HCPL3150 [AGILENT]

0.5 Amp Output Current IGBT Gate Drive Optocoupler; 0.5安培输出电流IGBT栅极驱动光电耦合器
HCPL3150
型号: HCPL3150
厂家: AGILENT TECHNOLOGIES, LTD.    AGILENT TECHNOLOGIES, LTD.
描述:

0.5 Amp Output Current IGBT Gate Drive Optocoupler
0.5安培输出电流IGBT栅极驱动光电耦合器

栅极 光电 双极性晶体管 栅极驱动
文件: 总15页 (文件大小:254K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
H
0.5 Amp Output Current IGBT  
Gate Drive Optocoupler  
Technical Data  
HCPL-3150  
Features  
• 0.5 A Minimum Peak Output  
Current  
• 15 kV/µs Minimum Common  
Mode Rejection (CMR) at  
VCM = 1500 V  
• 1.0 V Maximum Low Level  
Output Voltage (VOL)  
Eliminates Need for  
Negative Gate Drive  
• ICC = 5 mA Maximum Supply  
Current  
• Under Voltage Lock-Out  
Protection (UVLO) with  
Hysteresis  
Applications  
• Isolated IGBT/MOSFET  
Gate Drive  
• AC and Brushless DC Motor  
Drives  
• Industrial Inverters  
ideally suited for driving power  
IGBTs and MOSFETs used in  
motor control inverter applica-  
tions. The high operating voltage  
range of the output stage pro-  
vides the drive voltages required  
by gate controlled devices. The  
voltage and current supplied by  
this optocoupler makes it ideally  
suited for directly driving IGBTs  
with ratings up to 1200 V/50 A.  
For IGBTs with higher ratings,  
the HCPL-3120 can be used to  
drive a discrete power stage  
which drives the IGBT gate.  
• Switch Mode Power  
Supplies (SMPS)  
Description  
The HCPL-3150 consists of a  
GaAsP LED optically coupled to  
an integrated circuit with a power  
output stage. This optocoupler is  
• Wide Operating VCC Range:  
15 to 30 Volts  
• 500 ns Maximum Switching  
Speeds  
• Industrial Temperature  
Range:  
-40°C to 100°C  
• Safety and Regulatory  
Approval:  
Functional Diagram  
N/C  
ANODE  
CATHODE  
N/C  
1
8
V
V
V
V
CC  
2
3
4
7
6
5
O
O
EE  
SHIELD  
UL Recognized  
2500 Vrms for 1 min. per  
UL1577  
Truth Table  
VCC - VEE  
VCC - VEE  
“Positive Going”  
(i.e., Turn-On)  
“Negative-Going”  
(i.e., Turn-Off)  
VDE 0884 Approved with  
LED  
VO  
VIORM = 630 Vpeak  
OFF  
ON  
ON  
ON  
0 - 30 V  
0 - 11 V  
0 - 30 V  
0 - 9.5 V  
9.5 - 12 V  
12 - 30 V  
LOW  
LOW  
TRANSITION  
HIGH  
(Option 060 only)  
CSA Approved  
11 - 13.5 V  
13.5 - 30 V  
A 0.1 µF bypass capacitor must be connected between pins 5 and 8.  
CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to  
prevent damage and/or degradation which may be induced by ESD.  
5965-4780E  
1-197  
Ordering Information  
Specify Part Number followed by Option Number (if desired)  
Example  
HCPL-3150#XXX  
No Option = Standard DIP package, 50 per tube.  
060 = VDE 0884 V = 630 Vpeak Option, 50 per tube.  
IORM  
300 = Gull Wing Surface Mount Option, 50 per tube.  
500 = Tape and Reel Packaging Option, 1000 per reel.  
Option data sheets available. Contact Hewlett-Packard sales representative or authorized distributor.  
Package Outline Drawings  
Standard DIP Package  
9.40 (0.370)  
9.90 (0.390)  
8
1
7
6
5
OPTION CODE*  
DATE CODE  
0.20 (0.008)  
0.33 (0.013)  
6.10 (0.240)  
6.60 (0.260)  
HP 3150 Z  
YYWW  
7.36 (0.290)  
7.88 (0.310)  
5° TYP.  
2
3
4
PIN ONE  
1.78 (0.070) MAX.  
1.19 (0.047) MAX.  
4.70 (0.185) MAX.  
PIN ONE  
0.51 (0.020) MIN.  
2.92 (0.115) MIN.  
DIMENSIONS IN MILLIMETERS AND (INCHES).  
0.76 (0.030)  
1.40 (0.055)  
0.65 (0.025) MAX.  
* MARKING CODELETTER FOR OPTION NUMBERS.  
"V" = OPTION 060.  
2.28 (0.090)  
2.80 (0.110)  
OPTION NUMBERS 300 AND 500 NOT MARKED.  
Gull-Wing Surface-Mount Option 300  
PAD LOCATION (FOR REFERENCE ONLY)  
9.65 ± 0.25  
(0.380 ± 0.010)  
1.016 (0.040)  
1.194 (0.047)  
7
6
5
8
4.826  
TYP.  
(0.190)  
HP 3150 Z  
YYWW  
6.350 ± 0.25  
(0.250 ± 0.010)  
9.398 (0.370)  
9.906 (0.390)  
1
3
2
4
MOLDED  
0.381 (0.015)  
0.635 (0.025)  
1.194 (0.047)  
1.778 (0.070)  
9.65 ± 0.25  
(0.380 ± 0.010)  
1.780  
(0.070)  
MAX.  
1.19  
7.62 ± 0.25  
(0.047)  
MAX.  
(0.300 ± 0.010)  
0.20 (0.008)  
0.33 (0.013)  
4.19  
MAX.  
(0.165)  
0.635 ± 0.25  
(0.025 ± 0.010)  
1.080 ± 0.320  
(0.043 ± 0.013)  
0.635 ± 0.130  
(0.025 ± 0.005)  
12° NOM.  
2.540  
(0.100)  
BSC  
DIMENSIONS IN MILLIMETERS (INCHES).  
TOLERANCES (UNLESS OTHERWISE SPECIFIED): xx.xx = 0.01  
xx.xxx = 0.005  
LEAD COPLANARITY  
MAXIMUM: 0.102 (0.004)  
1-198  
Reflow Temperature Profile  
Regulatory Information  
The HCPL-3150 has been  
approved by the following  
organizations:  
260  
240  
220  
T = 145°C, 1°C/SEC  
T = 115°C, 0.3°C/SEC  
200  
180  
160  
140  
120  
100  
UL  
Recognized under UL 1577,  
Component Recognition  
Program, File E55361.  
80  
T = 100°C, 1.5°C/SEC  
