OP282_04 [ADI]

Dual/Quad Low Power, High Speed JFET Operational Amplifiers; 双/四通道,低功耗,高速JFET运算放大器
OP282_04
型号: OP282_04
厂家: ADI    ADI
描述:

Dual/Quad Low Power, High Speed JFET Operational Amplifiers
双/四通道,低功耗,高速JFET运算放大器

运算放大器
文件: 总16页 (文件大小:428K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Dual/Quad Low Power, High Speed  
JFET Operational Amplifiers  
OP282/OP482  
FEATURES  
High slew rate: 9 V/µs  
PIN CONNECTIONS  
V+  
OUT A  
–IN A  
+IN A  
V–  
1
2
3
4
8
7
6
5
Wide bandwidth: 4 MHz  
Low supply current: 250 µA/amplifier max  
Low offset voltage: 3 mV max  
Low bias current: 100 pA max  
Fast settling time  
OUT B  
–IN B  
OP282  
+IN B  
Figure 1. 8-Lead Narrow-Body SOIC (S-Suffix) [R-8]  
Common-mode range includes V+  
Unity-gain stable  
OUT A  
–IN A  
+IN A  
V–  
1
2
3
4
8
7
6
5
V+  
APPLICATIONS  
Active filters  
Fast amplifiers  
OP282  
OUT B  
–IN B  
+IN B  
TOP VIEW  
(Not to Scale)  
Integrators  
Supply current monitoring  
Figure 2. 8-Lead MSOP [RM-8]  
1
2
3
4
5
6
7
14 OUT D  
GENERAL DESCRIPTION  
OUT A  
–IN A  
+IN A  
V+  
–IN D  
+IN D  
13  
12  
– +  
+ –  
The OP282/OP482 dual and quad operational amplifiers feature  
excellent speed at exceptionally low supply currents. The slew  
rate is typically 9 V/µs with a supply current under 250 µA per  
amplifier. These unity-gain stable amplifiers have a typical gain  
bandwidth of 4 MHz.  
OP482  
11 V–  
+IN C  
+IN B  
10  
9
– +  
+ –  
–IN C  
–IN B  
OUT B  
OUT C  
8
The JFET input stage of the OP282/OP482 ensures bias current  
is typically a few picoamps and below 500 pA over the full  
temperature range. Offset voltage is under 3 mV for the dual  
and under 4 mV for the quad.  
Figure 3. 14-Lead PDIP (P-Suffix) [N-14]  
OUT A  
–IN A  
+IN A  
V+  
OUT D  
–IN D  
+IN D  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
With a wide output swing, within 1.5 V of each supply, low  
power consumption, and high slew rate, the OP282/OP482  
are ideal for battery-powered systems or power restricted  
applications. An input common-mode range that includes the  
positive supply makes the OP282/OP482 an excellent choice for  
high-side signal conditioning.  
OP482  
V–  
+IN C  
+IN B  
–IN B  
OUT B  
–IN C  
OUT C  
8
The OP282/OP482 are specified over the extended industrial  
temperature range. The OP282 is available in the standard  
8-lead narrow SOIC and MSOP packages. The OP482 is  
available in PDIP and narrow SOIC packages.  
Figure 4. 14-Lead Narrow-Body SOIC (S-Suffix) [R-14]  
Rev. F  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.326.8703  
www.analog.com  
© 2004 Analog Devices, Inc. All rights reserved.  
OP282/OP482  
TABLE OF CONTENTS  
Specifications..................................................................................... 3  
High-Side Signal Conditioning ................................................ 12  
Phase Inversion........................................................................... 12  
Active Filters ............................................................................... 12  
Programmable State-Variable Filter......................................... 13  
Outline Dimensions....................................................................... 14  
Ordering Guide .......................................................................... 16  
Electrical Characteristics............................................................. 3  
Absolute Maximum Ratings............................................................ 4  
ESD Caution.................................................................................. 4  
Typical Performance Characteristics ............................................. 5  
Applications Information .............................................................. 12  
REVISION HISTORY  
10/04—Data Sheet Changed from Rev. E to Rev. F  
10/02—Data Sheet Changed from Rev. D to Rev. E  
Deleted 8-Lead PDIP .........................................................Universal  
Added 8-Lead MSOP .........................................................Universal  
Changes to Format and Layout.........................................Universal  
Changes to Features.......................................................................... 1  
Changes to Pin Configurations....................................................... 1  
Changes to General Description .................................................... 1  
Changes to Specifications................................................................ 3  
