HCPL316J [HP]

2.0 Amp Gate Drive Optocoupler with Integrated (VCE) Desaturation Detection and Fault Status Feedback; 2.0安培门驱动光电耦合器与集成( VCE)去饱和检测和故障状态反馈
HCPL316J
型号: HCPL316J
厂家: HEWLETT-PACKARD    HEWLETT-PACKARD
描述:

2.0 Amp Gate Drive Optocoupler with Integrated (VCE) Desaturation Detection and Fault Status Feedback
2.0安培门驱动光电耦合器与集成( VCE)去饱和检测和故障状态反馈

光电 栅 驱动
文件: 总33页 (文件大小:614K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
2.0 Amp Gate Drive Optocoupler  
with Integrated (V ) Desaturation  
CE  
Detection and Fault Status  
Feedback  
Technical Data  
HCPL-316J  
Features  
• Drive IGBTs up to  
• “Soft” IGBT Turn-off  
• Integrated Fail-Safe IGBT  
Protection  
• Wide Operating V Range:  
15 to 30 Volts  
• -40°C to +100°C Operating  
Temperature Range  
• 15 kV/µs Min. Common Mode  
Rejection (CMR) at  
CC  
I = 150 A, V = 1200 V  
C
CE  
– Desat (V ) Detection  
CE  
• Optically Isolated, FAULT  
Status Feedback  
• SO-16 Package  
• CMOS/TTL Compatible  
• 500 ns Max. Switching  
Speeds  
– Under Voltage Lock-Out  
Protection (UVLO) with  
Hysterisis  
• User Configurable:  
Inverting, Non-inverting,  
Auto-Reset, Auto-Shutdown  
V
CM  
= 1500 V  
• Regulatory Approvals: UL,  
CSA, IEC/EN/DIN EN 60747-  
5-2 (891 Vpeak Working  
Voltage)  
Fault Protected IGBT Gate Drive  
+HV  
ISOLATION  
BOUNDARY  
ISOLATION  
BOUNDARY  
ISOLATION  
BOUNDARY  
HCPL - 316J  
HCPL - 316J  
HCPL - 316J  
3-PHASE  
INPUT  
M
HCPL - 316J  
HCPL - 316J  
HCPL - 316J  
HCPL - 316J  
ISOLATION  
BOUNDARY  
ISOLATION  
BOUNDARY  
ISOLATION  
BOUNDARY  
ISOLATION  
BOUNDARY  
–HV  
FAULT  
MICRO-CONTROLLER  
Agilent’s 2.0 Amp Gate Drive Optocoupler with Integrated Desaturation (V ) Detection and Fault Status  
CE  
Feedback makes IGBT V  
fault protection compact, affordable, and easy-to-implement while  
CE  
satisfying worldwide safety and regulatory requirements.  
CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to  
prevent damage and/or degradation which may be induced by ESD.  
2
Typical Fault Protected  
IGBT Gate Drive Circuit  
The HCPL-316J is an easy-to-use,  
intelligent gate driver which  
configurable inputs, integrated  
detection, under voltage  
lockout (UVLO), “soft” IGBT  
turn-off and isolated fault feed-  
back provide maximum design  
flexibility and circuit protection.  
V
CE  
makes IGBT V fault protection  
CE  
compact, affordable, and easy-to-  
implement. Features such as user  
HCPL-316J  
1
2
3
4
5
6
7
8
V
V
V
V
16  
15  
IN+  
E
C
BLANK  
*
V
IN-  
LED2+  
D
DESAT  
100  
DESAT 14  
CC1  
+
+
µC  
V
F
GND1  
V
13  
12  
11  
10  
9
CC2  
R
F
+
+
+
RESET  
FAULT  
V
C
R
G
*
V
V
CE  
V
OUT  
V
V
+
*
LED1+  
EE  
V
V
EE  
LED1-  
R
PULL-DOWN  
CE  
* THESE COMPONENTS ARE ONLY REQUIRED WHEN NEGATIVE GATE DRIVE IS IMPLEMENTED.  
Figure 1. Typical Desaturation Protected Gate Drive Circuit, Non-Inverting.  
Description of Operation  
during Fault Condition  
1. DESAT terminal monitors the  
be configured as inverting or  
DESAT (pin 14) detection feature  
of the HCPL-316J will be the  
primary source of IGBT protection.  
UVLO is needed to ensure DESAT  
non-inverting using the V  
or  
IN+  
V
inputs respectively. When an  
IN-  
inverting configuration is desired,  
must be held high and V  
IGBT V voltage through  
CE  
V
is functional. Once V  
> 11.6  
IN+  
IN-  
UVLO+  
D
DESAT  
.
toggled. When a non-inverting  
configuration is desired, V  
V, DESAT will remain functional  
until V < 12.4 V. Thus, the  
2. When the voltage on the  
DESAT terminal exceeds  
IN-  
IN+  
UVLO-  
must be held low and V  
toggled. Once UVLO is not active  
(V - V > V ), V is  
DESAT detection and UVLO  
features of the HCPL-316J work in  
conjunction to ensure constant  
IGBT protection.  
7 volts, the IGBT gate voltage  
(V  
OUT  
) is slowly lowered.  
CC2  
E
UVLO  
OUT  
3. FAULT output goes low,  
notifying the microcontroller  
of the fault condition.  
allowed to go high, and the  
4. Microcontroller takes  
appropriate action.  
UVLO  
Desat Condition  
Pin 6  
(FAULT)  
Output  
V
IN+  
V
IN-  
(V  
- V )  
Detected on  
Pin 14  
V
OUT  
CC2  
E
Output Control  
X
X
Low  
X
X
X
X
Active  
X
Yes  
X
X
No  
X
Low  
X
X
High  
Low  
Low  
Low  
Low  
High  
The outputs (V  
and FAULT)  
OUT  
X
X
X
of the HCPL-316J are controlled  
by the combination of V , UVLO  
and a detected IGBT Desat  
condition. As indicated in the  
below table, the HCPL-316J can  
IN  
High  
High Low  
Not Active  
3
Product Overview  
Description  
The HCPL-316J is a highly  
integrated power control device  
that incorporates all the  
output IC provides local  
protection for the IGBT to  
prevent damage during  
designed on a bipolar process,  
while the output Detector IC is  
designed manufactured on a high  
voltage BiCMOS/Power DMOS  
process. The forward optical  
signal path, as indicated by  
LED1, transmits the gate control  
signal. The return optical signal  
path, as indicated by LED2,  
transmits the fault status  
feedback signal. Both optical  
channels are completely  
controlled by the input and  
output ICs respectively, making  
the internal isolation boundary  
transparent to the  
overcurrents, and a second  
optical link provides a fully  
isolated fault status feedback  
signal for the microcontroller. A  
built in “watchdog” circuit  
monitors the power stage supply  
voltage to prevent IGBT caused  
by insufficient gate drive  
voltages. This integrated IGBT  
gate driver is designed to  
increase the performance and  
reliability of a motor drive  
without the cost, size, and  
complexity of a discrete design.  
necessary components for a  
complete, isolated IGBT gate  
drive circuit with fault protection  
and feedback into one SO-16  
package. TTL input logic levels  
allow direct interface with a  
microcontroller, and an optically  
isolated power output stage  
drives IGBTs with power ratings  
of up to 150 A and 1200 V. A  
high speed internal optical link  
minimizes the propagation delays  
between the microcontroller and  
the IGBT while allowing the two  
systems to operate at very large  
common mode voltage  
microcontroller.  
Two light emitting diodes and two  
integrated circuits housed in the  
same SO-16 package provide the  
input control circuitry, the output  
power stage, and two optical  
Under normal operation, the  
input gate control signal directly  
controls the IGBT gate through  
the isolated output detector IC.  
LED2 remains off and a fault  
latch in the input buffer IC is  
disabled. When an IGBT fault is  
detected, the output detector IC  
immediately begins a “soft”  
shutdown sequence, reducing the  
IGBT current to zero in a  
controlled manner to avoid  
potential IGBT damage from  
inductive overvoltages.  
Simultaneously, this fault status is  
transmitted back to the input  
buffer IC via LED2, where the  
fault latch disables the gate  
control input and the active low  
fault output alerts the  
differences that are common in  
industrial motor drives and other  
power switching applications. An  
channels. The input Buffer IC is  
V
V
LED1-  
LED1+  
7
8
13  
INPUT IC  
V
V
CC2  
C
12  
1
2
V
V
IN+  
LED1  
D
R
I
V
E
R
IN-  
UVLO  
11  
14  
V
OUT  
DESAT  
3
V
CC1  
DESAT  
microcontroller.  
9,10  
16  
V
V
EE  
E
SHIELD  
LED2  
During power-up, the Under  
Voltage Lockout (UVLO) feature  
prevents the application of  
insufficient gate voltage to the  
IGBT, by forcing the  
5
6
RESET  
FAULT  
FAULT  
SHIELD  
OUTPUT IC  
HCPL-316J’s output low. Once  
the output is in the high state, the  
4
15  
V
GND1  
LED2+  
DESAT (V ) detection feature of  
CE  
the HCPL-316J provides IGBT  
protection. Thus, UVLO and  
DESAT work in conjunction to  
provide constant IGBT  
protection.  
4
Package Pin Out  
1
2
3
4
5
6
7
8
V
V
V
V
16  
15  
IN+  
E
V
IN-  
LED2+  
DESAT 14  
CC1  
GND1  
V
13  
12  
11  
10  
9
CC2  
RESET  
FAULT  
V
C
V
OUT  
V
V
V
LED1+  
EE  
EE  
V
LED1-  
Pin Descriptions  
Symbol  
Description  
Non-inverting gate drive voltage output  
(V ) control input.  
Symbol  
Description  
Common (IGBT emitter) output supply  
voltage.  
VIN+  
VIN-  
VE  
OUT  
Inverting gate drive voltage output  
(V ) control input.  
VLED2+ LED 2 anode. This pin must be left uncon-  
nected for guaranteed data sheet  
performance. (For optical coupling testing  
only)  
OUT  
VCC1  
Positive input supply voltage. (4.5 V to 5.5 V)  
DESAT Desaturation voltage input. When the voltage  
on DESAT exceeds an internal reference  
voltage of 7 V while the IGBT is on, FAULT  
output is changed from a high impedance  
state to a logic low state within 5 µs. See  
Note 25.  
GND1 Input Ground.  
VCC2  
VC  
Positive output supply voltage.  
RESET FAULT reset input. A logic low input for at  
least 0.1 µs, asynchronously resets FAULT  
output high and enables VIN. Synchronous  
control of RESET relative to VIN is required.  
RESET is not affected by UVLO. Asserting  
RESET while VOUT is high does not affect  
Collector of output pull-up triple-darlington  
transistor. It is connected to VCC2 directly or  
through a resistor to limit output turn-on  
current.  
VOUT  
.
FAULT Fault output. FAULT changes from a high  
impedance state to a logic low output within  
5 µs of the voltage on the DESAT pin  
exceeding an internal reference voltage of  
7 V. FAULT output remains low until RESET  
is brought low. FAULT output is an open  
collector which allows the FAULT outputs  
from all HCPL-316Js in a circuit  
V
OUT  
Gate drive voltage output.  
to be connected together in a “wired OR”  
forming a single fault bus for interfacing  
directly to the micro-controller.  
VLED1+ LED 1 anode. This pin must be left uncon-  
nected for guaranteed data sheet per-  
VEE  
Output supply voltage.  
formance. (For optical coupling testing only)  
VLED1- LED 1 cathode. This pin must be connected  
to ground.  
5
Ordering Information  
Specify Part Number followed by Option Number (if desired).  
Example: HCPL-316J#XXXX  
No Option = 16-Lead, Surface Mt. package, 45 per tube.  
500 = Tape and Reel Packaging Option, 850 per reel.  
XXXE = Lead Free Option.  
Remarks: The notation “#” is used for existing products, while (new) products launched since 15th July 2001 and lead free option will use “–”  
Option data sheets available. Contact Agilent sales representative, authorized distributor, or visit our WEB site  
at http://www.agilent.com/view/optocouplers.  
Package Outline Drawings  
16-Lead Surface Mount  
0.018  
(0.457ꢀ  
0.050  
(1.270ꢀ  
LAND PATTERN RECOMMENDATION  
Dimensions in  
16 15 14 13 12 11 10  
9
inches  
(millimeters)  
TYPE NUMBER  
DATE CODE  
A 316J  
YYWW  
0.458 (11.63ꢀ  
0.295 0.010  
(7.493 0.254ꢀ  
Notes:  
Initial and continued  
variation in the color of the  
HCPL-316J’s white mold  
compound is normal and  
does note affect device  
performance or reliability.  
