A1223ELHLX-T [ALLEGRO]

Hall Effect Sensor, -18mT Min, 18mT Max, 30-60mA, Rectangular, Surface Mount, SOT-23W, 3 PIN;
A1223ELHLX-T
型号: A1223ELHLX-T
厂家: ALLEGRO MICROSYSTEMS    ALLEGRO MICROSYSTEMS
描述:

Hall Effect Sensor, -18mT Min, 18mT Max, 30-60mA, Rectangular, Surface Mount, SOT-23W, 3 PIN

输出元件 传感器 换能器
文件: 总16页 (文件大小:547K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
A1220, A1221, A1222, and A1223  
2
-
Chopper-Stabilized Precision Hall-Effect Latches  
FEATURES AND BENEFITS  
DESCRIPTION  
▪ꢀ AEC-Q100ꢀautomotiveꢀqualified  
▪ꢀ QualityꢀManagedꢀ(QM),ꢀISOꢀ26262ꢀcompliant  
▪ꢀ Symmetricalꢀlatchꢀswitchpoints  
▪ꢀ Resistantꢀtoꢀphysicalꢀstress  
▪ꢀ Superiorꢀtemperatureꢀstability  
▪ꢀ Outputꢀshort-circuitꢀprotection  
▪ꢀ Operationꢀfromꢀunregulatedꢀsupplyꢀdownꢀtoꢀ3ꢀV  
▪ꢀ Reverse-batteryꢀprotection  
TheA1220, A1221,A1222, andA1223 Hall-effect sensor ICs  
are extremely temperature-stable and stress-resistant devices  
especiallysuitedforoperationoverextendedtemperatureranges  
to 150°C. Superior high-temperature performance is made  
possiblethroughdynamicoffsetcancellation,whichreducesthe  
residualoffsetvoltagenormallycausedbydeviceovermolding,  
temperature dependencies, and thermal stress. Each device  
includes on a single silicon chip a voltage regulator, Hall-  
voltagegenerator,small-signalamplifier,chopperstabilization,  
Schmitttrigger,andashort-circuitprotectedopen-drainoutput  
to sink up to 25 mA. A south pole of sufficient strength turns  
the output on. A north pole of sufficient strength is necessary  
to turn the output off.  
▪ꢀ Solid-stateꢀreliability  
▪ꢀ Smallꢀpackageꢀsizes  
PACKAGES:  
Not to scale  
An onboard regulator permits operation with supply voltages  
of 3 to 24 V. The advantage of operating down to 3 V is that  
the device can be used in 3 V applications or with additional  
external resistance in series with the supply pin for greater  
protection against high voltage transient events.  
NOT FOR  
NEW DESIGN  
Two package styles provide magnetically optimized packages  
for most applications. Package type LH is a modified 3-pin  
SOT23W surface-mount package, while UA is a three-pin  
ultra-mini SIP for through-hole mounting. Both packages are  
lead (Pb) free, with 100% matte-tin-plated leadframes.  
3-pin SOT23W  
(suffix LH)  
3-pin SIP,  
matrix HD style  
(suffix UA)  
3-pin SIP,  
chopper style  
(suffix UA)  
FUNCTIONAL BLOCK DIAGRAM  
VCC  
Regulator  
To All Subcircuits  
Low-Pass  
VOUT  
Filter  
Amp  
Control  
Current Limit  
GND  
A1220-DS, Rev. 19  
MCO-0000309  
September 22, 2017  
A1220, A1221,  
A1222, and A1223  
Chopper-Stabilized Precision Hall-Effect Latches  
SELECTION GUIDE  
Part Number  
Packing [1]  
Mounting  
Ambient, TA  
BRP (Min)  
BOP (Max)  
A1220ELHLX-T  
A1220ELHLT-T [2]  
A1220EUA-T [3]  
A1220LLHLX-T  
A1220LLHLT-T [2]  
A1220LUA-T [3]  
A1221ELHLX-T  
A1221ELHLT-T [2]  
A1221EUA-T [3]  
A1221LLHLX-T  
A1221LLHLT-T [2]  
A1221LUA-T [3]  
A1222ELHLT-T  
A1222ELHLX-T [2]  
A1222EUA-T  
13-in. reel, 10000 pieces/reel  
7-in. reel, 3000 pieces/reel  
Bulk, 500 pieces/bag  
3-pin SOT23W surface mount  
3-pin SOT23W surface mount  
3-pin SIP through hole  
–40°C to 85°C  
–40 G  
40 G  
13-in. reel, 10000 pieces/reel  
7-in. reel, 3000 pieces/reel  
Bulk, 500 pieces/bag  
3-pin SOT23W surface mount  
3-pin SOT23W surface mount  
3-pin SIP through hole  
–40°C to 150°C  
–40°C to 85°C  
–40°C to 150°C  
–40°C to 85°C  
–40°C to 150°C  
–40°C to 85°C  
–40°C to 150°C  
13-in. reel, 10000 pieces/reel  
7-in. reel, 3000 pieces/reel  
Bulk, 500 pieces/bag  
3-pin SOT23W surface mount  
3-pin SOT23W surface mount  
3-pin SIP through hole  
–90 G  
–150 G  
–180 G  
90 G  
150 G  
180 G  
13-in. reel, 10000 pieces/reel  
7-in. reel, 3000 pieces/reel  
Bulk, 500 pieces/bag  
3-pin SOT23W surface mount  
3-pin SOT23W surface mount  
3-pin SIP through hole  
7-in. reel, 3000 pieces/reel  
13-in. reel, 10000 pieces/reel  
Bulk, 500 pieces/bag  
3-pin SOT23W surface mount  
3-pin SOT23W surface mount  
3-pin SIP through hole  
A1222LLHLT-T  
A1222LLHLX-T [2]  
A1222LUA-T  
7-in. reel, 3000 pieces/reel  
13-in. reel, 10000 pieces/reel  
