ADP5033ACBZ-8-R7 [ADI]

Dual 3 MHz, 800 mA Buck Regulators with Two 300 mA LDOs;
ADP5033ACBZ-8-R7
型号: ADP5033ACBZ-8-R7
厂家: ADI    ADI
描述:

Dual 3 MHz, 800 mA Buck Regulators with Two 300 mA LDOs

开关 输出元件
文件: 总28页 (文件大小:876K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Dual 3 MHz, 800 mA Buck  
Regulators with Two 300 mA LDOs  
Data Sheet  
ADP5033  
FEATURES  
TYPICAL APPLICATION CIRCUIT  
ADP5033  
Main input voltage range: 2.3 V to 5.5 V  
Two 800 mA buck regulators and two 300 mA LDOs  
Tiny, 16-ball, 2 mm × 2 mm WLCSP package  
Regulator accuracy: 1.8%  
Factory programmable VOUTx  
3 MHz buck operation with forced PWM and auto PWM/PSM  
modes  
BUCK1/BUCK2: output voltage range from 0.8 V to 3.8 V  
LDO1/LDO2: output voltage range from 0.8 V to 5.2 V  
LDO1/LDO2: low input supply voltage from 1.7 V to 5.5 V  
LDO1/LDO2: high PSRR and low output noise  
L1 1µH  
VOUT1  
@
SW1  
2.3V  
TO  
VIN1  
VOUT1  
800mA  
C1  
4.7µF  
5.5V  
BUCK1  
C5  
PGND1  
MODE  
10µF  
EN1  
MODE  
EN2  
ENA  
ENB  
VIN2  
ON  
OFF  
PWM  
EN3  
EN4  
PSM/PWM  
MODE  
L2 1µH  
VOUT2  
@
800mA  
SW2  
C2  
4.7µF  
VOUT2  
BUCK2  
C6  
10µF  
PGND2  
VOUT3  
EN2  
EN3  
VOUT3  
@
300mA  
1.7V  
TO  
5.5V  
VIN3  
VIN4  
LDO1  
(ANALOG)  
APPLICATIONS  
C3  
1µF  
C7  
Power for processors, ASICS, FPGAs, and RF chipsets  
Portable instrumentation and medical devices  
Space constrained devices  
1µF  
EN4  
VOUT4  
@
VOUT4  
LDO2  
(DIGITAL)  
C4  
1µF  
300mA  
C8  
1µF  
AGND  
Figure 1.  
GENERAL DESCRIPTION  
The ADP5033 combines two high performance buck regulators  
and two low dropout regulators (LDO) in a tiny, 16-ball, 2 mm ×  
2 mm WLCSP to meet demanding performance and board space  
requirements.  
The regulators in the ADP5033 are activated by the ENA and ENB  
pins. The specific channels controlled by ENA and ENB are set  
by factory programming. A high voltage level applied to the enable  
pins activates the regulators. The default output voltages are  
factory programmable and can be set to a wide range of options.  
The high switching frequency of the buck regulators enables tiny  
multilayer external components and minimizes the board space.  
When the MODE pin is set high, the buck regulators operate in  
forced PWM mode. When the MODE pin is set low, the buck  
regulators operate in PWM mode when the load current is above  
a predefined threshold. When the load current falls below a  
predefined threshold, the regulator operates in power save  
mode (PSM), improving the light load efficiency.  
Table 1. Family Models  
Maximum  
Current  
Model  
Channels  
Package  
ADP5023 2 Bucks, 1 LDO  
ADP5024 2 Bucks, 1 LDO  
ADP5034 2 Bucks, 2 LDOs  
800 mA, 300 mA LFCSP (CP-24-10)  
1.2 A, 300 mA  
1.2 A, 300 mA  
LFCSP (CP-24-10)  
LFCSP (CP-24-10),  
TSSOP (RE-28-1)  
ADP5037 2 Bucks, 2 LDOs  
ADP5033 2 Bucks, 2 LDOs with  
2 EN pins  
800 mA, 300 mA LFCSP (CP-24-10)  
800 mA, 300 mA WLCSP (CB-16-8)  
The two bucks operate out of phase to reduce the input capacitor  
requirement and noise.  
ADP5040 1 Buck, 2 LDOs  
1.2 A, 300 mA  
1.2 A, 300 mA  
LFCSP (CP-20-10)  
LFCSP (CP-20-10)  
The low quiescent current, low dropout voltage, and wide input  
voltage range of the ADP5033 LDO extend the battery life of  
portable devices. The ADP5033 LDOs maintain power supply  
rejection greater than 60 dB for frequencies as high as 10 kHz  
while operating with a low headroom voltage.  
ADP5041 1 Buck, 2 LDOs with  
Supervisory, Watchdog,  
Manual Reset  
ADP5133 2 Bucks with 2 ENx pins  
ADP5134 2 Bucks, 2 LDOs with  
precision enable and  
800 mA  
1.2 A, 300 mA  
WLCSP (CB-16-8)  
LFCSP (CP-24-10)  
power-good output  
Rev. H  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2011–2019 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
 
