OP284 [ADI]

Precision Rail-to-Rail Input & Output Operational Amplifiers; 精密轨到轨输入和输出运算放大器
OP284
型号: OP284
厂家: ADI    ADI
描述:

Precision Rail-to-Rail Input & Output Operational Amplifiers
精密轨到轨输入和输出运算放大器

运算放大器
文件: 总20页 (文件大小:291K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Precision Rail-to-Rail Input & Output  
Operational Amplifiers  
a
OP184/OP284/OP484  
FEATURES  
P IN CO NFIGURATIO NS  
Single-Supply Operation  
Wide Bandw idth: 4 MHz  
Low Offset Voltage: 65 V  
Unity-Gain Stable  
8-Lead Epoxy D IP  
(P Suffix)  
High Slew Rate: 4.0 V/ s  
Low Noise: 3.9 nV/ Hz  
8-Lead SO  
(S Suffix)  
APPLICATIONS  
Battery Pow ered Instrum entation  
Pow er Supply Control and Protection  
Telecom  
DAC Output Am plifier  
ADC Input Buffer  
NULL  
NC  
1
2
3
4
8
7
6
5
OP184  
V+  
–IN A  
+IN A  
V–  
+
OUT A  
NULL  
NC = NO CONNECT  
8-Lead Epoxy D IP  
(P Suffix)  
GENERAL D ESCRIP TIO N  
T he OP184/OP184/OP284/OP484 are single, dual and quad  
single-supply, 4 MHz bandwidth amplifiers featuring rail-to-rail  
inputs and outputs. T hey are guaranteed to operate from +3 to  
+36 (or ±1.5 to ±18) volts and will function with a single supply  
as low as +1.5 volts.  
8-Lead SO  
(S Suffix)  
1
2
3
4
8
7
6
5
V+  
OUT A  
–IN A  
+IN A  
V–  
T hese amplifiers are superb for single supply applications re-  
quiring both ac and precision dc performance. T he combination  
of bandwidth, low noise and precision makes the OP184/OP284/  
OP484 useful in a wide variety of applications, including filters  
and instrumentation.  
OP284  
OUT B  
–IN B  
+IN B  
Other applications for these amplifiers include portable telecom  
equipment, power supply control and protection, and as amplifi-  
ers or buffers for transducers with wide output ranges. Sensors  
requiring a rail-to-rail input amplifier include Hall effect, piezo  
electric, and resistive transducers.  
14-Lead Epoxy D IP  
(P Suffix)  
14-Lead Narrow-Body SO  
(S Suffix)  
T he ability to swing rail-to-rail at both the input and output en-  
ables designers to build multistage filters in single-supply sys-  
tems and maintain high signal-to-noise ratios.  
OUT A  
OUT D  
–IN D  
1
2
3
4
5
6
7
14  
13  
T he OP184/OP284/OP484 are specified over the HOT extended  
industrial (–40°C to +125°C) temperature range. T he single  
and dual are available in 8-pin plastic DIP plus SO surface  
mount packages. T he quad OP484 is available in 14-pin plastic  
DIPs and 14-lead narrow-body SO packages.  
–IN A  
+IN A  
V+  
+
+
12 +IN D  
11 V–  
OP484  
+IN C  
–IN C  
OUT C  
10  
9
+IN B  
+
– +  
–IN B  
8
OUT B  
REV. 0  
Inform ation furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assum ed by Analog Devices for its  
use, nor for any infringem ents of patents or other rights of third parties  
which m ay result from its use. No license is granted by im plication or  
otherwise under any patent or patent rights of Analog Devices.  
© Analog Devices, Inc., 1996  
One Technology Way, P.O. Box 9106, Norw ood. MA 02062-9106, U.S.A.  
Tel: 617/ 329-4700 Fax: 617/ 326-8703  
OP184/OP284/OP484–SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS  
(@ V = +5.0 V, V = 2.5 V, T = +25؇C unless otherwise noted)  
S
CM  
A
P aram eter  
Sym bol Conditions  
Min  
Typ Max Units  
INPUT CHARACT ERIST ICS  
Offset Voltage “OP184/284E” Grade  
VOS  
VOS  
VOS  
VOS  
IB  
(Note 1)  
65  
µV  
–40°C T A +125°C  
–40°C T A +125°C  
–40°C T A +125°C  
–40°C T A +125°C  
–40°C T A +125°C  
–40°C T A +125°C  
165 µV  
125 µV  
350 µV  
Offset Voltage “OP184/284F” Grade  
Offset Voltage OP184 “484E” Grade  
Offset Voltage OP184 “484F” Grade  
Input Bias Current  
75  
µV  
175 µV  
150 µV  
450 µV  
300 nA  
500 nA  
50  
50  
+5  
60  
2
Input Offset Current  
IOS  
nA  
nA  
V
Input Voltage Range  
0
Common-Mode Rejection Ratio  
Common-Mode Rejection Ratio  
Large Signal Voltage Gain  
CMRR  
CMRR  
AVO  
VCM = 0 V to 5 V  
VCM = 1.0 V to 4.0 V, –40°C TA +125°C  
RL = 2 k, 1 V VO 4 V  
60  
86  
50  
25  
dB  
dB  
V/mV  
V/mV  
pA/°C  
240  
150  
RL = 2 k, –40°C TA +125°C  
Bias Current Drift  
IB/T  
OUT PUT CHARACT ERIST ICS  
Output Voltage High  
Output Voltage Low  
VOH  
VOL  
IOUT  
IL = 1.0 mA  
IL = 1.0 mA  
+4.85  
V
125 mV  
mA  
Output Currrent  
±6.5  
POWER SUPPLY  
Power Supply Rejection Ratio  
Supply Current/Amplifier  
Supply Voltage Range  
PSRR  
ISY  
VS  
VS = +2.0 V to +10 V, –40°C TA +125°C  
VO = 2.5 V, –40°C T A +125°C  
76  
dB  
1.25 mA  
+3  
+36  
V
DYNAMIC PERFORMANCE  
Slew Rate  
Settling T ime  
Gain Bandwidth Product  
Phase Margin  
SR  
ts  
GBP  
Øo  
RL = 2 kΩ  
T o 0.01%, 1.0 V Step  
1.65  
2.4  
2.5  
3.25  
45  
V/µs  
µs  
MHz  
Degrees  
NOISE PERFORMANCE  
Voltage Noise  
Voltage Noise Density  
Current Noise Density  
en p-p  
en  
in  
0.1 Hz to 10 Hz  
f = 1 kHz  
0.3  
3.9  
0.4  
µV p-p  
nV/Hz  
pA/Hz  
NOT ES  
1Input Offset Voltage measurements are performed by automated test equipment approximately 0.5 seconds after application of power.  
Specifications subject to change without notice.  
–2–  
REV. 0  
OP184/OP284/OP484  
(@ V = +3.0 V, V = 1.5 V, T = +25؇C unless otherwise noted)  
ELECTRICAL CHARACTERISTICS  
S
CM  
A
P aram eter  
Sym bol  
Conditions  
Min  
Typ  
Max Units  
INPUT CHARACT ERIST ICS  
Offset Voltage “OP184/284E” Grade  
VOS  
VOS  
VOS  
VOS  
IB  
(Note 1)  
65  
µV  
–40°C TA +125°C  
–40°C TA +125°C  
–40°C TA +125°C  
–40°C TA +125°C  
165 µV  
125 µV  
350 µV  
100 µV  
200 µV  
150 µV  
450 µV  
300 nA  
500 nA  
Offset Voltage “OP184/284F” Grade  
Offset Voltage OP184“484E” Grade  
Offset Voltage OP184“484F” Grade  
Input Bias Current  
60  
–40°C TA +125°C  
–40°C TA +125°C  
Input Offset Current  
Input Voltage Range  
IOS  
50  
+3  
nA  
V
0
Common-Mode Rejection Ratio  
Common-Mode Rejection Ratio  
CMRR  
CMRR  
VCM = 0 V to 3 V  
VCM = 0 V to 3 V, –40°C TA +125°C  
60  
56  
dB  
dB  
OUT PUT CHARACT ERIST ICS  
Output Voltage High  
Output Voltage Low  
VOH  
VOL  
IL = 1.0 mA  
IL = 1.0 mA  
+2.85  
76  
V
125 mV  
POWER SUPPLY  
Power Supply Rejection Ratio  
Supply Current/Amplifier  
PSRR  
ISY  
VS = ±1.25 V to ±1.75 V  
VO = 1.5 V, –40°C T A +125°C  
dB  
1.15 mA  
DYNAMIC PERFORMANCE  
Gain Bandwidth Product  
GBP  
en  
3
MHz  
NOISE PERFORMANCE  
Voltage Noise Density  
f = 1 kHz  
3.9  
nV/Hz  
NOT ES  
1Input Offset Voltage measurements are performed by automated test equipment approximately 0.5 seconds after application of power.  
Specifications subject to change without notice.  
REV. 0  
–3–  
OP184/OP284/OP484  
(@ V = ؎15.0 V, V = 0 V, T = +25؇C unless otherwise noted)  
ELECTRICAL CHARACTERISTICS  
S
CM  
A
P aram eter  
Sym bol Conditions  
Min Typ  
Max Units  
INPUT CHARACT ERIST ICS  
Offset Voltage “OP184/284E” Grade VOS  
(Note 1)  
100  
200  
175  
375  
150  
300  
250  
500  
300  
500  
50  
µV  
µV  
µV  