Bulk, 500 pieces/bag  
3-pin SOT23W surface mount  
3-pin SOT23W surface mount  
3-pin SIP through hole  
A1223ELHLT-T  
A1223ELHLX-T [2]  
A1223EUA-T  
7-in. reel, 3000 pieces/reel  
13-in. reel, 10000 pieces/reel  
Bulk, 500 pieces/bag  
3-pin SOT23W surface mount  
3-pin SOT23W surface mount  
3-pin SIP through hole  
A1223LLHLT-T  
A1223LLHLX-T [2]  
A1223LUA-T  
7-in. reel, 3000 pieces/reel  
13-in. reel, 10000 pieces/reel  
Bulk, 500 pieces/bag  
3-pin SOT23W surface mount  
3-pin SOT23W surface mount  
3-pin SIP through hole  
[1] Contact Allegro for additional packing options.  
[2] Available through authorized Allegro distributors only.  
[3] The chopper-style UA package is not for new design; the matrix HD style UA package is recommended for new designs.  
RoHS  
COMPLIANT  
Allegro MicroSystems, LLC  
115 Northeast Cutoff  
2
Worcester, Massachusetts 01615-0036 U.S.A.  
1.508.853.5000; www.allegromicro.com  
A1220, A1221,  
A1222, and A1223  
Chopper-Stabilized Precision Hall-Effect Latches  
ABSOLUTE MAXIMUM RATINGS  
Characteristic  
Symbol  
VCC  
Notes  
Rating  
26.5  
Units  
V
Forward Supply Voltage [1]  
Reverse Supply Voltage [1]  
Output Off Voltage [1]  
VRCC  
VOUT  
IOUT  
–30  
V
26  
V
Continuous Output Current  
Reverse Output Current  
25  
mA  
mA  
°C  
°C  
°C  
°C  
°C  
IROUT  
–50  
Range E  
Range L  
–40 to 85  
–40 to 150  
165  
Operating Ambient Temperature  
TA  
Maximum Junction Temperature  
Storage Temperature  
TJ(max)  
Tstg  
For 500 hours  
175  
–65 to 170  
[1] This rating does not apply to extremely short voltage transients such as Load Dump and/or ESD. Those events have individual  
ratings, specific to the respective transient voltage event.  
PINOUT DIAGRAMS AND TERMINAL LIST TABLE  
3
Package LH  
Package UA  
2
1
3
1
2
Terminal List  
Number  
Package LH Package UA  
Name  
Description  
Connects power supply to chip  
VCC  
VOUT  
GND  
1
2
3
1
3
2
Output from circuit  
Ground  
Allegro MicroSystems, LLC  
115 Northeast Cutoff  
3
Worcester, Massachusetts 01615-0036 U.S.A.  
1.508.853.5000; www.allegromicro.com  
A1220, A1221,  
A1222, and A1223  
Chopper-Stabilized Precision Hall-Effect Latches  
ELECTRICAL CHARACTERISTICS: Valid over full operating voltage and ambient temperature ranges, unless otherwise noted  
Characteristics  
ELECTRICAL CHARACTERISTICS  
Forward Supply Voltage  
Symbol  
Test Conditions  
Min.  
Typ. [1]  
Max.  
Unit [2]  
VCC  
Operating, TJ < 165°C  
VOUT = 24 V, B < BRP  
3
24  
10  
V
Output Leakage Current  
Output Saturation Voltage  
Output Current Limit  
IOUTOFF  
µA  
mV  
mA  
VOUT(SAT) IOUT = 20 mA, B > BOP  
185  
500  
60  
IOM  
tPO  
B > BOP  
30  
VCC > 3.0 V, B < BRP(min) – 10 G,  
B > BOP(max) + 10 G  
[3]  
25  
µs  
Power-On Time  
Chopping Frequency  
fC  
tr  
800  
0.2  
0.1  
2
kHz  
µs  
[3][4]  
RL = 820 Ω, CL = 20 pF  
RL = 820 Ω, CL = 20 pF  
B > BOP, VCC = 12 V  
B < BRP, VCC = 12 V  
VRCC = –20 V  
Output Rise Time  
[3][4]  
tf  
2
µs  
Output Fall Time  
ICC(ON)  
ICC(OFF)  
IRCC  
VZ  
4
mA  
mA  
mA  
V
Supply Current  
4
Reverse Supply Current  
Supply Zener Clamp Voltage  
Zener Impedance  
–5  
ICC = 5 mA; TA = 25°C  
ICC = 5 mA; TA = 25°C  
28  
IZ  
50  
Ω
MAGNETIC CHARACTERISTICS  
A1220  
A1221  
A1222  
A1223  
A1220  
A1221  
A1222  
A1223  
A1220  
5
22  
50  
40  
90  
G
G
G
G
G
G
G
G
G
G
G
G
15  
Operate Point  
Release Point  
Hysteresis  
BOP  
70  
110  
150  
–23  
–50  
–110  
–150  
45  
150  
180  
–5  
100  
–40  
–90  
–150  
–180  
10  
–15  
–70  
–100  
80  
BRP  
A1221  
30  
100  
220  
300  
180  
300  
360  
BHYS  
(BOP – BRP)  
A1222  
140  
200  
A1223  
[1] Typical data are are at TA = 25°C and VCC = 12 V, and are for initial design estimations only.  
[2] 1 G (gauss) = 0.1 mT (millitesla).  
[3] Guaranteed by device design and characterization.  
[4] CL = oscilloscope probe capacitance.  
Allegro MicroSystems, LLC  
115 Northeast Cutoff  
4
Worcester, Massachusetts 01615-0036 U.S.A.  
1.508.853.5000; www.allegromicro.com  
A1220, A1221,  
A1222, and A1223  
Chopper-Stabilized Precision Hall-Effect Latches  
THERMAL CHARACTERISTICS: May require derating at maximum conditions; see application information  