60  
40  
20  
0
CSA  
Approved under CSA Component  
Acceptance Notice #5, File CA  
88324.  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
TIME – MINUTES  
MAXIMUM SOLDER REFLOW THERMAL PROFILE  
VDE (Option 060 only)  
(NOTE: USE OF NON-CHLORINE ACTIVATED FLUXES IS RECOMMENDED.)  
Approved under VDE 0884/06.92  
with VIORM = 630 Vpeak.  
VDE 0884 Insulation Characteristics (Option 060 Only)  
Description  
Symbol  
Characteristic  
Unit  
Installation classification per DIN VDE 0110/1.89, Table 1  
for rated mains voltage 300 Vrms  
for rated mains voltage 600 Vrms  
I-IV  
I-III  
Climatic Classification  
55/100/21  
Pollution Degree (DIN VDE 0110/1.89)  
Maximum Working Insulation Voltage  
Input to Output Test Voltage, Method b*  
2
630  
V
Vpeak  
Vpeak  
IORM  
V
IORM  
x 1.875 = V , 100% Production Test with t = 1 sec,  
V
PR  
1181  
PR  
m
Partial discharge < 5 pC  
Input to Output Test Voltage, Method a*  
V
x 1.5 = V , Type and Sample Test, t = 60 sec,  
V
PR  
945  
Vpeak  
Vpeak  
IORM  
PR  
m
Partial discharge < 5 pC  
Highest Allowable Overvoltage*  
V
IOTM  
6000  
(Transient Overvoltage t = 10 sec)  
ini  
Safety-Limiting Values – Maximum Values Allowed in the Event  
of a Failure, Also See Figure 37, Thermal Derating Curve.  
Case Temperature  
Input Current  
Output Power  
T
175  
230  
600  
°C  
mA  
mW  
S
I
P
S, INPUT  
S, OUTPUT  
9
Insulation Resistance at T , V = 500 V  
R
S
10  
S
IO  
*Refer to the front of the optocoupler section of the current Catalog, under Product Safety Regulations section, (VDE 0884) for a  
detailed description of Method a and Method b partial discharge test profiles.  
Note: Isolation characteristics are guaranteed only within the safety maximum ratings which must be ensured by protective circuits in  
application.  
1-199  
Insulation and Safety Related Specifications  
Parameter  
Symbol Value Units  
Conditions  
Minimum External Air Gap  
(External Clearance)  
Minimum External Tracking  
(External Creepage)  
Minimum Internal Plastic Gap  
(Internal Clearance)  
Tracking Resistance  
L(101)  
7.1  
mm  
mm  
mm  
Measured from input terminals to output  
terminals, shortest distance through air.  
Measured from input terminals to output  
terminals, shortest distance path along body.  
Through insulation distance conductor to  
conductor.  
L(102)  
7.4  
0.08  
200  
IIIa  
CTI  
Volts DIN IEC 112/VDE 0303 Part 1  
(Comparative Tracking Index)  
Isolation Group  
Material Group (DIN VDE 0110, 1/89, Table 1)  
Option 300 - surface mount classification is Class A in accordance wtih CECC 00802.  
Absolute Maximum Ratings  
Parameter  
Storage Temperature  
Operating Temperature  
Average Input Current  
Symbol  
TS  
TA  
IF(AVG)  
IF(TRAN)  
Min.  
-55  
-40  
Max.  
125  
100  
25  
Units  
°C  
°C  
mA  
A
Note  
1
Peak Transient Input Current  
1.0  
(<1 µs pulse width, 300 pps)  
Reverse Input Voltage  
VR  
IOH(PEAK)  
IOL(PEAK)  
(VCC - VEE)  
VO(PEAK)  
PO  
5
Volts  
A
A
Volts  
Volts  
mW  
mW  
“High” Peak Output Current  
“Low” Peak Output Current  
Supply Voltage  
0.6  
0.6  
35  
VCC  
250  
295  
2
2
0
0
Output Voltage  
Output Power Dissipation  
Total Power Dissipation  
Lead Solder Temperature  
Solder Reflow Temperature Profile  
3
4
PT  
260°C for 10 sec., 1.6 mm below seating plane  
See Package Outline Drawings Section  
Recommended Operating Conditions  
Parameter  
Symbol  
(VCC - VEE)  
IF(ON)  
VF(OFF)  
TA  
Min.  
15  
7
-3.0  
-40  
Max.  
30  
16  
0.8  
100  
Units  
Volts  
mA  
V
Power Supply Voltage  
Input Current (ON)  
Input Voltage (OFF)  
Operating Temperature  
°C  
1-200  
Electrical Specifications (DC)  
Over recommended operating conditions (T = -40 to 100°C, I  
= 7 to 16 mA, V = -3.0 to 0.8 V,  
F(OFF)  
A
F(ON)  
V
CC  
= 15 to 30 V, V = Ground) unless otherwise specified.  
EE  
Parameter  
High Level  
Output Current  
Symbol  
Min.  
0.1  
0.5  
Typ.* Max. Units Test Conditions  
Fig. Note  
I
0.4  
A
V = (V - 4 V)  
2, 3,  
17  
5
2
OH  
O
CC  
V = (V - 15 V)  
O CC  
Low Level  
I
0.1  
0.6  
A
V = (V + 2.5 V) 5, 6  
5
OL  
O
EE  
Output Current  
18  
0.5  
V = (V + 15 V)  
2
O
EE  
High Level Output  
Voltage  
Low Level Output  
Voltage  
High Level  
Supply Current  
Low Level  
Supply Current  
Threshold Input  
Current Low to High  
V
(V - 4) (V - 3)  
V
V
I = -100 mA  
1, 3  
19  
4, 6  
20  
6, 7  
OH  
CC  
CC  
O
V
OL  
0.4  
1.0  
5.0  
5.0  
5.0  
I = 100 mA  
O
I
2.5  
2.7  
2.2  
mA  
mA  
mA  
V
Output Open,  
7, 8  
CCH  
I = 7 to 16 mA  
F
I
Output Open,  
CCL  
V = -3.0 to +0.8 V  
