ADR293GRZ-REEL7 [ADI]

Low Noise, Micropower 5.0 V Precision Voltage Reference; 低噪声,微功耗5.0 V精密基准电压源
ADR293GRZ-REEL7
型号: ADR293GRZ-REEL7
厂家: ADI    ADI
描述:

Low Noise, Micropower 5.0 V Precision Voltage Reference
低噪声,微功耗5.0 V精密基准电压源

文件: 总12页 (文件大小:261K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Noise, Micropower  
5.0 V Precision Voltage Reference  
ADR293  
FEATURES  
PIN CONFIGURATIONS  
6.0 V to 15 V supply range  
NC  
1
2
3
4
8
7
6
5
NC  
NC  
ADR293  
TOP VIEW  
(Not to Scale)  
V
Supply current: 15 μA maximum  
Low noise: 15 μV p-p typical (0.1 Hz to 10 Hz)  
High output current: 5 mA  
IN  
NC  
V
OUT  
GND  
NC  
NC = NO CONNECT  
Temperature range: −40°C to +125°C  
Pin-compatible with the REF02/REF19x  
Figure 1. 8-Lead Narrow Body SOIC (R-8)  
APPLICATIONS  
Portable instrumentation  
Precision reference for 5 V systems  
ADC and DAC reference  
Solar-powered applications  
Loop-current powered instruments  
1
2
3
4
NC  
8
7
6
5
NC  
NC  
V
ADR293  
TOP VIEW  
(Not to Scale)  
IN  
NC  
V
OUT  
GND  
NC  
NC = NO CONNECT  
Figure 2. 8-Lead TSSOP (RU-8)  
GENERAL DESCRIPTION  
The ADR293 is a low noise, micropower precision voltage  
reference that utilizes an XFET® (eXtra implanted junction FET)  
reference circuit. The XFET architecture offers significant  
performance improvements over traditional band gap and  
buried Zener-based references. Improvements include one  
quarter the voltage noise output of band gap references  
operating at the same current, very low and ultralinear  
temperature drift, low thermal hysteresis, and excellent long-  
term stability.  
15 ppm/°C, and 25 ppm/°C maximum. Line regulation and load  
regulation are typically 30 ppm/V and 30 ppm/mA, respectively,  
maintaining the reference’s overall high performance.  
The ADR293 is specified over the extended industrial  
temperature range of –40°C to +125°C. This device is available  
in the 8-lead SOIC and 8-lead TSSOP packages.  
Table 1. ADR29x Products  
Temperature  
Coefficient  
Output  
Initial  
The ADR293 is a series voltage reference providing stable and  
accurate output voltage from a 6.0 V supply. Quiescent current  
is only 15 μA maximum, making this device ideal for battery  
powered instrumentation. Three electrical grades are available  
offering initial output accuracy of 3 mV, 6 mV, and 10 mV.  
Temperature coefficients for the three grades are 8 ppm/°C,  
Device  
ADR291  
ADR292  
ADR293  
Voltage (V)  
Accuracy (%)  
(ppm/°C max)  
2.500  
4.096  
5.000  
0.08, 0.12, 0.24 8, 15, 25  
0.07, 0.10, 0.15 8, 15, 25  
0.06, 0.12, 0.20 8, 15, 25  
Rev. D  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 www.analog.com  
Fax: 781.461.3113 ©2001-2011 Analog Devices, Inc. All rights reserved.  
 
ADR293  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Terminology.......................................................................................9  
Theory of Operation ...................................................................... 10  
Device Power Dissipation Considerations.............................. 10  
Basic Voltage Reference Connections ..................................... 10  
Noise Performance..................................................................... 10  
Turn-On Time ............................................................................ 10  
Applications..................................................................................... 11  
Kelvin Connections.................................................................... 11  
Voltage Regulator for Portable Equipment............................. 11  
Outline Dimensions....................................................................... 12  
Ordering Guide .......................................................................... 12  
Applications....................................................................................... 1  
Pin Configurations ........................................................................... 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Specifications............................................................... 3  
Absolute Maximum Ratings............................................................ 5  
Thermal Resistance ...................................................................... 5  
ESD Caution.................................................................................. 5  
Typical Performance Characteristics ............................................. 6  
REVISION HISTORY  
5/11—Rev. C to Rev. D  
6/07—Rev. A to Rev. B  
Delete Negative Precision Reference Without Precision  
Resistors Section............................................................................. 11  
Delete Figure 23 and Figure 24, Renumbered Sequentially...... 11  
Updated Format..................................................................Universal  
Changes to Table 1.............................................................................1  
Updated Outline Dimensions....................................................... 13  
Changes to Ordering Guide.......................................................... 13  
9/10—Rev. B to Rev. C  
Changes to Table 2 and Table 3....................................................... 3  
Changes to Table 4............................................................................ 4  
Changes to Figure 10, Figure 11, Figure 13................................... 7  
Changes to Captions for Figure 17 to Figure 19........................... 8  
3/01—Rev. 0 to Rev. A  
Rev. D | Page 2 of 12  
 
