A1221LLHLX-T [ALLEGRO]

Chopper Stabilized Precision Hall Effect Latches; 斩波稳定精密霍尔效应锁存
A1221LLHLX-T
型号: A1221LLHLX-T
厂家: ALLEGRO MICROSYSTEMS    ALLEGRO MICROSYSTEMS
描述:

Chopper Stabilized Precision Hall Effect Latches
斩波稳定精密霍尔效应锁存

传感器 换能器 磁场传感器 信息通信管理
文件: 总13页 (文件大小:281K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
A1220, A1221, and A1222  
Chopper Stabilized Precision Hall Effect Latches  
Features and Benefits  
Description  
Symmetrical latch switchpoints  
Resistant to physical stress  
Superior temperature stability  
Output short-circuit protection  
Operation from unregulated supply down to 3 V  
Reverse battery protection  
The A1220, A1221, and A1222 Hall-effect sensor ICs are  
extremely temperature-stable and stress-resistant devices  
especiallysuitedforoperationoverextendedtemperatureranges  
to 150°C. Superior high-temperature performance is made  
possiblethroughdynamicoffsetcancellation,whichreducesthe  
residualoffsetvoltagenormallycausedbydeviceovermolding,  
temperature dependencies, and thermal stress. Each device  
includesonasinglesiliconchipavoltageregulator,Hall-voltage  
generator,small-signalamplifier,chopperstabilization,Schmitt  
trigger, and a short-circuit protected open-collector output to  
sink up to 25 mA. A south pole of sufficient strength turns the  
output on. A north pole of sufficient strength is necessary to  
turn the output off.  
Solid-state reliability  
Small package sizes  
Packages:  
An onboard regulator permits operation with supply voltages  
of 3 to 24 V. The advantage of operating down to 3 V is that  
the device can be used in 3-V applications or with additional  
external resistance in series with the supply pin for greater  
protection against high voltage transient events.  
Two package styles provide magnetically optimized packages  
for most applications. Package type LH is a modified 3-pin  
SOT23WsurfacemountpackagewhileUAisathree-pinultra-  
mini SIP for through hole mounting. Both packages are lead  
(Pb) free, with 100% matte tin plated leadframes.  
3-pin SOT23W (suffix LH)  
3-pin SIP (suffix UA)  
Not to scale  
Functional Block Diagram  
VCC  
Regulator  
To All Subcircuits  
VOUT  
Low-Pass  
Filter  
Amp  
Control  
Current Limit  
GND  
A1220-DS, Rev. 8  
A1220, A1221  
and A1222  
Chopper Stabilized Precision Hall Effect Latches  
Selection Guide  
Part Number  
Packing1  
Mounting  
Ambient, TA  
BRP (Min)  
BOP (Max)  
A1220ELHLX-T  
A1220ELHLT-T2  
A1220EUA-T  
13-in. reel, 10000 pieces/reel  
7-in. reel, 3000 pieces/reel  
Bulk, 500 pieces/bag  
3-pin SOT23W surface mount  
3-pin SOT23W surface mount  
3-pin SIP through hole  
–40ºC to 85ºC  
–40  
40  
A1220LLHLX-T  
A1220LLHLT-T2  
A1220LUA-T  
13-in. reel, 10000 pieces/reel  
7-in. reel, 3000 pieces/reel  
Bulk, 500 pieces/bag  
3-pin SOT23W surface mount  
3-pin SOT23W surface mount  
3-pin SIP through hole  
–40ºC to 150ºC  
–40ºC to 85ºC  
A1221ELHLX-T  
A1221ELHLT-T2  
A1221EUA-T  
13-in. reel, 10000 pieces/reel  
7-in. reel, 3000 pieces/reel  
Bulk, 500 pieces/bag  
3-pin SOT23W surface mount  
3-pin SOT23W surface mount  
3-pin SIP through hole  
–90  
90  
A1221LLHLX-T  
A1221LLHLT-T2  
A1221LUA-T  
13-in. reel, 10000 pieces/reel  
7-in. reel, 3000 pieces/reel  
Bulk, 500 pieces/bag  
3-pin SOT23W surface mount  
3-pin SOT23W surface mount  
3-pin SIP through hole  
–40ºC to 150ºC  
–40ºC to 85ºC  
–40ºC to 150ºC  
A1222ELHLT-T  
7-in. reel, 3000 pieces/reel  
3-pin SOT23W surface mount  
3-pin SOT23W surface mount  
3-pin SOT23W surface mount  
3-pin SOT23W surface mount  
3-pin SIP through hole  
A1222ELHLX-T2 13-in. reel, 10000 pieces/reel  
A1222LLHLT-T  
A1222LLHLX-T2  
A1222LUA-T  
7-in. reel, 3000 pieces/reel  
13-in. reel, 10000 pieces/reel  
Bulk, 500 pieces/bag  
–150  
150  
1Contact Allegro for additional packing options.  
2Available through authorized Allegro distributors only.  
Absolute Maximum Ratings  
Characteristic  
Forward Supply Voltage  
Reverse Supply Voltage  
Output Off Voltage  
Symbol  
VCC  
Notes  
Rating  
Units  
V
26.5  
–30  
VRCC  
VOUT  
IOUT  
V
