character which has just been received.  
193  
4109JS–8051–10/06  
Figure 22-15. SPI Master Waveforms (SSCPHA= 0)  
SS  
(output)  
TCHCH  
TCLCH  
SCK  
(SSCPOL= 0)  
(output)  
TCHCX  
TCLCX  
TCHCL  
SCK  
(SSCPOL= 1)  
(output)  
TIVCH  
TCHIX  
TIVCL TCLIX  
MOSI  
(input)  
MSB IN  
BIT 6  
TCLOV  
TCHOV  
LSB IN  
TCLOX  
TCHOX  
MISO  
(output)  
Port Data  
MSB OUT  
BIT 6  
LSB OUT  
Port Data  
Note:  
1. SS handled by software using general purpose port pin.  
Figure 22-16. SPI Master Waveforms (SSCPHA= 1)  
SS(1)  
(output)  
TCHCH  
TCLCH  
SCK  
(SSCPOL= 0)  
(output)  
TCHCX  
TCLCX  
TCHCL  
SCK  
(SSCPOL= 1)  
(output)  
TIVCH  
TCHIX  
TIVCL TCLIX  
MOSI  
(input)  
MSB IN  
TCLOV  
BIT 6  
LSB IN  
TCLOX  
TCHOX  
TCHOV  
MISO  
(output)  
Port Data  
MSB OUT  
BIT 6  
LSB OUT  
Port Data  
Note:  
Two-wire Interface  
Timings  
1. SS handled by software using general purpose port pin.  
22.4.1  
22.4.1.1  
Table 160. TWI Interface AC Timing  
194  
AT8xC51SND1C  
4109JS–8051–10/06  
AT8xC51SND1C  
VDD = 2.7 to 3.3 V, TA = -40 to +85°C  
INPUT  
Min  
OUTPUT  
Min  
Symbol  
Parameter  
Start condition hold time  
Max  
Max  
(4)  
THD; STA  
TLOW  
14·TCLCL  
16·TCLCL  
14·TCLCL  
1 μs  
4.0 μs(1)  
4.7 μs(1)  
4.0 μs(1)  
(4)  
(4)  
SCL low time  
SCL high time  
SCL rise time  
SCL fall time  
THIGH  
(2)  
TRC  
-
TFC  
0.3 μs  
0.3 μs(3)  
20·TCLCL(4)- TRD  
1 μs(1)  
TSU; DAT1  
TSU; DAT2  
TSU; DAT3  
THD; DAT  
TSU; STA  
TSU; STO  
TBUF  
Data set-up time  
250 ns  
250 ns  
250 ns  
0 ns  
SDA set-up time (before repeated START condition)  
SDA set-up time (before STOP condition)  
Data hold time  
(4)  
8·TCLCL  
8·TCLCL(4) - TFC  
4.7 μs(1)  
(4)  
Repeated START set-up time  
STOP condition set-up time  
Bus free time  
14·TCLCL  
14·TCLCL  
14·TCLCL  
1 μs  
(4)  
(4)  
4.0 μs(1)  
4.7 μs(1)  
(2)  
TRD  
SDA rise time  
-
TFD  
SDA fall time  
0.3 μs  
0.3 μs(3)  
Notes: 1. At 100 kbit/s. At other bit-rates this value is inversely proportional to the bit-rate of 100 kbit/s.  
2. Determined by the external bus-line capacitance and the external bus-line pull-up resistor, this  
must be < 1 μs.  
3. Spikes on the SDA and SCL lines with a duration of less than 3·TCLCL will be filtered out. Maxi-  
mum capacitance on bus-lines SDA and  
SCL= 400 pF.  
4. TCLCL= TOSC= one oscillator clock period.  
22.4.1.2  
Waveforms  
Figure 22-17. Two Wire Waveforms  
Repeated START condition  
START or Repeated START condition  
Trd  
START condition  
Tsu;STA  
STOP condition  
0.7 VDD  
0.3 VDD  
SDA  
(INPUT/OUTPUT)  
Tsu;STO  
Tbuf  
Tfd  
Tsu;DAT3  
Trc  
Tfc  
0.7 VDD  
0.3 VDD  
SCL  
(INPUT/OUTPUT)  
Thigh  
Tsu;DAT2  
Tlow  
Thd;STA  
Thd;DAT  
Tsu;DAT1  
195  
4109JS–8051–10/06  
22.4.2  
MMC Interface  
22.4.2.1  
Definition of symbols  
Table 161. MMC Interface Timing Symbol Definitions  
Signals  
Clock  
Conditions  
High  
C
D
O
H
L
Data In  
Low  
Data Out  
V
X
Valid  
No Longer Valid  
22.4.2.2  
22.4.2.3  
196  
Timings  
Table 162. MMC Interface AC timings  
VDD = 2.7 to 3.3 V, TA = -40 to +85°C, CL 100pF (10 cards)  
Symbol  
TCHCH  
Parameter  
Min  
50  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Clock Period  
TCHCX  
TCLCX  
TCLCH  
TCHCL  
TDVCH  
TCHDX  
TCHOX  
TOVCH  
Clock High Time  
Clock Low Time  
Clock Rise Time  
Clock Fall Time  
10  
10  
10  
10  
Input Data Valid to Clock High  