F
I
I = 0 mA,  
9, 15,  
21  
FLH  
O
V > 5 V  
O
Threshold Input  
V
FHL  
0.8  
Voltage High to Low  
Input Forward Voltage  
V
F
1.2  
1.5  
1.8  
V
I = 10 mA  
F
16  
Temperature  
V /T  
-1.6  
mV/°C I = 10 mA  
F
F
A
Coefficient of  
Forward Voltage  
Input Reverse  
BV  
5
V
I = 10 µA  
R
R
Breakdown Voltage  
Input Capacitance  
UVLO Threshold  
C
60  
pF  
V
f = 1 MHz, V = 0 V  
F
IN  
V
V
11.0  
9.5  
12.3  
10.7  
1.6  
13.5  
12.0  
V > 5 V,  
22,  
36  
UVLO+  
O
IF = 10 mA  
UVLO-  
UVLO Hysteresis  
UVLO  
V
HYS  
*All typical values at T = 25°C and V - V = 30 V, unless otherwise noted.  
A
CC  
EE  
1-201  
Switching Specifications (AC)  
Over recommended operating conditions (TA = -40 to 100°C, IF(ON) = 7 to 16 mA, VF(OFF) = -3.0 to 0.8 V,  
VCC = 15 to 30 V, VEE = Ground) unless otherwise specified.  
Parameter  
Symbol  
Min.  
Typ.* Max. Units  
Test Conditions  
Fig.  
Note  
Propagation Delay  
Time to High  
Output Level  
tPLH  
0.10  
0.30  
0.50  
µs  
Rg = 47 ,  
Cg = 3 nF,  
f = 10 kHz,  
10, 11,  
12, 13  
14, 23  
14  
Duty Cycle = 50%  
Propagation Delay  
Time to Low  
tPHL  
0.10  
0.27  
0.50  
µs  
Output Level  
Pulse Width  
Distortion  
Propagation Delay  
PWD  
PDD  
0.3  
µs  
µs  
15  
10  
-0.35  
0.35  
34,35  
Difference Between (tPHL - tPLH  
Any Two Parts  
)
Rise Time  
Fall Time  
UVLO Turn On  
Delay  
tr  
tf  
0.1  
0.1  
0.8  
µs  
µs  
µs  
23  
22  
tUVLO ON  
VO > 5 V,  
IF = 10 mA  
UVLO Turn Off  
Delay  
Output High Level  
Common Mode  
Transient  
tUVLO OFF  
|CMH|  
0.6  
30  
µs  
VO < 5 V,  
IF = 10 mA  
15  
15  
kV/µs TA = 25°C,  
IF = 10 to 16 mA,  
24  
11, 12  
11, 13  
VCM = 1500 V,  
VCC = 30 V  
Immunity  
Output Low Level  
Common Mode  
Transient  
|CML|  
30  
kV/µs TA = 25°C,  
VCM = 1500 V,  
VF = 0 V,  
Immunity  
VCC = 30 V  
Package Characteristics  
Parameter  
Symbol  
Min.  
Typ.* Max. Units  
Test Conditions  
Fig.  
Note  
Input-Output  
V
ISO  
2500  
Vrms RH < 50%,  
8, 9  
Momentary  
t = 1 min.,  
Withstand Voltage**  
Resistance  
(Input - Output)  
Capacitance  
(Input - Output)  
LED-to-Case  
Thermal Resistance  
LED-to-Detector  
TA = 25°C  
RI-O  
CI-O  
θLC  
θLD  
θDC  
1012  
0.6  
VI-O = 500 VDC  
9
pF  
f = 1 MHz  
391  
439  
119  
°C/W Thermocouple  
28  
located at center  
underside of  
package  
°C/W  
°C/W  
Thermal Resistance  
Detector-to-Case  
Thermal Resistance  
*All typical values at TA = 25°C and VCC - VEE = 30 V, unless otherwise noted.  
**The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output  
continuous voltage rating. For the continuous voltage rating refer to your equipment level safety specification or HP Application Note  
1074 entitled “Optocoupler Input-Output Endurance Voltage.”  
1-202  
Notes:  
loads VOH will approach VCC as IOH  
approaches zero amps.  
7. Maximum pulse width = 1 ms,  
maximum duty cycle = 20%.  
under the same test condition.  
11. Pins 1 and 4 need to be connected to  
LED common.  
12. Common mode transient immunity in  
the high state is the maximum  
tolerable |dVCM/dt| of the common  
mode pulse, VCM, to assure that the  
output will remain in the high state  
(i.e., VO > 15.0 V).  
13. Common mode transient immunity in  
a low state is the maximum tolerable  
|dVCM/dt| of the common mode  
pulse, VCM, to assure that the output  
will remain in a low state (i.e.,  
VO < 1.0 V).  
14. This load condition approximates the  
gate load of a 1200 V/25 A IGBT.  
15. Pulse Width Distortion (PWD) is  
defined as |tPHL-tPLH| for any given  
device.  
1. Derate linearly above 70°C free-air  
temperature at a rate of 0.3 mA/°C.  
2. Maximum pulse width = 10 µs,  
maximum duty cycle = 0.2%. This  
value is intended to allow for  
component tolerances for designs  
with IO peak minimum = 0.5 A. See  
Applications section for additional  
details on limiting IOH peak.  
3. Derate linearly above 70°C free-air  
temperature at a rate of 4.8 mW/°C.  
4. Derate linearly above 70°C free-air  
temperature at a rate of 5.4 mW/°C.  
The maximum LED junction tempera-  
ture should not exceed 125°C.  
5. Maximum pulse width = 50 µs,  
maximum duty cycle = 0.5%.  
8. In accordance with UL1577, each  
optocoupler is proof tested by  
applying an insulation test voltage  
3000 Vrms for 1 second (leakage  
detection current limit, II-O 5 µA).  
This test is performed before the  
100% production test for partial  
discharge (method b) shown in the  
VDE 0884 Insulation Characteristics  
Table, if applicable.  
9. Device considered a two-terminal  
device: pins 1, 2, 3, and 4 shorted  