ADR293  
SPECIFICATIONS  
ELECTRICAL SPECIFICATIONS  
VS = 6.0 V, TA = 25°C, unless otherwise noted.  
Table 2.  
Parameter  
OUTPUT VOLTAGE  
E Grade  
F Grade  
G Grade  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
VOUT  
IOUT = 0 mA  
4.997  
4.994  
4.990  
5.000  
5.000  
5.000  
5.003  
5.006  
5.010  
V
V
V
INITIAL ACCURACY  
E Grade  
IOUT = 0 mA  
–3  
+3  
0.06  
+6  
0.12  
+10  
0.20  
mV  
%
mV  
%
mV  
%
F Grade  
G Grade  
–6  
–10  
LINE REGULATION  
E, F Grades  
G Grade  
ΔVOUT /ΔVIN  
6.0 V to 15 V, IOUT = 0 mA  
30  
40  
100  
150  
ppm/V  
ppm/V  
LOAD REGULATION  
E, F Grades  
G Grade  
ΔVOUT /ΔILOAD VS = 6.0 V, IOUT = 0 mA to 5 mA  
30  
40  
100  
150  
ppm/mA  
ppm/mA  
ppm  
LONG-TERM STABILITY  
VOLTAGE NOISE  
VOLTAGE NOISE DENSITY  
ΔVOUT  
eN p-p  
eN  
After 1000 hours of operation @ 125°C  
f = 0.1 Hz to 10 Hz  
50  
15  
μV p-p  
f = 1 kHz  
640  
nV/√Hz  
VS = 6.0 V, TA = −25°C to +85°C, unless otherwise noted.  
Table 3.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
TEMPERATURE COEFFICIENT  
E Grade  
F Grade  
TCVOUT  
IOUT = 0 mA  
3
5
10  
8
15  
25  
ppm/°C  
ppm/°C  
ppm/°C  
G Grade  
LINE REGULATION  
E, F Grades  
G Grade  
ΔVOUT/ΔVIN  
6.0 V to 15 V, IOUT = 0 mA  
35  
50  
150  
200  
ppm/V  
ppm/V  
LOAD REGULATION  
E, F Grades  
G Grade  
ΔVOUT/ΔILOAD  
VS = 6.0 V, IOUT = 0 mA to 5 mA  
20  
30  
150  
200  
ppm/mA  
ppm/mA  
Rev. D | Page 3 of 12  
 
ADR293  
VS = 6.0 V, TA = −40°C to +125°C, unless otherwise noted.  
Table 4.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
TEMPERATURE COEFFICIENT  
E Grade  
F Grade  
TCVOUT  
IOUT = 0 mA  
3
5
10  
10  
20  
30  
ppm/°C  
ppm/°C  
ppm/°C  
G Grade  
LINE REGULATION  
E, F Grades  
G Grade  
ΔVOUT/ΔVIN  
6.0 V to 15 V, IOUT = 0 mA  
VS = 6.0 V, IOUT = 0 mA to 5 mA  
@ 25°C  
40  
70  
200  
250  
ppm/V  
ppm/V  
LOAD REGULATION  
E, F Grades  
G Grade  
ΔVOUT/ΔILOAD  
20  
30  
11  
200  
300  
15  
ppm/mA  
ppm/mA  
μA  
SUPPLY CURRENT  
IS  
15  
20  
μA  
THERMAL HYSTERESIS  
VOUT-HYS  
8-lead SOIC_N  
8-lead TSSOP  
72  
157  
ppm  
ppm  
Rev. D | Page 4 of 12  
ADR293  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 5.  
θJA is specified for worst-case conditions; that is, θJA is specified  
for the device in socket testing. In practice, θJA is specified for  
the device soldered in a circuit board.  
Parameter  
Rating  
Supply Voltage  
18 V  
Indefinite  
−65°C to +150°C  
−40°C to +125°C  
−65°C to +150°C  
300°C  
Output Short-Circuit Duration to GND  
Storage Temperature Range  
Operating Temperature Range  
Junction Temperature Range  
Lead Temperature (Soldering, 60 sec)  
Table 6. Thermal Resistance  
Package Type  
θJA  
θJC  
43  
43  
Unit  
°C/W  
°C/W  
8-Lead SOIC_N (R-8)  
8-Lead TSSOP (RU-8)  
158  
240  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
ESD CAUTION  
Rev. D | Page 5 of 12  
 