Input Data Hold after Clock High  
Output Data Hold after Clock High  
Output Data Valid to Clock High  
3
3
5
5
Waveforms  
Figure 22-18. MMC Input-Output Waveforms  
TCHCH  
TCHCX  
TCLCX  
MCLK  
TCHCL  
TCLCH  
TIVCH  
TCHIX  
MCMD Input  
MDAT Input  
TCHOX  
TOVCH  
MCMD Output  
MDAT Output  
AT8xC51SND1C  
4109JS–8051–10/06  
AT8xC51SND1C  
22.4.3  
Audio Interface  
22.4.3.1  
Definition of symbols  
Table 163. Audio Interface Timing Symbol Definitions  
Signals  
Clock  
Conditions  
High  
C
O
S
H
L
Data Out  
Low  
Data Select  
V
X
Valid  
No Longer Valid  
22.4.3.2  
Timings  
Table 164. Audio Interface AC timings  
VDD = 2.7 to 3.3 V, TA = -40 to +85°C, CL30pF  
Symbol  
Parameter  
Clock Period  
Min  
Max  
Unit  
ns  
TCHCH  
TCHCX  
TCLCX  
TCLCH  
TCHCL  
TCLSV  
TCLOV  
325.5(1)  
Clock High Time  
30  
30  
ns  
Clock Low Time  
ns  
Clock Rise Time  
10  
10  
10  
10  
ns  
Clock Fall Time  
ns  
Clock Low to Select Valid  
Clock Low to Data Valid  
ns  
ns  
Note:  
1. 32-bit format with Fs= 48 KHz.  
22.4.3.3  
Waveforms  
Figure 22-19. Audio Interface Waveforms  
TCHCH  
TCHCX  
TCLCX  
DCLK  
TCHCL  
TCLCH  
TCLSV  
DSEL  
DDAT  
Right  
Left  
TCLOV  
197  
4109JS–8051–10/06  
22.4.4  
Analog to Digital Converter  
22.4.4.1  
Definition of symbols  
Table 165. Analog to Digital Converter Timing Symbol Definitions  
Signals  
Clock  
Conditions  
High  
C
E
H
L
Enable (ADEN bit)  
Low  
Start Conversion  
(ADSST bit)  
S
22.4.4.2  
Characteristics  
Table 166. Analog to Digital Converter AC Characteristics  
VDD = 2.7 to 3.3 V, TA = -40 to +85°C  
Symbol  
Parameter  
Clock Period  
Min  
Max  
Unit  
μs  
TCLCL  
TEHSH  
TSHSL  
4
Start-up Time  
4
μs  
Conversion Time  
11·TCLCL  
μs  
Differential non-  
linearity error(1)(2)  
DLe  
ILe  
1
2
LSB  
LSB  
Integral non-  
linearity errorss(1)(3)  
OSe  
Ge  
Offset error(1)(4)  
Gain error(1)(5)  
4
4
LSB  
LSB  
Notes: 1. AVDD= AVREFP= 3.0 V, AVSS= AVREFN= 0 V. ADC is monotonic with no missing code.  
2. The differential non-linearity is the difference between the actual step width and the ideal step  
width (see Figure 22-21).  
3. The integral non-linearity is the peak difference between the center of the actual step and the  
ideal transfer curve after appropriate adjustment of gain and offset errors (see Figure 22-21).  
4. The offset error is the absolute difference between the straight line which fits the actual trans-  
fer curve (after removing of gain error), and the straight line which fits the ideal transfer curve  
(see Figure 22-21).  
5. The gain error is the relative difference in percent between the straight line which fits the actual  
transfer curve (after removing of offset error), and the straight line which fits the ideal transfer  
curve (see Figure 22-21).  
198  
AT8xC51SND1C  
4109JS–8051–10/06  
AT8xC51SND1C  
22.4.4.3  
Waveforms  
Figure 22-20. Analog to Digital Converter Internal Waveforms  
CLK  
TCLCL  
ADEN Bit  
TEHSH  
ADSST Bit  
TSHSL  
Figure 22-21. Analog to Digital Converter Characteristics  
Offset Gain  
Error Error  
Code Out  
OSe  
Ge  
1023  
1022  
1021  
1020  
1019  
1018  
Ideal Transfer curve  
7
6
5
Example of an actual transfer curve  
Center of a step  
4
Integral non-linearity (ILe)  
3
2
1
Differential non-linearity (DLe)  
1 LSB  
(ideal)  
0
0
AVIN  
(LSB ideal)  
1
2
3
4
5
6
7
1018 1019 1020 1021 1022 1023 1024  
Offset  