together and pins 5, 6, 7, and 8  
shorted together.  
10. The difference between tPHL and tPLH  
between any two HCPL-3150 parts  
6. In this test VOH is measured with a dc  
load current. When driving capacitive  
0
-1  
0.50  
I
I
V
V
= 7 to 16 mA  
= -100 mA  
I
= 7 to 16 mA  
F
OUT  
F
V
V
V
= V - 4 V  
OUT  
CC  
100 °C  
25 °C  
-40 °C  
= 15 to 30 V  
= 0 V  
= 15 to 30 V  
= 0 V  
CC  
EE  
CC  
EE  
-2  
-3  
-4  
0.45  
0.40  
0.35  
-1  
-2  
I
V
V
= 7 to 16 mA  
= 15 to 30 V  
-3  
-4  
F
CC  
-5  
-6  
0.30  
0.25  
= 0 V  
EE  
-40 -20  
0
20 40 60 80 100  
0
0.2  
0.4  
0.6  
0.8  
1.0  
-40 -20  
0
20 40 60 80 100  
T
– TEMPERATURE – °C  
I
– OUTPUT HIGH CURRENT – A  
OH  
T
– TEMPERATURE – °C  
A
A
Figure 1. VOH vs. Temperature.  
Figure 2. IOH vs. Temperature.  
Figure 3. VOH vs. IOH  
.
1.0  
1.0  
5
V
= -3.0 to 0.8 V  
F(OFF)  
= 100 mA  
V
V
V
= -3.0 to 0.8 V  
= 15 to 30 V  
= 0 V  
F(OFF)  
CC  
EE  
I
OUT  
V
V
= 15 to 30 V  
= 0 V  
CC  
EE  
0.8  
0.6  
0.4  
0.8  
0.6  
0.4  
4
3
2
V
V
V
V
= -3.0 to 0.8 V  
F(OFF)  
= 2.5 V  
OUT  
0.2  
0
0.2  
0
1
0
100 °C  
25 °C  
-40 °C  
= 15 to 30 V  
= 0 V  
CC  
EE  
-40 -20  
0
20 40 60 80 100  
-40 -20  
0
20 40 60 80 100  
T – TEMPERATURE – °C  
A
0
0.2  
0.4  
0.6  
0.8  
1.0  
T
– TEMPERATURE – °C  
I
– OUTPUT LOW CURRENT – A  
A
OL  
Figure 4. VOL vs. Temperature.  
Figure 5. IOL vs. Temperature.  
Figure 6. VOL vs. IOL.  
1-203  
3.5  
3.0  
2.5  
3.5  
3.0  
2.5  
5
4
3
2
V
V
= 15 TO 30 V  
= 0 V  
CC  
EE  
I
I
I
I
CCH  
CCL  
CCH  
CCL  
OUTPUT = OPEN  
V
V
= 30 V  
= 0 V  
= 10 mA for I  
CC  
EE  
I
I
T
= 10 mA for I  
CCH  
F
F
2.0  
1.5  
2.0  
1.5  
= 0 mA for I  
CCL  
1
0
I
I
F
F
CCH  
= 25 °C  
A
EE  
= 0 mA for I  
CCL  
V
= 0 V  
-40 -20  
0
20 40 60 80 100  
15  
20  
25  
30  
-40 -20  
0
20 40 60 80 100  
T
– TEMPERATURE – °C  
T
– TEMPERATURE – °C  
A
V
– SUPPLY VOLTAGE – V  
A
CC  
Figure 7. ICC vs. Temperature.  
Figure 8. ICC vs. VCC  
.
Figure 9. IFLH vs. Temperature.  
500  
500  
500  
I
T
= 10 mA  
= 25 °C  
I
I
V
= 10 mA  
= 0 mA  
V
= 30 V, V  
= 0 V  
EE  
F
A
F(ON)  
F(OFF)  
CC  
CC  
Rg = 47 , Cg = 3 nF  
= 25 °C  
T
T
PLH  
PHL  
Rg = 47 Ω  
Cg = 3 nF  
DUTY CYCLE = 50%  
f = 10 kHz  
= 30 V, V = 0 V  
T
EE  
A
400  
300  
400  
300  
400  
300  
Rg = 47 , Cg = 3 nF  
DUTY CYCLE = 50%  
f = 10 kHz  
DUTY CYCLE = 50%  
f = 10 kHz  
200  
100  
200  
100  
200  
100  
T
T
T
T
PLH  
PHL  
PLH  
PHL  
15  
20  
25  
30  
6
8
10  
12  
14  
16  
-40 -20  
0
20 40 60 80 100  
T – TEMPERATURE – °C  
A
V
– SUPPLY VOLTAGE – V  
I
– FORWARD LED CURRENT – mA  
CC  
F
Figure 10. Propagation Delay vs. VCC  
.
Figure 11. Propagation Delay vs. IF.  
Figure 12. Propagation Delay vs.  
Temperature.  
500  
500  
30  
V
T
= 30 V, V  
= 25 °C  
= 10 mA  
= 0 V  
V
T
= 30 V, V  
= 25 °C  
= 10 mA  
= 0 V  
CC  
A
EE  
CC  
A
EE  
25  
20  
15  
10  
I
I
F
F
400  
300  
400  
300  
Cg = 3 nF  
Rg = 47 Ω  
DUTY CYCLE = 50%  
f = 10 kHz  
DUTY CYCLE = 50%  
f = 10 kHz  
200  
100  
200  
100  
5
0
T
T
T
T
PLH  
PHL  
PLH  
PHL  
0
50  
100  
150  
200  
0
20  
40  
60  
80  
100  
0
I
1
2
3
4
5
Rg – SERIES LOAD RESISTANCE – Ω  
Cg – LOAD CAPACITANCE – nF  
– FORWARD LED CURRENT – mA  
F
Figure 13. Propagation Delay vs. Rg.  
Figure 14. Propagation Delay vs. Cg.  
Figure 15. Transfer Characteristics.  
1-204  
1000  
T
= 25°C  
A
100  
10  
I
F
1
2
3
4
8
+
V
F
0.1 µF  
+
4 V  
1.0  
0.1  
7
6
5
I
= 7 to  
16 mA  
F
V
= 15  
+
CC  
to 30 V  
I
OH  
0.01  
0.001  
1.10 1.20  
1.30  
1.40  
1.50  
1.60  
V
– FORWARD VOLTAGE – V  
F
Figure 17. IOH Test Circuit.  
Figure 16. Input Current vs. Forward  
Voltage.  
1
2
3
4
8
1
8
0.1 µF  
0.1 µF  
I
OL  
V
OH  
7
6
5
2
7
6
5
V
= 15  
+
CC  
to 30 V  
I
= 7 to  
16 mA  
F
V
= 15  
+
CC  
to 30 V  
2.5 V  
+
3
4
100 mA  
Figure 18. IOL Test Circuit.  
Figure 19. VOH Test Circuit.  
1
2
3
4
8
1
2
8
0.1 µF  
0.1 µF  
100 mA  
7
6
5
7
6
5
V
= 15  
V
= 15  
+
+
CC  
to 30 V  
CC  
I
F
V
> 5 V  
to 30 V  
O
3
4
V
OL  
Figure 20. VOL Test Circuit.  
Figure 21. IFLH Test Circuit.  
1
2
8
0.1 µF  
7
+
I
= 10 mA  
V
F
CC  
V
> 5 V  
O
3
4
6
5
Figure 22. UVLO Test Circuit.  
1-205  
1
2
3
4
8
7
6
5
I
0.1 µF  
F
I
= 7 to 16 mA  
F
V
= 15  
CC  
to 30 V  
+
t
t
f
r
500 Ω  
+
V
O
90%  
10 KHz  
50% DUTY  
CYCLE  
47 Ω  
50%  
10%  
V
3 nF  
OUT  
t
t
PHL  
PLH  
Figure 23. tPLH, tPHL, tr, and tf Test Circuit and Waveforms.  
V
CM  
δV  
V
CM  
1
2
3
4
8
7
6
5
=
δt  
t  
I
F
0.1 µF  
A
B
0 V  
t  
+
+
V
O
5 V  
V
= 30 V  
CC  
V
V
OH  
V
O
SWITCH AT A: I = 10 mA  
F
V
O
OL  
SWITCH AT B: I = 0 mA  