0.085 (2.16ꢀ  
1
2
3
4
5
6
7
8
0.406 0.10  
(10.312 0.254ꢀ  
0.025 (0.64ꢀ  
0.345 0.010  
(8.986 0.254ꢀ  
ALL LEADS  
TO BE  
COPLANAR  
0.002  
9°  
Floating Lead Protrusion  
is 0.25 mm (10 mils) max.  
0.138 0.005  
(3.505 0.127ꢀ  
0.018  
(0.457ꢀ  
08°  
0.008 0.003  
(0.203 0.076ꢀ  
STANDOFF  
0.025 MIN.  
0.408 0.010  
(10.160 0.254ꢀ  
Package Characteristics  
All specifications and figures are at the nominal (typical) operating conditions of V  
= 5 V, V  
- V  
=
CC1  
CC2  
EE  
30 V, V - V = 0 V, and T = +25°C.  
E
EE  
A
Parameter  
Symbol Min. Typ. Max. Units  
Test Conditions  
Note  
Input-Output Momentary  
Withstand Voltage  
Resistance (Input - Output)  
Capacitance (Input - Output)  
Output IC-to-Pins 9 &10  
Thermal Resistance  
V
ISO  
3750 Vrms RH < 50%, t = 1 min., 1, 2,  
T = 25°C  
3
3
A
9
R
C
>10  
V
= 500 Vdc  
I-O  
I-O  
1.3  
30  
pF  
f = 1 MHz  
I-O  
θ
°C/W T = 100°C  
A
O9-10  
Input IC-to-Pin 4 Thermal Resistance  
θ
I4  
60  
6
Solder Reflow Thermal Profile  
300  
PREHEATING RATE 3°C + 1°C/0.5°C/SEC.  
REFLOW HEATING RATE 2.5°C 0.5°C/SEC.  
PEAK  
TEMP.  
245°C  
PEAK  
TEMP.  
240°C  
PEAK  
TEMP.  
230°C  
200  
2.5°C 0.5°C/SEC.  
SOLDERING  
TIME  
30  
160°C  
150°C  
140°C  
200°C  
SEC.  
30  
SEC.  
3°C + 1°C/0.5°C  
100  
PREHEATING TIME  
150°C, 90 + 30 SEC.  
50 SEC.  
TIGHT  
TYPICAL  
LOOSE  
ROOM  
TEMPERATURE  
0
0
50  
100  
150  
200  
250  
TIME (SECONDSꢀ  
Recommended Pb-Free IR Profile  
TIME WITHIN 5 °C of ACTUAL  
PEAKTEMPERATURE  
t
p
20-40 SEC.  
260 +0/-5 °C  
T
T
p
217 °C  
L
RAMP-UP  
3 °C/SEC. MAX.  
150 - 200 °C  
RAMP-DOWN  
6 °C/SEC. MAX.  
T
smax  
T
smin  
t
s
t
L
60 to 150 SEC.  
PREHEAT  
60 to 180 SEC.  
25  
t 25 °C to PEAK  
TIME  
NOTES:  
THE TIME FROM 25 °C to PEAK TEMPERATURE = 8 MINUTES MAX.  
= 200 °C, T = 150 °C  
T
smax  
smin  
7
Regulatory Information  
The HCPL-316J has been approved by the following  
organizations:  
UL  
Recognized under UL 1577, component recognition  
program, File E55361.  
IEC/EN/DIN EN 60747-5-2  
Approved under:  
CSA  
IEC 60747-5-2:1997 + A1:2002  
EN 60747-5-2:2001 + A1:2002  
DIN EN 60747-5-2 (VDE 0884 Teil 2):2003-01.  
Approved under CSA Component Acceptance Notice #5,  
File CA 88324.  
IEC/EN/DIN EN 60747-5-2 Insulation Characteristics*  
Description  
Symbol  
Characteristic Unit  
Installation classification per DIN VDE 0110/1.89, Table 1  
for rated mains voltage 150 Vrms  
I - IV  
I - III  
I - II  
for rated mains voltage 300 Vrms  
for rated mains voltage 600 Vrms  
Climatic Classification  
55/100/21  
2
Pollution Degree (DIN VDE 0110/1.89)  
Maximum Working Insulation Voltage  
Input to Output Test Voltage, Method b**  
V
IORM  
891  
V
PEAK  
V
IORM  
x 1.875 = V , 100% Production Test with t = 1 sec,  
V
PR  
1670  
V
PEAK  
PR  
m
Partial Discharge < 5 pC  
Input to Output Test Voltage, Method a**  
V
x 1.5 = V , Type and Sample Test, t = 60 sec,  
V
1336  
6000  
V
PEAK  
IORM  
PR  
m
PR  
Partial Discharge < 5 pC  
Highest Allowable Overvoltage**  
(Transient Overvoltage t = 10 sec)  
V
IOTM  
V
PEAK  
ini  
Safety-limiting values - maximum values allowed in the event of  
a failure, also see Figure 2.  
Case Temperature  
Input Power  
T
175  
400  
1200  
°C  
mW  
mW  
S
P
P
S, INPUT  
Output Power  
S, OUTPUT  
9
Insulation Resistance at T , V = 500 V  
R
>10  
S
IO  
S
* Isolation characteristics are guaranteed only within the safety maximum ratings which must be ensured by protective circuits in  
application. Surface mount classification is class A in accordance with CECCOO802.  
** Refer to the optocoupler section of the Isolation and Control Components Designer’s Catalog, under Product Safety Regulations  
section IEC/EN/DIN EN 60747-5-2, for a detailed description of Method a and Method b partial discharge test profiles.  
1400  
P , OUTPUT  
S
1200  
1000  
P , INPUT  
S
800  
600  
400  
200  
0
0
25 50 75 100 125 150 175 200  
T
CASE TEMPERATURE – °C  
S
Figure 2. Dependence of Safety Limiting Values on Temperature.  
8
Insulation and Safety Related Specifications  
Parameter  
Symbol Value Units  
Conditions  
Minimum External Air Gap L(101)  
(Clearance)  
8.3  
8.3  
0.5  
mm Measured from input terminals to output  
terminals, shortest distance through air.  
mm Measured from input terminals to output  
terminals, shortest distance path along body.  
mm Through insulation distance conductor to  
conductor, usually the straight line distance  
thickness between the emitter and detector.  
Minimum External  
L(102)  
Tracking (Creepage)  
Minimum Internal Plastic  
Gap (Internal Clearance)  
Tracking Resistance  
(Comparative Tracking  
Index)  
CTI  
>175 Volts DIN IEC 112/VDE 0303 Part 1  
Isolation Group  
IIIa  
Material Group (DIN VDE 0110, 1/89, Table 1)  
Absolute Maximum Ratings  
Parameter  
Storage Temperature  
Operating Temperature  
Output IC Junction Temperature  
Peak Output Current  
Symbol  
Min.  
-55  
-40  
Max.  
125  
100  
125  
2.5  
Units  
°C  
Note  
T
s
T
A
T
4
5
J
|I  
|
A
o(peak)  
Fault Output Current  
I
8.0  
mA  
FAULT  
Positive Input Supply Voltage  
Input Pin Voltages  
V
-0.5  
-0.5  
-0.5  
-0.5  
-0.5  
-0.5  
5.5  
V
CC1  
35  
15  
Volts  
CC1  
V
, V and V  
IN+ IN-  
RESET  
Total Output Supply Voltage  
Negative Output Supply Voltage  
Positive Output Supply Voltage  
Gate Drive Output Voltage  
Collector Voltage  
(V  
- V )  
CC2  
EE  
(V - V )  
E
6
4
EE  
(V  
V
- V )  
35 - (V - V )  
E EE  
CC2  
E
V
CC2  
V
CC2  
o(peak)  
V
V
+ 5 V  
C
EE  
DESAT Voltage  
V
V
V + 10  
600  
150  
DESAT  
E
E
Output IC Power Dissipation  
Input IC Power Dissipation  
Solder Reflow Temperature Profile  
P
O
mW  
P
I
See Package Outline Drawings section  
Recommended Operating Conditions  
Parameter  
Operating Temperature  
Input Supply Voltage  
Total Output Supply Voltage  
Negative Output Supply Voltage  
Positive Output Supply Voltage  
Collector Voltage  
Symbol  
Min.  
-40  
4.5  
15  
0
15  
Max.  
+100  
5.5  
30  
15  
Units  
°C  
Volts  
Note  
T
A
V
28  
9
6
CC1  
(V  
CC2  
- V )  
EE  
(V - V )  
E
EE  
(V  
CC2  
- V )  
30 - (V - V )  
E EE  
E
V
C
V
+ 6  
V
CC2  
EE  
9
Electrical Specifications (DC)  
Unless otherwise noted, all typical values at T = 25°C, V  
all Minimum/Maximum specifications are at Recommended Operating Conditions.  
= 5 V, and V  
- V = 30 V, V - V = 0 V;  
CC2 EE E EE  
A
CC1  
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Units  
Test Conditions  
Fig. Note  
Logic Low Input  
Voltages  
VIN+L, VIN-L  
VRESETL  
,
0.8  
V
Logic High Input  
Voltages  
VIN+H, VIN-H  
,
2.0  
-0.5  
5.0  
-40  
VRESETH  
Logic Low Input  
Currents  
IIN+L, IIN-L  
IRESETL  
,
-0.4  
12  
mA  
VIN = 0.4 V  
FAULT Logic Low  
Output Current  
IFAULTL  
IFAULTH  
IOH  
VFAULT = 0.4 V  
VFAULT = VCC1  
30  
31  
FAULT Logic High  
Output Current  
µA  
High Level Output  
Current  
-0.5  
-2.0  
0.5  
2.0  
90  
-1.5  
2.3  
A
VOUT = VCC2 - 4 V  
VOUT = VCC2 - 15 V  
VOUT = VEE + 2.5 V  
VOUT = VEE + 15 V  
VOUT - VEE = 14 V  
3, 8,  
7
5
7
5
8
32  
4, 9,  
33  
Low Level Output  
Current  
IOL  
Low Level Output  
Current during Fault  
Condition  
IOLF  
160  
230  
mA  
V
5, 34  
High Level Output  
Voltage  
VOH  
VC - 3.5  
VC -2.9  
VC - 2.5  
VC - 2.0  
VC - 1.5  
VC - 1.2  
VC  
IOUT = -100 mA  
IOUT = -650 µA  
IOUT = 0  
6, 8, 9, 10,  
35 11  
Low Level Output  
Voltage  
VOL  
ICC1H  
ICCIL  
ICC2  
0.17  
17  
0.5  
IOUT = 100 mA  
7, 9, 26  
36  
High Level Input  
Supply Current  
22  
11  
5
mA  
VIN+ = VCC1 = 5.5 V, 10,  
V
IN- = 0 V  
VIN+ = VIN- = 0 V,  
CC1 = 5.5 V  
37,  
38  
Low Level Input  
Supply Current  
6
V
Output Supply  
Current  
2.5  
VOUT open  
11,12, 11  
39,40  
Low Level Collector  
Current  
ICL  
0.3  
1.0  
IOUT = 0  
15,  
59  
27  
High Level Collector  
Current  
ICH  
0.3  
1.8  
1.3  
3.0  
0
IOUT = 0  
15, 58 27  
15, 57  
IOUT = -650 µA  
VE Low Level Supply  
Current  
IEL  
IEH  
-0.7  
-0.5  
-0.4  
14,  
61  
VE High Level Supply  
Current  
-0.14  
0
14,  
40  
25  
Blanking Capacitor  
Charging Current  
ICHG  
-0.13  
-0.18  
-0.25  
-0.25  
-0.33  
-0.33  
VDESAT = 0 - 6 V  
13,  
41  
11,  
12  
VDESAT = 0 - 6 V,  
TA = 25°C - 100°C  
Blanking Capacitor  
Discharge Current  
IDSCHG  
VUVLO+  
VUVLO-  
10  
50  
12.3  
11.1  
1.2  
VDESAT = 7 V  
VOUT > 5 V  
VOUT < 5 V  
42  
UVLO Threshold  
11.6  
13.5  
12.4  
V
43 9, 11,  
13  
9, 11,  
14  
UVLO Hysteresis  
DESAT Threshold  
(VUVLO+  
VUVLO-  
-
0.4  
6.5  
)
VDESAT  
7.0  
7.5  
VCC2 -VE >VUVLO  
-
16,  
44  
11  
10  
Switching Specifications (AC)  
Unless otherwise noted, all typical values at T = 25°C, V  
all Minimum/Maximum specifications are at Recommended Operating Conditions.  
= 5 V, and V  
- V = 30 V, V - V = 0 V;  
CC2 EE E EE  
A
CC1  
Parameter  
Symbol  
Min.  
Typ. Max. Units  
Test Conditions  
Fig.  
Note  
VIN to High Level Output  
Propagation Delay Time  
tPLH  
0.10  
0.30  
0.50  
µs  
Rg = 10 Ω  
Cg = 10 nF,  
17,18,19, 15  
20,21,22,  
VIN to Low Level Output  
Propagation Delay Time  
tPHL  
0.10  
0.32  
0.02  
0.50  
f = 10 kHz,  
45,54,  
55  
Duty Cycle = 50%  
Pulse Width Distortion  
PWD  
-0.30  
-0.35  
0.30  
0.35  
16,17  
Propagation Delay Difference (tPHL - tPLH  
)
17,18  
Between Any Two Parts  
10% to 90% Rise Time  
90% to 10% Fall Time  
PDD  
tr  
0.1  
0.1  
0.3  
45  
tf  
DESAT Sense to 90% VOUT  
Delay  
tDESAT(90%)  
0.5  
3.0  
5
Rg = 10 ,  
Cg = 10 nF  
23,56  
19  
DESAT Sense to 10% VOUT  
Delay  
tDESAT(10%)  
tDESAT(FAULT)  
tDESAT(LOW)  
2.0  
1.8  
0.25  
7
V
CC2  
- V = 30 V  
EE  
24,28,  
46,56  
DESAT Sense to Low Level  
FAULT Signal Delay  
25,47,  
56  
20  
21  
22  
DESAT Sense to DESAT Low  
Propagation Delay  
56  
RESET to High Level FAULT tRESET(FAULT)  
Signal Delay  
3
20  
26,27,  
56  
RESET Signal Pulse Width  
PWRESET  
tUVLO ON  
0.1  
UVLO to V  
High Delay  
4.0  
V
= 1.0 ms  
49  
13  
OUT  
CC2  
ramp  
UVLO to V  
Low Delay  
tUVLO OFF  
|CMH|  
6.0  
30  
14  
23  
OUT  
Output High Level Common  
Mode Transient Immunity  
15  
15  
kV/µs T = 25°C,  
50,51,  
52,53  
A
V
= 1500 V,  
= 30 V  
CM  
V
CC2  
Output Low Level Common  
Mode Transient Immunity  
|CML|  
30  
T = 25°C,  
24  
A
V
CM  
= 1500 V,  
V
CC2  
= 30 V  
11  
Notes:  
6. This supply is optional. Required only  
when negative gate drive is  
implemented.  
7. Maximum pulse width = 50 µs,  
maximum duty cycle = 0.5%.  
8. See the Slow IGBT Gate Discharge  
During Fault Condition section in the  
applications notes at the end of this  
data sheet for further details.  
21. This is the amount of time the DESAT  
threshold must be exceeded before  
1. In accordance with UL1577, each  
optocoupler is proof tested by  
applying an insulation test voltage  
4500 Vrms for 1 second (leakage  
V
OUT  
begins to go low, and the  
FAULT output to go low.  
