AEAS-7000-1GSD0 [AGILENT]

Plug and Play Ultra-Precision Absolute Encoder 16-bit Gray Code; 即插即用超精密绝对式编码器的16位格雷码
AEAS-7000-1GSD0
型号: AEAS-7000-1GSD0
厂家: AGILENT TECHNOLOGIES, LTD.    AGILENT TECHNOLOGIES, LTD.
描述:

Plug and Play Ultra-Precision Absolute Encoder 16-bit Gray Code
即插即用超精密绝对式编码器的16位格雷码

光电 编码器
文件: 总8页 (文件大小:148K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Agilent AEAS-7000  
Plug and Play Ultra-Precision  
Absolute Encoder 16-bit Gray Code  
Data Sheet  
Features  
• Minumum mechanical alignment  
during installation  
Description  
• 2 Sine/Cosine true differential  
outputs with 1024 periods for unit  
alignment  
The encoder IC consists of 13  
signal photo diode channels and  
1 monitor photo diode channel  
and is used for the optical  
reading of rotary carriers (i.e.,  
discs). The photodiodes are  
accompanied with precision  
amplifiers plus additional  
circuitry.  
• Integrated highly collimated  
illumination system  
• 11 digital tracks plus 2 sin/cos  
tracksgenerateprecise16bitGray  
code  
2. 11 analog (A1-A11) channels  
which are directly digitized  
• Ultra fast, 1 µs cycle for serial data  
output word equals 16 MHz  
by precison comparators with  
hysterisis tracking. The  
digitized signals are called  
D1-D11.  
The monitor channel is used to  
drive a constant current source  
for the highly collimated IR  
illumination system.  
• On-chipinterpolationandcode  
correctiontocompensatefor  
mountingtolerance  
An internal correction and  
synchronization module allows  
the composition of a true 16 bit  
gray code by merging the data  
bits of 1) and 2) by still keeping  
the code monotony.  
FunctionalDescription  
Background  
• MSB can be inverted for changing  
the counting direction  
• Internally built in monitor track for  
tracking the light level  
The 13 signal channels are set up  
as:  
• Watch dog with alarm output  
• –25°Cto+85°Coperatingtemp.  
1. Two precision defining signals  
(A0, A09), which are two 90°  
electrical shifted sine, cosine  
signals. These signals are  
There is a Gray code correction  
feature for this encoder to  
counter any codewheel  
imperfectionormisalignment.  
This Gray code correction can  
be disabled/enabled by the pin  
KORR.  
Applications  
• Rotary application up to 16 bit/  
360° absolute position  
conditioned to be compensated  
for offset and gain errors.  
After conditioning they are on  
chip interpolated (4 bit) and  
computed to an absolute 6 bit  
Gray code. Additionally, these  
Sin/Cos signals can be tapped  
as two true-differential analog  
outputs to be used at the  
• Rotary application up to 11 bit user  
defined code patterns  
The gain and offset conditioning  
value of the sine and cosine  
wave has been on-chip preset  
by factory. This will  
compensate for mechanical  
sensor misalignment error.  
• Cost effective solution for direct  
integration into OEM systems  
system designer’s choice.  
Signal-ChannelsA1-A11  
InterpolatorforChannelsA0,A09  
MSBINV and DOUT Pins  
The photocurrent of the photo  
diodes is fed into a trans-  
impedance amplifier. The  
analog output of the amplifier  
has a voltage swing of (dark/  
light) about 1.3 V. Every  
output is transformed by  
precision comparators into  
digital signals (D1-D11). The  
threshold is at VDD/2  
The interpolator generates the  
digital signals D0,D09 and D-1  
to D-4. The interpolated  
signals D-1 to D-4 extend the  
12 bit Gray code of the signals  
D11….D0 to form a 16 bit Gray  
code.  
The serial interface consists of  
a shift register. The most  
significant bit, MSB (D11) will  
always be sent first to DOUT.  
The MSB can be inverted  
(change code direction) by  
using pin MSBINV.  
D0 and D09 are digitized from  
A0 and A09. The channels A0-  
A11 and A09 have very high  