Error OSe  
199  
4109JS–8051–10/06  
22.4.5  
Flash Memory  
22.4.5.1  
Definition of symbols  
Table 167. Flash Memory Timing Symbol Definitions  
Signals  
ISP  
Conditions  
Low  
S
R
B
L
RST  
V
X
Valid  
FBUSY flag  
No Longer Valid  
22.4.5.2  
Timings  
Table 168. Flash Memory AC Timing  
VDD = 2.7 to 3.3 V, TA = -40 to +85°C  
Symbol  
TSVRL  
Parameter  
Min  
Typ  
Max  
Unit  
ns  
Input ISP Valid to RST Edge  
50  
50  
TRLSX  
TBHBL  
NFCY  
TFDR  
Input ISP Hold after RST Edge  
FLASH Internal Busy (Programming) Time  
Number of Flash Write Cycles  
Flash Data Retention Time  
ns  
10  
ms  
100K  
10  
Cycle  
Years  
22.4.5.3  
Waveforms  
Figure 22-22. FLASH Memory - ISP Waveforms  
RST  
TSVRL  
TRLSX  
ISP(1)  
Note:  
1. ISP must be driven through a pull-down resistor (see Section “In System Programming”,  
page 185).  
Figure 22-23. FLASH Memory - Internal Busy Waveforms  
FBUSY bit  
TBHBL  
200  
AT8xC51SND1C  
4109JS–8051–10/06  
AT8xC51SND1C  
22.4.6  
External Clock Drive and Logic Level References  
22.4.6.1  
Definition of symbols  
Table 169. External Clock Timing Symbol Definitions  
Signals  
Clock  
Conditions  
High  
C
H
L
Low  
X
No Longer Valid  
22.4.6.2  
Timings  
External Clock AC Timings  
VDD = 2.7 to 3.3 V, TA = -40 to +85°C  
Symbol  
Parameter  
Min  
50  
10  
10  
3
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
%
TCLCL  
TCHCX  
TCLCX  
TCLCH  
TCHCL  
TCR  
Clock Period  
High Time  
Low Time  
Rise Time  
Fall Time  
3
Cyclic Ratio in X2 mode  
40  
60  
22.4.6.3  
Waveforms  
Figure 22-24. External Clock Waveform  
TCLCH  
TCHCX  
VDD - 0.5  
VIH1  
TCLCX  
VIL  
0.45 V  
TCHCL  
TCLCL  
Figure 22-25. AC Testing Input/Output Waveforms  
INPUTS  
OUTPUTS  
VIH min  
VIL max  
VDD - 0.5  
0.7 VDD  
0.3 VDD  
0.45 V  
Note:  
1. During AC testing, all inputs are driven at VDD -0.5 V for a logic 1 and 0.45 V for a logic 0.  
2. Timing measurements are made on all outputs at VIH min for a logic 1 and VIL max for a logic 0.  
Figure 22-26. Float Waveforms  
VLOAD + 0.1 V  
LOAD - 0.1 V  
VOH - 0.1 V  
VOL + 0.1 V  
VLOAD  
Timing Reference Points  
V
201  
4109JS–8051–10/06  
Note:  
For timing purposes, a port pin is no longer floating when a 100 mV change from load voltage  
occurs and begins to float when a 100 mV change from the loading VOH/VOL level occurs with  
I
OL/IOH= 20 mA.  
202  
AT8xC51SND1C  
4109JS–8051–10/06  
AT8xC51SND1C  
24. Ordering Information  
Temperature  
Range  
Memory  
Size  
Supply  
Voltage  
Max  
Frequency  
Product  
Part Number  
Package(2)  
TQFP80  
BGA81  
Dice  
Packing  
Tray  
Marking  
89C51SND1C-IL  
89C51SND1C-IL  
-
AT89C51SND1C-ROTIL  
AT89C51SND1C-7HTIL  
AT89C51SND1C-DDV  
AT83SND1Cxxx(1)-ROTIL  
AT83SND1Cxxx(1)-7HTIL  
AT83SND1Cxxx-DDV  
AT80C51SND1C-ROTIL  
AT80C51SND1C-7HTIL  
AT80C51SND1C-DDV  
64K Flash  
64K Flash  
64K Flash  
64K ROM  
64K ROM  
64K ROM  
ROMless  
ROMless  
ROMless  
3V  
3V  
3V  
3V  
3V  
3V  
3V  
3V  
3V  
Industrial  
Industrial  
Industrial  
Industrial  
Industrial  
Industrial  
Industrial  
Industrial  
Industrial  
40 MHz  
40 MHz  
40 MHz  
40 MHz  
40 MHz  
40 MHz  
40 MHz  
40 MHz  
40 MHz  
Tray  
Tray  
TQFP80  
BGA81  
Dice  
Tray  
89C51SND1C-IL  
89C51SND1C-IL  
-
Tray  
Tray  
TQFP80  
BGA81  
Dice  
Tray  
89C51SND1C-IL  
89C51SND1C-IL  
-
Tray  
Tray  
Industrial &  
Green  
AT89C51SND1C-ROTUL  
AT89C51SND1C-7HTJL  