Characteristic  
Symbol  
Test Conditions  
Value  
Units  
Package LH, 1-layer PCB with copper limited to solder pads  
228  
°C/W  
2
Package LH, 2-layer PCB with 0.463 in. of copper area each side  
connected by thermal vias  
Package Thermal Resistance  
RθJA  
110  
165  
°C/W  
°C/W  
Package UA, 1-layer PCB with copper limited to solder pads  
Power Derating Curve  
TJ(max) = 165ºC; ICC = ICC(max)  
25  
24  
23  
V
CC(max)  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
Package LH, 2-layer PCB  
(RθJA = 110 ºC/W)  
Package UA, 1-layer PCB  
(RθJA = 165 ºC/W)  
Package LH, 1-layer PCB  
(RθJA = 228 ºC/W)  
4
3
2
V
CC(min)  
20  
40  
60  
80  
100  
120  
140  
160  
180  
Power Dissipation versus Ambient Temperature  
1900  
1800  
1700  
1600  
1500  
1400  
1300  
1200  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
20  
40  
60  
80  
100  
120  
140  
160  
180  
Temperature (°C)  
Allegro MicroSystems, LLC  
115 Northeast Cutoff  
5
Worcester, Massachusetts 01615-0036 U.S.A.  
1.508.853.5000; www.allegromicro.com  
A1220, A1221,  
A1222, and A1223  
Chopper-Stabilized Precision Hall-Effect Latches  
CHARACTERISTIC PERFORMANCE  
A1220, A1221, A1222, and A1223 Electrical Characteristics  
Average Supply Current (On) versus Temperature  
Average Supply Current (On) versus Supply Voltage  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
3.0V  
3.8V  
4.2V  
12V  
24V  
150°C  
25°C  
-40°C  
2
6
10  
14  
18  
22  
26  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
A (°C)  
VCC (V)  
T
Average Supply Current (Off) versus Temperature  
Average Supply Current (Off) versus Supply Voltage  
6.0  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
3.0V  
3.8V  
4.2V  
12V  
24V  
150°C  
25°C  
-40°C  
2
6
10  
14  
18  
22  
26  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
TA (°C)  
V
CC (V)  
Saturation Voltage versus Temperature  
Saturation Voltage versus Supply Voltage  
300  
250  
200  
150  
100  
50  
300  
250  
200  
150  
100  
50  
2.6V  
3.0V  
3.8V  
4.2V  
12V  
150°C  
25°C  
-40°C  
24V  
0
0
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
TA (°C)  
0
2
4
6
8
10 12 14 16 18 20 22 24 26  
V
CC (V)  
Allegro MicroSystems, LLC  
115 Northeast Cutoff  
6
Worcester, Massachusetts 01615-0036 U.S.A.  
1.508.853.5000; www.allegromicro.com  
A1220, A1221,  
A1222, and A1223  
Chopper-Stabilized Precision Hall-Effect Latches  
A1220 Magnetic Characteristics  
Operate Point versus Temperature  
Operate Point versus Supply Voltage  
40  
35  
30  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
(V)  
3.0  
3.8  
4.2  
12  
24  
(°C)  
-40  
25  
150  
0
0
2
6
10  
14  
18  
22  
26  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
A (°C)  
V
CC (V)  
T
Release Point versus Supply Voltage  
Release Point versus Temperature  
0
0
-5  
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
(V)  
(°C)  
-40  
25  
3.0  
3.8  
4.2  
12  
24  
150  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
A (°C)  
2
6
10  
14  
18  
22  
26  
T
V
CC (V)  
Switchpoint Hysteresis versus Temperature  
Switchpoint Hysteresis versus Supply Voltage  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
(V)  
3.0  
3.8  
4.2  
12  
24  
(°C)  
-40  
25  
150  
0
0
2
6
10  
14  
18  
22  
26  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
TA (°C)  
VCC (V)  
Allegro MicroSystems, LLC  
115 Northeast Cutoff  
7
Worcester, Massachusetts 01615-0036 U.S.A.  
1.508.853.5000; www.allegromicro.com  
A1220, A1221,  
A1222, and A1223  
Chopper-Stabilized Precision Hall-Effect Latches  
A1221 Magnetic Characteristics  
Operate Point versus Temperature  
Operate Point versus Supply Voltage  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
(°C)  
-40  
25  
(V)  
2.6  
12  
24  
150  
2
6
10  
14  
18  
22  
26  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
A (°C)  
VCC (V)  
T
Release Point versus Supply Voltage  
Release Point versus Temperature  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
(V)  
2.6  
12  
24  
(°C)  
-40  
25  
150  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
TA (°C)  