ADP5033  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Theory of Operation ...................................................................... 15  
Power Management Unit........................................................... 15  
BUCK1 and BUCK2 .................................................................. 16  
LDO1 and LDO2........................................................................ 17  
Applications Information .............................................................. 18  
Buck External Component Selection....................................... 18  
LDO Capacitor Selection .......................................................... 20  
Power Dissipation and Thermal Considerations ....................... 21  
Buck Regulator Power Dissipation .......................................... 21  
Junction Temperature................................................................ 22  
PCB Layout Guidelines.................................................................. 23  
Typical Application Schematic ..................................................... 24  
Outline Dimensions....................................................................... 25  
Ordering Guide .......................................................................... 26  
Applications....................................................................................... 1  
Typical Application Circuit ............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
General Specifications ................................................................. 3  
BUCK1 and BUCK2 Specifications ........................................... 4  
LDO1 and LDO2 Specifications................................................. 4  
Input and Output Capacitor, Recommended Specifications ........ 5  
Absolute Maximum Ratings............................................................ 6  
Thermal Resistance ...................................................................... 6  
ESD Caution.................................................................................. 6  
Pin Configuration and Function Descriptions............................. 7  
Typical Performance Characteristics ............................................. 8  
REVISION HISTORY  
3/2019—Rev. G to Rev. H  
Changes to Ordering Guide .......................................................... 26  
Changes to Figure 36 Caption ...................................................... 13  
Changes to Undervoltage Lockout Section................................. 16  
Moved Power Dissipation and Thermal Considerations Section.... 21  
Changes to Buck Regulator Power Dissipation Section............ 21  
Updated Outline Dimensions....................................................... 25  
Changes to Ordering Guide.......................................................... 25  
9/2014—Rev. F to Rev. G  
Changes to Page Layout................................................................... 1  
Changes to Table 1............................................................................ 1  
Changes to Ordering Guide .......................................................... 26  
1/2012—Rev. 0 to Rev. A  
10/2013—Rev. E to Rev. F  
Changes to Features Section and General Description Section....1  
Changes to Output Characteristics Parameter, Table 2................4  
Changes to Output Characteristics Parameter, Table 3 and  
Dropout Voltage Parameter, Table 3 ...............................................4  
Changes to Nominal Input and Output Capacitor Ratings  
Parameter, Table 4 .............................................................................5  
Changes to Table 5.............................................................................6  
Changes to VIN1 Undervoltage Lockout Parameter, Table 2..... 3  
Changes to Undervoltage Lockout Section................................. 16  
Moved Ordering Guide.................................................................. 26  
Changes to Ordering Guide .......................................................... 26  
9/2013—Rev. D to Rev. E  
Changes to Table 1............................................................................ 1  
Changes to Ordering Guide .......................................................... 25  
Changed VIN1= VIN2 = VIN3= VIN4 = 5.0 V to VIN1= VIN2 = VIN3  
IN4 = 3.6 V.........................................................................................8  
=
V
Changes to Figure 4 to Figure 8.......................................................8  
Change to Figure 15 Caption and Figure 17 Caption................ 10  
Changes Figure 19 and Figure 20................................................. 10  
Changes to Figure 31 and Figure 32 ............................................ 12  
Changes to Figure 33, Figure 37, and Figure 38......................... 13  
Changes to Buck Regulator Power Dissipation Section............ 15  
Changes to LDO Regulator Power Dissipation Section and  
Junction Temperature Section ...................................................... 16  
Changes to Undervoltage Lockout Section................................. 18  
Changes to LDO1 and LDO2 Section ......................................... 19  
Changes to Output Capacitor Section......................................... 20  
Changes to Table 9.......................................................................... 21  
Change to Input and Output Capacitor Properties Section ..... 22  
Changes to Ordering Guide.......................................................... 25  
5/2011—Revision 0: Initial Version  
5/2013—Rev. C to Rev. D  
Added Table 1; Renumbered Sequentially .................................... 1  
Changes to Ordering Guide .......................................................... 25  
1/2013—Rev. B to Rev. C  
Changes to Figure 9.......................................................................... 9  
Changes to Ordering Guide .......................................................... 25  
10/2012—Rev. A to Rev. B  
Changes to Features Section............................................................ 1  
Changes to Buck Output Voltage Accuracy Parameter, Table 2....... 4  
Changes to LDO Output Voltage Accuracy Parameter, Table 3....... 4  
Changes to Figure 6 to Figure 8...................................................... 8  
Changes to Figure 30 to Figure 32................................................ 12  
Rev. H | Page 2 of 28  
 