AT83SND1Cxxx(1)-ROTUL  
64K Flash  
64K Flash  
64K ROM  
3V  
3V  
3V  
40 MHz  
40 MHz  
40 MHz  
TQFP80  
BGA81  
Tray  
Tray  
Tray  
89C51SND1C-IL  
89C51SND1C-IL  
89C51SND1C-IL  
Industrial  
Industrial &  
Green  
TQFP80  
Industrial &  
Green  
AT83SND1Cxxx(1)-7HTJL  
AT80C51SND1C-ROTUL  
AT80C51SND1C-7HTJL  
64K ROM  
ROMless  
ROMless  
3V  
3V  
3V  
40 MHz  
40 MHz  
40 MHz  
BGA81  
TQFP80  
BGA81  
Tray  
Tray  
Tray  
89C51SND1C-IL  
89C51SND1C-IL  
89C51SND1C-IL  
Industrial &  
Green  
Industrial &  
Green  
Notes: 1. Refers to ROM code.  
2. PLCC84 package only available for development board.  
203  
4109JS–8051–10/06  
Atmel Corporation  
Atmel Operations  
2325 Orchard Parkway  
San Jose, CA 95131, USA  
Tel: 1(408) 441-0311  
Fax: 1(408) 487-2600  
Memory  
RF/Automotive  
Theresienstrasse 2  
Postfach 3535  
74025 Heilbronn, Germany  
Tel: (49) 71-31-67-0  
Fax: (49) 71-31-67-2340  
2325 Orchard Parkway  
San Jose, CA 95131, USA  
Tel: 1(408) 441-0311  
Fax: 1(408) 436-4314  
Regional Headquarters  
Microcontrollers  
2325 Orchard Parkway  
San Jose, CA 95131, USA  
Tel: 1(408) 441-0311  
Fax: 1(408) 436-4314  
1150 East Cheyenne Mtn. Blvd.  
Colorado Springs, CO 80906, USA  
Tel: 1(719) 576-3300  
Europe  
Atmel Sarl  
Route des Arsenaux 41  
Case Postale 80  
CH-1705 Fribourg  
Switzerland  
Tel: (41) 26-426-5555  
Fax: (41) 26-426-5500  
Fax: 1(719) 540-1759  
Biometrics/Imaging/Hi-Rel MPU/  
High Speed Converters/RF Datacom  
Avenue de Rochepleine  
BP 123  
38521 Saint-Egreve Cedex, France  
Tel: (33) 4-76-58-30-00  
La Chantrerie  
BP 70602  
44306 Nantes Cedex 3, France  
Tel: (33) 2-40-18-18-18  
Fax: (33) 2-40-18-19-60  
Asia  
Room 1219  
Chinachem Golden Plaza  
77 Mody Road Tsimshatsui  
East Kowloon  
Hong Kong  
Tel: (852) 2721-9778  
Fax: (852) 2722-1369  
ASIC/ASSP/Smart Cards  
Zone Industrielle  
13106 Rousset Cedex, France  
Tel: (33) 4-42-53-60-00  
Fax: (33) 4-42-53-60-01  
Fax: (33) 4-76-58-34-80  
1150 East Cheyenne Mtn. Blvd.  
Colorado Springs, CO 80906, USA  
Tel: 1(719) 576-3300  
Japan  
9F, Tonetsu Shinkawa Bldg.  
1-24-8 Shinkawa  
Chuo-ku, Tokyo 104-0033  
Japan  
Tel: (81) 3-3523-3551  
Fax: (81) 3-3523-7581  
Fax: 1(719) 540-1759  
Scottish Enterprise Technology Park  
Maxwell Building  
East Kilbride G75 0QR, Scotland  
Tel: (44) 1355-803-000  
Fax: (44) 1355-242-743  
Literature Requests  
www.atmel.com/literature  
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any  
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDI-  
TIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY  
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR  
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-  
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT  
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no  
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications  
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically providedot-  
herwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’sAtmel’s products are not intended, authorized, or warranted for use as  
components in applications intended to support or sustain life.  
© Atmel Corporation 2006. All rights reserved. Atmel®, logo and combinations thereof, are registered trademarks, and Everywhere You Are®  
are the trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.  
Printed on recycled paper.  
4109JS–8051–10/06  