Changes to Absolute Maximum Ratings ....................................... 4  
Changes to Table 3............................................................................ 4  
Added Figure 5 through Figure 20; Renumbered  
Successive Figures............................................................................. 5  
Updated Figure 21 and Figure 22 ................................................... 7  
Updated Figure 23 and Figure 27 ................................................... 8  
Updated Figure 29 ............................................................................ 9  
Updated Figure 35 and Figure 36 ................................................. 10  
Updated Figure 43 .......................................................................... 11  
Changes to Applications Information.......................................... 12  
Changes to Figure 44...................................................................... 12  
Deleted OP282/OP482 Spice Macro Model Section.................... 9  
Deleted Figure 4................................................................................ 9  
Deleted OP282 Spice Marco Model ............................................. 10  
Updated Outline Dimensions....................................................... 14  
Changes to Ordering Guide .......................................................... 14  
Edits to 8-Lead Epoxy DIP (P-Suffix) Pin......................................1  
Edits to Ordering Guide ...................................................................3  
Edits to Outline Dimensions......................................................... 11  
9/02—Data Sheet Changed from Rev. C to Rev. D  
Edits to 14-Lead SOIC (S-Suffix) Pin .............................................1  
Replaced 8-Lead SOIC (S-Suffix)................................................. 11  
4/02—Data Sheet changed from Rev. B to Rev. C  
Wafer Test Limits Deleted ................................................................2  
Edits to Absolute Maximum Ratings ..............................................3  
Dice Characteristics Deleted............................................................3  
Edits to Ordering Guide ...................................................................3  
Edits to Figure 1.................................................................................7  
Edits to Figure 3.................................................................................8  
20-Position Chip Carrier (RC Suffix) Deleted ........................... 11  
Rev. F | Page 2 of 16  
OP282/OP482  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS  
At VS = 15.0 V, TA = 25°C, unless otherwise noted; applies to both A and G grade.  
Table 1.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
0.2  
0.2  
3
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
VOS  
IB  
OP282  
3
4.5  
4
mV  
mV  
mV  
mV  
pA  
pA  
pA  
pA  
V
OP282, −40°C ≤ TA ≤ +85°C  
OP482  
OP482, −40°C ≤ TA ≤ +85°C  
VCM = 0 V  
VCM = 0 V1  
6
Input Bias Current  
100  
500  
50  
250  
+15  
Input Offset Current  
IOS  
VCM = 0 V  
VCM = 0 V1  
1
Input Voltage Range  
Common-Mode Rejection Ratio  
Large Signal Voltage Gain  
−11  
70  
20  
CMRR  
AVO  
−11 V ≤ VCM ≤ +15 V, −40°C ≤ TA ≤ +85°C  
RL = 10 kΩ  
RL = 10 kΩ, −40°C ≤ TA ≤ +85°C  
90  
dB  
V/mV  
V/mV  
µV/°C  
pA/°C  
15  
Offset Voltage Drift  
Bias Current Drift  
∆VOS/∆T  
∆IB/∆T  
10  
8
OUTPUT CHARACTERISTICS  
Output Voltage High  
Output Voltage Low  
Short-Circuit Limit  
VOH  
VOL  
ISC  
RL = 10 kΩ  
RL = 10 kΩ  
Source  
Sink  
f = 1 MHz  
+13.5  
3
+13.9  
−13.9  
10  
−12  
200  
V
V
mA  
mA  
−13.5  
−8  
Open-Loop Output Impedance  
POWER SUPPLY  
ZOUT  
Power Supply Rejection Ratio  
Supply Current/Amplifier  
Supply Voltage Range  
DYNAMIC PERFORMANCE  
Slew Rate  
Full-Power Bandwidth  
Settling Time  
Gain Bandwidth Product  
Phase Margin  
PSRR  
ISY  
VS  
VS = 4.5 V to 18 V, −40°C ≤ TA ≤ +85°C  
VO = 0 V, −40°C ≤ TA ≤ 85°C  
25  
210  
316  
250  
18  
µV/V  
µA  
V
4.5  
7
SR  
BWP  
tS  
GBP  
ØO  
RL = 10 kΩ  
1% distortion  
To 0.01%  
9
V/µs  
kHz  
µs  
MHz  
Degrees  
125  
1.6  
4
55  
NOISE PERFORMANCE  
Voltage Noise  
Voltage Noise Density  
Current Noise Density  
en p-p  
en  
in  
0.1 Hz to 10 Hz  
f = 1 kHz  
1.3  
36  
µV p-p  
nV/√Hz  
pA/√Hz  
0.01  
1 The input bias and offset currents are characterized at TA = TJ = 85°C. Bias and offset currents are guaranteed but not tested at −40°C.  
Rev. F | Page 3 of 16  
 