µV  
µV  
µV  
µV  
µV  
nA  
nA  
nA  
V
–40°C T A +125°C  
–40°C T A +125°C  
–40°C T A +125°C  
–40°C T A +125°C  
Offset Voltage “284F” Grade  
Offset Voltage “484E” Grade  
Offset Voltage “484F” Grade  
Input Bias Current  
VOS  
VOS  
VOS  
IB  
80  
–40°C T A +125°C  
–40°C T A +125°C  
Input Offset Current  
IOS  
Input Voltage Range  
–15  
+15  
Common-Mode Rejection Ratio  
Common-Mode Rejection Ratio  
Large Signal Voltage Gain  
CMRR  
CMRR  
AVO  
VCM = –14.0 V to +14.0 V, –40°C TA +125°C 86  
90  
dB  
dB  
V/mV  
V/mV  
VCM = –15.0 V to +15.0 V  
80  
RL = 2 k, –10 V VO 10 V  
RL = 2 k, –40°C TA +125°C  
150 1000  
75  
Offset Voltage Drift “E” Grade  
Bias Current Drift  
VOS/T  
IB/T  
0.2  
150  
2.00 µV/°C  
pA/°C  
OUT PUT CHARACT ERIST ICS  
Output Voltage High  
Output Voltage Low  
VOH  
VOL  
IOUT  
IL = 1.0 mA  
IL = 1.0 mA  
+14.8  
V
–14.875  
V
Output Current  
±10  
mA  
POWER SUPPLY  
Power Supply Rejection Ratio  
Supply Current/Amplifier  
Supply Current/Amplifier  
PSRR  
ISY  
ISY  
VS = ±2.0 V to ±18 V, –40°C TA +125°C  
VO = 0 V, –40°C T A +125°C  
VS = ±18 V, –40°C T A +125°C  
90  
dB  
1.75 mA  
2.0  
mA  
DYNAMIC PERFORMANCE  
Slew Rate  
Full-Power Bandwidth  
Settling T ime  
SR  
BW  
tS  
RL = 2 kΩ  
2.4  
4.0  
35  
4
V/µs  
kHz  
µs  
1% Distortion, RL = 2 k, VO = 29 V p-p  
T o 0.01%, 10 V Step  
p
Gain Bandwidth Product  
Phase Margin  
GBP  
Øo  
4.25  
50  
MHz  
Degrees  
NOISE PERFORMANCE  
Voltage Noise  
Voltage Noise Density  
e
e
p-p  
0.1 Hz to 10 Hz  
f = 1 kHz  
0.3  
3.9  
0.4  
µV p-p  
nV/Hz  
pA/Hz  
n
n
Current Noise Density  
i
n
NOT ES  
1Input Offset Voltage measurements are performed by automated test equipment approximately 0.5 seconds after application of power.  
Specifications subject to change without notice.  
(@ V = +5.0 V, V = 2.5 V, T = +25؇C unless otherwise noted)  
WAFER TEST LIMITS  
P aram eter  
S
CM  
A
Sym bol  
Conditions  
Lim it  
Units  
Offset Voltage OP284  
Offset Voltage OP484  
Input Bias Current  
Input Offset Current  
Input Voltage Range  
Common-Mode Rejection Ratio  
Power Supply Rejection Ratio  
Large Signal Voltage Gain  
Output Voltage High  
Output Voltage Low  
Supply Current/Amplifier  
VOS  
VOS  
IB  
65  
75  
300  
50  
V– to V+  
86  
90  
50  
4.85  
125  
1.25  
µV max  
µV max  
nA max  
nA max  
V min  
dB min  
dB min  
V/mV min  
V min  
IOS  
VCM  
CMRR  
PSRR  
AVO  
VOH  
VOL  
ISY  
VCM = +1 V to +4 V  
VS = ±2 V to ±18 V  
RL = 2 kΩ  
IL = 1.0 mA  
IL = 1.0 mA  
mV max  
mA max  
VO = 0 V, RL = ∞  
NOT E  
Electrical tests and wafer probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packaging is not guaranteed for standard  
product dice. Consult factory to negotiate specifications based on dice lot qualifications through sample lot assembly and testing.  
–4–  
REV. 0  
OP184/OP284/OP484  
ABSO LUTE MAXIMUM RATINGS1  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±18 V  
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .±18 V  
Differential Input Voltage2 . . . . . . . . . . . . . . . . . . . . . . ±0.6 V  
Output Short-Circuit Duration to GND3 . . . . . . . . . Indefinite  
Storage T emperature Range  
P, S Packages . . . . . . . . . . . . . . . . . . . . . . . –65°C to +150°C  
Operating T emperature Range  
OP184/OP284/OP484E, F . . . . . . . . . . . . . –40°C to +125°C  
Junction T emperature Range  
P, S Packages . . . . . . . . . . . . . . . . . . . . . . . –65°C to +150°C  
Lead T emperature Range (Soldering 60 sec) . . . . . . . . +300°C  
3
P ackage Type  
θJA  
θJC  
Units  
8-Pin Plastic DIP (P)  
8-Pin SOIC (S)  
14-Pin Plastic DIP (P)  
14-Pin SOIC (S)  
103  
158  
83  
43  
43  
39  
27  
°C/W  
°C/W  
°C/W  
°C/W  
OP284 Die Size 0.065 × 0.092 Inch, 5,980 Sq. Mils  
Substrate (Die Backside) Is Connected to V–.  
Transistor Count, 62.  
92  
NOT ES  
1Absolute maximum ratings apply to both DICE and packaged parts, unless  
otherwise noted.  
2For input voltages greater than 0.6 volts the input current should be limited to less  
than 5 mA to prevent degradation or destruction of the input devices.  
3θJA is specified for the worst case conditions; i.e., θJA is specified for device in socket  
for cerdip, and P-DIP packages, θJA is specified for device soldered in circuit board  
for SOIC package.  
O RD ERING GUID E  
Tem perature  
Range  
P ackage  
D escription  
P ackage  
O ption  
Model  
OP184EP  
OP184ES  
OP184FP  
OP184FS  
–40°C to +125°C 8-Pin Plastic DIP N-8  
–40°C to +125°C 8-Pin SOIC  
SO-8  
–40°C to +125°C 8-Pin Plastic DIP N-8  
–40°C to +125°C 8-Pin SOIC  
SO-8  
OP284EP  
OP284ES  
OP284FP  
OP284FS  
–40°C to +125°C 8-Pin Plastic DIP N-8  
–40°C to +125°C 8-Pin SOIC  
SO-8  
OP484 Die Size 0.080 × 0.110 Inch, 8,800 Sq. Mils  
Substrate (Die Backside) Is Connected to V–.  
Transistor Count, 120.  
–40°C to +125°C 8-Pin Plastic DIP N-8  
–40°C to +125°C 8-Pin SOIC  
SO-8  
OP484EP  
OP484ES  
OP484FP  
OP484FS  
–40°C to +125°C 14-Pin Plastic DIP N-14  
–40°C to +125°C 14-Pin SOIC  
SO-14  
–40°C to +125°C 14-Pin Plastic DIP N-14  
–40°C to +125°C 14-Pin SOIC  
SO-14  
V
CC  
R4  
QB6  
QB5  
RB4  
RB3  
RB1  
R3  
R11  
TP  
Q16  
Q17  
Q12  
Q11  
Q9  
JB1  
Q8  
QB9  
Q7  
Q5  
QL1  
Q3  
Q1  
Q4  
Q2  
QB10  
–IN  
+IN  
CC2  
Q10  
OUT  
QL2  
O
C
C
FF  
Q6  
R6  
QB2  
Q18  
CB1 N+  
M P+  
QB3  
R7  
QB8  
QB4  
RB2  
Q14  
Q15  
Q13  
R8  
QB7  
QB1  
R9  
R1  
R2  
CC1  
R5  
R10  
JB2  
V
EE  
Figure 1. Sim plified Schem atic  
–5–  
REV. 0  
OP184/OP284/OP484–Typical Performance Characteristics  
300  
270  
240  
210  
180  
150  
120  
90  
300  
250  
200  
150  
100  
50  
500  
400  
V
T
= +3V  
V
= ±15V  
S
S
V
= +5V  
S
= +25°C  
= 1.5V  
A
–40°C T +125°C  
300  
A
V
CM  
200  
100  
0
–100  
–200  
–300  
–400  
–500  
60  
30  
0
0
–15  
–10  
–5  
0
5
10  
15  
0
0.25  
0.50  
0.75  
1.0  
1.25  
1.5  
–100 –75 –50 –25  
0
25  
50  
75 100  
OFFSET VOLTAGE DRIFT, TCV – µV/°C  
COMMON MODE VOLTAGE – Volts  
INPUT OFFSET VOLTAGE – µV  
OS  
Figure 2. Input Offset Voltage  
Distribution  
Figure 5. Input Offset Voltage Drift  
Distribution  
Figure 8. Input Bias Current vs.  
Com m on-Mode Voltage  
1,000  
300  
300  
V
T
= +5V  
S
V
= ±15V  
270  
240  
210  
180  
150  
120  
90  
S
V
= ±15V  
S
= +25°C  
= 2.5V  
250  
200  
150  
100  
50  
A
–40°C T +125°C  
A
V
CM  
SOURCE  
100  
SINK  
60  
30  
0
10  
0.01  
0
0
0.25  
0.50  
0.75  
1.0  
1.25  
OS  
1.5  
0.1  
1
10  
–100 –75 –50 –25  
0
25  
50  
75 100  
OFFSET VOLTAGE DRIFT, TCV – µV/°C  
INPUT OFFSET VOLTAGE – µV  
LOAD CURRENT – mA  
Figure 3. Input Offset Voltage  
Distribution  
Figure 6. Input Offset Voltage Drift  
Distribution  
Figure 9. Output Voltage to Supply  
Rail vs. Load Current  
200  
–40  
–45  
1.2  
1.1  
V
T
= ±15V  
= +25°C  
S
175  
150  
125  
100  
75  
A
V
= V /2  
S
CM  
V
= ±15V  
S