2
6
10  
14  
18  
22  
26  
VCC (V)  
Switchpoint Hysteresis versus Temperature  
Switchpoint Hysteresis versus Supply Voltage  
180  
170  
160  
150  
140  
130  
120  
110  
100  
90  
180  
170  
160  
150  
140  
130  
120  
110  
100  
90  
(°C)  
-40  
25  
(V)  
2.6  
12  
24  
150  
80  
80  
70  
70  
60  
60  
50  
50  
40  
40  
30  
30  
2
6
10  
14  
18  
22  
26  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
A (°C)  
VCC (V)  
T
Allegro MicroSystems, LLC  
115 Northeast Cutoff  
8
Worcester, Massachusetts 01615-0036 U.S.A.  
1.508.853.5000; www.allegromicro.com  
A1220, A1221,  
A1222, and A1223  
Chopper-Stabilized Precision Hall-Effect Latches  
A1222 Magnetic Characteristics  
Operate Point versus Temperature  
Operate Point versus Supply Voltage  
150  
140  
130  
120  
110  
100  
90  
180  
170  
160  
150  
140  
130  
120  
110  
100  
90  
(°C)  
-40  
25  
(V)  
2.6  
24  
150  
80  
80  
70  
70  
2
6
10  
14  
18  
22  
26  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
A (°C)  
V
CC (V)  
T
Release Point versus Supply Voltage  
Release Point versus Temperature  
-70  
-80  
-70  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-170  
-180  
-100  
-110  
-120  
-130  
-140  
-150  
(°C)  
-40  
25  
(V)  
2.6  
24  
150  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
TA (°C)  
2
6
10  
14  
18  
22  
26  
VCC (V)  
Switchpoint Hysteresis versus Temperature  
Switchpoint Hysteresis versus Supply Voltage  
300  
280  
260  
240  
220  
200  
180  
160  
140  
300  
280  
260  
240  
220  
200  
180  
160  
140  
(°C)  
-40  
25  
(V)  
2.6  
24  
150  
2
6
10  
14  
18  
22  
26  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
A (°C)  
VCC (V)  
T
Allegro MicroSystems, LLC  
115 Northeast Cutoff  
9
Worcester, Massachusetts 01615-0036 U.S.A.  
1.508.853.5000; www.allegromicro.com  
A1220, A1221,  
A1222, and A1223  
Chopper-Stabilized Precision Hall-Effect Latches  
FUNCTIONAL DESCRIPTION  
(Safety Element out of Context) and can be easily integrated into  
OPERATION  
The output of these devices switches low (turns on) when a mag-  
netic field perpendicular to the Hall element exceeds the operate  
point threshold, BOP (see panel A of figure 1). After turn-on, the  
output voltage is VOUT(SAT). The output transistor is capable of  
sinking current up to the short circuit current limit, IOM, which is  
a minimum of 30 mA. When the magnetic field is reduced below  
the release point, BRP, the device output goes high (turns off).  
The difference in the magnetic operate and release points is the  
hysteresis, BHYS, of the device. This built-in hysteresis allows  
clean switching of the output even in the presence of external  
mechanical vibration and electrical noise.  
safety-criticalꢀsystemsꢀrequiringꢀhigherꢀASILꢀratingsꢀthatꢀincor-  
porate external diagnostics or use measures such as redundancy.  
Safety documentation will be provided to support and guide the  
integration process. For further information, contact your local  
Allegro field applications engineer or sales representative.  
APPLICATIONS  
It is strongly recommended that an external bypass capacitor be  
connected (in close proximity to the Hall element) between the  
supply and ground of the device to reduce both external noise  
andꢀnoiseꢀgeneratedꢀbyꢀtheꢀchopperꢀstabilizationꢀtechnique.ꢀAsꢀisꢀ  
shown in panel B of figure 1, a 0.1 µF capacitor is typical.  
Removalꢀofꢀtheꢀmagneticꢀfieldꢀwillꢀleaveꢀtheꢀdeviceꢀoutputꢀ  
latched on if the last crossed switchpoint is BOP, or latched off if  
the last crossed switch point is BRP.  
Extensive applications information for Hall effect devices is  
available in:  
Powering-on the device in the hysteresis range (less than BOP and  
higher than BRP) will give an indeterminate output state. The cor-  
Hall-Effect IC Applications Guide, Application Note 27701  
Guidelines for Designing Subassemblies Using Hall-Effect  
Devices, Application Note 27703.1  
rect state is attained after the first excursion beyond BOP or BRPꢀ  
.
FUNCTIONAL SAFETY  
2
Soldering Methods for Allegros Products – SMT and Through-  
Hole,ꢀApplicationꢀNoteꢀ26009  