 
OP282/OP482  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
Parameters  
Ratings  
18 V  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Supply Voltage  
Input Voltage  
18 V  
36 V  
Indefinite  
Differential Input Voltage1  
Output Short-Circuit Duration  
Storage Temperature Range  
P-Suffix (N), S-Suffix (R), RM Packages  
Operating Temperature Range  
OP282G, OP282A, OP482G  
Junction Temperature Range  
P-Suffix (N), S-Suffix (R), RM Packages  
Lead Temperature Range (Soldering 60 sec)  
−65°C to +150°C  
−40°C to +85°C  
Table 3.  
Package Type  
−65°C to +150°C  
300°C  
1
θJA  
θJC  
44  
56  
39  
36  
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
8-Lead MSOP [RM]  
206  
157  
83  
8-Lead SOIC (S-Suffix) [R]  
14-Lead PDIP (P-Suffix) [N]  
14-Lead SOIC (S-Suffix) [R]  
1 For supply voltages less than 18 V, the absolute maximum input voltage is  
equal to the supply voltage.  
104  
1 θJA is specified for the worst-case conditions; i.e., θJA is specified for device in  
socket for CERDIP, PDIP; θJA is specified for device soldered in circuit board  
for SOIC or MSOP package.  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate  
on the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. F | Page 4 of 16  
 
 
OP282/OP482  
TYPICAL PERFORMANCE CHARACTERISTICS  
80  
70  
60  
180  
135  
90  
V
T
= ±15V  
= 25°C  
V
= ±15V  
T = 25°C  
A
S
S
A
60  
50  
A
A
= 100  
VCL  
40  
40  
30  
= 10  
VCL  
20  
45  
20  
10  
A
= 1  
VCL  
0
0
0
–10  
–20  
–30  
–20  
–40  
–45  
–90  
1k  
10k  
100k  
1M  
10M  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 5. OP282 Open-Loop Gain and Phase vs. Frequency  
Figure 8. OP282 Closed-Loop Gain vs. Frequency  
45  
40  
35  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
V
R
= ±15V  
= 10k  
V
R
C
= ±15V  
= 10kΩ  
= 50pF  
S
S
L
L
L
–SR  
+SR  
0
–75  
0
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
–50  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 9. OP282 Slew Rate vs. Temperature  
Figure 6. OP282 Open-Loop Gain vs. Temperature  
80  
70  
60  
50  
40  
30  
20  
10  
0
1000  
100  
10  
V
R
V
A
= ±15V  
= 2kΩ  
V
V
= ±15V  
S
S
= 0V  
L
CM  
= 100mV p-p  
IN  
= 1  
VCL  
T
= 25°C  
A
+OS  
–OS  
1
0.1  
–75  
0
100  
200  
300  
400  
500  
–50  
–25  
0
25  
50  
75  
100  
125  
LOAD CAPACITANCE (pF)  
TEMPERATURE (°C)  
Figure 7. OP282 Small Signal Overshoot vs. Load Capacitance  
Figure 10. OP282 Input Bias Current vs. Temperature  
Rev. F | Page 5 of 16  
 