–50  
–55  
–60  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
V
S
= +5V  
V
V
= +5V  
= +3V  
–65  
–70  
–75  
S
50  
S
V
= ±15V  
S
25  
0
–80  
–40  
25  
85  
125  
–40  
25  
85  
125  
–125 –100 –75 –50 –25  
0
25 50 75 100 125  
TEMPERATURE – °C  
INPUT OFFSET VOLTAGE – µV  
TEMPERATURE – °C  
Figure 4. Input Offset Voltage  
Distribution  
Figure 7. Bias Current vs.  
Tem perature  
Figure 10. Supply Current vs.  
Tem perature  
–6–  
REV. 0  
OP184/OP284/OP484  
1.50  
1.25  
1.0  
80  
60  
60  
V
= +5V  
= 2k  
= +25°C  
S
50  
40  
V
T
= +3V  
S
R
T
L
= +25°C  
A
50  
A
NO LOAD  
30  
40  
0
20  
30  
45  
0.75  
0.5  
10  
20  
90  
T
= +25°C  
A
0
10  
135  
180  
225  
270  
–10  
–20  
–30  
–40  
0
–10  
–20  
–30  
0.25  
0
10  
100  
1k  
10k  
0
±2.5 ±5.0 ±7.5 ±10 ±12.5 ±15 ±17.5 ±20  
100k  
1M  
10M  
10k  
100k  
1M  
10M  
SUPPLY VOLTAGE – Volts  
FREQUENCY – Hz  
FREQUENCY – Hz  
Figure 11. Supply Current vs. Supply  
Voltage  
Figure 14. Open-Loop Gain and Phase  
vs. Frequency (No Load)  
Figure 17. Closed-Loop Gain vs.  
Frequency (2 kLoad)  
50  
60  
80  
V
= ±15V  
= 2kΩ  
= +25°C  
S
V
T
= ±15V  
50  
40  
60  
50  
S
R
T
V
= ±15V  
L
S
= +25°C  
A
40  
30  
20  
10  
0
A
NO LOAD  
+I  
SC  
30  
40  
0
–I  
SC  
20  
30  
45  
–I  
SC  
10  
20  
90  
0
10  
135  
180  
225  
270  
+I  
SC  
V
–10  
–20  
–30  
–40  
0
–10  
–20  
–30  
= +5V, V  
25  
= +2.5V  
75  
S
CM  
–50 –25  
0
50  
100 125  
10  
100  
1k  
10k  
100k  
1M  
10M  
10k  
100k  
FREQUENCY – Hz  
1M  
10M  
TEMPERATURE – °C  
FREQUENCY – Hz  
Figure 12. Short Circuit Current vs.  
Tem perature  
Figure 15. Open-Loop Gain and Phase  
vs. Frequency (No Load)  
Figure 18. Closed-Loop Gain vs.  
Frequency (2 kLoad)  
80  
60  
2.5k  
2k  
V
= +3V  
S
50  
40  
V
T
= +5V  
60  
50  
S
R
T
= 2k  
= +25°C  
L
= +25°C  
A
A
NO LOAD  
30  
40  
0
V
= ±15V  
S
20  
1.5k  
1k  
30  
45  
–10V < V < 10V  
R
O
= 2kΩ  
10  
L
20  
90  
0
10  
135  
180  
225  
270  
–10  
–20  
–30  
–40  
0
V
= +5V  
S
1V < V < 4V  
500  
0
O
–10  
–20  
–30  
R
= 2kΩ  
L
–50 –25  
0
25  
50  
75  
100 125  
10  
100  
1k  
10k  
100k  
1M  
10M  
10k  
100k  
FREQUENCY – Hz  
1M  
10M  
TEMPERATURE – °C  
FREQUENCY – Hz  
Figure 16. Open-Loop Gain vs.  
Tem perature  
Figure 13. Open-Loop Gain and Phase  
vs. Frequency (No Load)  
Figure 19. Closed-Loop Gain vs.  
Frequency (2 kLoad)  
REV. 0  
–7–  
OP184/OP284/OP484–Typical Performance Characteristics  
300  
270  
240  
160  
140  
120  
5
4
3
2
1
0
V
T
= +5V  
= +25°C  
T
= +25°C  
S
A
A
A
= 10  
V
210  
180  
150  
120  
90  
100  
80  
A
= 100  
V
60  
V
= ±15V  
S
40  
V
= +5V  
S
V
V
= +5V  
20  
S
= 0.5–4.5V  
IN  
60  
0
R
T
= 2k  
= +25°C  
L
V
= +3V  
1M  
S
30  
–20  
–40  
A
A
= 1  
V
0
100  
10M  
10M  
1k  
10k  
100k  
1M  
100  
1k  
10k  
100k  
1k  
10k  
100k  
FREQUENCY – Hz  
1M  
10M  
FREQUENCY – Hz  
FREQUENCY – Hz  
Figure 20. Output Im pedance vs.  
Frequency  
Figure 23. Maxim um Output Swing  
vs. Frequency  
Figure 26. PSRR vs. Frequency  
300  
30  
80  
V
T
= ±15V  
= +25°C  
V
V
= ±15V  
= ±14V  
= 2kΩ  
S
270  
240  
210  
180  
150  
120  
90  
S
V
T
V
= ±2.5V  
70  
60  
50  
40  
30  
20  
10  
0
S
A
IN  
25  
20  
15  
10  
5
= +25°C, A  
= ±50mV  
= 1  
VCL  
A
–OS  
+OS  
R
T
L
IN  
= +25°C  
A
A
= 100  
V
A
= 10  
V
60  
30  
A
= 1  
V
0
100  
0
1k  
10M  
1k  
10k  
100k  
1M  
10  
100  
CAPACITIVE LOAD – pF  
1000  
10k  
100k  
FREQUENCY – Hz  
1M  
10M  
FREQUENCY – Hz  
Figure 21. Output Im pedance vs.  
Frequency  
Figure 24. Maxim um Output Swing  
vs. Frequency  
Figure 27. Sm all Signal Overshoot  
vs. Capacitive Load  
300  
180  
7
V
T
= +3V  
= +25°C  
T
= +25°C  
A
= 100  
S
A
270  
240  
210  
180  
150  
120  
90  
V
160  
140  
120  
100  
80  
V
R
= ±15V  
= 2kΩ  
A
S
6
5
4
3
L
+SLEW RATE  
–SLEW RATE  
V
= ±15V  
S
+SLEW RATE  
–SLEW RATE  
60  
V
= +3V  
40  
S
2
1
0
V
= +5V  
S
60  
A
= 10  
20  
V
V
= +5V  
S
30  
A
= 1  
0
V
R
= 2kΩ  
L
0
100  
–20  
100  
1k  
10k  
100k  
1M  
10M  
10M  
1k  
10k  
100k  
1M  
–50 –25  
0
25  
50  
75  
100 125  
FREQUENCY – Hz  
FREQUENCY – Hz  
TEMPERATURE – °C  
Figure 22. Output Im pedance vs.  
Frequency  
Figure 25. CMRR vs. Frequency  
Figure 28. Slew Rate vs.Tem perature  
–8–  
REV. 0  
OP184/OP284/OP484  
160  
10  
8
30  
25  
20  
V
T
= ±15V  
T
= +25°C  
S
A
140  
120  
100  
80  
±2.5V V ≤ ±15V  
S
= +25°C  
T
= +25°C  
A
A
6
V
= ±15V  
S
4
2
V
= +3V  
60  
S
0
15  
10  
5
0.1%  
0.01%  
40  
–2  
–4  
–6  
–8  
–10  
20  
0
–20  
–40  
0
0
1
2
3
4
5
6
100  
1k  
10k  
100k  
1M  
10M  
1
10  
100  
1000  
SETTLING TIME – µs  
FREQUENCY – Hz  
FREQUENCY – Hz  
Figure 32. Settling Tim e vs. Step Size  
Figure 29. Voltage Noise Density  
vs. Frequency  
Figure 35. Channel Separation  
vs. Frequency  
10  
V
= +5V  
= 1  
= OPEN  
= 300pF  
= +25°C  
1s  
S
±2.5V V ≤ ±15V  
V
= ±15V  
= 100k  
= 0.3µVp-p  
S
S
A
R
C
T
V
L
L
100  
90  
T
= +25°C  
A
e
V
A
100  
90  
8
6
4
2
0
+400mV  
n
A
10  
0V  
10  
0%  
0%  
100mV  
1µs  
10mV  
1
10  
100  
1000  
FREQUENCY – Hz  
Figure 30. Current Noise Density  
vs. Frequency  
Figure 36. Sm all Signal Transient  
Response  
Figure 33. 0.1 Hz to 10 Hz Noise  
5
V
T
= +5V  
S
1s  
4
3
V
A
= +5V, 0V  
= 100k  
= 0.3µVp-p  
V
= +5V  
= 1  
S
S
= +25°C  
A
A
R
C
T
V
V
L
L
100  
90  
100  
90  
e
n
= 2k  
= 300pF  
- +25°C  
400mV  
2
A
1
0.1%  
0.01%  
0
–1  
–2  
–3  
–4  
–5  
10  
10  
0V  
0%  
0%  
10mV  
100mV  
1µs  
0
1
2
3
4
5
6
SETTLING TIME – µs  
Figure 37. Sm all Signal Transient  
Response  
Figure 34. 0.1 Hz to 10 Hz Noise  
Figure 31. Settling Tim e vs. Step Size  
REV. 0  
–9–  
OP184/OP284/OP484  
0.1  
V
= ±0.75V  
V
S
= ±1.5V  
= 1  
S
V
= ±0.75V  
O
A
= 1  
A
V
V
100  
100  
90  
NO LOAD  
= +25°C  
NO LOAD  
90  
200mV  
0V  
200mV  
0V  
A
V
R
= 1000  
= ±2.5V  
= 2kΩ  
T
V
T
= +25°C  
A
A
S
0.010  
L
V
= ±2.5V  
= ±1.5V  
O
10  
–200mV  
10  
–200mV  
0%  
0%  
V
O
0.001  
100mV  
500ns  
100mV  
1µs  
0.0005  
20  
100  
1k  
FREQUENCY – Hz  
10k 20k  
Figure 40. Total Harm onic Distortion  
vs. Frequency  
Figure 38. Sm all Signal Transient  
Response  
Figure 39. Sm all Signal Transient  
Response  
AP P LICATIO NS  
Functional D escr iption  
stage. A key issue in the input stage is the behavior of the input  
bias currents over the input common-mode voltage range. Input  
bias currents in the OP284 are the arithmetic sum of the base  
currents in Q1-Q3 and in Q2-Q4. As a result of this design  
approach, the input bias currents in the OP284 not only exhibit  
different amplitudes, but also exhibit different polarities. T his  
effect is best illustrated in Figure 8. It is, therefore, of para-  
mount importance that the effective source impedances con-  
nected to the OP284s inputs be balanced for optimum dc and  
ac performance.  