The A1220, A1221, A1222, and A1223 comply  
with the international standard for automotive  
functionalꢀsafety,ꢀISOꢀ26262,ꢀasꢀQualityꢀMan-  
-
All are provided in Allegro Electronic Data Book,ꢀAMS-702,ꢀꢀandꢀ  
agedꢀ(QM)ꢀproducts.ꢀTheꢀdevicesꢀareꢀeachꢀclassifiedꢀasꢀaꢀSEooCꢀ  
the Allegro Web site, www.allegromicro.com.  
VS  
V+  
VCC  
VCC  
RL  
A122x  
CBYP  
VOUT  
0.1 µF  
Output  
GND  
VOUT(SAT)  
B+  
0
B–  
0
BHYS  
(A)  
(B)  
Figure 1. Switching behavior of latches. In panel A, on the horizontal axis, the B+ direction indicates increasing south polarity magnetic field strength,  
and the B– direction indicates decreasing south polarity field strength (including the case of increasing north polarity). This behavior can be exhibited  
when using a circuit such as that shown in panel B.  
Allegro MicroSystems, LLC  
115 Northeast Cutoff  
10  
Worcester, Massachusetts 01615-0036 U.S.A.  
1.508.853.5000; www.allegromicro.com  
A1220, A1221,  
A1222, and A1223  
Chopper-Stabilized Precision Hall-Effect Latches  
Theꢀchopperꢀstabilizationꢀtechniqueꢀusesꢀaꢀ400ꢀkHzꢀhighꢀfre-  
quencyꢀclock.ꢀForꢀdemodulationꢀprocess,ꢀaꢀsampleꢀandꢀholdꢀ  
techniqueꢀisꢀused,ꢀwhereꢀtheꢀsamplingꢀisꢀperformedꢀatꢀtwiceꢀtheꢀ  
chopperꢀfrequencyꢀ(800ꢀkHz).ꢀThisꢀhigh-frequencyꢀoperationꢀ  
allows a greater sampling rate, which results in higher accuracy  
and faster signal-processing capability. This approach desensi-  
tizes the chip to the effects of thermal and mechanical stresses,  
andꢀproducesꢀdevicesꢀthatꢀhaveꢀextremelyꢀstableꢀquiescentꢀHallꢀ  
output voltages and precise recoverability after temperature  
cycling.ꢀThisꢀtechniqueꢀisꢀmadeꢀpossibleꢀthroughꢀtheꢀuseꢀofꢀaꢀ  
BiCMOSꢀprocess,ꢀwhichꢀallowsꢀtheꢀuseꢀofꢀlow-offset,ꢀlow-noiseꢀ  
amplifiers in combination with high-density logic integration and  
sample-and-hold circuits.  
CHOPPER STABILIZATION TECHNIQUE  
When using Hall effect technology, a limiting factor for  
switchpoint accuracy is the small signal voltage developed across  
the Hall element. This voltage is disproportionally small relative  
to the offset that can be produced at the output of the Hall ele-  
ment. This makes it difficult to process the signal while main-  
taining an accurate, reliable output over the specified operating  
temperature and voltage ranges.  
Chopperꢀstabilizationꢀisꢀaꢀuniqueꢀapproachꢀusedꢀtoꢀminimizeꢀ  
Hallꢀoffsetꢀonꢀtheꢀchip.ꢀTheꢀAllegroꢀtechnique,ꢀnamelyꢀDynamicꢀ  
QuadratureꢀOffsetꢀCancellation,ꢀremovesꢀkeyꢀsourcesꢀofꢀtheꢀout-  
put drift induced by thermal and mechanical stresses. This offset  
reductionꢀtechniqueꢀisꢀbasedꢀonꢀaꢀsignalꢀmodulation-demodula-  
tion process. The undesired offset signal is separated from the  
magneticꢀfield-inducedꢀsignalꢀinꢀtheꢀfrequencyꢀdomain,ꢀthroughꢀ  
modulation.ꢀTheꢀsubsequentꢀdemodulationꢀactsꢀasꢀaꢀmodulationꢀ  
process for the offset, causing the magnetic field induced signal  
to recover its original spectrum at baseband, while the dc offset  
becomesꢀaꢀhigh-frequencyꢀsignal.ꢀTheꢀmagneticꢀsourcedꢀsignalꢀ  
thenꢀcanꢀpassꢀthroughꢀaꢀlow-passꢀfilter,ꢀwhileꢀtheꢀmodulatedꢀDCꢀ  
offset is suppressed. This configuration is illustrated in figure 2.  
The repeatability of magnetic field-induced switching is affected  
slightlyꢀbyꢀaꢀchopperꢀtechnique.ꢀHowever,ꢀtheꢀAllegroꢀhighꢀ  
frequencyꢀchoppingꢀapproachꢀminimizesꢀtheꢀaffectꢀofꢀjitterꢀandꢀ  
makes it imperceptible in most applications. Applications that are  
moreꢀlikelyꢀtoꢀbeꢀsensitiveꢀtoꢀsuchꢀdegradationꢀareꢀthoseꢀrequiringꢀ  
precise sensing of alternating magnetic fields; for example, speed  
sensing of ring-magnet targets. For such applications, Allegro  
recommends its digital device families with lower sensitivity  
toꢀjitter.ꢀForꢀmoreꢀinformationꢀonꢀthoseꢀdevices,ꢀcontactꢀyourꢀ  
Allegro sales representative.  
Regulator  
Clock/Logic  
Low-Pass  
Filter  
Hall Element  
Amp  
Figure 2. Model of chopper stabilization technique  
Allegro MicroSystems, LLC  
115 Northeast Cutoff  
11  
Worcester, Massachusetts 01615-0036 U.S.A.  
1.508.853.5000; www.allegromicro.com  
                                                                                                           