OP282/OP482  
1000  
20  
15  
T
R
= 25°C  
= 10kΩ  
V
T
= ±15V  
= 25°C  
A
S
L
A
V
OH  
10  
100  
10  
5
0
–5  
–10  
–15  
–20  
V
OL  
1
10  
0
±5  
±10  
SUPPLY VOLTAGE (V)  
±15  
±20  
100  
FREQUENCY (Hz)  
1k  
10k  
Figure 11. OP282 Voltage Noise Density vs. Frequency  
Figure 14. OP282 Output Voltage Swing vs. Supply Voltage  
1000  
100  
10  
1000  
100  
10  
V
T
= ±15V  
= 25°C  
V
T
= ±15V  
= 25°C  
S
S
A
A
A
= 100  
VCL  
VCL  
A
= 10  
= 1  
1
1
A
VCL  
0.1  
0.1  
100  
–15  
–10  
–5  
0
5
10  
15  
1k  
10k  
100k  
1M  
COMMON-MODE VOLTAGE (V)  
FREQUENCY (Hz)  
Figure 12. OP282 Input Bias Current vs. Common-Mode Voltage  
Figure 15. OP282 Closed-Loop Output Impedance vs. Frequency  
480  
480  
T
= 25°C  
A
475  
470  
465  
460  
455  
450  
475  
470  
465  
460  
455  
450  
0
±5  
±10  
±15  
±20  
–50  
–25  
0
25  
50  
75  
100  
125  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 13. OP282 Supply Current vs. Supply Voltage  
Figure 16. OP282 Supply Current vs. Temperature  
Rev. F | Page 6 of 16  
OP282/OP482  
16  
14  
12  
10  
8
30  
25  
20  
15  
10  
5
V
T
= ±15V  
= 25°C  
V
T
R
= ±15V  
= 25°C  
= 10k  
= 1  
S
S
A
A
L
V
A
OL  
V
VCL  
OH  
6
4
2
0
100  
0
100  
1k  
LOAD RESISTANCE (  
10k  
1k  
10k  
100k  
1M  
)
FREQUENCY (Hz)  
Figure 20. OP282 Maximum Output Swing vs. Frequency  
Figure 17. OP282 Absolute Output Voltage vs. Load Resistance  
140  
140  
V
T
= ±15V  
= 25°C  
A
V
T
= ±15V  
= 25°C  
S
S
120  
100  
80  
A
120  
100  
80  
+PSRR  
60  
60  
40  
40  
20  
20  
–PSRR  
0
0
–20  
–40  
–60  
–20  
–40  
–60  
100  
1k  
10k  
100k  
1M  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 21. OP282 CMRR vs. Frequency  
Figure 18. OP282 PSRR vs. Frequency  
14  
200  
160  
120  
80  
V
= ±15V  
= 25°C  
S
V
= ±15V  
S
T
A
12  
10  
8
300 × OP282  
(600 OP AMPS)  
SINK  
SOURCE  
6
4
40  
2
0
–50  
0
–25  
0
25  
50  
75  
100  
125  
–2000  
–1200  
–400  
0
400  
(µV)  
1200  
2000  
TEMPERATURE (°C)  
V
OS  
Figure 19. OP282 Short-Circuit Current vs. Temperature  
Figure 22. OP282 VOS Distribution SOIC Package  
Rev. F | Page 7 of 16  
OP282/OP482  
70  
60  
50  
40  
30  
20  
10  
0
400  
360  
320  
280  
240  
200  
160  
120  
80  
A
= 1  
V
= ±15V  
VCL  
S
V
R
= ±15V  
= 2k  
= 100mV p-p  
S
NEGATIVE EDGE  
300 × OP282  
(600 OP AMPS)  
L
V
IN  
A
= 1  
VCL  
POSITIVE EDGE  
40  
0
0
4
8
12  
16  
20  
24  
28  
32  
36  
300  
LOAD CAPACITANCE (pF)  
0
100  
200  
400  
500  
TCV (µV/°C)  
OS  
Figure 26. OP482 Small Signal Overshoot vs. Load Capacitance  
Figure 23. OP282 TCVOS Distribution SOIC Package  
80  
60  
40  
20  
0
0
60  
V
T
= ±15V  
= 25°C  
V
T
= ±15V  
= 25°C  
S
S
A
A
50  
40  
A
= 100  
= 10  
= 1  
45  
VCL  
30  
90  
A
VCL  
20  
135  
180  
10  
A
VCL  
0
–10  
–20  
1k  
10k  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 24. OP482 Open-Loop Gain, Phase vs. Frequency  
Figure 27. OP482 Closed-Loop Gain vs. Frequency  