T he OP284 and OP484 are precision single-supply, rail-to-rail  
operational amplifiers. Intended for the portable instrumenta-  
tion marketplace, the OP184/OP284/OP484 combines the at-  
tributes of precision, wide bandwidth, and low noise to make it  
a superb choice in those single supply applications that require  
both ac and precision dc performance. Other low supply voltage  
applications for which the OP284 is well suited are active filters,  
audio microphone preamplifiers, power supply control, and tele-  
com. T o combine all of these attributes with rail-to-rail input/  
output operation, novel circuit design techniques are used.  
In order to achieve rail-to-rail output, the OP284 output stage  
design employs a unique topology for both sourcing and sinking  
current. T his circuit topology is illustrated in Figure 42. As  
previously mentioned, the output stage is voltage-driven from  
the second gain stage. T he signal path through the output stage  
is inverting; that is, for positive input signals, Q1 provides the  
base current drive to Q6 so that it conducts (sinks) current. For  
negative input signals, the signal path via Q1-Q2-D1-Q4-Q3  
provides the base current drive for Q5 to conduct (source) cur-  
rent. Both amplifiers provide output current until they are  
forced into saturation which occurs at approximately 20 mV  
from negative rail and 100 mV from the positive supply rail.  
V
POS  
R1  
4k  
R2  
4k  
I1  
V
01  
D1  
D2  
Q4  
Q1  
Q3  
Q2  
–IN  
+IN  
V
02  
R3  
3k  
R4  
3k  
I2  
V
POS  
V
NEG  
R4  
I2  
INPUT FROM  
SECOND GAIN  
STAGE  
Q5  
Q6  
Q3  
Q1  
Figure 41. OP284 Equivalent Input Circuit  
V
For example, Figure 41 illustrates a simplified equivalent circuit  
for the OP184/OP284/OP484s input stage. It is comprised of  
an NPN differential pair, Q1-Q2, and a PNP differential pair,  
Q3-Q4, operating concurrently. Diode network D1-D2 serves  
to clamp the applied differential input voltage to the OP284,  
thereby protecting the input transistors against avalanche dam-  
age. Input stage voltage gains are kept low for input rail-to-rail  
operation. T he two pairs of differential output voltages are con-  
nected to the OP284s second stage which is a compound folded  
cascode gain stage. It is also in the second gain stage where the  
two pairs of differential output voltages are combined into a  
single-ended output signal voltage used to drive the output  
OUT  
R1  
R2  
Q4  
D1  
R5  
Q2  
R3  
I1  
R6  
V
NEG  
Figure 42. OP284 Equivalent Output Circuit  
–10–  
REV. 0  
OP184/OP284/OP484  
R2  
T hus, the saturation voltage of the output transistors sets the  
limit on the OP284s maximum output voltage swing. Output  
short circuit current limiting is determined by the maximum  
signal current into the base of Q1 from the second gain stage.  
Under output short circuit conditions, this input current level is  
approximately 100 µA. With transistor current gains around  
200, the short circuit current limits are typically 20 mA. T he  
output stage also exhibits voltage gain. T his is accomplished by  
use of common-emitter amplifiers, and as a result the voltage  
gain of the output stage (thus, the open-loop gain of the device)  
exhibits a dependence to the total load resistance at the output  
of the OP284.  
1/2  
OP284  
V
OUT  
R1  
V
IN  
Figure 44. A Resistance in Series with an Input Lim its  
Overvoltage Currents to Safe Values  
For example, a 1 kresistor will protect the OP284 against  
input signals up to 5 V above and below the supplies. For other  
configurations where both inputs are used, then each input  
should be protected against abuse with a series resistor. Again,  
in order to ensure optimum dc and ac performance, it is recom-  
mended to balance source impedance levels. For more informa-  
tion on the general overvoltage characteristics of amplifiers,  
please refer to the 1993 System Applications Guide, Section 1,  
pages 56-69. T his reference textbook is available from the Ana-  
log Devices Literature Center.  
Input O ver voltage P r otection  
As with any semiconductor device, if conditions exist where the  
applied input voltages to the device exceed either supply voltage,  
then the device’s input overvoltage I-V characteristic must be  
considered. When an overvoltage occurs, the amplifier could be  
damaged depending on the magnitude of the applied voltage  
and the magnitude of the fault current. Figure 43 illustrates the  
over voltage I-V characteristic of the OP284. T his graph was  
generated with the supply pins connected to GND and a curve  
tracer’s collector output drive connected to the input.  
O utput P hase Rever sal  
Some operational amplifiers designed for single-supply opera-  
tion exhibit an output voltage phase reversal when their inputs  
are driven beyond their useful common-mode range. T ypically  
for single-supply bipolar op amps, the negative supply deter-  
mines the lower limit of their common-mode range. With these  
devices, external clamping diodes, with the anode connected to  
ground and the cathode to the inputs, prevent input signal ex-  
cursions from exceeding the device’s negative supply (i.e.,  
GND), preventing a condition that could cause the output volt-  
age to change phase. JFET -input amplifiers may also exhibit  
phase reversal, and, if so, a series input resistor is usually re-  
quired to prevent it.  
5
4
3
2
1
0
–1  
– 2  
– 3  
– 4  
– 5  
T he OP284 is free from reasonable input voltage range restric-  
tions provided that the input voltages no greater than the supply  
voltages are applied. Although the device’s output will not  
change phase, large currents can flow through the input protec-  
tion diodes, as was shown in Figure 43. T herefore, the technique  
recommended in the Input Overvoltage Protection section  
should be applied in those applications where the likelihood of  
input voltages exceeding the supply voltages is high.  
– 5 – 4 – 3 – 2 –1  
0
1
2
3
4
5
INPUT VOLTAGE – Volts  
Figure 43. Input Overvoltage I-V Characteristics of the  
OP284  
As shown in the figure, internal p-n junctions to the OP284 en-  
ergize and permit current flow from the inputs to the supplies  
when the input is 1.8 V more positive and 0.6 V more negative  
than the respective supply rails. As illustrated in the simplified  
equivalent circuit shown in Figure 41, the OP284 does not have  
any internal current limiting resistors; thus, fault currents can  
quickly rise to damaging levels.  
D esigning Low Noise Cir cuits in Single Supply Applications  
In single supply applications, devices like the OP284 extend the  
dynamic range of the application through the use of rail-to-rail  
operation. In fact, the OP284 family is the first of its kind to  
combine single supply, rail-to-rail operation and low noise in  
one device. It is the first device in the industry to exhibit an  