dynamic bandwidth, which  
allows a real time monotone 12  
bit Gray code at 12000 RPM.  
DIN and NSL Pins  
The Serial input DIN allows  
the configuration as ring  
register for multiple  
transmissions or for cascading  
2 or more encoders. DIN is  
the input of the shift register  
that shifts the data to DOUT.  
(=Analog-reference),regulated  
by the monitor channel.  
Monitor Channel with LED Control at  
PinsLEDRandLERR  
The interpolated 16 bit Gray  
code can be used up to 1000  
RPM only. At more than 1000  
RPM, only the 12 bit Gray code  
from the MSB side can be  
used.  
The analog output signal of the  
monitor channel is regulated  
by the LED current. An  
internal bipolar transistor sets  
this level to VDD/2 (control  
voltage at pin LEDR). Thus  
the signal swing of each output  
is symmetrical to VDD/2  
The NSL pin controls the shift  
register, to switch it between  
load (1) or shift (0) mode.  
Under load mode, DOUT will  
give the logic of the MSB, i.e.,  
D11.  
LSBGrayCodeCorrection(PinKORR)  
This function block  
(=Analog-reference)  
synchronizes the switching  
points for the 11 bit gray code  
of the digital signals D1 to D11  
with D0 and D09 (digitized  
signal of A0 and A09).  
Under shift mode (0), coupled  
with the SCL, the register will  
be clocked, and gives out the  
serial word output bit by bit.  
As the clock frequency can be  
up to 16 MHz, the  
The error bit at pin LERR is  
triggered if the Ve of the  
internal bipolar transistor is  
larger than VDD/2.  
This Gray code correction only  
works for the 12 bit MSB(4096  
steps per revolution).  
Signals Channels A0, A09 with Signal  
ConditioningandSelfCalibration  
transmission of the full 16 bit  
word can be done within 1µs.  
These two channels give out a  
sine and cosine wave which  
are 90 deg phase shifted.  
These signals have amplitudes  
which are almost constant due  
to the LED current monitoring.  
Due to amplifier mismatch the  
signals do have gain and offset  
errors. These errors are  
eliminated by an adaptive  
signal conditioning circuitry.  
The conditioning values are  
on-chip preprogrammed by  
factory. The analog output  
signals of A0 and A09 are  
supplied as true-differential  
voltage with a peak to peak  
value of 2.0 V at the pins  
A09P, A09N, A0P, A0N.  
Valid data of DOUT should be  
read when the SCL clock is  
low. Please refer to timing  
diagram (Figure 2).  
It does not work for the 4  
excess interpolated bits of the  
16 bit Gray code.  
When some special applications  
require code patterns other  
than Gray code, the Gray code  
correction can be disabled by  
putting pin KORR = 0. When  
that happens just the 11 data  
bits (D1…D11) will be sent 1:1  
to the DOUT serial output.  
Gray code correction can be  
switched on or off by putting  
the pin KORR =1 (on) or =0  
(off).  
2
Pinout Description  
No. Pin Name  
[1]  
Description  
Function  
Notes  
1
2
3
4
NC  
InternallyconnectedtocathodeofLED  
1 = Gray Code Correction Active  
Do not use  
Do not use  
KORR  
PROBE_ON  
PCL  
Digital-input  
Digital-Input  
CMOS, internal pu  
CMOS, internal pd  
CMOS, internalpu  
DigitalInput  
PositiveEdge  
Do not use  
5
STCAL  
DigitalInput  
Positiveedge  
Negativeedge  
Tobeground  
CMOS, internal pd  
6
7
8
9
MSBINV  
DIN  
Digital-Input  
DigitalInput  
Digital-Input  
1 = MSB inverted  
CMOS, internal pd  
CMOS, internal pd  
CMOS, internal pu  
CMOS, internal pu  
Shift Register input. Used for cascading only  
Shift-register Shift (=0) / Load (=1) Control  
Shift-register Shift Clock  
NSL  
SCL  
Digital-Input  
PositiveEdge  
10 DOUT  
11 DO  
DigitalOutput  
Shift-Register Data Out (MSB first)  
DO signal  
CMOS, 2 mA  
CMOS, 2 mA  
CMOS, 2 mA  
DigitalOutput  
12 DPROBE  
13 VDD  
14 GND  