ꢀꢀꢀVCC(est) = PD(max) ÷ ICC(max)=ꢀ66mW÷4mA=16.4ꢀV  
The result indicates that, at TA, the application and device can  
dissipateꢀadequateꢀamountsꢀofꢀheatꢀatꢀvoltagesꢀ≤VCC(est)  
A1220, A1221,  
A1222, and A1223  
Chopper-Stabilized Precision Hall-Effect Latches  
Example:ꢀReliabilityꢀforꢀVCC at TA=150°C, package LH, using a  
POWER DERATING  
minimum-K PCB.  
Theꢀdeviceꢀmustꢀbeꢀoperatedꢀbelowꢀtheꢀmaximumꢀjunctionꢀ  
temperature of the device, TJ(max). Under certain combinations of  
peakꢀconditions,ꢀreliableꢀoperationꢀmayꢀrequireꢀderatingꢀsuppliedꢀ  
power or improving the heat dissipation properties of the appli-  
cation. This section presents a procedure for correlating factors  
affecting operating TJ. (Thermal data is also available on the  
AllegroꢀMicroSystemsꢀwebsite.)  
Observe the worst-case ratings for the device, specifically:  
RθJA=228°C/W,ꢀTJ(max) =165°C,ꢀVCC(max) = 24 V, and  
ICC(max) = 4 mA.  
Calculate the maximum allowable power level, PD(max). First,  
invertꢀequationꢀ3:  
ΔTmax = TJ(max) – TAꢀ=ꢀ165°C150°C = 15°C  
TheꢀPackageꢀThermalꢀResistance,ꢀRθJA, is a figure of merit sum-  
marizing the ability of the application and the device to dissipate  
heatꢀfromꢀtheꢀjunctionꢀ(die),ꢀthroughꢀallꢀpathsꢀtoꢀtheꢀambientꢀair.ꢀ  
Its primary component is the Effective Thermal Conductivity, K,  
ofꢀtheꢀprintedꢀcircuitꢀboard,ꢀincludingꢀadjacentꢀdevicesꢀandꢀtraces.ꢀ  
Radiationꢀfromꢀtheꢀdieꢀthroughꢀtheꢀdeviceꢀcase,ꢀRθJC, is relatively  
smallꢀcomponentꢀofꢀRθJA. Ambient air temperature, TA, and air  
motion are significant external factors, damped by overmolding.  
This provides the allowable increase to TJ resulting from internal  
powerꢀdissipation.ꢀThen,ꢀinvertꢀequationꢀ2:  
ꢀꢀꢀꢀPD(max) = ΔTmax ÷RθJA =1C÷228°C/W=66mW  
Finally,ꢀinvertꢀequationꢀ1ꢀwithꢀrespectꢀtoꢀvoltage:  
Theꢀeffectꢀofꢀvaryingꢀpowerꢀlevelsꢀ(PowerꢀDissipation,ꢀPD), can  
be estimated. The following formulas represent the fundamental  
relationships used to estimate TJ, at PD.  
.
Compare VCC(est) to VCC(max). If VCC(est)ꢀ≤ꢀVCC(max), then reli-  
able operation between VCC(est) and VCC(max)ꢀrequiresꢀenhancedꢀ  
RθJA. If VCC(est)ꢀ≥ꢀVCC(max), then operation between VCC(est)  
and VCC(max) is reliable under these conditions.  
PD = VIN  
I
(1)  
(2)  
(3)  
×
IN  
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀΔT = PD  
R
θJA  
×
TJ = TA + ΔT  
For example, given common conditions such as: TA= 25°C,  
VCC = 12 V, ICC = 1.6ꢀmA, and RθJA =ꢀ165°C/W,ꢀthen:  
PD = VCC  
I
= 12 V 1.6 mA = 19 mW  
CC  
×
×
ΔT = PD  
R
= 19 mW 165°C/W = 3°C  
θJA  
×
×
TJ = TA + ΔT = 25°C + 3°C = 28°C  
A worst-case estimate, PD(max), represents the maximum allow-  
able power level (VCC(max), ICC(max)), without exceeding TJ(max)  
atꢀaꢀselectedꢀRθJA and TA.  
,
Allegro MicroSystems, LLC  
115 Northeast Cutoff  
12  
Worcester, Massachusetts 01615-0036 U.S.A.  
1.508.853.5000; www.allegromicro.com  
A1220, A1221,  
A1222, and A1223  
Chopper-Stabilized Precision Hall-Effect Latches  
Package LH, 3-Pin (SOT-23W)  
+0.12  
–0.08  
2.98  
3
D
1.49  
4°±4°  
A
+0.020  
–0.053  
0.180  
D
0.96  
D
+0.10  
2.90  
+0.19  
–0.06  
2.40  
1.91  
–0.20  
0.70  
0.25 MIN  
1.00  
2
1
0.55 REF  
0.25 BSC  
0.95  
Seating Plane  
Gauge Plane  
PCB Layout Reference View  
B
Branded Face  
8 × 10°  
C
Standard Branding Reference View  
1.00 ±0.13  
+0.10  
0.05  
NNT  
–0.05  
0.95 BSC  
0.40 ±0.10  
1
For Reference Only; not for tooling use (reference dwg. 802840)  
Dimensions in millimeters  
Dimensions exclusive of mold flash, gate burrs, and dambar protrusions  
Exact case and lead configuration at supplier discretion within limits shown  
N = Last two digits of device part number  
T = Temperature code (letter)  
Active Area Depth, 0.28 mm REF  
A
B
Reference land pattern layout  
NNN  
All pads a minimum of 0.20 mm from all adjacent pads; adjust as necessary  
to meet application process requirements and PCB layout tolerances  
C
D
Branding scale and appearance at supplier discretion  