22. This is the amount of time from when  
RESET is asserted low, until FAULT  
output goes high. The minimum  
specification of 3 µs is the guaranteed  
minimum FAULT signal pulse width  
when the HCPL-316J is configured  
for Auto-Reset. See the Auto-Reset  
section in the applications notes at  
the end of this data sheet for further  
details.  
detection current limit, I 5 µA).  
I-O  
This test is performed before the  
100% production test for partial  
discharge (method b) shown in IEC/  
EN/DIN EN 60747-5-2 Insulation  
Characteristic Table, if applicable.  
2. The Input-Output Momentary With-  
stand Voltage is a dielectric voltage  
rating that should not be interpreted  
as an input-output continuous voltage  
rating. For the continuous voltage  
rating refer to your equipment level  
safety specification or IEC/EN/DIN  
EN 60747-5-2 Insulation  
9. 15 V is the recommended minimum  
operating positive supply voltage  
(V  
- V ) to ensure adequate  
E
CC2  
margin in excess of the maximum  
threshold of 13.5 V. For High  
V
UVLO+  
Level Output Voltage testing, V  
is  
23. Common mode transient immunity in  
the high state is the maximum  
OH  
measured with a dc load current.  
When driving capacitive loads, V  
tolerable dV /dt of the common  
OH  
CM  
will approach V as I approaches  
mode pulse, V , to assure that the  
CC  
OH  
CM  
zero units.  
output will remain in the high state  
Characteristics Table.  
10. Maximum pulse width = 1.0 ms,  
maximum duty cycle = 20%.  
(i.e., V > 15 V or FAULT > 2 V). A  
O
3. Device considered a two terminal  
device: pins 1 - 8 shorted together  
and pins 9 - 16 shorted together.  
4. In order to achieve the absolute  
maximum power dissipation  
100 pF and a 3K pull-up resistor is  
needed in fault detection mode.  
24. Common mode transient immunity in  
the low state is the maximum  
11. Once V  
of the HCPL-316J is  
OUT  
allowed to go high (V  
- V >  
CC2  
E
V
), the DESAT detection feature  
UVLO  
of the HCPL-316J will be the primary  
source of IGBT protection. UVLO is  
needed to ensure DESAT is  
tolerable dV /dt of the common  
CM  
specified, pins 4, 9, and 10 require  
ground plane connections and may  
require airflow. See the Thermal  
Model section in the application notes  
at the end of this data sheet for  
details on how to estimate junction  
temperature and power dissipation. In  
most cases the absolute maximum  
output IC junction temperature is the  
limiting factor. The actual power  
dissipation achievable will depend on  
the application environment (PCB  
Layout, air flow, part placement,  
etc.). See the Recommended PCB  
Layout section in the application  
notes for layout considerations.  
Output IC power dissipation is  
mode pulse, V , to assure that the  
CM  
output will remain in a low state (i.e.,  
functional. Once V  
> 11.6 V,  
V < 1.0 V or FAULT < 0.8 V).  
UVLO+  
O
DESAT will remain functional until  
< 12.4 V. Thus, the DESAT  
25. Does not include LED2 current  
during fault or blanking capacitor  
discharge current.  
V
UVLO-  
detection and UVLO features of the  
HCPL-316J work in conjunction to  
ensure constant IGBT protection.  
12. See the Blanking Time Control  
section in the applications notes at  
the end of this data sheet for further  
details.  
26. To clamp the output voltage at  
V
- 3 V , a pull-down resistor  
CC  
BE  
between the output and V is  
EE  
recommended to sink a static current  
of 650 µA while the output is high.  
See the Output Pull-Down Resistor  
section in the application notes at the  
end of this data sheet if an output  
pull-down resistor is not used.  
13. This is the “increasing” (i.e. turn-on  
or “positive going” direction) of  
V
CC2  
- V .  
E
14. This is the “decreasing” (i.e. turn-off  
or “negative going” direction) of  
27. The recommended output pull-down  
resistor between V  
and V does  
OUT  
EE  
derated linearly at 10 mW/°C above  
90°C. Input IC power dissipation does  
not require derating.  
V
- V .  
not contribute any output current  
when V = V  
CC2 E  
15. This load condition approximates the  
gate load of a 1200 V/75A IGBT.  
16. Pulse Width Distortion (PWD) is  
.
EE  
OUT  
28. In most applications V  
will be  
CC1  
5. Maximum pulse width = 10 µs,  
maximum duty cycle = 0.2%. This  
value is intended to allow for compo-  
nent tolerances for designs with I  
peak minimum = 2.0 A. See  
Applications section for additional  
details on I  
from 3.0 A at +25°C to 2.5 A at  
+100°C. This compensates for  
increased I  
powered up first (before V  
) and  
CC2  
defined as |t  
unit.  
- t  
PLH  
| for any given  
powered down last (after V  
). This  
PHL  
CC2  
is desirable for maintaining control of  
the IGBT gate. In applications where  
17. As measured from V , V to V  
.
O
IN+ IN-  
OUT  
18. The difference between t  
and t  
PHL PLH  
V
is powered up first, it is  
CC2  
between any two HCPL-316J parts  
under the same test conditions.  
19. Supply Voltage Dependent.  
20. This is the amount of time from when  
the DESAT threshold is exceeded,  
until the FAULT output goes low.  
important to ensure that V  
remains  
in+  
peak. Derate linearly  
low until V  
reaches the proper  
OH  
CC1  
operating voltage (minimum 4.5 V) to  
avoid any momentary instability at  
due to changes in  
the output during V  
ramp-down.  
ramp-up or  
OPEAK  
over temperature.  
CC1  
V
OL  
12  
Performance Plots  
7
6
5
2.0  
200  
175  
150  
125  
100  
75  
1.8  
1.6  
1.4  
V
V
= V  
= V  
+ 15 V  
+ 2.5 V  
OUT  
OUT  
EE  
EE  
4
3
2
1
0
-40°C  
25°C  
100°C  
1.2  
1.0  
50  
25  
-40 -20  
0
20 40 60 80 100  
-40 -20  
0
20 40 60 80 100  
0
5
10  
15  
20  
25  
30  
T
TEMPERATURE – °C  
T
TEMPERATURE – °C  
V
OUTPUT VOLTAGE V  
OUT  
A
A
Figure 3. I  
vs. Temperature.  
Figure 4. I vs. Temperature  
Figure 5. I  
vs. V  
OLF OUT.  
OH  
OL  
.
0.25  
0.20  
29.0  
28.8  
28.6  
28.4  
28.2  
28.0  
27.8  
27.6  
0
-1  
-2  
-3  
+100°C  
+25°C  
-40°C  
I
I
= -650 µA  
= -100 mA  
OUT  
OUT  
I
= 100 mA  
OUT  
0.15  
0.10  
0.05  
0
-4  
27.4  
0
-40 -20  
0
20 40 60 80 100  
-40 -20  
0
20 40 60 80 100  
0.2  
0.4  
0.6  
0.8  
1.0  
T
TEMPERATURE – °C  
T
TEMPERATURE – °C  
I
OUTPUT HIGH CURRENT A  
A
A
OH  
Figure 6. V  
vs. Temperature.  
Figure 7. V vs. Temperature.  
Figure 8. V  
vs. I  
.
OH  
OL  
OH  
OH  
6
5
4
3
2
1
0
2.6  
2.5  
2.4  
2.3  
2.2  
20  
15  
+100°C  
+25°C  
-40°C  
I
I
CC1H  
CC1L  
10  
5
I
I
CC2H  
CC2L  
0
-40 -20  
0
20 40 60 80 100  
0.1  
0.5  
1.0  
1.5  
2.0  
2.5  
-40 -20  
0
20 40 60 80 100  
T
TEMPERATURE – °C  
I
OUTPUT LOW CURRENT A  
T
TEMPERATURE – °C  
A
OL  
A
Figure 9: V vs. I  
.
OL  
Figure 10. I  
vs. Temperature.  
Figure 11: I  
vs. Temperature.  
CC2  
OL  
CC1  
13  
2.60  
2.55  
2.50  
2.45  
-0.15  
-0.20  
0.50  
0.45  
0.40  
I
I
EH  
EL  
I
I
-0.25  
-0.30  
CC2H  
CC2L  
0.35  
0.30  
2.40  
2.35  
15  
20  
25  
30  
-40 -20  
0
20 40 60 80 100  
-40 -20  
0
20 40 60 80 100  
V
OUTPUT SUPPLY VOLTAGE V  
T
TEMPERATURE – °C  
A
T
TEMPERATURE – °C  
CC2  
A
Figure 12. I  
vs. V  
.
Figure 13. I  
vs. Temperature.  
Figure 14. I vs. Temperature.  
CC2  
CC2  
CHG  
E
7.5  
7.0  
6.5  
4
3
2
0.5  
t
t
PHL  
PLH  
0.4  
0.3  
0.2  
-40°C  
+25°C  
+100°C  
1
0
6.0  
0
0.5  
1.0  
1.5  
(mAꢀ  
2.0  
-40 -20  
0
20 40 60 80 100  
-40 -20  
0
20 40 60 80 100  
T TEMPERATURE – °C  
A
I
T
TEMPERATURE – °C  
OUT  
A
Figure 15. I vs. I  
.
OUT  
Figure 16. DESAT Threshold vs.  
Temperature.  
Figure 17. Propagation Delay vs.  
Temperature.  
C
0.40  
0.35  
0.30  
0.25  
0.20  
0.45  
0.50  
V
V
V
= 5.5 V  
= 5.0 V  
= 4.5 V  
CC1  
CC1  
CC1  
t
t
PHL  
PLH  
V
V
V
= 5.5 V  
= 5.0 V  
= 4.5 V  
CC1  
CC1  
CC1  
0.45  
0.40  
0.35  
0.40  
0.35  
0.30  
0.25  
0.30  
0.25  
15  
20  
25  
30  
-50  
0
50  
100  
-50  
0
50  
100  
V
SUPPLY VOLTAGE V  
TEMPERATURE – °C  
TEMPERATURE – °C  
CC  
Figure 20. V to Low Propagation  
Figure 18. Propagation Delay vs.  
Supply Voltage.  
Figure 19. V to High Propagation  
IN  
IN  
Delay vs. Temperature.  
Delay vs. Temperature.  
14  
0.40  
0.35  
0.30  
0.25  
0.20  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
t
t
t
t
PLH  
PHL  
PLH  
PHL  
0.40  
0.35  
0.30  
0.25  
-50  
0
50  
100  
0
20  
40  
60  
80  
100  
0
10  
20  
30  
40  
50  
TEMPERATURE – °C  
LOAD CAPACITANCE nF  
LOAD RESISTANCE  
Figure 21. Propagation Delay vs. Load  
Capacitance.  
Figure 22. Propagation Delay vs. Load  
Resistance.  
Figure 23. DESAT Sense to 90% V  
Delay vs. Temperature.  
out  
3.0  
2.6  
0.008  
V
V
V
V
= 0 V  
EE  
EE  
EE  
EE  
V
V
= 15 V  
= 30 V  
V
V
= 15 V  
= 30 V  
CC2  
CC2  
CC2  
CC2  
= -5 V  
= -10 V  
= -15 V  
2.4  
2.2  
2.0  
2.5  
2.0  
1.5  
1.0  
0.006  
0.004  
0.002  
0
1.8  
1.6  
-50  
0
50  
100  
0
10  
20  
30  
40  
50  
-50  
0
50  
100  
TEMPERATURE – °C  
LOAD CAPACITANCE nF  
TEMPERATURE – °C  
Figure 24. DESAT Sense to 10% V  
Delay vs. Temperature.  
Figure 25. DESAT Sense to Low Level  
Fault Signal Delay vs. Temperature.  
Figure 26. DESAT Sense to 10% V  
Delay vs. Load Capacitance.  
out  
out  
12  
0.0030  
V
V
V
= 5.5 V  
= 5.0 V  
= 4.5 V  
CC1  
CC1  
CC1  
V
V
= 15 V  
= 30 V  
CC2  
CC2  
10  
8
0.0025  
0.0020  
0.0015  
0.0010  
6
4
-50  
0
50  
100  
150  
10  
20  
30  
40  
50  
TEMPERATURE – °C  
LOAD RESISTANCE  
Figure 27. DESAT Sense to 10% V  
Delay vs. Load Resistance.  
Figure 28. RESET to High Level Fault  
Signal Delay vs. Temperature.  
out  
15  
Test Circuit Diagrams  
V
V
V
V
V
V
V
V
E
IN+  
IN-  
E
IN+  
IN-  
0.1 µF  
0.1  
µF  
0.1  
µF  
10 mA  
V
V
+
5 V  
+
LED2+  
LED2+  
4.5 V  
0.4 V  
DESAT  
DESAT  
CC1  
CC1  
GND1  
V
GND1  
V
CC2  
CC2  
+
+
RESET  
FAULT  
V
RESET  
FAULT  
V
C
C
5 V  
V
V
OUT  
OUT  
I
I
FAULT  
FAULT  
V
V
V
V
V
V
V
V
LED1+  
LED1-  
EE  
EE  
LED1+  
LED1-  
EE  
EE  
Figure 30. I  
Test Circuit.  
Figure 31. I  
Test Circuit.  
FAULTL  
FAULTH  
V
V
E
V
V
E
IN+  
IN+  
0.1  
µF  
0.1 µF  
0.1 µF  
5 V  
+
V
V
V
V
LED2+  
IN-  
LED2+  
+
IN-  
+
30 V  
30 V  
V
DESAT  
V
DESAT  
CC1  
CC1  
GND1  
V
GND1  
V
CC2  
CC2  
0.1 µF  
0.1 µF  
0.1 µF  
OUT  
+
RESET  
FAULT  
V
C
RESET  
FAULT  
V
C
15 V  
+
+
PULSED  
I
V
V
OUT  
OUT  
30 V  
30 V  
I
OUT  
+
V
V
V
V
0.1 µF  
LED1+  
EE  
LED1+  
EE  
15 V  
PULSED  
V
V
V
V
LED1-  
EE  
LED1-  
EE  
Figure 32. I  
Pulsed Test Circuit.  
Figure 33. I Pulsed Test Circuit.  
OL  
OH  
V
V
V
V
V
V
V
V
E
IN+  
IN-  
E
IN+  
IN-  
0.1  
µF  
0.1  
µF  
0.1 µF  
0.1 µF  
+
V
V
LED2+  
+
LED2+  
+
5 V  
5 V  
+
30 V  
30 V  
DESAT  
DESAT  
CC1  
CC1  
GND1  
V
GND1  
V
CC2  
CC2  
0.1 µF  
0.1 µF  
RESET  
FAULT  
V
RESET  
FAULT  
V
C
C
+
+
I
V
OUT  
OUT  
2A  
V
V
OUT  
OUT  
30 V  
30 V  
+
0.1  
µF  
0.1  
µF  
V
V
V
V
LED1+  
EE  
LED1+  
EE  
14 V  
PULSED  
V
V
V
V
EE  
LED1-  
EE  