F
+
V
= 1500 V  
CM  
Figure 24. CMR Test Circuit and Waveforms.  
routing the IGBT collector or  
Applications Information  
Eliminating Negative IGBT  
Gate Drive  
To keep the IGBT firmly off, the  
HCPL-3150 has a very low  
maximum VOL specification of  
1.0 V. The HCPL-3150 realizes  
this very low VOL by using a  
DMOS transistor with 4 Ω  
the IGBT gate is shorted to the  
emitter by Rg + 4 . Minimizing  
Rg and the lead inductance from  
the HCPL-3150 to the IGBT gate  
and emitter (possibly by  
mounting the HCPL-3150 on a  
small PC board directly above the  
IGBT) can eliminate the need for  
negative IGBT gate drive in many  
applications as shown in Figure  
25. Care should be taken with  
such a PC board design to avoid  
emitter traces close to the HCPL-  
3150 input as this can result in  
unwanted coupling of transient  
signals into the HCPL-3150 and  
degrade performance. (If the  
IGBT drain must be routed near  
the HCPL-3150 input, then the  
LED should be reverse-biased  
when in the off state, to prevent  
the transient signals coupled  
from the IGBT drain from turning  
on the HCPL-3150.)  
(typical) on resistance in its pull  
down circuit. When the  
HCPL-3150 is in the low state,  
HCPL-3150  
+5 V  
1
2
3
4
8
V
= 18 V  
CC  
+ HVDC  
270 Ω  
0.1 µF  
+
7
Rg  
Q1  
3-PHASE  
AC  
CONTROL  
INPUT  
6
5
74XXX  
OPEN  
COLLECTOR  
Q2  
- HVDC  
Figure 25. Recommended LED Drive and Application Circuit.  
1-206  
Selecting the Gate Resistor  
(Rg) to Minimize IGBT  
Switching Losses.  
Step 1: Calculate Rg Minimum  
From the IOL Peak Specifica-  
tion. The IGBT and Rg in Figure  
26 can be analyzed as a simple  
RC circuit with a voltage supplied  
by the HCPL-3150.  
The VOL value of 2 V in the pre-  
vious equation is a conservative  
value of VOL at the peak current  
of 0.6 A (see Figure 6). At lower  
Rg values the voltage supplied by  
the HCPL-3150 is not an ideal  
voltage step. This results in lower  
peak currents (more margin)  
than predicted by this analysis.  
When negative gate drive is not  
used VEE in the previous equation  
is equal to zero volts.  
PT = PE + PO  
PE = IF V Duty Cycle  
F
PO = PO(BIAS) + PO (SWITCHING)  
= ICC (VCC - VEE)  
+ ESW(RG, QG) f  
For the circuit in Figure 26 with IF  
(worst case) = 16 mA, Rg =  
30.5 , Max Duty Cycle = 80%,  
Qg = 500 nC, f = 20 kHz and TA  
max = 90°C:  
(V – VEE - V )  
Rg––CC–––––––––OL––  
IOLPEAK  
PE = 16 mA 1.8 V 0.8 = 23 mW  
(V – VEE - 1.7 V)  
= ––CC–––––––––––––  
IOLPEAK  
Step 2: Check the HCPL-3150  
Power Dissipation and  
PO = 4.25 mA 20 V  
+ 4.0 µJ 20 kHz  
= 85 mW + 80 mW  
= 165 mW  
Increase Rg if Necessary. The  
HCPL-3150 total power dissipa-  
tion (PT) is equal to the sum of  
the emitter power (PE) and the  
output power (PO):  
(15 V + 5 V - 1.7 V)  
= ––––––––––––––––––  
0.6 A  
> 154 mW (PO(MAX) @ 90°C  
= 250 mW20C 4.8 mW/C)  
= 30.5 Ω  
HCPL-3150  
+5 V  
1
2
3
4
8
V
= 15 V  
CC  
+ HVDC  
270 Ω  
0.1 µF  
+
7
Rg  
Q1  
= -5 V  
3-PHASE  
AC  
CONTROL  
INPUT  
6
5
V
EE  
+
74XXX  
OPEN  
COLLECTOR  
Q2  
- HVDC  
Figure 26. HCPL-3150 Typical Application Circuit with Negative IGBT Gate Drive.  
PE  
PO Parameter  
Description  
Supply Current  
Positive Supply Voltage  
Negative Supply Voltage  
Parameter  
Description  
LED Current  
LED On Voltage  
ICC  
VCC  
VEE  
IF  
VF  
Duty Cycle  
Maximum LED  
Duty Cycle  
ESW(Rg,Qg)  
Energy Dissipated in the HCPL-3150 for each  
IGBT Switching Cycle (See Figure 27)  
f
Switching Frequency  
1-207  
The value of 4.25 mA for ICC in  
the previous equation was  
obtained by derating the ICC max  
of 5 mA (which occurs at -40°C)  
to ICC max at 90°C (see Figure 7).  
shown in Figure 29. The HCPL-  
3150 improves CMR performance  
by using a detector IC with an  
optically transparent Faraday  
shield, which diverts the capaci-  
tively coupled current away from  
From the thermal mode in Figure  
28 the LED and detector IC  
junction temperatures can be  
expressed as:  
TJE = P (θLC||(θLD + θDC) + θCA)  
E
Since PO for this case is greater  
than PO(MAX), Rg must be  
increased to reduce the HCPL-  
3150 power dissipation.  
the sensitive IC circuitry. How  
θLC θDC  
+ PD  
(
–––––––––––––––– + θCA  
)
+ TA ever, this shield does not  
θLC + θDC + θLD  
eliminate the capacitive coupling  
between the LED and optocoup-  
ler pins 5-8 as shown in  
θ
θDC  
TJD = PE  
(
–––––LC––––––––– + θCA  
)
θLC + θDC + θLD  
PO(SWITCHING MAX)  
= PO(MAX) - PO(BIAS)  
= 154 mW - 85 mW  
= 69 mW  
Figure 30. This capacitive  
coupling causes perturbations in  