15 A09P  
16 GND  
17 A0P  
DigitalOutput  
DO9 signal  
SupplyVoltage  
Gndforsupplyvoltage  
Analogoutput  
+5 V Supply Digital  
GND for 5 V supply analog/digital  
A09 positive (+True diff.)  
GND for 5 V supply analog/digital  
A0 positive (+True diff.)  
A09 negative (–True diff.)  
+5VSupplyAnalog  
CMOS, analogout  
Gndforsupplyvoltage  
AnalogOutput  
Analogoutput  
CMOS, analogout  
CMOS, analogout  
18 A09N  
19 VDDA  
20 A0N  
SupplyVoltage  
AnalogOutput  
DigitalOutput  
A0 negative (–True diff.)  
IR-LED Current Limit Signal  
Do not use  
CMOS, analogout  
CMOS, 2 mA  
21  
LERR  
22 LEDR  
AnalogOutput  
CMOS, analogout  
Note:  
1. Internal pu/pd = internal pull-up (typ. 50 µA)/ pull-down (typ. 10 µA) CMOS-transistor-Rs.  
Pinout Configuration  
ESD WARNING: HANDLING PRECAUTIONS SHOULD BE TAKEN TO AVOID STATIC DISCHARGE  
3
Using the AEAS-7000  
(C's optional)  
VDD  
0R to 2R VCC (+5V)  
GND  
VCC  
A09P_APR  
VDD  
min 2µ2  
Tantal  
A09N_AREF  
GND  
D09  
A0P_A0  
DPROBE  
A0N_MON  
D0  
DOUT  
D0  
DOUT  
SCL  
VDDA  
GND  
VDD  
10R  
SCL  
NSL  
DIN  
NSL  
min 100µ  
Tantal  
DIN  
MSBINV  
MSBINV  
LEDR  
STCAL  
PCL  
STCAL  
PCL  
LERR  
PROBE_ON  
KORR  
PROBE_ON  
KORR  
LERR  
Figure 1. Schematic using AEAS-7000.  
Note: The RC-filter combination,  
LEDR, do not connect to this  
pin.  
The rate of the 16 bit Gray  
code serial transfer rate is  
dependent on the SCL clock  
frequency. The faster the  
clock, the faster the transfer  
rate. The maximum clock rate  
the AEAS-7000 can take is 16  
MHz, which means the entire  
16 bit Gray code can be  
serially transferred out in 1  
µs.  
especially on VDDA, is used to filter  
spikes and transients and is strongly  
recommended. It is advised that the  
tantalum caps be put as close to the  
VDD and VDDA pins as possible.  
LERR will be high when the  
light output of the emitter is  
low. This is an indicator when  
light intensity is at a critical  
stage affecting the performance  
of the encoder. It is caused by  
contamination of the codewheel  
or LED degradation.  
It is recommended to ground  
the PROBE_ON pin during  
normal operation.  
Leave PCL unconnected.  
Operation  
A09N and A0N are the negative  
cosine and sine waves, the  
negative versions of A09P and  
A0P.  
3)Whenever NSL is high, the  
DOUT will have the logic of  
the MSB D11. After NSL goes  
low, the number of bits being  
trans-ferred out will depend  
on the number of clock pulses  
given to SCL. The default is  
16 clock pulses for the 16 bit  
Gray code. If for other  
1) After powering up the unit  
using V =+5 V and  
CC  
connecting GND to ground,  
trigger input pins NSL and  
SCL using the timing  
diagram below (Figure 2).  
NSL is a control pin for the  
internal shift register. When  
triggered to low and  
combined with clock pulses,  
the serial Gray code will be  
shifted out to DOUT bit by  
bit per every clock pulse  
D0 is used to check the D0  
signal. D0 is the digitized signal  
of A0. DPROBE is used to check  
D09, the digitized signal of A09.  
Recommended to be used for  
testing purpose only.  
application where another  
number other than 16 is  
needed, just supply the  
corresponding number of clock  
pulses to the SCL, e.g., 12 bit,  
13 bit, 14 bit or 15 bit, and  
you will get the corresponding  
length of Gray code words  
with the corresponding  
KORR is for Gray Code  
correction for 12 bits resolution  
only.  
MSBINV is for user to change  
between counting up and  
counting down for a given  
rotating direction. MSB(D11)  
will always be sent out to  
DOUT first.  
2) The 16 bit serial gray code  
can then be tapped out from  
the pin DOUT, most  
significant bit (D11) first.  
resolution.  
4
LAPSE TIME  
BETWEEN WORDS,  
SET BY NSL  
1 FRAME = 16 BITS  
NSL  