LED1-  
Figure 34. I  
Test Circuit.  
Figure 35. V  
Pulsed Test Circuit.  
OH  
OLF  
16  
V
V
V
V
V
V
V
V
E
IN+  
IN-  
E
IN+  
IN-  
0.1  
µF  
0.1 µF  
0.1  
µF  
V
V
LED2+  
+
LED2+  
5 V  
+
5.5 V  
+
30 V  
DESAT  
DESAT  
CC1  
CC1  
I
CC1  
GND1  
V
GND1  
V
CC2  
CC2  
0.1 µF  
100  
mA  
RESET  
FAULT  
V
RESET  
FAULT  
V
C
C
+
V
V
OUT  
OUT  
30 V  
V
OUT  
V
V
V
V
V
V
V
V
LED1+  
LED1-  
EE  
EE  
LED1+  
LED1-  
EE  
EE  
0.1  
µF  
Figure 36. V Test Circuit.  
Figure 37. I  
Test Circuit.  
CC1H  
OL  
V
V
V
V
V
V
E
IN+  
IN-  
E
IN+  
IN-  
0.1  
µF  
0.1  
µF  
0.1  
µF  
V
V
V
V
LED2+  
LED2+  
+
5 V  
+
5.5 V  
+
30 V  
DESAT  
DESAT  
CC1  
CC1  
I
CC1  
I
CC2  
GND1  
V
GND1  
V
CC2  
CC2  
0.1 µF  
RESET  
FAULT  
V
RESET  
FAULT  
V
C
C
+
V
V
OUT  
OUT  
0.1 µF  
30 V  
V
V
V
V
V
V
V
V
LED1+  
LED1-  
EE  
EE  
LED1+  
LED1-  
EE  
EE  
Figure 38. I  
Test Circuit.  
CC1L  
Figure 39. I  
Test Circuit.  
CC2H  
V
V
E
V
V
E
IN+  
IN+  
0.1  
µF  
0.1 µF  
0.1  
µF  
V
V
LED2+  
V
V
V
IN-  
+
IN-  
LED2+  
+
I
CHG  
5 V  
+
30 V  
30 V  
V
DESAT  
DESAT  
CC1  
CC1  
I
CC2  
GND1  
V
GND1  
V
CC2  
0.1 µF  
CC2  
0.1 µF  
RESET  
FAULT  
V
C
RESET  
FAULT  
V
C
+
+
V
V
OUT  
OUT  
30 V  
0.1 µF  
0.1 µF  
30 V  
V
V
V
V
LED1+  
EE  
LED1+  
EE  
V
V
V
V
LED1-  
EE  
LED1-  
EE  
Figure 40. I  
Test Circuit.  
Figure 41. I  
Pulsed Test Circuit.  
CHG  
CC2L  
17  
V
V
V
V
E
V
V
V
V
E
IN+  
IN-  
IN+  
IN-  
0.1  
µF  
7 V  
0.1  
µF  
+
V
V
LED2+  
LED2+  
+
5 V  
+
I
30 V  
DSCHG  
DESAT  
DESAT  
CC1  
CC1  
GND1  
V
GND1  
V
CC2  
CC2  
0.1 µF  
SWEEP  
RESET  
FAULT  
V
C
RESET  
FAULT  
V
C
+
+
V
OUT  
V
V
OUT  
OUT  
30 V  
0.1 µF  
0.1 µF  
V
V
V
V
LED1+  
EE  
LED1+  
EE  
V
V
V
V
LED1-  
EE  
LED1-  
EE  
Figure 42. I  
Test Circuit.  
Figure 43. UVLO Threshold Test Circuit.  
DSCHG  
V
IN  
V
V
V
V
E
V
V
V
V
E
IN+  
IN-  
IN+  
IN-  
0.1 µF  
+
V
V
LED2+  
+
LED2+  
+
0.1  
µF  
0.1  
µF  
15 V  
30 V  
SWEEP  
DESAT  
DESAT  
CC1  
CC1  
+
GND1  
V
GND1  
V
CC2  
CC2  
0.1 µF  
0.1 µF  
5 V  
RESET  
FAULT  
V
C
RESET  
FAULT  
V
C
0.1  
µF  
V
OUT  
+
+
V
V
OUT  
OUT  
10 mA  
15 V  
30 V  
3 k  
10  
0.1 µF  
V
V
V
V
0.1  
µF  
LED1+  
EE  
LED1+  
EE  
10  
nF  
V
V
V
V
LED1-  
EE  
LED1-  
EE  
Figure 44. DESAT Threshold Test Circuit.  
Figure 45. t  
, t  
, t , t Test Circuit.  
PLH PHL  
r
f
V
V
V
V
V
V
E
IN+  
IN-  
E
IN+  
IN-  
0.1  
µF  
0.1  
µF  
0.1  
µF  
0.1  
µF  
V
V
V
V
V
V
IN  
+
LED2+  
IN  
+
+
LED2+  
+
30 V  
30 V  
5 V  
5 V  
DESAT  
DESAT  
CC1  
CC1  
GND1  
V
GND1  
V
CC2  
CC2  
0.1  
µF  
0.1  
µF  
3 k  
FAULT  
0.1  
µF  
RESET  
FAULT  
V
C
RESET  
FAULT  
V
C
0.1  
µF  
V
OUT  
+
+
V
V
V
OUT  
OUT  
30 V  
30 V  
3 k  
10 Ω  
10 Ω  
10  
V
V
V
V
V
V
V
V
LED1+  
LED1-  
EE  
EE  
LED1+  
LED1-  
EE  
EE  
10  
nF  
nF  
Figure 46. t  
Test Circuit.  
Figure 47. t  
Test Circuit.  
DESAT(FAULT)  
DESAT(10%)  
18  
V
V
V
V
V
V
V
V
E
IN+  
IN-  
E
IN+  
IN-  
0.1  
µF  
0.1  
µF  
0.1  
µF  
STROBE  
8 V  
V
V
LED2+  
+
LED2+  
+
+
30 V  
5 V  
5 V  
DESAT  
DESAT  
CC1  
CC1  
0.1  
µF  
GND1  
V
GND1  
V
V
HIGH  
CC2  
CC2  
IN  
TO LOW  
3 k  
RESET  
FAULT  
V
C
RESET  
FAULT  
V
C
R
AMP  
0.1  
µF  
0.1  
µF  
V
OUT  
+
V
FAULT  
V
V
OUT  
OUT  
30 V  
3 k  
10 Ω  
10 Ω  
V
V
V
V
V
V
V
V
LED1+  
LED1-  
EE  
EE  
LED1+  
LED1-  
EE  
EE  
10  
nF  
10  
nF  
Figure 48. t  
Test Circuit.  
Figure 49. UVLO Delay Test Circuit.  
RESET(FAULT)  
1
2
3
4
5
6
7
8
V
V
V
V
16  
15  
DESAT 14  
IN+  
IN-  
E
V
5 V  
LED2+  
1
2
3
4
5
6
7
8
V
V
V
V
16  
15  
IN+  
IN-  
E
25 V  
CC1  
0.1  
µF  
V
5 V  
LED2+  
GND1  
V
13  
12  
11  
10  
9
CC2  
0.1 µF  
3 k  
DESAT 14  
CC1  
RESET  
FAULT  
V
C
25 V  
0.1  
µF  
GND1  
V
13  
12  
11  
10  
9
CC2  
SCOPE  
V
OUT  
0.1 µF  
3 kΩ  
RESET  
FAULT  
V
C
10 Ω  
10 nF  
V
V
V
V
LED1+  
LED1  
EE  
EE  
100 pF  
SCOPE  
V
OUT  
10 Ω  
750 Ω  
V
V
V
V
LED1+  
LED1  
EE  
EE  
100 pF  
10 nF  
+
9 V  
V
V
Cm  
Cm  
Figure 50. CMR Test Circuit, LED2 off.  
Figure 51. CMR Test Circuit, LED2 on.  
1
2
3
4
5
6
7
8
V
V
V
V
16  
15  
1
2
3
4
5
6
7
8
V
V
V
V
16  
15  
DESAT 14  
IN+  
IN-  
E
IN+  
IN-  
E
V
V
5 V  
5 V  
LED2+  
LED2+  
DESAT 14  
25 V  
25 V  
CC1  
CC1  
0.1  
µF  
0.1  
µF  
0.1 µF  
GND1  
V
13  
12  
11  
10  
9
GND1  
V
13  
12  
11  
10  
9
CC2  
CC2  
0.1 µF  
3 kΩ  
3 kΩ  
RESET  
FAULT  
V
RESET  
FAULT  
V
C
C
SCOPE  
10 nF  
V
V
SCOPE  
OUT  
OUT  
10 Ω  
100  
pF  
100 pF  
V
V
V
V
10 Ω  
LED1+  
EE  
LED1+  
EE  
V
V
V
V
EE  
LED1  
EE  
LED1  
10 nF  
V
V
Cm  
Cm  
Figure 52. CMR Test Circuit, LED1 off.  
Figure 53. CMR Test Circuit, LED1 on.  
19  
V
V
IN-  
2.5 V  
5.0 V  
2.5 V  
V
V
0 V  
IN-  
IN+  
2.5 V  
2.5 V  
IN+  
t
t
f
t
t
f
r
r
90%  
90%  
50%  
10%  
50%  
10%  
V
V
OUT  
OUT  
t
t
t
t
PLH  
PHL  
PLH  
PHL  
Figure 54. V  
Propagation Delay Waveforms,  
Figure 55. V  
Propagation Delay Waveforms, Inverting  
OUT  
OUT  
Noninverting Configuration.  
Configuration.  
t
DESAT (FAULTꢀ  
t
DESAT (10%ꢀ  
t
DESAT (LOWꢀ  
7 V  
V
V
DESAT  
OUT  
50%  
t
DESAT (90%ꢀ  
90%  
10%  
FAULT  
RESET  
50% (2.5 Vꢀ  
t
RESET (FAULTꢀ  
50%  
Figure 56. Desat, V  
, Fault, Reset Delay Waveforms.  
OUT  
20  
V
V
V
V
E
V
V
V
V
E
IN+  
IN-  
IN+  
IN-  
0.1  
µF  
0.1  
µF  
0.1 µF  
0.1 µF  
5 V  
+
5 V  
+
V
V
LED2+  
+
LED2+  
+
30 V  
30 V  
DESAT  
DESAT  
CC1  
CC1  
GND1  
V
GND1  
RESET  
FAULT  
V
V
CC2  
0.1 µF  
CC2  
0.1 µF  
I
I
C
C
RESET  
FAULT  
V
C
V
C
+
0.1 µF  
650 µA  
+
V
V
0.1 µF  
OUT  
OUT  
30 V  
30 V  
V
V
V
LED1+  
EE  
LED1+  
LED1-  
EE  
V
V
V
V
LED1-  
EE  
EE  
Figure 57. I  
Test Circuit.  
Figure 58. I  
Test Circuit.  
CH  
CH  
I
E
V
V
V
V
V
V
V
V
IN+  
IN-  
E
IN+  
E
0.1  
µF  
0.1 µF  
5 V  
+
V
V
LED2+  
+
IN-  
LED2+  
+
0.1  
µF  
30 V  
30 V  
DESAT  
DESAT  
CC1  
CC1  
GND1  
V
V
GND1  
V
V
CC2  
CC2  
0.1 µF  
0.1 µF  
I
C
RESET  
FAULT  
V
RESET  
FAULT  
V
C
C
+
+
0.1 µF  
0.1 µF  
OUT  
OUT  
30 V  
30 V  
V
V
V
V
V
V
V
V
LED1+  
LED1-  
EE  
EE  
LED1+  
LED1-  
EE  
EE  
Figure 59. I Test Circuit.  
Figure 60. I  
Test Circuit.  
CL  
EH  
I
E
V
V
V
V
E
IN+  
IN-  
0.1  
µF  
5 V  
+
V
LED2+  
+
0.1  
µF  
30 V  
DESAT  
CC1  
GND1  
V
V
CC2  
0.1 µF  
RESET  
FAULT  
V
C
+
0.1 µF  
OUT  
30 V  
V
V
V
V
LED1+  
LED1-  
EE  
EE  
Figure 61. I Test Circuit.  
EL  
21  
Applications Information  
Typical Application/  
Operation  
Introduction to Fault  
The HCPL-316J satisfies these  
criteria by combining a high  
speed, high output current driver,  
high voltage optical isolation  
between the input and output,  
local IGBT desaturation detection  
and shut down, and an optically  
isolated fault status feedback  
signal into a single 16-pin surface  
mount package.  
on a preset current threshold to  
predict the safe limit of  
operation. Therefore, an overly-  
conservative overcurrent  
threshold is not needed to protect  
the IGBT.  
Detection and Protection  
The power stage of a typical three  
phase inverter is susceptible to  
several types of failures, most of  
which are potentially destructive  
to the power IGBTs. These failure  
modes can be grouped into four  
basic categories: phase and/or  
rail supply short circuits due to  
user misconnect or bad wiring,  
control signal failures due to  
noise or computational errors,  
overload conditions induced by  
the load, and component failures  
in the gate drive circuitry. Under  
any of these fault conditions, the  
current through the IGBTs can  
increase rapidly, causing  
excessive power dissipation and  
heating. The IGBTs become  
damaged when the current load  
approaches the saturation current  
of the device, and the collector to  
emitter voltage rises above the  
saturation voltage level. The  
drastically increased power  
Recommended Application  
Circuit  
The HCPL-316J has both  
inverting and non-inverting gate  
control inputs, an active low reset  
input, and an open collector fault  
output suitable for wired ‘OR’  
applications. The recommended  
application circuit shown in  
Figure 62 illustrates a typical  
gate drive implementation using  
the HCPL-316J.  
The fault detection method,  
which is adopted in the  
HCPL-316J, is to monitor the  
saturation (collector) voltage of  
the IGBT and to trigger a local  
fault shutdown sequence if the  
collector voltage exceeds a  
predetermined threshold. A small  
gate discharge device slowly  
reduces the high short circuit  
IGBT current to prevent  
damaging voltage spikes. Before  
the dissipated energy can reach  
destructive levels, the IGBT is  
shut off. During the off state of  
the IGBT, the fault detect  
The four supply bypass  
capacitors (0.1 µF) provide the  
large transient currents necessary  
during a switching transition.  
Because of the transient nature of  
the charging currents, a low  
current (5 mA) power supply  
suffices. The desat diode and 100  
pF capacitor are the necessary  
external components for the fault  
detection circuitry. The gate  
resistor (10 ) serves to limit  
gate charge current and indirectly  
control the IGBT collector  
circuitry is simply disabled to  
prevent false ‘fault’ signals.  
dissipation very quickly overheats  
the power device and destroys it.  
To prevent damage to the drive,  
fault protection must be  
implemented to reduce or  
turn-off the overcurrents during a  
fault condition.  
The alternative protection  
scheme of measuring IGBT  
current to prevent desaturation is  
effective if the short circuit  
capability of the power device is  
known, but this method will fail if  
the gate drive voltage decreases  
enough to only partially turn on  
the IGBT. By directly measuring  
the collector voltage, the  
HCPL-316J limits the power  
dissipation in the IGBT even with  
insufficient gate drive voltage.  
Another more subtle advantage of  
the desaturation detection  
voltage rise and fall times. The  
open collector fault output has a  
passive 3.3 kpull-up resistor  
and a 330 pF filtering capacitor.  
A 47 kpulldown resistor on  
A circuit providing fast local fault  
detection and shutdown is an  
ideal solution, but the number of  
required components, board  
space consumed, cost, and  
complexity have until now limited  
its use to high performance  
drives. The features which this  
circuit must have are high speed,  
low cost, low resolution, low  
power dissipation, and small size.  
V
OUT  
provides a more predictable  
high level output voltage (V ).  
OH  
In this application, the IGBT gate  
driver will shut down when a fault  
is detected and will not resume  
switching until the  
microcontroller applies a reset  
signal.  
method is that power dissipation  
in the IGBT is monitored, while  
the current sense method relies  
22  
HCPL-316J  
1
2
3
4
5
6
7
8
V
V
V
V
16  
15  
IN+  
IN-  
E
0.1  
µF  
0.1  
µF  
100 pF  
V