35  
25  
20  
15  
10  
5
V
R
= ±15V  
= 10kΩ  
–SR  
S
L
30  
25  
20  
15  
10  
5
V
R
C
= ±15V  
= 10k  
= 50pF  
S
L
L
+SR  
0
–75  
0
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
–50  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 25. OP482 Open-Loop Gain (V/mV)  
Figure 28. OP482 Slew Rate vs. Temperature  
Rev. F | Page 8 of 16  
OP282/OP482  
1000  
100  
10  
1000  
100  
10  
V
T
= ±15V  
= 25°C  
V
V
= ±15V  
= 0V  
S
S
A
CM  
1.0  
1
0.1  
0.1  
0
–50  
–25  
0
25  
50  
75  
100  
125  
–15  
–10  
–5  
0
5
10  
15  
TEMPERATURE (°C)  
COMMON-MODE VOLTAGE (V)  
Figure 29. OP482 Input Bias Current vs. Temperature  
Figure 32. OP482 Input Bias Current vs. Common-Mode Voltage  
60  
5.0  
4.5  
4.0  
3.5  
3.0  
1.15  
V
R
= ±15V  
= 10k  
T
= 25°C  
S
A
L
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
55  
50  
45  
40  
GBW  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
0
±5  
±10  
±15  
±20  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
Figure 30. OP482 Phase Margin and Gain Bandwidth Product vs. Temperature  
Figure 33. OP482 Relative Supply Current vs. Supply Voltage  
80  
20  
15  
V
T
= ±15V  
= 25°C  
R
T
= 10kΩ  
= 25°C  
S
L
A
A
70  
60  
50  
40  
30  
20  
10  
0
10  
5
0
–5  
–10  
–15  
–20  
10  
100  
FREQUENCY (Hz)  
1k  
10k  
0
±5  
±10  
±15  
±20  
SUPPLY VOLTAGE (V)  
Figure 31. OP482 Voltage Noise Density vs. Frequency  
Figure 34. OP482 Output Voltage Swing vs. Supply Voltage  
Rev. F | Page 9 of 16  
OP282/OP482  
600  
500  
400  
300  
200  
100  
100  
80  
60  
40  
20  
0
V
T
= ±15V  
= 25°C  
V = ±15V  
S
V = 100mV  
S
+PSRR  
–PSRR  
A
T
= 25°C  
A
A
= 100  
VCL  
A
= 10  
VCL  
A
= 1  
VCL  
20  
0
100  
1k  
10k  
FREQUENCY (Hz)  
100k  
1M  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
Figure 35. OP482 Closed-Loop Output Impedance vs. Frequency  
Figure 38. OP482 Power Supply Rejection Ratio (PSRR) vs. Frequency  
1.20  
20  
V
= ±15V  
V
= ±15V  
S
S
SINK  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
15  
10  
5
SOURCE  
0
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 36. OP482 Relative Supply Current vs. Temperature  
Figure 39. OP482 Short-Circuit Current vs. Temperature  
30  
25  
20  
15  
10  
5
16  
14  
12  
10  
8
V
T
A
= ±15V  
= 25°C  
V
T
= ±15V  
= 25°C  
S
S
A
A
= 1  
VCL  
= 10kΩ  
R
L
POSITIVE  
SWING  
NEGATIVE  
SWING  
6
4
2
0
100  
0
10K  
100K  
1M  
1K  
1k  
10k  
FREQUENCY (Hz)  
LOAD RESISTANCE ()  
Figure 40. OP482 Maximum Output Swing vs. Frequency  
Figure 37. OP482 Maximum Output Voltage vs. Load Resistance  
Rev. F | Page 10 of 16  
OP282/OP482  
100  
80  
60  
40  
20  
0
320  
280  
240  
200  
160  
120  
80  
V
= ±15V  
= 25°C  
S
40  
T
A
V
= 100mV  
CM  
0
–20  
100  
1k  
10k  
100k  
1M  
0
4
8
12  
16  
20  
24  
28  
32  
FREQUENCY (Hz)  
TCV (µV/°C)  
OS  
Figure 41. OP482 Common-Mode Rejection Ratio (CMRR) vs. Frequency  
Figure 43. OP482 TCVOS Distribution P Package  