the LED current during common  
mode transients and becomes the  
major source of CMR failures for  
a shielded optocoupler. The main  
design objective of a high CMR  
LED drive circuit becomes  
keeping the LED in the proper  
state (on or off) during common  
mode transients. For example,  
the recommended application  
circuit (Figure 25), can achieve  
15 kV/µs CMR while minimizing  
component complexity.  
+ P (θDC||(θLD + θLC) + θCA) + T  
D
A
Inserting the values for θLC and  
θDC shown in Figure 28 gives:  
PO(SWITCHINGMAX)  
ESW(MAX) = –––––––––––––––  
f
69 mW  
TJE = PE (230°C/W + θCA)  
= ––––––– = 3.45 µJ  
+ P (49°C/W + θCA) + TA  
D
20 kHz  
TJD = P (49°C/W + θCA)  
E
+ P (104°C/W + θCA) + TA  
D
For Qg = 500 nC, from Figure  
27, a value of ESW = 3.45 µJ  
gives a Rg = 41 .  
For example, given PE = 45 mW,  
PO = 250 mW, TA = 70°C and θCA  
= 83°C/W:  
Thermal Model  
The steady state thermal model  
for the HCPL-3150 is shown in  
Figure 28. The thermal resistance  
values given in this model can be  
used to calculate the tempera-  
tures at each node for a given  
operating condition. As shown by  
the model, all heat generated  
flows through θCA which raises  
the case temperature TC  
accordingly. The value of θCA  
depends on the conditions of the  
board design and is, therefore,  
determined by the designer. The  
value of θCA = 83°C/W was  
obtained from thermal measure-  
ments using a 2.5 x 2.5 inch PC  
board, with small traces (no  
ground plane), a single HCPL-  
3150 soldered into the center of  
the board and still air. The  
absolute maximum power  
dissipation derating specifications  
assume a θCAvalue of 83°C/W.  
TJE = PE 313°C/W + PD 132°C/W + T  
A
Techniques to keep the LED in  
the proper state are discussed in  
the next two sections.  
= 45 mW313°C/W + 250 mW  
132°C/W + 70°C = 117°C  
TJD = PE 132°C/W + PD 187°C/W + T  
A
= 45 mW132C/W + 250 mW  
187°C/W + 70°C = 123°C  
7
Qg = 100 nC  
6
5
Qg = 250 nC  
Qg = 500 nC  
TJE and TJD should be limited to  
125°C based on the board layout  
and part placement (θCA) specific  
to the application.  
V
V
= 19 V  
= -9 V  
CC  
EE  
4
3
2
LED Drive Circuit  
Considerations for Ultra  
1
0
High CMR Performance  
Without a detector shield, the  
dominant cause of optocoupler  
CMR failure is capacitive  
coupling from the input side of  
the optocoupler, through the  
package, to the detector IC as  
0
20  
40  
60  
80  
100  
Rg – GATE RESISTANCE Ω  
Figure 27. Energy Dissipated in the  
HCPL-3150 for Each IGBT Switching  
Cycle.  
1-208  
θ
= 439°C/W  
LD  
TJE = LED junction temperature  
TJD = detector IC junction temperature  
T
T
JD  
JE  
TC = case temperature measured at the center of the package bottom  
θLC = LED-to-case thermal resistance  
θ
= 391°C/W  
θ
= 119°C/W  
DC  
LC  
T
C
θLD = LED-to-detector thermal resistance  
θDC = detector-to-case thermal resistance  
θ
= 83°C/W*  
CA  
θCA = case-to-ambient thermal resistance  
θCA will depend on the board design and the placement of the part.  
T
A
Figure 28. Thermal Model.  
CMR with the LED On  
(CMRH)  
A high CMR LED drive circuit  
must keep the LED on during  
common mode transients. This is  
achieved by overdriving the LED  
current beyond the input  
threshold so that it is not pulled  
below the threshold during a  
transient. A minimum LED cur-  
rent of 10 mA provides adequate  
margin over the maximum IFLH of  
5 mA to achieve 15 kV/µs CMR.  
The open collector drive circuit,  
shown in Figure 32, cannot keep  
the LED off during a +dVCM/dt  
transient, since all the current  
flowing through CLEDN must be  
supplied by the LED, and it is not  
recommended for applications  
requiring ultra high CMRL  
performance. Figure 33 is an  
alternative drive circuit which,  
like the recommended application  
circuit (Figure 25), does achieve  
ultra high CMR performance by  
shunting the LED in the off state.  
optocoupler output will go into  
the low state with a typical delay,  
UVLO Turn Off Delay, of 0.6 µs.  
When the HCPL-3150 output is in  
the low state and the supply  
voltage rises above the HCPL-  
3150 VUVLO+ threshold  
(11.0 < VUVLO+ < 13.5), the  
optocoupler will go into the high  
state (assuming LED is “ON”)  
with a typical delay, UVLO TURN  
On Delay, of 0.8 µs.  
IPM Dead Time and  
Propagation Delay  
Specifications  
CMR with the LED Off  
(CMRL)  
A high CMR LED drive circuit  
must keep the LED off  
Under Voltage Lockout  
Feature  
The HCPL-3150 includes a  
The HCPL-3150 contains an  
under voltage lockout (UVLO)  
feature that is designed to protect  