LED2+  
D
DESAT  
100  
DESAT 14  
CC1  
+
5 V  
+
0.1  
µF  
µC  
V
F
GND1  
V
13  
12  
11  
10  
9
CC2  
3.3  
kΩ  
Q1  
Q2  
V
= 18 V  
CC2  
+
+
RESET  
FAULT  
V
C
V
CE  
R
g
V
OUT  
0.1  
µF  
3-PHASE  
OUTPUT  
47  
kΩ  
V
V
V
V
LED1+  
LED1-  
EE  
EE  
330 pF  
+
+
V
= -5 V  
EE  
V
CE  
Figure 62. Recommended Application Circuit.  
Description of Operation/  
Timing  
Figure 63 below illustrates input  
and output waveforms under the  
conditions of normal operation, a  
desat fault condition, and normal  
reset behavior.  
FAULT output is high and the  
RESET input should be held high.  
See Figure 63.  
the purpose of notifying the  
micro-controller of the fault  
condition. See Figure 63.  
Fault Condition  
When the voltage on the DESAT  
pin exceeds 7 V while the IGBT is  
Reset  
The FAULT output remains low  
until RESET is brought low. See  
Figure 63. While asserting the  
RESET pin (LOW), the input pins  
must be asserted for an output  
on, V  
is slowly brought low in  
OUT  
Normal Operation  
order to “softly” turn-off the IGBT  
and prevent large di/dt induced  
voltages. Also activated is an  
internal feedback channel which  
brings the FAULT output low for  
During normal operation, V  
of  
OUT  
the HCPL-316J is controlled by  
either V or V , with the IGBT  
low state (V  
is LOW or V is  
IN+  
IN-  
IN+  
IN-  
HIGH). This may be  
accomplished either by software  
control (i.e. of the  
collector-to-emitter voltage being  
monitored through D . The  
DESAT  
microcontroller) or hardware  
control (see Figures 73 and 74).  
NORMAL  
OPERATION  
FAULT  
CONDITION  
RESET  
V
IN-  
IN+  
IN-  
0 V  
5 V  
NON-INVERTING  
CONFIGURED  
INPUTS  
V
V
V
5 V  
INVERTING  
CONFIGURED  
INPUTS  
IN+ 5 V  
7 V  
V
V
DESAT  
OUT  
FAULT  
RESET  
Figure 63. Timing Diagram.  
23  
Slow IGBT Gate  
Discharge During Fault  
Condition  
When a desaturation fault is  
detected, a weak pull-down  
device in the HCPL-316J output  
drive stage will turn on to ‘softly’  
turn off the IGBT. This device  
slowly discharges the IGBT gate  
to prevent fast changes in drain  
current that could cause  
damaging voltage spikes due to  
lead and wire inductance. During  
the slow turn off, the large output  
pull-down device remains off until  
value can be scaled slightly to  
adjust the blanking time, though  
a value smaller than 100 pF is not  
recommended. This nominal  
blanking time also represents the  
longest time it will take for the  
HCPL-316J to respond to a  
DESAT fault condition. If the  
IGBT is turned on while the  
collector and emitter are shorted  
to the supply rails (switching into  
a short), the soft shut-down  
sequence will begin after  
approximately 3 µsec. If the IGBT  
collector and emitter are shorted  
to the supply rails after the IGBT  
is already on, the response time  
will be much quicker due to the  
parasitic parallel capacitance of  
the DESAT diode. The  
recommended 100 pF capacitor  
should provide adequate blanking  
as well as fault response times for  
most applications.  
region and quickly overheat. The  
UVLO function causes the output  
to be clamped whenever  
insufficient operating supply  
(V  
CC2  
) is applied. Once V  
CC2  
exceeds V  
(the positive-  
UVLO+  
going UVLO threshold), the  
UVLO clamp is released to allow  
the device output to turn on in  
response to input signals. As  
V
CC2  
is increased from 0 V (at  
some level below V  
), first  
UVLO+  
the DESAT protection circuitry  
becomes active. As V is  
CC2  
further increased (above  
), the UVLO clamp is  
V
UVLO+  
the output voltage falls below V  
+ 2 Volts, at which time the large  
pull down device clamps the  
EE  
released. Before the time the  
UVLO clamp is released, the  
DESAT protection is already  
active. Therefore, the UVLO and  
DESAT FAULT DETECTION  
features work together to provide  
seamless protection regardless of  
IGBT gate to V .  
EE  
DESAT Fault Detection  
Blanking Time  
The DESAT fault detection  
circuitry must remain disabled for  
a short time period following the  
turn-on of the IGBT to allow the  
collector voltage to fall below the  
DESAT theshold. This time  
period, called the DESAT  
supply voltage (V ).  
CC2  
Under Voltage Lockout  
The HCPL-316J Under Voltage  
Lockout (UVLO) feature is  
designed to prevent the  
application of insufficient gate  
voltage to the IGBT by forcing  
the HCPL-316J output low during  
power-up. IGBTs typically require  
gate voltages of 15 V to achieve  
blanking time, is controlled by  
the internal DESAT charge  
current, the DESAT voltage  
threshold, and the external  
DESAT capacitor. The nominal  
blanking time is calculated in  
terms of external capacitance  
their rated V  
voltage. At  
CE(ON)  
gate voltages below 13 V  
typically, their on-voltage  
(C  
), FAULT threshold  
BLANK  
increases dramatically, especially  
at higher currents. At very low  
gate voltages (below 10 V), the  
IGBT may operate in the linear  
voltage (V  
charge current (I  
), and DESAT  
DESAT  
) as  
CHG  
t
= C  
x V  
/ I  
.
BLANK  
BLANK  
DESAT CHG  
The nominal blanking time with  
the recommended 100 pF  
capacitor is 100 pF * 7 V / 250 µA  
= 2.8 µsec. The capacitance  
24  
Behavioral Circuit  
Schematic  
signal input are both latched. The  
fault output changes to an active  
low state, and the signal LED is  
forced off (output LOW). The  
latched condition will persist until  
the Reset pin is pulled low.  
are never on at the same time. If  
an undervoltage condition is  
detected, the output will be  
actively pulled low by the 50x  
DMOS device, regardless of the  
LED state. If an IGBT  
desaturation fault is detected  
while the signal LED is on, the  
Fault signal will latch in the high  
state. The triple darlington AND  
the 50x DMOS device are  
disabled, and a smaller 1x DMOS  
pull-down device is activated to  
slowly discharge the IGBT gate.  
When the output drops below two  
volts, the 50x DMOS device again  
turns on, clamping the IGBT gate  
firmly to Vee. The Fault signal  
remains latched in the high state  
until the signal LED turns off.  
The functional behavior of the  
HCPL-316J is represented by the  
logic diagram in Figure 64 which  
fully describes the interaction and  
sequence of internal and external  
signals in the HCPL-316J.  
Output IC  
Three internal signals control the  
state of the driver output: the  
state of the signal LED, as well as  
the UVLO and Fault signals. If no  
fault on the IGBT collector is  
detected, and the supply voltage  
is above the UVLO threshold, the  
LED signal will control the driver  
output state. The driver stage  
logic includes an interlock to  
ensure that the pull-up and pull-  
down devices in the output stage  
Input IC  
In the normal switching mode, no  
output fault has been detected,  
and the low state of the fault  
latch allows the input signals to  
control the signal LED. The fault  
output is in the open-collector  
state, and the state of the Reset  
pin does not affect the control of  
the IGBT gate. When a fault is  
detected, the FAULT output and  
250 µA  
V
(16ꢀ  
E
DESAT (14ꢀ  
+
V
V
(1ꢀ  
(2ꢀ  
IN+  
IN–  
LED  
7 V  
V
(3ꢀ  
CC1  
V
(13ꢀ  
(12ꢀ  
CC2  
UVLO  
GND (4ꢀ  
DELAY  
+
12 V  
V
C
FAULT (6ꢀ  
Q
V
(11ꢀ  
OUT  
R
S
50 x  
RESET (5ꢀ  
FAULT  
V
(9,10ꢀ  
EE  
1 x  
Figure 64. Behavioral Circuit Schematic.  
25  
HCPL-316J  
1
2
3
4
5
6
7
8
V
V
V
IN+  
IN-  
HCPL-316J  
HCPL-316J  
V
16  
15  
V
16  
15  
E
E
V
V
100 pF  
LED2+  
CC1  
LED2+  
+
µC  
3.3  
DESAT 14  
DESAT 14  
GND1  
k  
100  
D
DESAT  
V
13  
12  
11  
10  
9
V
13  
12  
11  
10  
9
CC2  
CC2  
RESET  
FAULT  
V
C
V
C
V
V
OUT  
OUT  
R
R
g
g
V
V
LED1+  
LED1-  
330 pF  
V
V
EE  
EE  
R
PULL-DOWN  
V
V
EE  
EE  
Figure 65. Output Pull-Down Resistor.  
Figure 66. DESAT Pin Protection.  
Figure 67. FAULT Pin CMR Protection.  
value of 15 kV/µs. The added  
capacitance does not increase the  
fault output delay when a  
desaturation condition is  
detected.  
DESAT Pin Protection  
Other Recommended  
Components  
The freewheeling of flyback  
diodes connected across the  
IGBTs can have large  
The application circuit in Figure  
62 includes an output pull-down  
resistor, a DESAT pin protection  
resistor, a FAULT pin capacitor  
(330 pF), and a FAULT pin pull-  
up resistor.  
instantaneous forward voltage  
transients which greatly exceed  
the nominal forward voltage of  
the diode. This may result in a  
large negative voltage spike on  
the DESAT pin which will draw  
substantial current out of the IC if  
protection is not used. To limit  
this current to levels that will not  
damage the IC, a 100 ohm  
resistor should be inserted in  
series with the DESAT diode. The  
added resistance will not alter the  
DESAT threshold or the DESAT  
blanking time.  
Pull-up Resistor on FAULT Pin  
The FAULT pin is an open-  
collector output and therefore  
requires a pull-up resistor to  
provide a high-level signal.  
Output Pull-Down Resistor  
During the output high transition,  
the output voltage rapidly rises to  
Driving with Standard CMOS/  
TTL for High CMR  
within 3 diode drops of V  
. If  
CC2  
the output current then drops to  
zero due to a capacitive load, the  
output voltage will slowly rise  
Capacitive coupling from the  
isolated high voltage circuitry to  
the input referred circuitry is the  
primary CMR limitation. This  
coupling must be accounted for  
to achieve high CMR perform-  
from roughly V -3(V ) to V  
CC2  
BE  
CC2  
within a period of several  
microseconds. To limit the output  
voltage to V -3(V ), a pull-  
CC2  
BE  
Capacitor on FAULT Pin for  
High CMR  
ance. The input pins V  
and  
IN+  
down resistor between the output  
V
IN-  
must have active drive  
and V is recommended to sink  
EE  
Rapid common mode transients  
can affect the fault pin voltage  
while the fault output is in the  
high state. A 330 pF capacitor  
(Fig. 66) should be connected  
between the fault pin and ground  
to achieve adequate CMOS noise  
margins at the specified CMR  
signals to prevent unwanted  
switching of the output under  
extreme common mode transient  
conditions. Input drive circuits  
that use pull-up or pull-down  
resistors, such as open collector  
configurations, should be  
a static current of several 650 µA  
while the output is high. Pull-  
down resistor values are  
dependent on the amount of  
positive supply and can be  
adjusted according to the  
formula, R  
=
pull-down  
avoided. Standard CMOS or TTL  
drive circuits are recommended.  
[V -3 * (V )] / 650 µA.  
CC2  
BE  
26  
User-Configuration of the Driving Input pf HCPL-316J in  
configuration is desired, V  
is  
IN–  
HCPL-316J Input Side  
Non-Inverting/Inverting Mode  
held low by connecting it to  
GND1 and V is toggled. As  
IN+  