Hall element, not to scale  
1
N = Last three digits of device part number  
Allegro MicroSystems, LLC  
115 Northeast Cutoff  
13  
Worcester, Massachusetts 01615-0036 U.S.A.  
1.508.853.5000; www.allegromicro.com  
A1220, A1221,  
A1222, and A1223  
Chopper-Stabilized Precision Hall-Effect Latches  
Package UA, 3-Pin SIP, Matrix HD Style  
+0.08  
4.09  
–0.05  
45°  
B
C
E
2.04  
1.52 ±0.05  
10°  
1.44  
E
Mold Ejector  
Pin Indent  
E
+0.08  
3.02  
–0.05  
45°  
Branded  
Face  
0.79 REF  
A
1.02  
NNN  
MAX  
1
1
2
3
Standard Branding Reference View  
D
= Supplier emblem  
N = Last three digits of device part number  
14.99 ±0.25  
+0.03  
–0.06  
0.41  
For Reference Only; not for tooling use (reference DWG-9065)  
Dimensions in millimeters  
Dimensions exclusive of mold flash, gate burrs, and dambar protrusions  
Exact case and lead configuration at supplier discretion within limits shown  
+0.05  
–0.07  
0.43  
Dambar removal protrusion (6X)  
A
B
C
D
Gate and tie bar burr area  
Active Area Depth, 0.50 mm REF  
Branding scale and appearance at supplier discretion  
Hall element (not to scale)  
E
1.27 NOM  
Allegro MicroSystems, LLC  
115 Northeast Cutoff  
14  
Worcester, Massachusetts 01615-0036 U.S.A.  
1.508.853.5000; www.allegromicro.com  
A1220, A1221,  
A1222, and A1223  
Chopper-Stabilized Precision Hall-Effect Latches  
Package UA, 3-Pin SIP, Chopper Style  
+0.08  
4.09  
–0.05  
45°  
B
C
E
2.04  
1.52 ±0.05  
1.44  
E
E
Mold Ejector  
Pin Indent  
+0.08  
–0.05  
NNT  
3.02  
45°  
Branded  
Face  
1
2.16  
Standard Branding Reference View  
D
MAX  
= Supplier emblem  
N = Last two digits of device part number  
T = Temperature code  
0.79 REF  
A
0.51  
REF  
NOT FOR  
1
2
3
NEW DESIGN  
For Reference Only; not for tooling use (reference DWG-9049)  
Dimensions in millimeters  
Dimensions exclusive of mold flash, gate burrs, and dambar protrusions  
Exact case and lead configuration at supplier discretion within limits shown  
+0.03  
–0.06  
0.41  
15.75 ±0.51  
Dambar removal protrusion (6X)  
A
B
C
D
Gate burr area  
Active Area Depth, 0.50 mm REF  
Branding scale and appearance at supplier discretion  
E
Hall element, not to scale  
+0.05  
–0.07  
1.27 NOM  
0.43  
Allegro MicroSystems, LLC  
115 Northeast Cutoff  
15  
Worcester, Massachusetts 01615-0036 U.S.A.  
1.508.853.5000; www.allegromicro.com  
A1220, A1221,  
A1222, and A1223  
Chopper-Stabilized Precision Hall-Effect Latches  
Revision History  
Number  
Date  
September 16, 2013  
Description  
15  
16  
17  
18  
19  
Update UA package drawing  
September 21, 2015  
January 12, 2016  
October 20, 2016  
September 22, 2017  
Added AEC-Q100 qualification under Features and Benefits  
Updated Reverse Supply Current test conditions in Electrical Characteristics table  
Chopper-style UA package designated as not for new design  
Updated Maximum Junction Temperature in Absolute Maximum Ratings table and  
Figure 1B; added Functional Safety information  
Copyright ©2017, Allegro MicroSystems, LLC  
Allegro MicroSystems, LLC reserves the right to make, from time to time, such departures from the detail specifications as may be required to  
permit improvements in the performance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that  
the information being relied upon is current.  
Allegro’s products are not to be used in any devices or systems, including but not limited to life support devices or systems, in which a failure of  
Allegro’s product can reasonably be expected to cause bodily harm.  
The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems, LLC assumes no responsibility for its  
use; nor for any infringement of patents or other rights of third parties which may result from its use.  
For the latest version of this document, visit our website:  
www.allegromicro.com  
Allegro MicroSystems, LLC  
115 Northeast Cutoff  
16  
Worcester, Massachusetts 01615-0036 U.S.A.  
1.508.853.5000; www.allegromicro.com  