the IGBT under fault conditions  
which cause the HCPL-3150  
supply voltage (equivalent to the  
fully-charged IGBT gate voltage)  
to drop below a level necessary to  
keep the IGBT in a low resistance  
state. When the HCPL-3150  
Propagation Delay Difference  
(PDD) specification intended to  
help designers minimize “dead  
time” in their power inverter  
designs. Dead time is the time  
period during which both the  
high and low side power  
transistors (Q1 and Q2 in Figure  
25) are off. Any overlap in Q1  
and Q2 conduction will result in  
large currents flowing through  
the power devices from the high-  
to the low-voltage motor rails.  
(VF VF(OFF)) during common  
mode transients. For example,  
during a -dVCM/dt transient in  
Figure 31, the current flowing  
through CLEDP also flows through  
the RSAT and VSAT of the logic  
gate. As long as the low state  
voltage developed across the  
logic gate is less than VF(OFF), the  
LED will remain off and no  
common mode failure will occur.  
output is in the high state and the  
supply voltage drops below the  
HCPL-3150 VUVLO- threshold  
(9.5 <VUVLO- <12.0), the  
To minimize dead time in a given  
design, the turn on of LED2  
should be delayed (relative to the  
1-209  
C
1
2
3
4
8
7
6
5
1
2
3
4
8
7
6
5
LEDO1  
C
C
C
C
LEDP  
LEDP  
C
LEDO2  
LEDN  
LEDN  
SHIELD  
Figure 29. Optocoupler Input to Output  
Capacitance Model for Unshielded Optocouplers.  
Figure 30. Optocoupler Input to Output  
Capacitance Model for Shielded Optocouplers.  
+5 V  
1
2
3
4
8
7
6
5
0.1  
µF  
+
C
I
LEDP  
V
= 18 V  
CC  
1
2
3
4
8
7
6
5
+
LEDP  
V
+5 V  
SAT  
C
LEDP  
• • •  
• • •  
C
LEDN  
Rg  
SHIELD  
C
I
LEDN  
Q1  
LEDN  
* THE ARROWS INDICATE THE DIRECTION  
OF CURRENT FLOW DURING –dV /dt.  
SHIELD  
CM  
+
V
CM  
Figure 31. Equivalent Circuit for Figure 25 During  
Common Mode Transient.  
Figure 32. Not Recommended Open  
Collector Drive Circuit.  
maximum dead time is equivalent  
to the difference between the  
maximum and minimum propaga-  
tion delay difference specifica-  
tions as shown in Figure 35. The  
maximum dead time for the  
HCPL-3150 is 700 ns (= 350 ns -  
(-350 ns)) over an operating  
temperature range of -40°C to  
100°C.  
turn off of LED1) so that under  
worst-case conditions, transistor  
Q1 has just turned off when  
transistor Q2 turns on, as shown  
in Figure 34. The amount of delay  
necessary to achieve this condi-  
tions is equal to the maximum  
value of the propagation delay  
difference specification, PDDMAX  
which is specified to be 350 ns  
over the operating temperature  
range of -40°C to 100°C.  
1
2
3
4
8
7
6
5
+5 V  
C
C
LEDP  
LEDN  
,
SHIELD  
Note that the propagation delays  
used to calculate PDD and dead  
time are taken at equal tempera-  
tures and test conditions since  
the optocouplers under consider-  
ation are typically mounted in  
close proximity to each other and  
are switching identical IGBTs.  
Figure 33. Recommended LED Drive  
Circuit for Ultra-High CMR.  
Delaying the LED signal by the  
maximum propagation delay  
difference ensures that the  
minimum dead time is zero, but it  
does not tell a designer what the  
maximum dead time will be. The  
1-210  
I
LED1  
14  
12  
V
OUT1  
Q1 ON  
(12.3, 10.8)  
10  
8
Q1 OFF  
Q2 ON  
(10.7, 9.2)  
Q2 OFF  
6
V
OUT2  
4
I
LED2  
t
PHL MAX  
2
0
t
(10.7, 0.1)  
PLH MIN  
(12.3, 0.1)  
15  
0
5
10  
20  
PDD* MAX = (t - t  
)
= t  
- t  
PHL PLH MAX  
PHL MAX PLH MIN  
(V  
- V  
) – SUPPLY VOLTAGE – V  
EE  
CC  
*PDD = PROPAGATION DELAY DIFFERENCE  
NOTE: FOR PDD CALCULATIONS THE PROPAGATION DELAYS  
ARE TAKEN AT THE SAME TEMPERATURE AND TEST CONDITIONS.  
Figure 36.Under Voltage Lock Out.  
Figure 34. Minimum LED Skew for Zero Dead Time.  
800  
P
(mW)  
(mA)  
S
700  
600  
500  
400  
300  
I
S
I
LED1  
V
OUT1  
Q1 ON  
Q1 OFF  
Q2 ON  
200  
100  
0
Q2 OFF  
V
OUT2  
0
25 50 75 100 125 150 175 200  
– CASE TEMPERATURE – °C  
I
LED2  
t
T
PHL MIN  
S
t
PHL MAX  
t
PLH  
MIN  
Figure 37. Thermal Derating Curve,  
Dependence of Safety Limiting Value  
with Case Temperature per  
VDE 0884.  
t
PLH MAX  
(t  
t
)
PHL- PLH MAX  
= PDD* MAX  
MAXIMUM DEAD TIME  
(DUE TO OPTOCOUPLER)  
= (t  
- t  
- t  
) + (t  
) – (t  
- t  
- t  
)
)
PHL MAX PHL MIN  
PLH MAX PLH MIN  
= (t  
PHL MAX PLH MIN PHL MIN PLH MAX  
= PDD* MAX – PDD* MIN  
*PDD = PROPAGATION DELAY DIFFERENCE  
NOTE: FOR DEAD TIME AND PDD CALCULATIONS ALL PROPAGATION  
DELAYS ARE TAKEN AT THE SAME TEMPERATURE AND TEST CONDITIONS.  
Figure 35. Waveforms for Dead Time.  
1-211  