The V , V , FAULT and  
The Gate Drive Voltage Output of  
the HCPL-316J can be  
configured as inverting or  
IN+  
IN-  
shown in Figure 69, when an  
inverting configuration is desired,  
is held high by connecting it  
RESET input pins make a wide  
variety of gate control and fault  
configurations possible,  
V
IN+  
non-inverting using the V and  
IN–  
to V  
and V  
is toggled.  
CC1  
IN–  
depending on the motor drive  
requirements. The HCPL-316J  
has both inverting and non-  
inverting gate control inputs, an  
open collector fault output  
suitable for wired ‘OR’  
V
inputs. As shown in Figure  
IN+  
68, when a non-inverting  
applications and an active low  
reset input.  
HCPL-316J  
HCPL-316J  
1
2
3
4
5
6
7
8
V
V
V
1
2
3
4
5
6
7
8
V
V
V
IN+  
IN-  
IN+  
IN-  
CC1  
CC1  
+
+
µC  
µC  
GND1  
GND1  
RESET  
FAULT  
RESET  
FAULT  
V
V
V
V
LED1+  
LED1-  
LED1+  
LED1-  
Figure 68. Typical Input Configuration, Non-Inverting.  
Figure 69. Typical Input Configuration, Inverting.  
27  
gate control signal is a  
Local Shutdown, Local Reset  
HCPL-316J  
continuous PWM signal, the fault  
latch will always be reset by the  
next time the input signal goes  
high. This configuration protects  
the IGBT on a cycle-by-cycle  
basis and automatically resets  
before the next ‘on’ cycle. The  
fault outputs can be wire ‘OR’ed  
together to alert the  
microcontroller, but this signal  
would not be used for control  
purposes in this (Auto-Reset)  
configuration. When the  
1
2
3
4
5
6
7
8
V
V
V
As shown in Figure 70, the fault  
output of each HCPL-316J gate  
driver is polled separately, and  
the individual reset lines are  
asserted low independently to  
reset the motor controller after a  
fault condition.  
IN+  
IN-  
CC1  
+
µC  
GND1  
RESET  
FAULT  
Global-Shutdown, Global  
Reset  
As shown in Figure 71, when  
configured for inverting  
operation, the HCPL-316J can be  
configured to shutdown  
automatically in the event of a  
fault condition by tying the  
V
V
LED1+  
LED1-  
HCPL- 316J is configured for  
Auto-Reset, the guaranteed  
minimum FAULT signal pulse  
width is 3 µs.  
Figure 70. Local Shutdown, Local  
Reset Configuration.  
FAULT output to V . For high  
IN+  
HCPL-316J  
reliability drives, the open  
1
2
3
4
5
6
7
8
V
V
V
IN+  
IN-  
Resetting Following a Fault  
Condition  
To resume normal switching  
operation following a fault  
condition (FAULT output low),  
the RESET pin must first be  
asserted low in order to release  
the internal fault latch and reset  
the FAULT output (high). Prior to  
asserting the RESET pin low, the  
collector FAULT outputs of each  
HCPL-316J can be wire ‘OR’ed  
together on a common fault bus,  
forming a single fault bus for  
interfacing directly to the micro-  
controller. When any of the six  
gate drivers detects a fault, the  
fault output signal will disable all  
six HCPL-316J gate drivers  
simultaneously and thereby  
provide protection against further  
catastrophic failures.  
CC1  
+
µC  
GND1  
RESET  
FAULT  
V
V
LED1+  
LED1-  
CONNECT  
TO OTHER  
RESETS  
input (V ) switching signals must  
IN  
be configured for an output (V )  
OL  
CONNECT  
TO OTHER  
FAULTS  
low state. This can be handled  
directly by the microcontroller or  
by hardwiring to synchronize the  
RESET signal with the  
appropriate input signal. Figure  
73a shows how to connect the  
Auto-Reset  
As shown in Figure 72, when the  
Figure 71. Global-Shutdown, Global  
Reset Configuration.  
inverting V input is connected  
IN-  
to ground (non-inverting  
configuration), the HCPL-316J  
can be configured to reset  
automatically by connecting  
HCPL-316J  
RESET to the V  
signal for safe  
IN+  
1
2
3
4
5
6
7
8
V
V
V
IN+  
automatic reset in the non-  
inverting input configuration.  
Figure 73b shows how to  
IN-  
RESET to V  
. In this case, the  
IN+  
gate control signal is applied to  
the non-inverting input as well as  
the reset input to reset the fault  
latch every switching cycle.  
During normal operation of the  
IGBT, asserting the reset input  
low has no effect. Following a  
fault condition, the gate driver  
remains in the latched fault state  
until the gate control signal  
CC1  
configure the V /RESET signals  
IN+  
+
µC  
so that a RESET signal from the  
microcontroller causes the input  
to be in the “output-off” state.  
Similarly, Figures 73c and 73d  
show automatic RESET and  
microcontroller RESET safe  
configurations for the inverting  
input configuration.  
GND1  
RESET  
FAULT  
V
V
LED1+  
LED1-  
changes to the ‘gate low’ state  
and resets the fault latch. If the  
Figure 72. Auto-Reset Configuration.  
28  
HCPL-316J  
HCPL-316J  
V
IN+  
1
2
3
4
5
6
7
8
V
V
V
1
2
3
4
5
6
7
8
V
V
V
IN+  
IN-  
IN+  
IN-  
V
V
CC  
CC  
CC1  
CC1  
µC  
µC  
GND1  
GND1  
V
/
IN+  
RESET  
RESET  
FAULT  
RESET  
FAULT  
RESET  
FAULT  
FAULT  
V
V
V
V
LED1+  
LED1-  
LED1+  
LED1-  
Figure 73a. Safe Hardware Reset for Non-Inverting  
Input Configuration (Automatically Resets for Every  
IN+  
Figure 73b. Safe Hardware Reset for Non-Inverting Input  
Configuration.  
V
Input).  
HCPL-316J  
HCPL-316J  
V
V
V
V
CC  
CC  
CC  
CC  
1
2
3
4
5
6
7
8
V
V
V
1
2
3
4
5
6
7
8
V
V
V
IN+  
IN-  
IN+  
IN-  
V
IN-  
V
IN-  
CC1  
CC1  
µC  
µC  
GND1  
GND1  
RESET  
RESET  
FAULT  
RESET  
FAULT  
RESET  
FAULT  
FAULT  
V
V
V
V
LED1+  
LED1-  
LED1+  
LED1-  
Figure 73c. Safe Hardware Reset for Inverting Input  
Configuration.  
Figure 73d. Safe Hardware Reset for Inverting Input  
Configuration (Automatically Resets for Every V  
Input).  
IN-  
User-Configuration of the  
HCPL-316J Output Side  
than the peak discharge current  
(I < I ). For this  
condition, an optional resistor  
R + R = [V  
– V  
– (V )]  
OH EE  
C
G
CC2  
I
ON,PEAK  
OFF,PEAK  
OH,PEAK  
R and Optional Resistor R :  
G
C
(R ) can be used along with R  
= [4 V – (-5 V)]  
0.5 A  
C
G
The value of the gate resistor R  
G
to independently determine  
(along with V  
and V  
)
CC2  
EE  
I
and I  
without  
ON,PEAK  
OFF,PEAK  
determines the maximum amount  
of gate-charging/discharging  
using a steering diode. As an  
example, refer to Figure 74.  
= 18 Ω  
current (I  
and I  
)
ON,PEAK  
OFF,PEAK  
Assuming that R is already  
R = 8 Ω  
G
C
and thus should be carefully  
chosen to match the size of the  
IGBT being driven. Often it is  
desirable to have the peak gate  
determined and that the design  
= 0.5 A, the value of R  
I
See “Power and Layout  
Considerations” section for more  
information on calculating value  
OH,PEAK  
C
can be estimated in the following  
way:  
charge current be somewhat less  
of R .  
G
29  
Higher Output Current Using  
an External Current Buffer:  
allowing sensing of the IGBT’s  
saturated collector-to-emitter  
HCPL-316J  
To increase the IGBT gate drive  
current, a non-inverting current  
buffer (such as the npn/pnp  
voltage, V  
is “on”) and to block high  
voltages (when the IGBT is “off”).  
During the short period of time  
when the IGBT is switching, there  
is commonly a very high dV /dt  
voltage ramp rate across the  
IGBT’s collector-to-emitter. This  
results in I  
, (when the IGBT  
V
16  
15  
CESAT  
E
V
100 pF  
LED2+  
DESAT 14  
buffer shown in Figure 75) may  
be used. Inverting types are not  
compatible with the desaturation  
fault protection circuitry and  
should be avoided. To preserve  
the slow IGBT turn-off feature  
during a fault condition, a 10 nF  
capacitor should be connected  
V
13  
12  
11  
10  
9
CC2  
R
8 Ω  
C
CE  
V
C
10 Ω  
10 nF  
V
OUT  
(= C  
x
CHARGE  
D-DESAT  
V
V
EE  
EE  
dV /dt) charging current which  
CE  
will charge the blanking  
capacitor, C  
15 V  
-5 V  
from the buffer input to V and  
. In order to  
EE  
BLANK  
a 10 resistor inserted between  
the output and the common npn/  
pnp base. The MJD44H11 /  
MJD45H11 pair is appropriate  
for currents up to 8A maximum.  
The D44VH10 / D45VH10 pair is  
appropriate for currents up to 15  
A maximum.  
minimize this charging current  
and avoid false DESAT triggering,  
it is best to use fast response  
diodes. Listed in the below table  
are fast-recovery diodes that are  
suitable for use as a DESAT diode  
Figure 74. Use of R to Further Limit  
ON,PEAK  
C
I
.
(D  
). In the recommended  
DESAT  
application circuit shown in  
Figure 62, the voltage on pin 14  
DESAT Diode and DESAT  
Threshold  
(DESAT) is V  
= V + V  
,
CE  
DESAT  
F
(where V is the forward ON  
F
voltage of D  
IGBT collector-to-emitter  
voltage). The value of V which  
and V is the  
DESAT  
CE  
The DESAT diode’s function is to  
conduct forward current,  
HCPL-316J  
V
16  
15  
E
CE  
100 pF  
triggers DESAT to signal a  
V
LED2+  
FAULT condition, is nominally 7V  
DESAT 14  
– V . If desired, this DESAT  
F
V
13  
12  
11  
10  
9
threshold voltage can be  
CC2  
MJD44H11 or  
decreased by using multiple  
DESAT diodes in series. If n is  
the number of DESAT diodes  
then the nominal threshold value  
D44VH10  
V
C
4.5 Ω  
10 Ω  
10 nF  
V
OUT  
2.5 Ω  
V
V
EE  
EE  
MJD45H11 or  
D45VH10  
becomes V  
= 7 V – n  
CE,FAULT(TH)  
x V . In the case of using two  
F
15 V  
-5 V  
diodes instead of one, diodes with  
half of the total required  
maximum reverse-voltage rating  
may be chosen.  
Figure 75. Current Buffer for Increased Drive Current.  
Max. Reverse Voltage  
Rating, V (Volts)  
Part Number  
MUR1100E  
MURS160T3  
UF4007  
Manufacturer  
Motorola  
Motorola  
General Semi.  
Philips  
t
(ns)  
75  
Package Type  
59-04 (axial leaded)  
rr  
RRM  
1000  
600  
1000  
1000  
1000  
600  
75  
75  
75  
75  
75  
Case 403A (surface mount)  
DO-204AL (axial leaded)  
SOD64 (axial leaded)  
SOD57 (axial leaded)  
SOD87 (surface mount)  
BYM26E  
BYV26E  
BYV99  
Philips  
Philips  
Power/Layout  
Considerations  
Operating Within the  
Maximum Allowable Power  
Ratings (Adjusting Value of  
When choosing the value of R ,  
The steps for doing this are:  
1. Calculate the minimum desired  
G
it is important to confirm that the  
power dissipation of the  
HCPL-316J is within the  
maximum allowable power  
rating.  
R ;  
G
2. Calculate total power  
dissipation in the part  
referring to Figure 77.  
R ):  
G
30  
MAX. I , I  
vs. GATE RESISTANCE  
/ V = 25 V / 5 V  
ON OFF  
(Average switching energy  
supplied to HCPL-316J per  
The HCPL-316J total power  
dissipation (P ) is equal to the  
(V  
CC2 EE2  
4
T
cycle vs. R plot);  
sum of the input-side power (P )  
and output-side power (P ):  
O
G
I
3
2
3. Compare the input and output  
power dissipation calculated in  
step #2 to the maximum  
P = P + P  
T
I
O
1
I
I
(MAX.ꢀ  
OFF  
recommended dissipation for  
the HCPL-316J. (If the  
maximum recommended level  
has been exceeded, it may be  
necessary to raise the value of  
P = I  
* V  
CC1  
I
CC1  
0
P = P  
O
+ P  