26  
V
Continuous Output Current  
Reverse Output Current  
25  
mA  
mA  
ºC  
ºC  
ºC  
ºC  
IROUT  
–50  
Range E  
Range L  
–40 to 85  
–40 to 150  
165  
Operating Ambient Temperature  
TA  
Maximum Junction Temperature  
Storage Temperature  
TJ(max)  
Tstg  
–65 to 170  
Pin-out Diagrams  
3
Package LH  
Package UA  
2
1
3
1
2
Terminal List  
Number  
Package LH Package UA  
Name  
Description  
VCC  
VOUT  
GND  
Connects power supply to chip  
Output from circuit  
Ground  
1
2
3
1
3
2
Allegro MicroSystems, Inc.  
115 Northeast Cutoff  
2
Worcester, Massachusetts 01615-0036 U.S.A.  
1.508.853.5000; www.allegromicro.com  
A1220, A1221  
and A1222  
Chopper Stabilized Precision Hall Effect Latches  
ELECTRICAL CHARACTERISTICS Valid valid over full operating voltage and ambient temperature ranges; unless otherwise noted  
Characteristics  
Electrical Characteristics  
Forward Supply Voltage  
Output Leakage Current  
Output Saturation Voltage  
Output Current Limit  
Symbol  
Test Conditions  
Min.  
Typ.1  
Max.  
Unit2  
VCC  
Operating, TJ < 165°C  
VOUT = 24 V, B < BRP  
3
24  
10  
V
IOUTOFF  
μA  
mV  
mA  
VOUT(SAT) IOUT = 20 mA, B > BOP  
185  
500  
60  
IOM  
tPO  
B > BOP  
30  
VCC > 3.0 V, B < BRP(min) – 10 G,  
B > BOP(max) + 10 G  
3
25  
μs  
Power-On Time  
Chopping Frequency  
fC  
tr  
800  
0.2  
0.1  
2
kHz  
μs  
3,4  
RL = 820 Ω, CL = 20 pF  
RL = 820 Ω, CL = 20 pF  
B > BOP, VCC = 12 V  
B < BRP, VCC = 12 V  
VRCC = –30 V  
Output Rise Time  
3,4  
tf  
2
μs  
Output Fall Time  
ICC(ON)  
ICC(OFF)  
IRCC  
VZ  
4
mA  
mA  
mA  
V
Supply Current  
4
Reverse Supply Current  
Supply Zener Clamp Voltage  
Zener Impedance  
–5  
ICC = 5 mA; TA = 25°C  
ICC = 5 mA; TA = 25°C  
28  
IZ  
50  
Ω
Magnetic Characteristics  
A1220  
A1221  
A1222  
A1220  
A1221  
A1222  
A1220  
5
15  
22  
50  
40  
90  
G
G
G
G
G
G
G
G
G
Operate Point  
Release Point  
Hysteresis  
BOP  
70  
110  
–23  
–50  
–110  
45  
150  
–5  
–40  
–90  
–150  
10  
BRP  
–15  
–70  
80  
(BOP – BRP  
)
BHYS  
A1221  
A1222  
30  
100  
220  
180  
300  
140  
1Typical data are are at TA = 25°C and VCC = 12 V, and are for initial design estimations only.  
21 G (gauss) = 0.1 mT (millitesla).  
3Guaranteed by device design and characterization.  
4CL = oscilloscope probe capacitance.  
Allegro MicroSystems, Inc.  
115 Northeast Cutoff  
3
Worcester, Massachusetts 01615-0036 U.S.A.  
1.508.853.5000; www.allegromicro.com  
A1220, A1221  
and A1222  
Chopper Stabilized Precision Hall Effect Latches  
THERMAL CHARACTERISTICS may require derating at maximum conditions, see application information  
Characteristic  
Symbol  
Test Conditions  
Value Units  
Package LH, 1-layer PCB with copper limited to solder pads  
228 ºC/W  
2
Package LH, 2-layer PCB with 0.463 in. of copper area each  
side connected by thermal vias  
RθJA  
Package Thermal Resistance  
110  
ºC/W  
Package UA, 1-layer PCB with copper limited to solder pads  
165 ºC/W  
Power Derating Curve  
TJ(max) = 165ºC; ICC = ICC(max)  
25  
24  
23  
V
CC(max)  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
Package LH, 2-layer PCB  
(RQJA = 110 ºC/W)  
Package UA, 1-layer PCB  
(RQJA = 165 ºC/W)  
Package LH, 1-layer PCB  
(RQJA = 228 ºC/W)  
4
3
2
V
CC(min)  
20  
40  
60  
80  
100  
120  
140  
160  
180  
Power Dissipation versus Ambient Temperature  
1900  
1800  
1700  
1600  
1500  
1400  
1300  
1200  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
20  
40  
60  
80  
100  
120  
140  
160  
180  
Temperature (°C)  
Allegro MicroSystems, Inc.  
115 Northeast Cutoff  
4
Worcester, Massachusetts 01615-0036 U.S.A.  
1.508.853.5000; www.allegromicro.com  
A1220, A1221  
and A1222  
Chopper Stabilized Precision Hall Effect Latches  
Characteristic Performance  
A1220, A1221, and A1222 Electrical Characteristics  
Average Supply Current (On) versus Temperature  
Average Supply Current (On) versus Supply Voltage  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
3.0V  
3.8V  
4.2V  
12V  
24V  
150°C  
25°C  
-40°C  
2
6
10  
14  
18  
22  