700  
V
= ±15V  
= 25°C  
S
T
A
300 × OP482  
(1200 OP AMPS)  
600  
500  
400  
300  
200  
100  
0
–2000 –1600 –1200 –800 –400  
0
400 800 1200 1600 2000  
V
(µV)  
OS  
Figure 42. OP482 VOS Distribution P Package  
Rev. F | Page 11 of 16  
OP282/OP482  
APPLICATIONS INFORMATION  
The OP282 and OP482 are dual and quad JFET op amps that  
are optimized for high speed at low power. This combination  
makes these amplifiers excellent choices for battery-powered or  
low power applications that require above average performance.  
Applications benefiting from this performance combination  
include telecommunications, geophysical exploration, portable  
medical equipment, and navigational instrumentation.  
PHASE INVERSION  
Most JFET-input amplifiers invert the phase of the input signal  
if either input exceeds the input common-mode range. For the  
OP282/OP482, negative signals in excess of approximately 14 V  
cause phase inversion. The cause of this effect is saturation of  
the input stage leading to the forward-biasing of a drain-gate  
diode. A simple fix for this in noninverting applications is to  
place a resistor in series with the noninverting input. This limits  
the amount of current through the forward-biased diode and  
prevents the shutting down of the output stage. For the  
OP282/OP482, a value of 200 kΩ has been found to work;  
however, this adds a significant amount of noise.  
HIGH-SIDE SIGNAL CONDITIONING  
There are many applications that require the sensing of signals  
near the positive rail. OP282s and OP482s were tested and are  
guaranteed over a common-mode range (−11 V ≤ VCM ≤ +15 V)  
that includes the positive supply.  
15  
10  
5
One application where this is commonly used is in the sensing  
of power supply currents. This enables it to be used in current  
sensing applications, such as the partial circuit shown in Figure 44.  
In this circuit, the voltage drop across a low value resistor, such  
as the 0.1 Ω shown here, is amplified and compared to 7.5 V.  
The output can then be used for current limiting.  
0
15V  
0.1  
5
500k  
100k  
R
L
10  
100k  
15  
–15  
1/2  
OP282  
–10  
–5  
0
5
10  
15  
V
IN  
Figure 45. OP282 Phase Reversal  
500k  
ACTIVE FILTERS  
Figure 44. High-Side Signal Conditioning  
The wide bandwidth and high slew rates of the OP282/OP482  
make either an excellent choice for many filter applications.  
There are many active filter configurations, but the four most  
popular configurations are Butterworth, Elliptical, Bessel, and  
Chebyshev. Each type has a response that is optimized for a  
given characteristic as shown in Table 4.  
Table 4.  
Type  
Selectivity  
Moderate  
Good  
Best  
Poor  
Overshoot  
Phase  
Amplitude (Pass Band)  
Maximum Flat  
Equal Ripple  
Amplitude (Stop Band)  
Butterworth  
Chebyshev  
Elliptical  
Good  
Moderate  
Poor  
Nonlinear  
Linear  
Equal Ripple  
Equal Ripple  
Bessel (Thompson)  
Best  
Rev. F | Page 12 of 16  
 