相关型号:

A1223ELHLX-T2

Chopper Stabilized Precision Hall Effect Latches
ALLEGRO

A1223EUA-T

Hall Effect Sensor, -18mT Min, 18mT Max, 30-60mA, BICMOS, Plastic/epoxy, Rectangular, 3 Pin, Through Hole Mount, SIP-3
ALLEGRO

A1223LLHLT-T

Chopper Stabilized Precision Hall Effect Latches
ALLEGRO

A1223LLHLX-T

Hall Effect Sensor, -18mT Min, 18mT Max, 30-60mA, Rectangular, Surface Mount, SOT-23W, 3 PIN
ALLEGRO

A1223LLHLX-T2

Chopper Stabilized Precision Hall Effect Latches
ALLEGRO

A1223LUA-T

Chopper Stabilized Precision Hall Effect Latches
ALLEGRO

A1224NXT-2W

2 Watt FIXED INPUT, ISOLATED Dual SMD Output DC-DC CONVERTER
MICRODC

A1224S-1W

输入 输出 典型效率 输出纹波噪声 型号 输入电压 输入电压范围 输出电压 输出电流 (V) (V) (V) (MA) (%) MV P-P 5 4.5-5.5 ±5 ±100 69 50 A0505S-1W ±9 ±55 75 50 A0509S-1W ±12 ±42 77 50 A0512S-1W ±15 ±33 78 50 A0515S-1W 12 10.8-13.2 ±5 ±100 69 50 A1205S-1W ±9 ±55 74 50 A1209S-1W ±12 ±42 75 50 A1212S-1W ±15 ±33 76 50 A1215S-1W 24 21.6-26.4 ±5 ±100 70 50 A2405S-1W ±9 ±55 77 50 A2409S-1W ±12 ±42 80 50 A2412S-1W ±15 ±33 80 50 A2415S-1W
MICRODC

A1224S-1WR2

DC/DC Converter
MORNSUN

A1224S-2W

输入 输出 典型效率 输出纹波噪声 型号 输入电压 输入电压范围 输出电压 输出电流 (V) (V) (V) (MA) (%) MV P-P 5 4.5-5.5 ±5 ±200 80 75 A0505S-2W ±9 ±111 81 75 A0509S-2W ±12 ±83 82 75 A0512S-2W ±15 ±67 84 75 A0515S-2W 12 10.8-13.2 ±5 ±200 80 75 A1205S-2W ±9 ±111 83 75 A1209S-2W ±12 ±83 84 75 A1212S-2W ±15 ±67 84 75 A1215S-2W 24 21.6-26.4 ±5 ±200 81 75 A2405S-2W ±9 ±111 85 75 A2409S-2W ±12 ±83 86 75 A2412S-2W ±15 ±67 86 75 A2415S-2W
MICRODC

A1224XD-1W25

Isolated 1.25W Dual Output DC-DC Converters
MICRODC

A1224XMD-1W

1KV ISOLATED 1W UNREGULATED DUAL OUTPUT DIP8 DC∕DC Converter
MICRODC