26  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
A (°C)  
VCC (V)  
T
Average Supply Current (Off) versus Temperature  
Average Supply Current (Off) versus Supply Voltage  
6.0  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
3.0V  
3.8V  
4.2V  
12V  
24V  
150°C  
25°C  
-40°C  
2
6
10  
14  
18  
22  
26  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
TA (°C)  
V
CC (V)  
Saturation Voltage versus Temperature  
Saturation Voltage versus Supply Voltage  
300  
250  
200  
150  
100  
50  
300  
250  
200  
150  
100  
50  
2.6V  
3.0V  
3.8V  
4.2V  
12V  
150°C  
25°C  
-40°C  
24V  
0
0
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
TA (°C)  
0
2
4
6
8
10 12 14 16 18 20 22 24 26  
V
CC (V)  
Allegro MicroSystems, Inc.  
115 Northeast Cutoff  
5
Worcester, Massachusetts 01615-0036 U.S.A.  
1.508.853.5000; www.allegromicro.com  
A1220, A1221  
and A1222  
Chopper Stabilized Precision Hall Effect Latches  
A1220 Magnetic Characteristics  
Operate Point versus Temperature  
Operate Point versus Supply Voltage  
40  
35  
30  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
(V)  
3.0  
3.8  
4.2  
12  
24  
(°C)  
-40  
25  
150  
0
0
2
6
10  
14  
18  
22  
26  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
A (°C)  
V
CC (V)  
T
Release Point versus Supply Voltage  
Release Point versus Temperature  
0
0
-5  
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
(V)  
(°C)  
-40  
25  
3.0  
3.8  
4.2  
12  
24  
150  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
A (°C)  
2
6
10  
14  
18  
22  
26  
T
V
CC (V)  
Switchpoint Hysteresis versus Temperature  
Switchpoint Hysteresis versus Supply Voltage  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
(V)  
3.0  
3.8  
4.2  
12  
24  
(°C)  
-40  
25  
150  
0
0
2
6
10  
14  
18  
22  
26  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
TA (°C)  
VCC (V)  
Allegro MicroSystems, Inc.  
115 Northeast Cutoff  
6
Worcester, Massachusetts 01615-0036 U.S.A.  
1.508.853.5000; www.allegromicro.com  
A1220, A1221  
and A1222  
Chopper Stabilized Precision Hall Effect Latches  
A1221 Magnetic Characteristics  
Operate Point versus Temperature  
Operate Point versus Supply Voltage  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
(°C)  
-40  
25  
(V)  
2.6  
12  
24  
150  
2
6
10  
14  
18  
22  
26  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
A (°C)  
VCC (V)  
T
Release Point versus Supply Voltage  
Release Point versus Temperature  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
(V)  
2.6  
12  
24  
(°C)  
-40  
25  
150  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
TA (°C)  
2
6
10  
14  
18  
22  
26  
VCC (V)  
Switchpoint Hysteresis versus Temperature  
Switchpoint Hysteresis versus Supply Voltage  
180  
170  
160  
150  
140  
130  
120  
110  
100  
90  
180  
170  
160  
150  
140  
130  
120  
110  
100  
90  
(°C)  
-40  
25  
(V)  
2.6  
12  
24  
150  
80  
80  
70  
70  
60  
60  
50  
50  
40  
40  
30  
30  
2
6
10  
14  
18  
22  
26  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
A (°C)  
VCC (V)  
T
Allegro MicroSystems, Inc.  
115 Northeast Cutoff  
7
Worcester, Massachusetts 01615-0036 U.S.A.  
1.508.853.5000; www.allegromicro.com  
A1220, A1221  
and A1222  
Chopper Stabilized Precision Hall Effect Latches  
A1222 Magnetic Characteristics  
Operate Point versus Temperature  
Operate Point versus Supply Voltage  
150  
140  
130  
120  
110  
100  
90  
180  
170  
160  
150  
140  
130  
120  
110  
100  
90  
(°C)  
-40  
25  
(V)  
2.6  
24  
150  
80  
80  
70  
70  
2
6
10  
14  
18  
22  
26  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
A (°C)  
V
CC (V)  
T
Release Point versus Supply Voltage  
Release Point versus Temperature  
-70  
-80  
-70  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-170  
-180  
-100  
-110  
-120  
-130  
-140  
-150  
(°C)  
-40  
25  
(V)  
2.6  
24  
150  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
TA (°C)  
2
6
10  
14  
18  
22  
26  
VCC (V)  
Switchpoint Hysteresis versus Temperature  
Switchpoint Hysteresis versus Supply Voltage  