SCL  
1
2
14  
15  
16  
DOUT  
D11  
D10  
D-3  
D-4  
D11  
(SERIAL)  
Note: VALID DATA IS WHEN NSL IS LOW  
Figure2. Timingdiagram.  
Absolute Limits  
No.  
1
Parameters  
Symbol  
VD  
Min.  
–0.3  
–0.3  
–25  
Typ.  
Max.  
6.0  
Units  
V
SupplyVoltage  
2
Voltages at all Input and Output Pins  
OperatingTemperature  
StorageTemperature  
Vin , Vout  
VD + 0.3  
+85  
V
3
T
°C  
A
S
4
T
–40  
+100  
°C  
Operating Conditions  
No.  
1
Parameters  
Symbol  
Min.  
4.5  
Typ.  
5
Max  
5.5  
Units  
V
SupplyVoltage  
OperatingTemperature  
Input-H-Level  
VD  
2
T
A
–25  
25  
+85  
°C  
V
3
Vih  
Vil  
0.7*VD  
0
VD  
4
Input-L-Level  
0.3*VD  
V
5
Electrical Characteristics (VD = 4.5 to 5 V, T = –40 to +85 °C)  
A
No.  
OperatingCurrents  
TotalCurrent  
Digital Inputs  
Parameters  
Symbol  
Conditions  
Min.  
Typ.  
Max.  
Units  
1
Itotal  
25  
mA  
1
2
PullDownCurrent  
Pull Up Current  
Ipd  
Ipu  
–20  
30  
–5  
µA  
µA  
160  
Digital Outputs  
1
2
Ouput-H-Level  
Output-L-Level  
Voh  
Vol  
Ioh = 2 mA  
Iol = –2 mA  
VD - 0.5 V  
0
VD  
0.5  
V
V
SerialInterface  
1
2
3
SCLClockFrequency  
fclock  
16  
MHz  
ns  
Duty Cycle Fclock  
Accuracy (1)  
T clock,LH  
Fclock = 16 MHz 0.4  
0.6  
Fclock = 5MHz,  
RPM = 80  
±2bits  
Analog-Signal-ConditioningSignaltracksA0P,A0N,A09P,A09N  
1.  
SignalFrequencyA0,A09  
Fsine,cos  
0
250  
KHz  
Note1:  
Accuracywouldbeinfluencedbyinstallationcontrolandthebearingandshafttypebeingused.  
TestconditionstodetermineAccuracy  
1) 80 RPM  
o
2) 25 C, room temperature  
3) At nominal radial, tangential and gap position  
4) On dual preloaded bearing with absolute assembly concentricity of not exceedding 10 microns  
5) SCL frequency of 5MHz  
6) Both VDD & VDDA filter capacitor placed not more than 20mm from header pins  
7)Testedforonerevolution  
MountingConsideration  
24.0  
12.0  
Readhead  
Ø42.1  
Code Disc  
Ø8.02 H6  
2x11 -1.27mm pitch pin header  
35.1  
UNLESS SPECIFIED OTHERWISE  
DIMENSIONS ARE IN MILLIMETRES  
THIRD ANGLE PROJECTION  
XX.  
XX.X  
XX.XX  
0.3  
0.1  
0.03  
STRIKE OUT  
OR FILL IN  
AS NEEDED  
Note:  
Codewheelmountingtolerancesforradial, tangentialandZgapare:  
Radial:  
50um  
40um  
50 um  
Tangential:  
Z Gap:  
Plug & Play Hub-Shaft design  
OrderingInformation  
The following details the design of the  
hub-shaftofwhichthedimensions  
must be strictly followed for the plug &  
play feature of the AEAS-7000 to work.  
In order to secure the code disk to the  
hub, an adhesive must be utilised.  
AgilentrecommendsusingDELO-  
DUOPOX, 1895 from DELO. Stainless  
steel is recommended as the hub-shaft  
material.  
0
- 7000 - 1 G S  
AEA  
A complete instruction for AEAS-7000  
Plug&Playinstallationconsideration  
canbefoundinAEAS-7000application  
note.  
D - 13 bits  
G - 16 bits  
S - Standard  
(-25°C to +85°C)  
Legend  
1 = 5V  
G = gray code  
S = serial output mode  
58  
0.8 depth as adhesive reservoir  
2
Ø16  
Ø15  
0.01  
20  
Motor end is user  
specified  
Ø11  
12  
+0.03  
-0  
4.2  
0.01 A  
0.02  
A
Straightness  
Ø0.01  
Flatness  
Perpendicularity  
Total Run-out  
0.01 A  
0.02  
www.agilent.com/semiconductors  
For product information and a complete list of  
distributors, please go to our web site.  
For technical assistance call:  
Americas/Canada: +1 (800) 235-0312 or  
(916) 788-6763  
Europe: +49 (0) 6441 92460  
China: 10800 650 0017  
Hong Kong: (+65) 6756 2394  
India, Australia, New Zealand: (+65) 6755 1939  
Japan: (+81 3) 3335-8152 (Domestic/Interna-  
tional), or 0120-61-1280 (Domestic Only)  
Korea: (+65) 6755 1989  
Singapore, Malaysia, Vietnam, Thailand,  
Philippines, Indonesia: (+65) 6755 2044  
Taiwan: (+65) 6755 1843  
Data subject to change.  
Copyright © 2004 Agilent Technologies, Inc.  
February 23, 2004  
5988-9627EN  