ADR293  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, unless otherwise noted.  
5.006  
100  
V
= 6V  
3 TYPICAL PARTS  
S
V
= 6V TO 15V  
S
5.004  
5.002  
80  
60  
40  
5.000  
4.998  
4.996  
4.994  
20  
0
–50  
–25  
0
25  
50  
75  
100  
125  
–50  
–25  
0
25  
50  
75  
100  
125  
125  
5.0  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 3. VOUT vs. Temperature  
Figure 6. Line Regulation vs. Temperature  
100  
16  
14  
12  
10  
8
I
= 0mA  
V
= 6V TO 9V  
OUT  
S
T
= +125°C  
= +25°C  
A
80  
60  
40  
T
A
T
= –40°C  
A
6
4
20  
0
2
0
0
2
4
6
8
10  
12  
14  
16  
–50  
–25  
0
25  
50  
75  
100  
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 7. Line Regulation vs. Temperature  
Figure 4. Supply Current vs. Input Voltage  
16  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
V
= 6V  
S
14  
12  
10  
8
T
= +125°C  
A
T
= +25°C  
= –40°C  
A
T
A
6
–50  
–25  
0
25  
50  
75  
100  
125  
0
0.5 1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
TEMPERATURE (°C)  
LOAD CURRENT (mA)  
Figure 8. Minimum Input/Output Voltage Differential vs. Load Current  
Figure 5. Supply Current vs. Temperature  
Rev. D | Page 6 of 12  
 
ADR293  
120  
100  
80  
200  
V
= 6V  
V
= 6V  
S
S
160  
120  
80  
60  
40  
I
= 5mA  
OUT  
40  
0
20  
0
I
= 1mA  
OUT  
10  
100  
1k  
–50  
–25  
0
25  
50  
75  
100  
125  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
Figure 12. Ripple Rejection vs. Frequency  
Figure 9. Load Regulation vs. Temperature  
100  
10  
1
2
1
V
= 6V  
= 0mA  
S
I
L
T
= +25°C  
A
0
T
= +125°C  
A
–1  
–2  
T
= –40°C  
A
–3  
–4  
10  
100  
FREQUENCY (Hz)  
1k  
10k  
0.1  
1
10  
SOURCING LOAD CURRENT (mA)  
Figure 13. Output Impedance vs. Frequency  
Figure 10. ΔVOUT from Nominal vs. Load Current  
V
T
= 15V  
= 25°C  
IN  
A
1k  
10µV p-p  
1s/DIV  
100  
10  
100  
1k  
FREQUENCY (Hz)  
Figure 14. 0.1 Hz to 10 Hz Noise  
Figure 11. Voltage Noise Density vs. Frequency  
Rev. D | Page 7 of 12  
ADR293  
I = 5mA  
I
= 5mA  
I
L
C
= 1nF  
L
5V/DIV  
2V/DIV  
1ms/DIV  
50µs/DIV  
Figure 15. Turn-On Time  
Figure 18. Load Transient Response  
I
= 5mA  
I = 5mA  
L
I
C
= 100nF  
L
5V/DIV  
2V/DIV  
50µs/DIV  
1ms/DIV  
Figure 16. Turn-Off Time  
Figure 19. Load Transient Response  
18  
16  
TEMPERATURE  
+25°C –40°C →  
+85°C +25°C  
I
= 5mA  
L
14  
12  
10  
8
6
4
2
1ms/DIV  
0
–200 –160 –120 –80 –40  
0
40  
80 120 160 200 240  
V
DEVIATION (ppm)  
OUT  
Figure 17. Load Transient Response  
Figure 20. Typical Hysteresis for the ADR29x Product  
Rev. D | Page 8 of 12  
 