300  
280  
260  
240  
220  
200  
180  
160  
140  
300  
280  
260  
240  
220  
200  
180  
160  
140  
(°C)  
-40  
25  
(V)  
2.6  
24  
150  
2
6
10  
14  
18  
22  
26  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
A (°C)  
VCC (V)  
T
Allegro MicroSystems, Inc.  
115 Northeast Cutoff  
8
Worcester, Massachusetts 01615-0036 U.S.A.  
1.508.853.5000; www.allegromicro.com  
A1220, A1221  
and A1222  
Chopper Stabilized Precision Hall Effect Latches  
Functional Description  
Operation  
Applications  
The output of these devices switches low (turns on) when a mag-  
netic field perpendicular to the Hall element exceeds the operate  
point threshold, BOP (see panel A of figure 1). After turn-on, the  
output voltage is VOUT(SAT). The output transistor is capable of  
sinking current up to the short circuit current limit, IOM, which is  
a minimum of 30 mA. When the magnetic field is reduced below  
the release point, BRP, the device output goes high (turns off).  
The difference in the magnetic operate and release points is the  
hysteresis, BHYS, of the device. This built-in hysteresis allows  
clean switching of the output even in the presence of external  
mechanical vibration and electrical noise.  
It is strongly recommended that an external bypass capacitor be  
connected (in close proximity to the Hall element) between the  
supply and ground of the device to reduce both external noise  
and noise generated by the chopper stabilization technique. As is  
shown in panel B of figure 1, a 0.1 μF capacitor is typical.  
Extensive applications information for Hall effect devices is  
available in:  
Hall-Effect IC Applications Guide, Application Note 27701  
Guidelines for Designing Subassemblies Using Hall-Effect  
Devices, Application Note 27703.1  
Removal of the magnetic field will leave the device output  
latched on if the last crossed switchpoint is BOP, or latched off if  
the last crossed switch point is BRP.  
Soldering Methods for Allegros Products – SMT and Through-  
Hole, Application Note 26009  
Powering-on the device in the hysteresis range (less than BOP and  
higher than BRP) will give an indeterminate output state. The cor-  
All are provided in Allegro Electronic Data Book, AMS-702, and  
rect state is attained after the first excursion beyond BOP or BRP  
.
the Allegro Web site, www.allegromicro.com.  
VS  
V+  
VCC  
VCC  
RL  
A122x  
CBYP  
VOUT  
0.1 μF  
Output  
GND  
VOUT(SAT)  
B+  
0
B–  
0
BHYS  
(A)  
(B)  
Figure 1. Switching behavior of latches. In panel A, on the horizontal axis, the B+ direction indicates increasing south polarity magnetic field strength,  
and the B– direction indicates decreasing south polarity field strength (including the case of increasing north polarity). This behavior can be exhibited  
when using a circuit such as that shown in panel B.  
Allegro MicroSystems, Inc.  
115 Northeast Cutoff  
9
Worcester, Massachusetts 01615-0036 U.S.A.  
1.508.853.5000; www.allegromicro.com  
A1220, A1221  
and A1222  
Chopper Stabilized Precision Hall Effect Latches  
The chopper stabilization technique uses a 400 kHz high fre-  
quency clock. For demodulation process, a sample and hold  
technique is used, where the sampling is performed at twice the  
chopper frequency (800 kHz). This high-frequency operation  
allows a greater sampling rate, which results in higher accuracy  
and faster signal-processing capability. This approach desensi-  
tizes the chip to the effects of thermal and mechanical stresses,  
and produces devices that have extremely stable quiescent Hall  
output voltages and precise recoverability after temperature  
cycling. This technique is made possible through the use of a  
BiCMOS process, which allows the use of low-offset, low-noise  
amplifiers in combination with high-density logic integration and  
sample-and-hold circuits.  
Chopper Stabilization Technique  
When using Hall effect technology, a limiting factor for  
switchpoint accuracy is the small signal voltage developed across  
the Hall element. This voltage is disproportionally small relative  