O,SWTICH  
O(BIAS)  
(MAX.ꢀ  
ON  
-1  
-2  
-3  
= I  
* (V  
–V ) +  
CC2  
E
CC2 EE  
* f  
SWITCH  
SWITCH  
R to lower the switching  
G
0
20 40 60 80 100120140160180 200  
where,  
power and repeat step #2.)  
Rg (ꢀ  
P
= steady-state power  
O(BIAS)  
dissipation in the HCPL-316J  
due to biasing the device.  
Figure 76. Typical Peak I  
and I  
OFF  
As an example, the total input  
and output power dissipation can  
be calculated given the following  
conditions:  
ON  
Currents vs. Rg (for HCPL-316J  
Output Driving an IGBT Rated at  
600 V/100 A.  
P
= transient power  
O(SWITCH)  
dissipation in the HCPL-316J  
due to charging and discharging  
power device gate.  
• I  
~ 2.0 A  
SWITCHING ENERGY vs. GATE RESISTANCE  
(V / V = 25 V / 5 V  
ON, MAX  
CC2  
EE2  
• V  
= 18 V  
CC2  
9
8
7
6
5
4
3
2
• V = -5 V  
EE  
• f  
= 15 kHz  
CARRIER  
E
= Average Energy  
SWITCH  
dissipated in HCPL-316J due to  
switching of the power device  
over one switching cycle  
(µJ/cycle).  
Step 1: Calculate R minimum  
G
from I peak specification:  
OL  
Ess (Qg = 650 nCꢀ  
To find the peak charging l  
OL  
assume that the gate is initially  
charged the steady-state value of  
f
= average carrier signal  
SWITCH  
1
0
V
. Therefore apply the  
EE  
frequency.  
following relationship:  
0
50  
100  
150  
200  
For R = 10.5, the value read  
G
Rg (ꢀ  
from Figure 77 is E  
=
SWITCH  
Figure 77. Switching Energy Plot for  
Calculating Average Pswitch (for  
HCPL-316J Output Driving an IGBT  
Rated at 600 V/100 A).  
R =  
G
6.05 µJ. Assume a worst-case  
[V @650 µA – (V +V )]  
OH  
OL  
EE  
average I = 16.5 mA (which is  
CC1  
I
OL,PEAK  
given by the average of I  
and  
CC1H  
I
I
). Similarly the average  
= 5.5 mA.  
CC1L  
= [V  
– 1 – (V + V )]  
OL EE  
CC2  
CC2  
I
OL,PEAK  
P = 90.8 mW < 150 mW  
I
P = 16.5 mA * 5.5 V = 90.8 mW  
(abs. max.) OK  
I
18 V – 1 V – (1.5 V + (-5 V))  
2.0 A  
P = P  
+ P  
P = 217.3 mW < 400 mW  
O
O(BIAS)  
O,SWITCH  
O
(abs. max.) OK  
= 10.25 Ω  
= 5.5 mA * (18 V – (–5 V)) +  
6.051 µJ * 15 kHz  
10.5 (for a 1% resistor)  
Therefore, the power dissipation  
absolute maximum rating has not  
been exceeded for the example.  
= 126.5 mW + 90.8 mW  
= 217.3 mW  
(Note from Figure 76 that the  
real value of I may vary from  
OL  
the value calculated from the  
simple model shown.)  
Please refer to the following  
Thermal Model section for an  
explanation on how to calculate  
the maximum junction  
temperature of the HCPL-316J  
for a given PC board layout  
configuration.  
Step 3: Compare the  
calculated power dissipation  
with the absolute maximum  
values for the HCPL-316J:  
Step 2: Calculate total power  
dissipation in the HCPL-316J:  
For the example,  
31  
Thermal Model  
Since θ and θ  
are  
9,10A  
If we, however, assume a worst  
case PCB layout and no air flow  
4A  
dependent on PCB layout and  
airflow, their exact number may  
not be available. Therefore, a  
more accurate method of calcu-  
lating the junction temperature is  
with the following equations:  
The HCPL-316J is designed to  
dissipate the majority of the heat  
through pins 4 for the input IC  
and pins 9 and 10 for the output  
where the estimated θ and  
4A  
θ
are 100°C/W. Then the  
9,10A  
junction temperatures become  
IC. (There are two V pins on  
EE  
T = (90.8 mW)(60°C/W  
ji  
the output side, pins 9 and 10,  
for this purpose.) Heat flow  
through other pins or through the  
package directly into ambient are  
considered negligible and not  
modeled here.  
+ 100°C/W) + 100°C = 115°C  
T = P θ + T  
ji  
i i4  
P4  
T
= P θ  
+ T  
T = (240 mW)(30°C/W  
jo  
o o9,10  
P9,10  
jo  
+ 100°C/W) + 100°C = 131°C  
These equations, however,  
require that the pin 4 and pins  
9,10 temperatures be measured  
with a thermal couple on the pin  
at the HCPL-316J package edge.  
The output IC junction  
temperature exceeds the absolute  
maximum specification of 125°C.  
In this case, PCB layout and  
airflow will need to be designed  
so that the junction temperature  
of the output IC does not exceed  
125°C.  
In order to achieve the power  
dissipation specified in the  
absolute maximum specification,  
it is imperative that pins 4, 9, and  
10 have ground planes connected  
to them. As long as the maximum  
power specification is not  
From the earlier power  
dissipation calculation  
example:  
exceeded, the only other limita-  
tion to the amount of power one  
can dissipate is the absolute  
maximum junction temperature  
specification of 125°C. The  
junction temperatures can be  
calculated with the following  
equations:  
P = 90.8 mW, P = 314 mW, T  
A
If the calculated junction  
temperatures for the thermal  
model in Figure 78 is higher than  
125°C, the pin temperature for  
pins 9 and 10 should be  
measured (at the package edge)  
under worst case operating  
environment for a more accurate  
estimate of the junction  
i
o
= 100°C, and assuming the  
thermal model shown in Figure  
77 below.  
T = (90.8 mW)(60°C/W  
ji  
+ 50°C/W) + 100°C = 110°C  
T
= (240 mW)(30°C/W  
jo  
T = P (θ + θ ) + T  
ji  
i
i4  
4A  
A
+ 50°C/W) + 100°C = 119°C  
temperatures.  
T
= P (θ  
+ θ  
) + T  
jo  
o
o9,10  
9,10A A  
both of which are within the  
absolute maximum specification  
of 125°C.  
where P = power into input IC  
i
and P = power into output IC.  
o
T = junction temperature of input side IC  
ji  
T = junction temperature of output side IC  
jo  
T
T
θ
= pin 4 temperature at package edge  
P4  
T
T
jo  
ji  
= pin 9 and 10 temperature at package edge  
P9,10  
θ
= 60°C/W  
θ
= 30°C/W  
O9,10  
i4  
= input side IC to pin 4 thermal resistance  
I4  
θ
θ
θ
= output side IC to pin 9 and 10 thermal resistance  
= pin 4 to ambient thermal resistance  
I9,10  
T
T
P9,10  
P4  
4A  
9,10A  
θ
= 50°C/W*  
θ
= 50°C/W*  
9,10A  
4A  
= pin 9 and 10 to ambient thermal resistance  
T
A
*The θ and θ  
values shown here are for PCB layouts shown in Figure 78 with  
4A  
9,10A  
reasonable air flow. This value may increase or decrease by a factor of 2 depending  
on PCB layout and/or airflow.  
Figure 78. HCPL-316J Thermal Model.  
Printed Circuit Board  
Layout Considerations  
bypass capacitors. Maintaining  
short bypass capacitor trace  
lengths will ensure low supply  
ripple and clean switching  
waveforms.  
details on how to estimate  
junction temperature.  
Adequate spacing should always  
be maintained between the high  
voltage isolated circuitry and any  
input referenced circuitry. Care  
must be taken to provide the  
same minimum spacing between  
two adjacent high-side isolated  
regions of the printed circuit  
board. Insufficient spacing will  
reduce the effective isolation and  
increase parasitic coupling that  
will degrade CMR performance.  
The layout examples below have  
good supply bypassing and  
thermal properties, exhibit small  
PCB footprints, and have easily  
connected signal and supply  
lines. The four examples cover  
single sided and double sided  
component placement, as well as  
minimal and improved  
Ground Plane connections are  
necessary for pin 4 (GND1) and  
pins 9 and 10 (V ) in order to  
EE  
achieve maximum power  
dissipation as the HCPL-316J is  
designed to dissipate the majority  
of heat generated through these  
pins. Actual power dissipation  
will depend on the application  
environment (PCB layout, air  
flow, part placement, etc.) See  
the Thermal Model section for  
performance circuits.  
The placement and routing of  
supply bypass capacitors requires  
special attention. During switch-  
ing transients, the majority of the  
gate charge is supplied by the  
Figure 79. Recommended Layout(s).  
System Considerations  
Propagation Delay Difference  
(PDD)  
transistor Q1 has just turned off  
when transistor Q2 turns on, as  
shown in Figure 80. The amount  
of delay necessary to achieve this  
condition is equal to the maxi-  
mum value of the propagation  
delay difference specification,  
time is equivalent to the  
difference between the maximum  
and minimum propagation delay  
difference specifications as  
shown in Figure 81. The  
maximum dead time for the  
HCPL-316J is 800 ns (= 400 ns -  
(-400 ns)) over an operating  
temperature range of -40°C to  
100°C.  
The HCPL-316J includes a  
Propagation Delay Difference  
(PDD) specification intended to  
help designers minimize “dead  
time” in their power inverter  
designs. Dead time is the time  
period during which both the  
high and low side power  
PDD  
, which is specified to be  
MAX  
400 ns over the operating  
temperature range of -40°C to  
100°C.  
Note that the propagation delays  
used to calculate PDD and dead  
time are taken at equal tempera-  
tures and test conditions since  
the optocouplers under consider-  
ation are typically mounted in  
close proximity to each other and  
are switching identical IGBTs.  
transistors (Q1 and Q2 in  
Delaying the HCPL-316J turn-on  
signals by the maximum  
Figure 62) are off. Any overlap in  
Q1 and Q2 conduction will result  
in large currents flowing through  
the power devices between the  
high and low voltage motor rails,  
a potentially catastrophic condi-  
tion that must be prevented.  
propagation delay difference  
ensures that the minimum dead  
time is zero, but it does not tell a  
designer what the maximum dead  
time will be. The maximum dead  
To minimize dead time in a given  
design, the turn-on of the  
V
IN+1  
HCPL-316J driving Q2 should be  
delayed (relative to the turn-off of  
the HCPL-316J driving Q1) so  
that under worst-case conditions,  
V
OUT1  
Q1 ON  
Q1 OFF  
Q2 ON  
Q2 OFF  
V
OUT2  
V
IN+1  
V
IN+2  
t
PHL  
MIN  
t
PHL  
V
OUT1  
Q1 ON  
MAX  
Q1 OFF  
Q2 ON  
t
PLH  
MIN  
t
PLH  
MAX  
= PDD*  
MAX  
MAX  
Q2 OFF  
(t  
t
PHL- PLH  
V
OUT2  
V
IN+2  
MAXIMUM DEAD TIME  
(DUE TO OPTOCOUPLERꢀ  
t
PHL  
MAX  
= (t  
= (t  
= PDD*  
- t  
- t  
PDD*  
ꢀ + (t  
- t  
PLH  
MIN  
t
PHL  
PHL  
PHL  
PLH  
PLH  
PLH  
MAX  
MAX  
MAX  
MIN  
MIN  
MAX  
MIN  
- t  
(t  
- t  
PLH  
MAX  
PHL  
MIN  
PDD* MAX = (t  
= t  
- t  
PLH  
MAX MIN  
PHL PLH  
PHL  
MAX  
MIN  
*PDD = PROPAGATION DELAY  
NOTE: FOR PDD CALCULATIONS THE PROPAGATION DELAYS  
ARE TAKEN AT THE SAME TEMPERATURE AND TEST CONDITIONS.  
*PDD = PROPAGATION DELAY DIFFERENCE  
NOTE: FOR DEAD TIME AND PDD CALCULATIONS ALL PROPAGATION  
DELAYS ARE TAKEN AT THE SAME TEMPERATURE AND TEST CONDITIONS.  
Figure 80. Minimum LED Skew for Zero Dead Time.  
Figure 81. Waveforms for Dead Time Calculation.  
For product information and a complete list of  
Agilent contacts and distributors, please go to  
our web site.  
www.agilent.com/semiconductors  
E-mail: SemiconductorSupport@agilent.com  
Data subject to change.  
Copyright © 2005 Agilent Technologies, Inc.  
Obsoletes 5989-0784EN  
March 1, 2005  
5989-2143EN  