Data Sheet  
ADP5033  
SPECIFICATIONS  
GENERAL SPECIFICATIONS  
VIN1 = VIN2 = VIN3 = VIN4 = 2.3 V to 5.5 V; VIN3 = VIN4 = 1.7 V to 5.5 V; TJ = −40°C to +125°C for minimum/maximum specifications, and  
TA = 25°C for typical specifications, unless otherwise noted.  
Table 2.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
INPUT VOLTAGE RANGE  
THERMAL SHUTDOWN  
Threshold  
VIN1, VIN2  
2.3  
5.5  
V
TSSD  
TSSD-HYS  
TJ rising  
150  
20  
°C  
°C  
Hysteresis  
START-UP TIME1  
BUCK1, LDO1, LDO2  
BUCK2  
tSTART1  
tSTART2  
250  
300  
µs  
µs  
ENA, ENB, MODE INPUTS  
Input Logic High  
VIH  
1.1  
V
Input Logic Low  
VIL  
VI-LEAKAGE  
0.4  
1
V
µA  
Input Leakage Current  
STANDBY CURRENT  
All Channels Enabled  
All Channels Disabled  
VIN1 UNDERVOLTAGE LOCKOUT  
Low UVLO Input Voltage Rising  
Low UVLO Input Voltage Falling  
0.05  
ISTBY-NOSW  
ISHUTDOWN  
No load, no buck switching  
TJ = −40°C to +85°C  
108  
0.3  
175  
1
µA  
µA  
UVLOVIN1RISE  
UVLOVIN1FALL  
2.275  
V
V
1.95  
1
Start-up time is defined as the time from VIN1 > UVLOVIN1RISE to VOUT1, VOUT2, VOUT3, and VOUT4 reaching 90% of their nominal levels.  
Rev. H | Page 3 of 28  
 