to the offset that can be produced at the output of the Hall ele-  
ment. This makes it difficult to process the signal while main-  
taining an accurate, reliable output over the specified operating  
temperature and voltage ranges.  
Chopper stabilization is a unique approach used to minimize  
Hall offset on the chip. The patented Allegro technique, namely  
Dynamic Quadrature Offset Cancellation, removes key sources  
of the output drift induced by thermal and mechanical stresses.  
This offset reduction technique is based on a signal modulation-  
demodulation process. The undesired offset signal is separated  
from the magnetic field-induced signal in the frequency domain,  
through modulation. The subsequent demodulation acts as a  
modulation process for the offset, causing the magnetic field  
induced signal to recover its original spectrum at baseband, while  
the dc offset becomes a high-frequency signal. The magnetic  
sourced signal then can pass through a low-pass filter, while the  
modulated DC offset is suppressed. This configuration is illus-  
trated in figure 2.  
The repeatability of magnetic field-induced switching is affected  
slightly by a chopper technique. However, the Allegro high  
frequency chopping approach minimizes the affect of jitter and  
makes it imperceptible in most applications. Applications that are  
more likely to be sensitive to such degradation are those requiring  
precise sensing of alternating magnetic fields; for example, speed  
sensing of ring-magnet targets. For such applications, Allegro  
recommends its digital device families with lower sensitivity  
to jitter. For more information on those devices, contact your  
Allegro sales representative.  
Regulator  
Clock/Logic  
Low-Pass  
Filter  
Hall Element  
Amp  
Figure 2. Model of chopper stabilization technique  
Allegro MicroSystems, Inc.  
115 Northeast Cutoff  
10  
Worcester, Massachusetts 01615-0036 U.S.A.  
1.508.853.5000; www.allegromicro.com  
A1220, A1221  
and A1222  
Chopper Stabilized Precision Hall Effect Latches  
A worst-case estimate, PD(max), represents the maximum allow-  
Power Derating  
able power level (VCC(max), ICC(max)), without exceeding TJ(max)  
at a selected RJA and TA.  
,
The device must be operated below the maximum junction  
temperature of the device, TJ(max). Under certain combinations of  
peak conditions, reliable operation may require derating supplied  
power or improving the heat dissipation properties of the appli-  
cation. This section presents a procedure for correlating factors  
affecting operating TJ. (Thermal data is also available on the  
Allegro MicroSystems website.)  
Example: Reliability for VCC at TA=150°C, package LH, using a  
minimum-K PCB.  
Observe the worst-case ratings for the device, specifically:  
RJA=228°C/W, TJ(max) =165°C, VCC(max) = 24 V, and  
ICC(max) = 4 mA.  
The Package Thermal Resistance, RJA, is a figure of merit sum-  
marizing the ability of the application and the device to dissipate  
heat from the junction (die), through all paths to the ambient air.  
Its primary component is the Effective Thermal Conductivity, K,  
of the printed circuit board, including adjacent devices and traces.  
Radiation from the die through the device case, RJC, is relatively  
small component of RJA. Ambient air temperature, TA, and air  
motion are significant external factors, damped by overmolding.  
Calculate the maximum allowable power level, PD(max). First,  
invert equation 3:  
Tmax = TJ(max) – TA = 165°C150°C = 15°C  
This provides the allowable increase to TJ resulting from internal  
power dissipation. Then, invert equation 2:  
PD(max) = Tmax ÷RJA =1C÷228 °C/W=66mW  
The effect of varying power levels (Power Dissipation, PD), can  
be estimated. The following formulas represent the fundamental  
relationships used to estimate TJ, at PD.  
Finally, invert equation 1 with respect to voltage:  
VCC(est) = PD(max) ÷ ICC(max)= 66mW÷4mA=16.4 V  
PD = VIN  
I
(1)  
(2)  
(3)  
×
IN  
The result indicates that, at TA, the application and device can  