ADR293  
TERMINOLOGY  
Line Regulation  
Temperature Coefficient  
The change in output voltage due to a specified change in input  
voltage. It includes the effects of self-heating. Line regulation is  
expressed in percent per volt, parts per million per volt, or  
microvolts per volt change in input voltage.  
The change of output voltage over the operating temperature  
change and normalized by the output voltage at 25°C, expressed  
in ppm/°C.  
VOUT  
(
Τ2  
)
VOUT  
T2  
(
T1  
)
TCVOUT  
[
ppm/ ° C  
]
=
× 106  
Load Regulation  
VOUT  
(
25°C  
)
×
(
)
T1  
The change in output voltage due to a specified change in load  
current. It includes the effects of self-heating. Load regulation is  
expressed in microvolts per milliampere, parts per million per  
milliampere, or ohms of dc output resistance.  
where:  
VOUT (25°C) = VOUT at 25°C.  
VOUT (T1) = VOUT at Temperature 1.  
VOUT (T2) = VOUT at Temperature 2.  
Long-Term Stability  
Thermal Hysteresis  
Typical shift of output voltage of 25°C on a sample of parts  
subjected to high temperature operating life test of 1000 hours  
at 125°C.  
Thermal hysteresis is defined as the change of output voltage  
after the device is cycled through temperatures from +25°C to  
–40°C to +85°C and back to +25°C. This is a typical value from  
a sample of parts put through such a cycle.  
ΔVOUT = VOUT  
(
t0  
)
VOUT  
t0 VOUT  
VOUT t0  
(
t1  
)
VOUT  
(
)
t1  
( )  
× 106  
VOUT HYS = VOUT  
(
25°C  
)
VOUT TC  
25°C VOUT TC  
VOUT  
ΔVOUT ppm  
[
]
=
(
)
VOUT  
(
)
VOUT HYS  
[
ppm  
]
=
× 106  
where:  
VOUT (t0) = VOUT at 25°C at time 0.  
VOUT (t1) = VOUT at 25°C after 1000 hours operation at 125°C.  
(
25°C  
)
where:  
VOUT (25°C) = VOUT at 25°C.  
VOUT-TC = VOUT (25°C) after temperature cycle at +25°C to –40°C  
NC = No Connect  
There are in fact connections at NC pins, which are reserved for  
manufacturing purposes. Users should not connect anything at  
NC pins.  
to +85°C and back to +25°C.  
Rev. D | Page 9 of 12  
 