相关型号:

AEAS-7000-1GSG0

Plug and Play Ultra-Precision Absolute Encoder 16-bit Gray Code
AGILENT

AEAS-71AC-HACAB

SINGLE, ROTARY OPTICAL POSITION ENCODER
AVAGO

AEAS-71AC-HACBB

Absolute Encoders
ETC

AEAS-71AC-HGCAB

SINGLE, ROTARY OPTICAL POSITION ENCODER
AVAGO

AEAS-71AC-HGCBB

SINGLE, ROTARY OPTICAL POSITION ENCODER
AVAGO

AEAS-71AC-HGPAB

SINGLE, ROTARY OPTICAL POSITION ENCODER
AVAGO

AEAS-71AC-HGPBB

SINGLE, ROTARY OPTICAL POSITION ENCODER
AVAGO

AEAS-71AC-LACAB

SINGLE, ROTARY OPTICAL POSITION ENCODER
AVAGO

AEAS-71AC-LACBB

SINGLE, ROTARY OPTICAL POSITION ENCODER
AVAGO

AEAS-71AC-LAVAB

SINGLE, ROTARY OPTICAL POSITION ENCODER
AVAGO

AEAS-71AC-LAVBB

SINGLE, ROTARY OPTICAL POSITION ENCODER
AVAGO

AEAS-71AC-LGCAB

SINGLE, ROTARY OPTICAL POSITION ENCODER
AVAGO