相关型号:

HCPL3180

Current, High Speed IGBT/MOSFET Gate Drive Optocoupler
AGILENT

HCPL3700

AC/DC TO LOGIC INTERFACE OPTOCOUPLER
FAIRCHILD

HCPL3700

8 引脚 DIP 交流/直流与逻辑接口光耦合器
ONSEMI

HCPL3700M

交流/直流到逻辑接口光耦合器
ONSEMI

HCPL3700S

AC/DC TO LOGIC INTERFACE OPTOCOUPLER
FAIRCHILD

HCPL3700S

8 引脚 DIP 交流/直流与逻辑接口光耦合器
ONSEMI

HCPL3700SD

Logic IC Output Optocoupler, 1-Element, 2500V Isolation, SURFACE MOUNT PACKAGE-8
FAIRCHILD

HCPL3700SD

1 CHANNEL LOGIC OUTPUT OPTOCOUPLER, SURFACE MOUNT, DIP-8
ROCHESTER

HCPL3700SD

8 引脚 DIP 交流/直流与逻辑接口光耦合器
ONSEMI

HCPL3700SDM

交流/直流到逻辑接口光耦合器
ONSEMI

HCPL3700SDV

Logic IC Output Optocoupler, 1-Element, 2500V Isolation, SURFACE MOUNT, DIP-8
FAIRCHILD

HCPL3700SDV

8 引脚 DIP 交流/直流与逻辑接口光耦合器
ONSEMI