input noise voltage spectral density of less than 4 nV/Hz at  
1 kHz. It was also designed specifically for low-noise, single-  
supply applications, and as such some discussion on circuit  
noise concepts in single supply applications is appropriate.  
T his input current is not inherently damaging to the device,  
provided that it is limited to 5 mA or less. For the OP284, once  
the input exceeds the negative supply by 0.6 V, the input cur-  
rent quickly exceeds 5 mA. If this condition continues to exist,  
an external series resistor should be added at the expense of ad-  
ditional thermal noise. Figure 44 illustrates a typical noninvert-  
ing configuration for an overvoltage protected amplifier where  
the series resistance, RS, is chosen such that:  
V
IN ( MAX ) VSUPPLY  
RS =  
5 mA  
REV. 0  
–11–  
OP184/OP284/OP484  
Referring to the op amp noise model circuit configuration illus-  
trated in Figure 45, the expression for an amplifier’s total  
equivalent input noise voltage for a source resistance level RS is  
given by:  
Since circuit SNR is the critical parameter in the final analysis,  
many times the noise behavior of a circuit is expressed in terms  
of its noise figure, NF. Noise figure is defined to be the ratio of  
a circuit’s output signal-to-noise to its input signal-to-noise. An  
expression for a circuit’s NF in dB and in terms of the opera-  
tional amplifier's voltage and current noise parameters defined  
previously is given by:  
2
2 e 2 + i  
× R  
nOA  
)
V
Hz  
e
=
+ e  
(
2, units in  
nOA  
(
)
(
)
nT  
nR  
[
]
where RS = 2R = Effective, or equivalent, circuit source  
resistance,  
2
e
2 + i  
RS  
nOA  
(
)
(
)
nOA  
NF (dB) = 10 log 1 +  
2
(enOA)2 = Op amp equivalent input noise voltage spectral  
power (1 Hz BW),  
e
(
)
nRS  
(inOA)2 = Op amp equivalent input noise current spectral  
power (1 Hz BW),  
where NF (dB) = Noise figure of the circuit, expressed in dB,  
RS = Effective, or equivalent, source resistance presented  
to amplifier,  
(enR)2 = Source resistance thermal noise voltage power =  
(4kT R),  
(enOA)2 = OP284 noise voltage spectral power (1 Hz BW),  
(inOA)2 = OP284 noise current spectral power (1 Hz BW),  
(enRS)2 = Source resistance thermal noise voltage power  
= (4kT RS),  
k = Boltzmann’s constant = 1.38 × 10–23 J/K, and  
T = Ambient temperature of the circuit, in Kelvin, =  
273.15 + TA (°C)  
Circuit noise figure is straightforward to calculate because the  
signal level in the application is not required to determine it.  
However, many designers using NF calculations as the basis for  
achieving optimum SNR believe that low noise figure is equal to  
low total noise. In fact, the opposite is true, as illustrated in  
Figure 47. Here, the noise figure of the OP284 is expressed as a  
function of the source resistance level. Note that the lowest  
noise figure for the OP284 occurs at a source resistance level of  
10 k. However, Figure 46 shows that this source resistance  
level and the OP284 generate approximately 14 nV/Hz of total  
equivalent circuit noise. Signal levels in the application would  
invariably be increased to maximize circuit SNR—not an option  
in low voltage, single supply applications.  
e
e
NR  
NOA  
R
"NOISELESS"  
i
NOA  
IDEAL  
NOISELESS  
OP AMP  
e
NR  
R
"NOISELESS"  
i
NOA  
R
= 2R  
S
Figure 45. Op Am p Noise Circuit Model Used to  
Determ ine Total Circuit Equivalent Input Noise Voltage  
and Noise Figure  
As a design aid, Figure 46 illustrates the total equivalent input  
noise of the OP284 and the total thermal noise of a resistor for  
comparison. Note that for source resistance less than 1 k, the  
equivalent input noise voltage of the OP284 is dominant.  
10  
FREQUENCY = 1kHz  
9
T
= +25°C  
A
8
7
100  
6
5
4
3
FREQUENCY = 1kHz  
T
= +25°C  
A
OP284 TOTAL  
EQUIVALENT NOISE  
2
1
10  
0
100  
1k  
10k  
100k  
TOTAL SOURCE RESISTANCE, R Ω  
S
RESISTOR THERMAL  
NOISE ONLY  
Figure 47. OP284 Noise Figure vs. Source Resistance  
1
100  
1k  
10k  
100k  
In single supply applications, it is, therefore, recommended for  
optimum circuit SNR to choose an operational amplifier with  
the lowest equivalent input noise voltage and to choose source  
resistance levels consistent in maintaining low total circuit noise.  
TOTAL SOURCE RESISTANCE, R Ω  
S
Figure 46. OP284 Total Noise vs. Source Resistance  
–12–  
REV. 0  
OP184/OP284/OP484  
RP1  
1kΩ  
O ver dr ive Recover y  
+3V  
T he overdrive recovery time of an operational amplifier is the  
time required for the output voltage to recover to its linear re-  
gion from a saturated condition. T he recovery time is important  
in applications where the amplifier must recover quickly after a  
large transient event. T he circuit shown in Figure 48 was used  
to evaluate the OP284’s overload recovery time. T he OP284  
takes approximately 2 µs to recover from positive saturation and  
approximately 1 µs to recover from negative saturation.  
5
8
V
RP2  
1kΩ  
IN  
7
3
2
R3  
1.1kΩ  
A2  
V
OUT  
6
1
A1  
4
R2  
1.1kΩ  
R4  
10kΩ  
C1  
R1  
9.53kΩ  
AC CMRR  
TRIM  
5pF–40pF  
A1, A2 = 1/2 OP284  
C2  
R4  
R2  
R1  
GAIN = 1 + –––  
P1  
500Ω  
R3  
SET R2 = R3  
R1 + P1 = R4  
10kΩ  
10kΩ  
+5V  
8
Figure 49. A Single Supply, +3 V Low Noise Instrum enta-  
tion Am plifier  
2
3
1
R3  
9kΩ  
1/2  
OP284  
V
OUT  
A +2.5 V Refer ence fr om a +3 V Supply  
4
V
IN  
10V STEP  
In many single-supply applications, the need for a 2.5 V refer-  
ence often arises. Many commercially available monolithic  
2.5 V references require at least a minimum operating supply of  
4 V. T he problem is exacerbated when the minimum operating  
supply voltage is +3 V. T he circuit illustrated in Figure 50 is an  
example of a +2.5 V reference that operates from a single +3 V  
supply. T he circuit takes advantage of the OP284’s rail-to-rail  
input/output voltage ranges to amplify an AD589’s 1.235 V  
output to +2.5 V. T he OP284s low T CVOS of 1.5 µV/°C helps  
to maintain an output voltage temperature coefficient which is  
dominated by the temperature coefficients of R2 and R3. In  
this circuit with 100 ppm/°C TCR resistors, the output voltage  
exhibits a temperature coefficient of 200 ppm/°C. Lower tempco  
resistors are recommended for more accurate performance over  
temperature.  
–5V  
Figure 48. Output Overload Recovery Test Circuit  
A Single-Supply, +3 V Instr um entation Am plifier  
T he OP284s low noise, wide bandwidth, and rail-to-rail input/  
output operation makes it ideal for low supply voltage applica-  
tions, such as in an two op amp instrumentation amplifier as  
shown in Figure 49. T he circuit utilizes the classic two op amp  
instrumentation amplifier topology, with four resistors to set the  
gain. T he transfer equation of the circuit is identical to that of a  