dissipate adequate amounts of heat at voltages VCC(est)  
.
T = PD  
R
JA  
×
Compare VCC(est) to VCC(max). If VCC(est) VCC(max), then reli-  
able operation between VCC(est) and VCC(max) requires enhanced  
RJA. If VCC(est) VCC(max), then operation between VCC(est)  
and VCC(max) is reliable under these conditions.  
TJ = TA + ΔT  
For example, given common conditions such as: TA= 25°C,  
VCC = 12 V, ICC = 1.6 mA, and RJA = 165 °C/W, then:  
PD = VCC  
I
= 12 V 1.6 mA = 19 mW  
×
×
CC  
T = PD  
R
= 19 mW 165 °C/W = 3°C  
×
×
JA  
TJ = TA + T = 25°C + 3°C = 28°C  
Allegro MicroSystems, Inc.  
115 Northeast Cutoff  
11  
Worcester, Massachusetts 01615-0036 U.S.A.  
1.508.853.5000; www.allegromicro.com  
A1220, A1221  
and A1222  
Chopper Stabilized Precision Hall Effect Latches  
Package LH, 3-Pin (SOT-23W)  
+0.12  
–0.08  
2.98  
3
D
1.49  
+4°  
–0°  
4°  
A
+0.020  
–0.053  
0.180  
D
0.96  
D
+0.10  
2.90  
+0.19  
–0.06  
2.40  
1.91  
–0.20  
0.70  
0.25 MIN  
1.00  
2
1
0.55 REF  
0.25 BSC  
0.95  
PCB Layout Reference View  
Seating Plane  
Gauge Plane  
B
Branded Face  
8X 10° REF  
1.00 ±0.13  
+0.10  
NNT  
1
0.05  
–0.05  
C
Standard Branding Reference View  
0.95 BSC  
0.40 ±0.10  
N = Last two digits of device part number  
T = Temperature code  
For Reference Only; not for tooling use (reference dwg. 802840)  
Dimensions in millimeters  
Dimensions exclusive of mold flash, gate burrs, and dambar protrusions  
Exact case and lead configuration at supplier discretion within limits shown  
Active Area Depth, 0.28 mm REF  
A
B
Reference land pattern layout  
All pads a minimum of 0.20 mm from all adjacent pads; adjust as necessary  
to meet application process requirements and PCB layout tolerances  
C
D
Branding scale and appearance at supplier discretion  
Hall element, not to scale  
Allegro MicroSystems, Inc.  
115 Northeast Cutoff  
12  
Worcester, Massachusetts 01615-0036 U.S.A.  
1.508.853.5000; www.allegromicro.com  
A1220, A1221  
and A1222  
Chopper Stabilized Precision Hall Effect Latches  
Package UA, 3-Pin SIP  
+0.08  
4.09  
–0.05  
45°  
B
C
E
2.04  
1.52 ±0.05  
1.44  
E
E
Mold Ejector  
Pin Indent  
+0.08  
–0.05  
NNT  
3.02  
45°  
Branded  
Face  
1
2.16  
Standard Branding Reference View  
D
MAX  
= Supplier emblem  
N = Last two digits of device part number  
T = Temperature code  
0.79 REF  
A
0.51  
REF  
1
2
3
For Reference Only; not for tooling use (reference DWG-9049)  
Dimensions in millimeters  
Dimensions exclusive of mold flash, gate burrs, and dambar protrusions  
Exact case and lead configuration at supplier discretion within limits shown  
+0.03  
–0.06  
0.41  
15.75 ±0.51  
Dambar removal protrusion (6X)  
A
B
C
D
Gate burr area  
Active Area Depth, 0.50 mm REF  
Branding scale and appearance at supplier discretion  
E
Hall element, not to scale  
+0.05  
–0.07  
1.27 NOM  
0.43  
Copyright ©2009, Allegro MicroSystems, Inc.  
The products described herein are manufactured under one or more of the following U.S. patents: 5,517,112; 5,619,137; 5,621,319; 7,425,821 and/  
or other patents pending.  
Allegro MicroSystems, Inc. reserves the right to make, from time to time, such departures from the detail specifications as may be required to per-  
mit improvements in the performance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that the  
information being relied upon is current.  
Allegro’s products are not to be used in life support devices or systems, if a failure of an Allegro product can reasonably be expected to cause the  
failure of that life support device or system, or to affect the safety or effectiveness of that device or system.  
The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems, Inc. assumes no responsibility for its use;  
nor for any infringement of patents or other rights of third parties which may result from its use.  
For the latest version of this document, visit our website:  
www.allegromicro.com  
Allegro MicroSystems, Inc.  
115 Northeast Cutoff  
13  
Worcester, Massachusetts 01615-0036 U.S.A.  
1.508.853.5000; www.allegromicro.com  