ADR293  
THEORY OF OPERATION  
The ADR293 uses a new reference generation technique known  
as XFET, which yields a reference with low noise, low supply  
current, and very low thermal hysteresis.  
DEVICE POWER DISSIPATION CONSIDERATIONS  
The ADR293 is guaranteed to deliver load currents to 5 mA  
with an input voltage that ranges from 5.5 V to 15 V. When  
this device is used in applications with large input voltages,  
care should be exercised to avoid exceeding the published  
specifications for maximum power dissipation or junction  
temperature that could result in premature device failure.  
The following formula should be used to calculate a devices  
maximum junction temperature or dissipation:  
The core of the XFET reference consists of two junction field  
effect transistors, one of which has an extra channel implant to  
raise its pinch-off voltage. By running the two JFETs at the same  
drain current, the difference in pinch-off voltage can be amplified  
and used to form a highly stable voltage reference. The intrinsic  
reference voltage is around 0.5 V with a negative temperature  
coefficient of about –120 ppm/K. This slope is essentially locked  
to the dielectric constant of silicon and can be closely compen-  
sated by adding a correction term generated in the same fashion  
as the proportional-to-temperature (PTAT) term used to  
compensate band gap references. The big advantage over a band  
gap reference is that the intrinsic temperature coefficient is  
some 30 times lower (therefore, less correction is needed) and  
this results in much lower noise, because most of the noise of a  
band gap reference comes from the temperature compensation  
circuitry.  
TJ TA  
PD =  
θJA  
where:  
TJ and TA are the junction temperature and ambient  
temperature, respectively.  
PD is the device power dissipation.  
θJA is the device package thermal resistance.  
BASIC VOLTAGE REFERENCE CONNECTIONS  
References, in general, require a bypass capacitor connected  
from the VOUT pin to the GND pin. The circuit in Figure 22  
illustrates the basic configuration for the ADR293. Note that the  
decoupling capacitors are not required for circuit stability.  
The simplified schematic in Figure 21 shows the basic topology  
of the ADR293. The temperature correction term is provided by  
a current source with value designed to be proportional to  
absolute temperature. The general equation is  
1
2
3
4
8
7
6
5
NC  
NC  
NC  
R1 + R2 + R3  
VOUT = ΔVP  
+
(
IPTAT (R3)  
)
ADR293  
R1  
V
OUT  
NC  
where:  
ΔVP is the difference in pinch-off voltage between the two FETs.  
PTAT is the positive temperature coefficient correction current.  
+
0.1µF  
0.1µF  
10µF  
NC  
I
NC = NO CONNECT  
Figure 22. Basic Voltage Reference Configuration  
The process used for the XFET reference also features vertical  
NPN and PNP transistors, the latter of which are used as output  
devices to provide a very low dropout voltage.  
NOISE PERFORMANCE  
The noise generated by the ADR293 is typically less than  
15 μV p-p over the 0.1 Hz to 10 Hz band. The noise measure-  
ment is made with a band-pass filter made of a 2-pole high-pass  
filter with a corner frequency at 0.1 Hz and a 2-pole low-pass  
filter with a corner frequency at 10 Hz.  
V
IN  
I
I
1
1
1
V
OUT  
TURN-ON TIME  
V  
R1  
R2  
R3  
P
I
PTAT  
Upon application of power (cold start), the time required for  
the output voltage to reach its final value within a specified  
error band is defined as the turn-on settling time. Two  
components normally associated with this are the time for the  
active circuits to settle and the time for the thermal gradients on  
the chip to stabilize. Figure 15 shows the typical turn-on time  
for the ADR293.  
1
EXTRA CHANNEL IMPLANT  
R1 + R2 + R3  
GND  
V
=
× V + I × R3  
PTAT  
OUT  
P
R1  
Figure 21. Simplified Schematic  
Rev. D | Page 10 of 12  
 
 
 
ADR293  
APPLICATIONS  
KELVIN CONNECTIONS  
VOLTAGE REGULATOR FOR PORTABLE  
EQUIPMENT  
In many portable instrumentation applications where PC board  
cost and area go hand-in-hand, circuit interconnects are very often  
of dimensionally minimum width. These narrow lines can cause  
large voltage drops if the voltage reference is required to provide  
load currents to various functions. In fact, a circuits interconnects  
can exhibit a typical line resistance of 0.45 mΩ/square (1 oz. Cu,  
for example). Force and sense connections, also referred to as  
Kelvin connections, offer a convenient method of eliminating  
the effects of voltage drops in circuit wires. Load currents flowing  
through wiring resistance produce an error (VERROR = R × IL) at  
the load. However, the Kelvin connection in Figure 23 overcomes  
the problem by including the wiring resistance within the forcing  
loop of the op amp. Because the op amp senses the load voltage,  
op amp loop control forces the output to compensate for the  
wiring error and to produce the correct voltage at the load.  
R
The ADR293 is ideal for providing a stable, low cost, and low  
power reference voltage in portable equipment power supplies.  
Figure 24 shows how the ADR293 can be used in a voltage  
regulator that not only has low output noise (as compared to  
switch mode design) and low power, but also a very fast  
recovery after current surges. Some precautions should be taken  
in the selection of the output capacitors. Too high an ESR  
(effective series resistance) could endanger the stability of the  
circuit. A solid tantalum capacitor, 16 V or higher, and an  
aluminum electrolytic capacitor, 10 V or higher, are recom-  
mended for C1 and C2, respectively. In addition, the path from  
the ground side of C1 and C2 to the ground side of R1 should  
be kept as short as possible.  
CHARGER  
INPUT  
0.1µF  
V
LW  
IN  
+V  
SENSE  
OUT  
R3  
510k  
2
2
V
IN  
V
IN  
ADR293  
R
LW  
+V  
FORCE  
ADR293  
OUT  
A1  
V
7
6
OUT  
V
6
2
3
6V  
OUT  
R
L
+
LEAD-ACID  
BATTERY  
6
OP20  
4
1µF  
100k  
IRF9530  
GND  
4
GND  
4
5V, 100mA  
C2  
+
1000µF  
ELECT  
C1  
68µF  
TANT  
+
R1  
402kΩ  
1%  
R2  
402kΩ  
1%  
Figure 23. Advantage of Kelvin Connection  
Figure 24. Voltage Regulator for Portable Equipment  
Rev. D | Page 11 of 12  
 