相关型号:

AT80C51UFXXX25

Microcontroller, 8-Bit, MROM, 8051 CPU, 25MHz, CMOS, PQFP44,
TEMIC

AT80C51UFXXX30

Microcontroller, 8-Bit, MROM, 8051 CPU, 30MHz, CMOS, PQFP44,
TEMIC

AT80C51UFXXX36

Microcontroller, 8-Bit, MROM, 8051 CPU, 36MHz, CMOS, PQFP44,
TEMIC

AT80C51UXXX25

Microcontroller, 8-Bit, MROM, 8051 CPU, 25MHz, CMOS, PQFP44,
TEMIC

AT80C51UXXX30

Microcontroller, 8-Bit, MROM, 8051 CPU, 30MHz, CMOS, PQFP44,
TEMIC

AT80C51UXXX36

Microcontroller, 8-Bit, MROM, 8051 CPU, 36MHz, CMOS, PQFP44,
TEMIC

AT80C52CXXX-12

Microcontroller, 8-Bit, MROM, 8051 CPU, 12MHz, CMOS, PQFP44,
TEMIC

AT80C52CXXX-12:D

Microcontroller, 8-Bit, MROM, 12MHz, CMOS, PQFP44,
ATMEL

AT80C52CXXX-12:R

Microcontroller, 8-Bit, MROM, 8051 CPU, 12MHz, CMOS, PQFP44,
TEMIC

AT80C52CXXX-12:RD

Microcontroller, 8-Bit, MROM, 12MHz, CMOS, PQFP44,
ATMEL

AT80C52CXXX-12D

8-BIT, MROM, 12MHz, MICROCONTROLLER, PQFP44, 1 MM HEIGHT, TQFP-44
ATMEL

AT80C52CXXX-12SHXXX

Microcontroller, 8-Bit, MROM, 12MHz, CMOS, PQFP44, 1 MM HEIGHT, TQFP-44
ATMEL