noninverting amplifier. Resistors R2 and R3 should be closely  
matched to each other as well as resistors (R1 + P1) and R4 to  
ensure good common-mode rejection performance. Resistor  
networks should be used in this circuit for R2 and R3 because  
they exhibit the necessary relative tolerance matching for good  
performance. Matched networks also exhibit tight relative resis-  
tor temperature coefficients for good circuit temperature stabil-  
ity. T rimming potentiometer P1 is used for optimum dc CMR  
adjustment, and C1 is used to optimize ac CMR. With the cir-  
cuit values as shown, circuit CMR is better than 80 dB over the  
frequency range of 20 Hz to 20 kHz. Circuit RT I (Referred-to-  
Input) noise in the 0.1 Hz to 10 Hz band is an impressively low  
0.45 µV p-p. Resistors RP1 and RP2 serve to protect the  
OP284s inputs against input overvoltage abuse. Capacitor C2  
can be included to the limit circuit bandwidth and, therefore,  
wide bandwidth noise in sensitive applications. T he value of  
this capacitor should be adjusted depending on the required  
closed-loop bandwidth of the circuit. T he R4-C2 time constant  
creates a pole at a frequency equal to:  
One measure of the performance of a voltage reference is its  
capability to recover from sudden changes in load current.  
While sourcing a steady-state load current of 1 mA, this circuit  
recovers to 0.01% of the programmed output voltage in 1.5 µs  
for a total change in load current of ±1 mA.  
+3V  
+3V  
R1  
17.4kΩ  
3
8
0.1µF  
1
1/2  
OP284  
+2.5V  
REF  
2
AD589  
4
R3  
100kΩ  
R2  
100kΩ  
P1  
5kΩ  
1
f (3 dB) =  
RESISTORS = 1%, 100ppm/°C  
POTENTIOMETER = 10 TURN, 100ppm/°C  
2 π R4 C2  
Figure 50. A +2.5 V Reference that Operates on a Single  
+3 V Supply  
REV. 0  
–13–  
OP184/OP284/OP484  
A +5 V O nly, 12-Bit D AC Swings Rail-to-Rail  
For the element values shown, the Monitor Output’s transfer  
characteristic is 2.5 V/A.  
T he OP284 is ideal for use with a CMOS DAC to generate a  
digitally-controlled voltage with a wide output range. Figure 51  
shows a DAC8043 used in conjunction with the AD589 to gen-  
erate a voltage output from 0 V to 1.23 V. T he DAC is actually  
operating in “voltage switching” mode where the reference is  
connected to the current output, IOUT , and the output voltage is  
taken from the VREF pin. T his topology is inherently noninvert-  
ing as opposed to the classic current output mode, which is  
inverting and not usable in single supply applications.  
R
0.1Ω  
I
SENSE  
L
+3V  
+3V  
+3V  
0.1µF  
1
R1  
100Ω  
3
2
8
1/2  
AD284  
4
S
G
M1  
Si9433  
+5V  
D
MONITOR  
OUTPUT  
8
R1  
17.8k  
R2  
2
1
V
DD  
R
FB  
2.49kΩ  
3
V
REF  
1.23V  
I
OUT  
DAC8043  
+5V  
8
1/2  
OP284  
AD589  
GND CLK SR1 LD  
Figure 52. A High-Side Load Current Monitor  
3
2
4
7
6
5
1
D
4096  
Capacitive Load D r ive Capability  
V
= –––– (5V)  
OUT  
T he OP284 exhibits excellent capacitive load driving capabili-  
ties. It can drive up to 1 nF as shown in Figure 27. However,  
even though the device is stable, a capacitive load does not come  
without penalty in bandwidth. T he bandwidth is reduced to  
under 1 MHz for loads greater than 2 nF. A “snubber” network  
on the output doesnt increase the bandwidth, but it does sig-  
nificantly reduce the amount of overshoot for a given capacitive  
load. A snubber consists of a series R-C network (RS, CS), as  
shown in Figure 53, connected from the output of the device to  
ground. T his network operates in parallel with the load capaci-  
tor, CL, to provide the necessary phase lag compensation. T he  
value of the resistor and capacitor is best determined empirically.  
DIGITAL  
CONTROL  
4
R3  
232Ω  
1%  
R2  
32.4kΩ  
1%  
R4  
100kΩ  
1%  
Figure 51. A +5 V Only, 12-Bit DAC Swings Rail-to-Rail  
In this application the OP284 serves two functions. First, it  
buffers the high output impedance of the DAC’s VREF pin,  
which is on the order of 10 k. T he op amp provides a low  
impedance output to drive any following circuitry. Second, the  
op amp amplifies the output signal to provide a rail-to-rail out-  
put swing. In this particular case, the gain is set to 4.1 so that  
the circuit generates a 5 V output when the DAC output is at  
full scale. If other output voltage ranges are needed, such as 0 V  
VOUT 4.095 V, the gain can easily be changed by adjusting  
the values of R2 and R3.  
+5V  
0.1µF  
1/2  
OP284  
V
OUT  
V
IN  
100mVp-p  
R
50Ω  
S
C
A H igh-Side Cur r ent Monitor  
L
1nF  
C
S
In the design of power supply control circuits, a great deal of  
design effort is focused on ensuring a pass transistor’s long-term  
reliability over a wide range of load current conditions. As a  
result, monitoring and limiting device power dissipation is of  
prime importance in these designs. T he circuit illustrated in  
Figure 52 is an example of a +3 V, single-supply high-side cur-  
rent monitor that can be incorporated into the design of a volt-  
age regulator with fold-back current limiting or a high current  
power supply with crowbar protection. T his design uses an  
OP284s rail-to-rail input voltage range to sense the voltage  
drop across a 0.1 current shunt. A p-channel MOSFET used  
as the feedback element in the circuit converts the op amp’s dif-  
ferential input voltage into a current. T his current is then ap-  
plied to R2 to generate a voltage that is a linear representation  
of the load current. T he transfer equation for the current  
monitor is given by:  
100nF  
Figure 53. Snubber Network Com pensates for Capacitive  
Load  
T he first step is to determine the value of the resistor RS. A  
good starting value is 100 (typically, the optimum value will  
be less than 100 ). T his value is reduced until the small-signal  
transient response is optimized. Next, CS is determined—10 µF  
is a good starting point. T his value is reduced to the smallest  
value for acceptable performance (typically, 1 µF). For the case  
of a 10 nF load capacitor on the OP284, the optimal snubber  
network is a 20 in series with 1 µF. T he benefit is immedi-  
ately apparent as shown in the scope photo in Figure 54. T he  
top trace was taken with a 1 nF load, and the bottom trace was  
taken with the 50 , 100 nF snubber network in place. T he  
amount of overshoot and ringing is dramatically reduced. T able I  
below illustrates a few sample snubber networks for large load  
capacitors.  
RSENSE  
Monitor Output = R2 ×  
× IL  
R1  
–14–  
REV. 0  
OP184/OP284/OP484  
Figure 55 shows such a regulator set up using an OP284 plus a  
low RDS(ON), P-channel MOSFET pass device. Part of the low  
dropout performance of this circuit is provided by Q1, which  
has a rating of 0.11 with a gate drive voltage of only 2.7 V.  
T his relatively low gate drive threshold allows operation of the  
regulator on supplies as low as 3 V without compromise to over-  