 
 
ADR293  
OUTLINE DIMENSIONS  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 25. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body  
(R-8)  
Dimensions shown in millimeters and (inches)  
3.10  
3.00  
2.90  
8
5
4
4.50  
4.40  
4.30  
6.40 BSC  
1
PIN 1  
0.65 BSC  
0.15  
0.05  
1.20  
MAX  
8°  
0°  
0.75  
0.60  
0.45  
0.30  
0.19  
SEATING  
PLANE  
COPLANARITY  
0.10  
0.20  
0.09  
COMPLIANT TO JEDEC STANDARDS MO-153-AA  
Figure 26. 8-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-8)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Temperature  
Output  
Voltage (V) Accuracy (%)  
Initial  
Coefficient  
Temperature  
(ppm/°C max) Range  
Package  
Description  
Package  
Option  
Ordering  
Quantity  
Model1  
ADR293ERZ  
ADR293ERZ-REEL  
ADR293GRZ  
ADR293GRZ-REEL7  
ADR293GRUZ  
ADR293GRUZ-REEL  
ADR293GRUZ-REEL7  
5.00  
5.00  
5.00  
5.00  
5.00  
5.00  
5.00  
0.06  
0.06  
0.20  
0.20  
0.20  
0.20  
0.20  
8
8
−40°C to +125°C 8-Lead SOIC_N  
−40°C to +125°C 8-Lead SOIC_N  
−40°C to +125°C 8-Lead SOIC_N  
−40°C to +125°C 8-Lead SOIC_N  
−40°C to +125°C 8-Lead TSSOP  
−40°C to +125°C 8-Lead TSSOP  
−40°C to +125°C 8-Lead TSSOP  
R-8  
R-8  
R-8  
R-8  
RU-8  
RU-8  
RU-8  
98  
2,500  
98  
1,000  
96  
2,500  
1,000  
25  
25  
25  
25  
25  
1 Z = RoHS Compliant Part.  
©2001-2011 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D00164-0-5/11(D)  
Rev. D | Page 12 of 12  
 
 

相关型号:

ADR293GT9

Low Noise Micropower Precision Voltage Reference
ADI

ADR293GT9-REEL

Low Noise Micropower Precision Voltage Reference
ADI

ADR293TRU-EP

Low Noise, Micropower 5.0 V Precision Voltage Reference
ADI

ADR293TRU-EP-R7

Low Noise, Micropower 5.0 V Precision Voltage Reference
ADI

ADR293TRUZ-EP-R7

Low Noise, Micropower 5.0 V Precision Voltage Reference
ADI

ADR30L

DISH AVALANCHE AUTOMOTIVE RECTIFIER
MIC

ADR30M

DISH AVALANCHE AUTOMOTIVE RECTIFIER
MIC

ADR30Z

DISH AVALANCHE AUTOMOTIVE RECTIFIER
MIC

ADR318

Precision Low Drift SOT-23 Voltage Reference with Shutdown
ADI

ADR318ARJ-R2

1-OUTPUT THREE TERM VOLTAGE REFERENCE, 1.8 V, PDSO5, MO-178AA, SOT-23, 5 PIN
ROCHESTER

ADR318ARJ-REEL7

Precision Low Drift SOT-23 Voltage Reference with Shutdown
ADI

ADR318ARJZ-REEL7

1-OUTPUT THREE TERM VOLTAGE REFERENCE, 1.8V, PDSO5, LEAD FREE, MO-178AA, SOT-23, 5 PIN
ROCHESTER