 
ADP5033  
Data Sheet  
BUCK1 AND BUCK2 SPECIFICATIONS  
VIN1 = VIN2 = 2.3 V to 5.5 V; TJ = −40°C to +125°C for minimum/maximum specifications, and TA = 25°C for typical specifications, unless  
otherwise noted.1  
Table 3.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
2.3  
Typ  
Max Unit  
INPUT CHARACTERISTICS  
Input Voltage Range  
OUTPUT CHARACTERISTICS  
Output Voltage Accuracy  
Line Regulation  
VIN1, VIN2  
PWM mode, ILOAD1 = ILOAD2 = 0 mA to 800 mA  
5.5  
V
∆VOUT1/VOUT1, ∆VOUT2/VOUT2  
(∆VOUT1/VOUT1)/∆VIN1  
(∆VOUT2/VOUT2)/∆VIN2  
(∆VOUT1/VOUT1)/∆IOUT1  
PWM mode; ILOAD1 = ILOAD2 = 0 mA  
PWM mode  
−1.8  
+1.8  
%
,
−0.05  
−0.1  
%/V  
Load Regulation  
,
ILOAD = 0 mA to 800 mA, PWM mode  
%/A  
mA  
(∆VOUT2/VOUT2)/∆IOUT2  
PSM CURRENT THRESHOLD  
PSM to PWM Operation  
OPERATING SUPPLY CURRENT  
BUCK1 Only  
IPSM  
100  
MODE = ground  
ILOAD1 = 0 mA, device not switching, all  
other channels disabled  
ILOAD2 = 0 mA, device not switching, all  
other channels disabled  
ILOAD1 = ILOAD2 = 0 mA, device not switching,  
LDO channels disabled  
IIN  
IIN  
IIN  
44  
55  
67  
μA  
μA  
μA  
BUCK2 Only  
BUCK1 and BUCK2  
SW CHARACTERISTICS  
SW On Resistance  
RPFET  
RPFET  
RNFET  
RNFET  
ILIMIT1, ILIMIT2  
RPDWN-B  
fSW  
PFET at VIN1 = 5 V  
PFET at VIN1 = 3.6 V  
NFET at VIN1 = 5 V  
NFET at VIN1 = 3.6 V  
PFET switch peak current limit  
Channel disabled  
145  
180  
110  
125  
235  
295  
190  
220  
mΩ  
mΩ  
mΩ  
mΩ  
mA  
Ω
Current Limit  
1100 1350  
75  
ACTIVE PULL-DOWN  
OSCILLATOR FREQUENCY  
2.5  
3.0  
3.5  
MHz  
1 All limits at temperature extremes are guaranteed via correlation using standard statistical quality control (SQC).  
LDO1 AND LDO2 SPECIFICATIONS  
VIN3 = (VOUT3 + 0.5 V) or 1.7 V (whichever is greater) to 5.5 V, VIN4 = (VOUT4 + 0.5 V) or 1.7 V (whichever is greater) to 5.5 V; CIN = COUT  
1 µF; TJ = −40°C to +125°C for minimum/maximum specifications, and TA = 25°C for typical specifications, unless otherwise noted.1  
=
Table 4.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
INPUT VOLTAGE RANGE  
OPERATING SUPPLY CURRENT  
Bias Current per LDO2  
VIN3, VIN4  
1.7  
5.5  
V
IVIN3BIAS/IVIN4BIAS  
IOUT3 = IOUT4 = 0 µA  
IOUT3 = IOUT4 = 10 mA  
IOUT3 = IOUT4 = 300 mA  
10  
60  
165  
30  
100  
245  
µA  
µA  
µA  
Total System Input Current  
LDO1 or LDO2 Only  
LDO1 and LDO2 Only  
IIN  
Includes all current into VIN1, VIN2, VIN3, and VIN4  
IOUT3 = IOUT4 = 0 µA, all other channels disabled  
IOUT3 = IOUT4 = 0 µA, buck channels disabled  
53  
74  
µA  
µA  
OUTPUT CHARACTERISTICS  
Output Voltage Accuracy  
∆VOUT3/VOUT3  
∆VOUT4/VOUT4  
(∆VOUT3/VOUT3)/∆VIN3  
(∆VOUT4/VOUT4)/∆VIN4  
(∆VOUT3/VOUT3)/∆IOUT3  
,
100 µA < IOUT3 < 300 mA, 100 µA < IOUT4 < 300 mA  
IOUT3 = IOUT4 = 1 mA  
−1.8  
+1.8  
%
Line Regulation  
Load Regulation3  
,
−0.03  
+0.03 %/V  
0.001 0.003 %/mA  
,
I
OUT3 = IOUT4 = 1 mA to 300 mA  
(∆VOUT4/VOUT4)/∆IOUT4  
Rev. H | Page 4 of 28  
 
 
Data Sheet  
ADP5033  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
50  
65  
Max  
Unit  
mV  
mV  
mV  
mV  
mA  
Ω
DROPOUT VOLTAGE4  
VDROPOUT  
VOUT3 = VOUT4 = 5.2 V, IOUT3 = IOUT4 = 300 mA  
VOUT3 = VOUT4 = 3.3 V, IOUT3 = IOUT4 = 300 mA  
VOUT3 = VOUT4 = 2.5 V, IOUT3 = IOUT4 = 300 mA  
VOUT3 = VOUT4 = 1.8 V, IOUT3 = IOUT4 = 300 mA  
110  
85  
165  
600  
600  
CURRENT-LIMIT THRESHOLD5  
ACTIVE PULL-DOWN  
ILIMIT3, ILIMIT4  
RPDWN-L  
335  
Channel disabled  
POWER SUPPLY REJECTION RATIO PSRR  
Regulator LDO1  
10 kHz, VIN3 = 3.3 V, VOUT3 = 2.8 V, IOUT3 = 1 mA  
100 kHz, VIN3 = 3.3 V, VOUT3 = 2.8 V, IOUT3 = 1 mA  
1 MHz, VIN3 = 3.3 V, VOUT3 = 2.8 V, IOUT3 = 1 mA  
10 kHz, VIN4 = 1.8 V, VOUT4 = 1.2 V, IOUT4 = 1 mA  
100 kHz, VIN4 = 1.8 V, VOUT4 = 1.2 V, IOUT4 = 1 mA  
1 MHz, VIN4 = 1.8 V, VOUT4 = 1.2 V, IOUT4 = 1 mA  
60  
62  
63  
54  
57  
64  
dB  
dB  
dB  
dB  
dB  
dB  
Regulator LDO2  
1 All limits at temperature extremes are guaranteed via correlation using standard statistical quality control (SQC).  
2 This is the input current into VIN3/VIN4, which is not delivered to the output load.  
3 Based on an endpoint calculation using 1 mA and 300 mA loads.  
4 Dropout voltage is defined as the input-to-output voltage differential when the input voltage is set to the nominal output voltage. This applies only to output voltages  
above 1.7 V.  
5 Current-limit threshold is defined as the current at which the output voltage drops to 90% of the specified typical value. For example, the current limit for a 3.0 V  
output voltage is defined as the current that causes the output voltage to drop to 90% of 3.0 V, or 2.7 V.  
INPUT AND OUTPUT CAPACITOR, RECOMMENDED SPECIFICATIONS  
TA = −40°C to +125°C, unless otherwise specified.  
Table 5.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
NOMINAL INPUT AND OUTPUT CAPACITOR RATINGS  
BUCK1, BUCK2 Input Capacitor Rating  
BUCK1, BUCK2 Output Capacitor Rating  
LDO1, LDO21 Input and Output Capacitor Rating  
CAPACITOR ESR  
CMIN1, CMIN2  
CMIN1, CMIN2  
CMIN3, CMIN4  
RESR  
4.7  
10  
1.0  
40  
40  
µF  
µF  
µF  
Ω
0.001  
1
1 The minimum input and output capacitance should be greater than 0.70 µF over the full range of operating conditions. The full range of operating conditions in the  
application must be considered during device selection to ensure that the minimum capacitance specification is met. X7R- and X5R-type capacitors are  
recommended; Y5V and Z5U capacitors are not recommended for use because of their poor temperature and dc bias characteristics.  
Rev. H | Page 5 of 28  
 