all performance.  
µs  
100  
90  
1nF LOAD  
ONLY  
SNUBBER  
IN  
CIRCUIT  
10  
0%  
T he circuit’s main voltage control loop operation is provided by  
U1B, half of the OP284. T his voltage control amplifier ampli-  
fies the 2.5 V reference voltage produced by three terminal U2,  
a REF192. T he regulated output voltage VOUT is then:  
50m  
50m  
v
v
2µs  
Figure 54. Overshoot and Ringing Is Reduced by Adding a  
“Snubber” Network in Parallel with the 1 nF Load  
R2  
R3  
VOUT =V  
1 +  
OUT 2  
(
)
Table I. Snubber Networks for Large Capacitive Loads  
For the example here, a VOUT of 4.5 V with VOUT 2 = 2.5 V re-  
quires a U1B gain of 1.8 times, so R3 and R2 are chosen for a  
ratio of 1.2:1, or 10.0 k:8.06 k(using closest 1% values).  
Note that for the lowest VOUT dc error, R2ʈR3 should be main-  
tained equal to R1 (as here), and the R2-R3 resistors should be  
stable, close tolerance metal film types. T he table in Figure 55  
summarizes R1-R3 values for some popular voltages. However,  
note that in general the output can be anywhere between VOUT 2  
to the 12 V maximum rating of Q1.  
Load Capacitance  
(CL)  
Snubber Network  
(RS, CS)  
1 nF  
10 nF  
100 nF  
50 , 100 nF  
20 , 1 µF  
5 , 10 µF  
A Low D r opout Regulator with Cur r ent Lim iting  
While the low voltage saturation characteristic of Q1 is a key  
part of the low dropout, another component is a low current  
sense comparison threshold with good dc accuracy. Here, this  
is provided by current sense amplifier U1A, which is provided a  
20 mV reference from the 1.235 V AD589 reference diode D2  
and the R7-R8 divider. When the product of the output current  
and the RS value matches this voltage threshold, the current  
control loop is activated, and U1A drives Q1’s gate through D1.  
T his causes the overall circuit operation to enter current mode  
control, with a current limit ILIMIT defined as:  
Many circuits require stable regulated voltages relatively close in  
potential to an unregulated input source. T his “low dropout”  
type of regulator is readily implemented with a rail-to-rail out-  
put op amp such as the OP284, because the wide output swing  
allows easy drive to a low saturation voltage pass device. Fur-  
thermore, it is particularly useful when the op amp also enjoys a  
rail-rail input feature, as this factor allows it to perform high-  
side current sensing for positive rail current limiting. T ypical ex-  
amples are voltages developed from 3 V to 9 V range system  
sources, or anywhere where low dropout performance is required  
for power efficiency. T he 4.5 V case here works from 5 V nomi-  
nal sources, with worst-case levels down to 4.6 V or less.  
VR(D2)  
RS  
R7  
R7 + R8  
ILIMIT  
=
(
)
C4  
0.1µF  
R
S
Q1  
SI9433DY  
0.05Ω  
+V  
S
V
>
V
+ 0.1V  
R7  
4.99kΩ  
S
OUT  
R6  
4.99kΩ  
R5  
22.1kΩ  
U1A  
OP284  
D1  
1N4148  
D2  
AD589  
3
2
8
4
1
R8  
301kΩ  
R4  
2.21kΩ  
C 1  
0.01µF  
C 5  
0.01µF  
R9  
27.4kΩ  
6
5
7
D 3  
1N4148  
R11  
1kΩ  
R2  
8.06kΩ  
U1B  
OP284  
R1  
4.53kΩ  
V
=
OUT  
4.5V @ 350mA  
(SEE TABLE)  
U2  
OUTPUT TABLE  
R2 R3  
REF192  
6
2
V
R1  
OUT  
C3  
R3  
10kΩ  
V
2.5V  
0.1µF  
5.0V  
4.5V  
3.3V  
3.0V  
4.99k 10.0k 10.0k  
4.53k 8.06k 10.0k  
2.43k 3.24k 10.0k  
1.69k 2.00k 10.0k  
OUT  
2
3
C6  
10µF  
V
C
R10  
1kΩ  
C 2  
1µF  
OPTIONAL  
4
ON/OFF CONTROL INPUT  
CMOS HI (OR OPEN) = ON  
LO = OFF  
V
COMMON  
V
COMMON  
IN  
OUT  
Figure 55. A Low Dropout Regulator with Current Lim iting  
–15–  
REV. 0  
OP184/OP284/OP484  
Obviously, it is desirable to keep this comparison voltage small,  
since it becomes a significant portion of the overall dropout  
voltage. Here, the 20 mV reference, is higher than the typical  
offset of the OP284, but still reasonably low as a percentage of  
VOUT (< 0.5%). In adapting the limiter for other ILIMIT levels,  
sense resistor RS should be adjusted along with R7-R8, to main-  
tain this threshold voltage between 20 mV and 50 mV.  
physiological signals, such as heart rates, blood pressure read-  
ings, EEGs, EKGs, et cetera. T his notch filter effectively  
squelches 60 Hz pickup at a filter Q of 0.75. Substituting  
3.16 kresistors for the 2.67 kin the twin-T section  
(R1 through R5) configures the active filter to reject 50 Hz  
interference.  
R2  
2.67kΩ  
Performance of the circuit is excellent. For the 4.5 V output  
version, the measured dc output change for a 225 mA load  
change was on the order of a few microvolts, while the dropout  
voltage at this same current level was about 30 mV. T he current  
limit as shown is 400 mA, which allows the circuit to be used at  
levels up to 300 mA or more. While the Q1 device can actually  
support currents of several amperes, a practical current rating  
takes into account the SO-8 device’s 2.5 W, 25°C dissipation.  
A short circuit current of 400 mA at an input level of 5 V will  
cause a 2 W dissipation in Q1, so other input conditions should  
be considered carefully in terms of Q1’s potential overheating.  
Of course, if higher powered devices are used for Q1, this circuit  
can support outputs of tens of amperes as well as the higher  
VOUT levels noted above.  
+3V  
R1  
C1  
1µF  
C 2  
1µF  
2.67kΩ  
4
2
3
5
6
1
A1  
7
V
O
V
A2  
11  
IN  
R3  
2.67kΩ  
R4  
2.67kΩ  
R6  
10kΩ  
R7  
1kΩ  
C3  
2µF  
(1µF x 2)  
R5  
1.33kΩ  
(2.67kΩ ÷ 2)  
R8  
1kΩ  
R11  
10kΩ  
Q = 0.75  
C5  
0.03µF  
NOTE: FOR 50Hz APPLICATIONS  
+3V  
CHANGE R1–R4 TO 3.1kΩ  
AND R5 TO 1.58k(3.16kΩ ÷ 2).  
R12  
150Ω  
T he circuit shown can be used either as a standard low dropout  
regulator, or it can also be used with ON/OFF control. By  
driving Pin 3 of U1 with the optional logic control signal VC, the  
output is switched between ON and OFF. Note that when the  
output is OFF in this circuit, it is still active (i.e., not an open cir-  
cuit). T his is because the OFF state simply reduces the voltage  
input to R1, leaving the U1A/B amplifiers and Q1 still active.  
9
R9  
8
20kΩ  
A3  
1.5V  
C6  
1µF  
10  
R10  
C4  
1µF  
20kΩ  
A1, A2, A3 = OP484  
Figure 56. A +3 V Single Supply, 50/60 Hz Active Notch  
Filter with False Ground  
When ON/OFF control is used, resistor R10 should be used  
with U1, to speed ON-OFF switching, and to allow the output  
of the circuit to settle to a nominal zero voltage. Components  
D3 and R11 also aid in speeding up the ON-OFF transition, by  
providing a dynamic discharge path for C2. OFF-ON transition  
time is less than 1 ms, while the ON-OFF transition is longer,  
but under 10 ms.  
Amplifier A3 is the heart of the false-ground bias circuit. It  
simply buffers the voltage developed at R9 and R10 and is the  
reference for the active notch filter. Since the OP484 exhibits a  
rail-to-rail input common-mode range, R9 and R10 are chosen  
to split the +3 V supply symmetrically. An in-the-loop compen-  