相关型号:

A1221LUA-T

Chopper Stabilized Precision Hall Effect Latches
ALLEGRO

A1222

Chopper Stabilized Precision Hall Effect Latches
ALLEGRO

A1222ELHLT-T

Chopper Stabilized Precision Hall Effect Latches
ALLEGRO

A1222ELHLX-T

Chopper Stabilized Precision Hall Effect Latches
ALLEGRO

A1222ELHLX-T2

Chopper Stabilized Precision Hall Effect Latches
ALLEGRO

A1222LLHLT-T

Chopper Stabilized Precision Hall Effect Latches
ALLEGRO

A1222LLHLX-T

Chopper Stabilized Precision Hall Effect Latches
ALLEGRO

A1222LLHLX-T2

Chopper Stabilized Precision Hall Effect Latches
ALLEGRO

A1222LUA-T

Chopper Stabilized Precision Hall Effect Latches
ALLEGRO

A1223

Chopper Stabilized Precision Hall Effect Latches
ALLEGRO

A1223ELHLT-T

Chopper Stabilized Precision Hall Effect Latches
ALLEGRO

A1223ELHLX-T

Hall Effect Sensor, -18mT Min, 18mT Max, 30-60mA, Rectangular, Surface Mount, SOT-23W, 3 PIN
ALLEGRO