相关型号:

HCPL3160

2.0 Amp IGBT Gate Drive Optocoupler with Integrated Over-current Protection and Fault Feedback
AGILENT

HCPL316J

2.0 Amp Gate Drive Optocoupler with Integrated (VCE) Desaturation Detection and Fault Status Feedback
AGILENT

HCPL316J

2.0 Amp Gate Drive Optocoupler with Integrated (VCE) Desaturation Detection and Fault Status Feedback
HP

HCPL3180

Current, High Speed IGBT/MOSFET Gate Drive Optocoupler
AGILENT

HCPL3700

AC/DC TO LOGIC INTERFACE OPTOCOUPLER
FAIRCHILD

HCPL3700

8 引脚 DIP 交流/直流与逻辑接口光耦合器
ONSEMI

HCPL3700M

交流/直流到逻辑接口光耦合器
ONSEMI

HCPL3700S

AC/DC TO LOGIC INTERFACE OPTOCOUPLER
FAIRCHILD

HCPL3700S

8 引脚 DIP 交流/直流与逻辑接口光耦合器
ONSEMI

HCPL3700SD

Logic IC Output Optocoupler, 1-Element, 2500V Isolation, SURFACE MOUNT PACKAGE-8
FAIRCHILD

HCPL3700SD

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, SURFACE MOUNT, DIP-8
ROCHESTER

HCPL3700SD

8 引脚 DIP 交流/直流与逻辑接口光耦合器
ONSEMI