sation scheme is used around the OP484 that allows the op amp  
to drive C6, a 1 µF capacitor, without oscillation. C6 maintains  
a low impedance ac ground over the operating frequency range  
of the filter.  
A +3 V, 50 H z/60 H z Active Notch Filter with False Gr ound  
T o process signals in a single-supply system, it is often best  
to use a false ground biasing scheme. A circuit that uses this  
approach is illustrated in Figure 56. In this circuit, a false-ground  
circuit biases an active notch filter used to reject 50 Hz/60 Hz  
power line interference in portable patient monitoring equip-  
ment. Notch filters are quite commonly used to reject power  
line frequency interference which often obscures low frequency  
T he filter section uses a OP484 in a twin-T configuration whose  
frequency selectivity is very sensitive to the relative matching of  
the capacitors and resistors in the twin-T section. Mylar is the  
material of choice for the capacitors, and the relative matching  
of the capacitors and resistors determines the filter’s pass band  
symmetry. Using 1% resistors and 5% capacitors produces  
satisfactory results.  
–16–  
REV. 0  
OP184/OP284/OP484  
DN5  
DN6  
*
19  
23  
23  
24  
DIN  
DIN  
*OP284 SPICE Macro-model  
*
*
9/94 / Rev. A  
ARG/ADI  
* GAIN ST AGE  
*
* Copyright 1995 by Analog Devices  
*
* Refer to “README.DOC” file for License Statement. Use of  
EREF 98  
0
POLY(2) (99,0) (50,0) 0 0.5 0.5  
POLY(2) (6,5) (8,7) 0 0.5E-3 0.5E-3  
1E3  
G1  
R9  
*
98  
20  
20  
98  
this model  
* indicates your acceptance of the terms and provisions in the  
License  
* COMMON MODE ST AGE WIT H ZERO AT 100Hz  
*
* Statement.  
*
* Node assignments  
*
*
*
*
*
ECM  
R10  
R11  
C4  
98  
21  
22  
21  
21  
22  
98  
22  
POLY(2) (1,98) (2,98) 0 0.5 0.5  
1
100E-6  
1.592E-3  
noninverting input  
|
|
|
|
|
inverting input  
|
|
|
|
positive supply  
*
|
|
|
negative supply  
output  
|
* NEGAT IVE ZERO AT 20MHz  
*
|
|
*
E1  
27  
27  
28  
25  
25  
26  
27  
98  
28  
98  
26  
98  
98  
28  
(20,98) 1E6  
1
1E-6  
7.958E-9  
(27,28) 1  
DC 0  
.SUBCKT OP284  
*
* INPUT ST AGE  
*
1 2 99 50 45  
R17  
R18  
C8  
ENZ  
VNZ  
FNZ  
*
Q1  
5
2
11  
2
11  
11  
2
9
9
10  
10  
5
3
3
4
4
QIN 1  
QIN 1  
QIP 1  
QIP 1  
Q2  
6
VNZ -1  
Q3  
7
Q4  
8
* POLE AT 40MHz  
*
DC1  
DC2  
Q5  
2
11  
4
DC  
DC  
99  
99  
50  
50  
4E3  
4E3  
4E3  
4E3  
G4  
R19  
C9  
*
98  
29  
29  
29  
98  
98  
(28,98) 1  
1
3.979E-9  
QIP 1  
QIP 1  
QIN 1  
QIN 1  
Q6  
9
Q7  
3
Q8  
R1  
R2  
R3  
10  
99  
99  
7
* POLE AT 40MHz  
*
6
G5  
R20  
C10  
*
98  
30  
30  
30  
98  
98  
(29,98) 1  
1
3.979E-9  
50  
50  
10  
11  
1
2
1
2
R4  
8
IREF  
EOS  
IOS  
CIN  
GN1  
GN2  
*
9
1
2
1
98  
98  
50.5E-6  
POLY(2) (22,98) (14,98) -25E-6 1E-2 1  
* OUT UT ST AGE  
*
5E-9  
2E-12  
(17,98) 1E-3  
(23,98) 1E-3  
ISY  
GIN  
RIN  
VB  
Q11  
R21  
I1  
R22  
Q12  
I2  
R23  
R24  
Q13  
Q14  
R25  
Q15  
R26  
R27  
Q16  
Q17  
R28  
99  
50  
31  
99  
32  
33  
34  
99  
36  
36  
99  
34  
39  
39  
40  
39  
41  
99  
44  
44  
42  
50  
31  
50  
32  
31  
34  
50  
35  
36  
50  
37  
38  
36  
38  
50  
39  
42  
43  
44  
39  
50  
97  
0.276E-3  
POLY(1) (30,98) .862574E-6 505.879E-6  
2.75E6  
0.7  
* VOLT AGE NOISE SOURCE WIT H FLICKER NOISE  
*
33  
QON 1  
4.5E3  
50E-6  
6E3  
35  
VN1  
VN2  
DN1  
DN2  
*
13  
98  
13  
14  
98  
15  
14  
15  
DC 2  
DC 2  
DEN  
DEN  
QOP 1  
50E-6  
2.6E3  
5E3  
37  
* CURRENT NOISE SOURCE WIT H FLICKER NOISE  
*
QOP 1  
VN3  
VN4  
DN3  
DN4  
*
16  
98  
16  
17  
98  
18  
17  
18  
DC 2  
DC 2  
DIN  
40  
QON 1.5  
40  
41  
QON 1  
DIN  
1E3  
220  
43  
* 2ND CURRENT NOISE SOURCE WIT H FLICKER  
NOISE  
*
QOP 1.5  
QON 1  
42  
2E3  
DC 0  
VN5  
VN6  
19  
98  
98  
24  
DC 2  
DC 2  
VSCP 99  
REV. 0  
–17–  
OP184/OP284/OP484  
FSCP 46  
RSCP 46  
99  
99  
46  
44  
34  
50  
47  
50  
47  
45  
34  
42  
45  
45  
99  
45  
VSCP 1  
40  
Q20  
Q18  
Q19  
44  
45  
45  
99  
QOP 1  
97  
51  
QOP 4.5  
QON 4.5  
VSCN 51  
FSCN 50  
RSCN 47  
DC 0  
VSCN 1  
40  
Q21  
CC2  
CF1  
CF2  
CO1  
CO2  
D3  
34  
31  
31  
31  
34  
42  
45  
50  
50  
QON 1  
20E-12  
15E-12  
15E-12  
15E-12  
5E-12  
DX  
D4  
DX  
.MODEL DC D(IS=130E-21)  
.MODEL DX D()  
.MODEL DEN D(RS=100 KF=12E-15 AF=1)  
.MODEL DIN D(RS=5.358 KF=56E-15 AF=1)  
.MODEL QIN NPN(BF=200 VA=200 IS=0.5E-16)  
.MODEL QIP PNP(BF=100 VA=60 IS=0.5E-16)  
.MODEL QON NPN(BF=200 VA=200 IS=0.5E-16 RC=50)  
.MODEL QOP PNP(BF=200 VA=200 IS=0.5E-16 RC=160)  
.ENDS  
–18–  
REV. 0  
OP184/OP284/OP484  
O UTLINE D IMENSIO NS  
D imensions shown in inches and (mm).  
8-Lead Epoxy D IP  
(P Suffix)  
14-Lead Epoxy D IP  
(P Suffix)  
0.795 (20.19)  
0.725 (18.42)  
0.430 (10.92)  
0.348 (8.84)  
14  
1
8
7
8
5
4
0.280 (7.11)  
0.240 (6.10)  
0.280 (7.11)  
0.240 (6.10)  
1
0.325 (8.25)  
0.300 (7.62)  
0.325 (8.25)  
0.300 (7.62)  
0.195 (4.95)  
0.115 (2.93)  
0.060 (1.52)  
0.015 (0.38)  
0.060 (1.52)  
0.015 (0.38)  
PIN 1  
PIN 1  
0.195 (4.95)  
0.115 (2.93)  
0.210 (5.33)  
MAX  
0.210 (5.33)  
MAX  
0.130  
0.130  
(3.30)  
MIN  
(3.30)  
MIN  
0.160 (4.06)  
0.115 (2.93)  
0.160 (4.06)  
0.115 (2.93)  
0.015 (0.381)  
0.008 (0.204)  
0.015 (0.381)  
0.008 (0.204)  
SEATING  
PLANE  
SEATING  
PLANE  
0.100 0.070 (1.77)  
0.022 (0.558)  
0.070 (1.77)  
0.045 (1.15)  
0.022 (0.558)  
0.014 (0.356)  
0.100  
(2.54)  
BSC  
(2.54)  
BSC  
0.045 (1.15)  
0.014 (0.356)  
8-Lead SO  
(S Suffix)  
14-Lead Narrow-Body SO  
(S Suffix)  
0.1968 (5.00)  
0.1890 (4.80)  
0.3444 (8.75)  
0.3367 (8.55)  
8
1
5
14  
1
8
0.2440 (6.20)  
0.2440 (6.20)  
0.2284 (5.80)  
0.1574 (4.00)  
0.1497 (3.80)  
0.1574 (4.00)  
0.2284 (5.80)  
0.1497 (3.80)  
7
4
0.0688 (1.75)  
0.0688 (1.75)  
0.0532 (1.35)  
0.0196 (0.50)  
PIN 1  
0.0196 (0.50)  
PIN 1  
x 45°  
x 45°  
0.0532 (1.35)  
0.0099 (0.25)  
0.0099 (0.25)  
0.0098 (0.25)  
0.0040 (0.10)  
0.0098 (0.25)  
0.0040 (0.10)  
8°  
0°  
8°  
0°  
0.0500 0.0192 (0.49)  
0.0500  
(1.27)  
BSC  
0.0192 (0.49)  
0.0500 (1.27)  
0.0160 (0.41)  
0.0500 (1.27)  
0.0160 (0.41)  
0.0098 (0.25)  
0.0075 (0.19)  
0.0098 (0.25)  
0.0075 (0.19)  
SEATING  
PLANE  
SEATING  
PLANE  
(1.27)  
0.0138 (0.35)  
0.0138 (0.35)  
BSC  
REV. 0  
–19–  
–20–  

相关型号:

OP284A

Dual Operational Amplifier
MAXWELL

OP284ARPFB

Dual Operational Amplifier
MAXWELL

OP284ARPFE

Dual Operational Amplifier
MAXWELL

OP284ARPFI

Dual Operational Amplifier
MAXWELL

OP284ARPFS

Dual Operational Amplifier
MAXWELL

OP284ARPLB

Dual Operational Amplifier
MAXWELL

OP284ARPLE

Dual Operational Amplifier
MAXWELL

OP284ARPLI

Dual Operational Amplifier
MAXWELL

OP284ARPLS

Dual Operational Amplifier
MAXWELL

OP284B

Dual Operational Amplifier
MAXWELL

OP284BRPFB

Dual Operational Amplifier
MAXWELL

OP284BRPFE

Dual Operational Amplifier
MAXWELL