 
 
OP282/OP482  
PROGRAMMABLE STATE-VARIABLE FILTER  
The circuit shown in Figure 46 can be used to accurately  
program the Q, the cutoff frequency fC, and gain of a 2-pole  
state variable filter. OP482s have been used in this design  
because of their high bandwidths, low power, and low noise.  
This circuit takes only three packages to build because of the  
quad configuration of the op amps and DACs.  
1
D1  
fc =  
R1C1 256  
where D1 is the digital code for the DAC.  
The gain of this circuit is set by adjusting D3. The gain equation is  
The DACs shown are used in the voltage mode; therefore, many  
values are dependent on the accuracy of the DAC only and not  
on the absolute values of the DAC’s resistive ladders. This makes  
this circuit unusually accurate for a programmable filter.  
R4 D3  
Gain =  
R5 256  
DAC 2 is used to set the Q of the circuit. Adjusting this DAC  
controls the amount of feedback from the band-pass node to  
the input summing node. Note that the digital value of the  
DAC is in the numerator; therefore, zero code is not a valid  
operating point.  
Adjusting DAC 1 changes the signal amplitude across R1;  
therefore, the DAC attenuation times R1 determines the amount  
of signal current that charges the integrating capacitor, C1. This  
cutoff frequency can now be expressed as  
R2 256  
Q =  
R3 D2  
R7  
2k  
R4  
2kΩ  
V
IN  
C1  
1000pF  
R5  
2kΩ  
1/4  
1/4  
DAC8408  
OP482  
1/4  
C1  
1000pF  
R1  
2kΩ  
OP482  
1/4  
1/4  
DAC8408  
OP482  
1/4  
R1  
2kΩ  
OP482  
1/4  
1/4  
DAC8408  
OP482  
1/4  
OP482  
HIGH PASS  
LOW  
PASS  
BAND PASS  
R6  
2kΩ  
R3  
2kΩ  
R2  
2kΩ  
1/4  
1/4  
DAC8408  
OP482  
1/4  
OP482  
Figure 46.  
Rev. F | Page 13 of 16  
 
 
OP282/OP482  
OUTLINE DIMENSIONS  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2440)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
1.27 (0.0500)  
BSC  
0.50 (0.0196)  
0.25 (0.0099)  
× 45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0.51 (0.0201)  
0.31 (0.0122)  
0° 1.27 (0.0500)  
COPLANARITY  
0.10  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
0.40 (0.0157)  
COMPLIANT TO JEDEC STANDARDS MS-012AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
Figure 47. 8-Lead Standard Small Outline Package [SOIC]  
Narrow-Body S-Suffix (R-8)  
Dimensions shown in millimeters and (inches)  
3.00  
BSC  
8
1
5
4
4.90  
BSC  
3.00  
BSC  
PIN 1  
0.65 BSC  
1.10 MAX  
0.15  
0.00  
0.80  
0.60  
0.40  
8°  
0°  
0.38  
0.22  
0.23  
0.08  
COPLANARITY  
0.10  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-187AA  
Figure 48. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters  
Rev. F | Page 14 of 16  
 
OP282/OP482  
8.75 (0.3445)  
8.55 (0.3366)  
14  
1
8
7
4.00 (0.1575)  
3.80 (0.1496)  
6.20 (0.2441)  
5.80 (0.2283)  
1.27 (0.0500)  
BSC  
0.50 (0.0197)  
0.25 (0.0098)  
1.75 (0.0689)  
1.35 (0.0531)  
× 45°  
0.25 (0.0098)  
0.10 (0.0039)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
SEATING  
PLANE  
1.27 (0.0500)  
0.40 (0.0157)  
COPLANARITY  
0.10  
0.25 (0.0098)  
0.17 (0.0067)  
COMPLIANT TO JEDEC STANDARDS MS-012AB  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
Figure 49. 14-Lead Standard Small Outline Package [SOIC]  
Narrow-Body S-Suffix (R-14)  
Dimensions shown in millimeters and (inches)  
0.685 (17.40)  
0.665 (16.89)  
0.645 (16.38)  
0.285 (7.24)  
0.295 (7.49)  
0.275 (6.99)  
14  
1
8
7
0.100 (2.54)  
BSC  
0.325 (8.26)  
0.310 (7.87)  
0.300 (7.62)  
0.015 (0.38)  
MIN  
0.150 (3.81)  
0.135 (3.43)  
0.120 (3.05)  
0.180 (4.57)  
MAX  
0.150 (3.81)  
0.130 (3.30)  
0.110 (2.79)  
0.015 (0.38)  
0.010 (0.25)  
0.008 (0.20)  
SEATING  
PLANE  
0.022 (0.56) 0.060 (1.52)  
0.018 (0.46) 0.050 (1.27)  
0.014 (0.36) 0.045 (1.14)  
COMPLIANT TO JEDEC STANDARDS MO-095-AB  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
Figure 50. 14-Lead Plastic Dual-in-Line Package [PDIP]  
P-Suffix (N-14)  
Dimension shown in inches and (millimeters)  
Rev. F | Page 15 of 16  
OP282/OP482  
ORDERING GUIDE  
Model  
OP282ARMZ-R21  
OP282ARMZ-REEL1  
OP282GS  
OP282GS-REEL  
OP282GS-REEL7  
OP282GSZ1  
OP282GSZ-REEL1  
OP282GSZ-REEL71  
OP482GP  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
8-Lead MSOP  
8-Lead MSOP  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
14-Lead PDIP  
14-Lead SOIC  
14-Lead SOIC  
14-Lead SOIC  
14-Lead SOIC  
14-Lead SOIC  
14-Lead SOIC  
Package Option  
RM-8  
RM-8  
Branding  
A0B  
A0B  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
P-Suffix (N-14)  
S-Suffix (R-14)  
S-Suffix (R-14)  
S-Suffix (R-14)  
S-Suffix (R-14)  
S-Suffix (R-14)  
S-Suffix (R-14)  
OP482GS  
OP482GS-REEL  
OP482GS-REEL7  
OP482GSZ1  
OP482GSZ-REEL1  
OP482GSZ-REEL71  
1 Z = Pb-free part.  
©
2004 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
C00301–0–10/04(F)  
Rev. F | Page 16 of 16  
 
 
 

相关型号:

OP283

5 MHz Single-Supply Operational Amplifiers
ADI

OP283GBC

IC DUAL OP-AMP, 1250 uV OFFSET-MAX, 5 MHz BAND WIDTH, UUC8, 0.063 X 0.092 INCH, DIE-8, Operational Amplifier
ADI

OP283GP

5 MHz Single-Supply Operational Amplifiers
ADI

OP283GS

5 MHz Single-Supply Operational Amplifiers
ADI

OP284

Precision Rail-to-Rail Input & Output Operational Amplifiers
ADI

OP284

Operational Amplifiers
MAXWELL

OP284A

Dual Operational Amplifier
MAXWELL

OP284ARPFB

Dual Operational Amplifier
MAXWELL

OP284ARPFE

Dual Operational Amplifier
MAXWELL

OP284ARPFI

Dual Operational Amplifier
MAXWELL

OP284ARPFS

Dual Operational Amplifier
MAXWELL