ADP5033  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 6.  
θJA and ΨJB are specified for the worst-case conditions, that is, a  
device soldered in a circuit board for surface-mount packages.  
Parameter  
Rating  
VIN1 to AGND  
VIN2 to VIN1  
PGND1, PGND2 to AGND  
VIN3, VIN4, VOUT1, VOUT2, ENA, ENB,  
MODE to AGND  
−0.3 V to +6 V  
−0.3 V to +0.3 V  
−0.3 V to +0.3 V  
−0.3 V to  
(VIN1 + 0.3 V)  
Table 7. Thermal Resistance  
Package Type  
θJA  
ΨJB  
Unit  
16-Ball, 0.5 mm Pitch WLCSP  
57  
14  
°C/W  
VOUT3 to AGND  
−0.3 V to  
(VIN3 + 0.3 V)  
−0.3 V to  
ESD CAUTION  
VOUT4 to AGND  
(VIN4 + 0.3 V)  
SW1 to PGND1  
−0.3 V to  
(VIN1 + 0.3 V)  
SW2 to PGND2  
−0.3 V to  
(VIN2 + 0.3 V)  
Storage Temperature Range  
−65°C to +150°C  
Operating Junction Temperature Range −40°C to +125°C  
Soldering Conditions JEDEC J-STD-020  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
For detailed information on power dissipation, see the Power  
Dissipation and Thermal Considerations section.  
Rev. H | Page 6 of 28  
 
 
 
 
Data Sheet  
ADP5033  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
BALL A1  
INDICATOR  
1
2
3
4
VOUT3 VIN3  
VIN4 VOUT4  
A
AGND MODE ENA  
ENB  
B
C
D
VIN1 VOUT1 VOUT2 VIN2  
PGND1 SW1  
SW2 PGND2  
TOP VIEW  
(BALL SIDE DOWN)  
Not to Scale  
Figure 2. Pin Configuration—View from the Top of the Die  
Table 8. Pin Function Descriptions  
Pin No.  
A1  
A2  
A3  
A3  
B1  
B2  
B3  
B4  
C1  
C2  
C3  
C4  
D1  
D2  
D3  
D4  
Mnemonic  
VOUT3  
VIN3  
Description  
LDO1 Output Voltage and Sensing Input.  
LDO1 Input Supply (1.7 V to 5.5 V, VIN4 ≤ VIN1 = VIN2).  
LDO2 Input Supply (1.7 V to 5.5 V, VIN3 ≤ VIN1 = VIN2).  
LDO2 Output Voltage and Sensing Input.  
Analog Ground.  
BUCK1/BUCK2 Operating Mode. MODE = high: forced PWM operation. MODE = low: auto PWM/PSM operation.  
Regulator Enable Pin A, Active High. The regulators turned on with ENA are factory programmed.  
Regulator Enable Pin B, Active High. The regulators turned on with ENB are factory programmed.  
BUCK1 Input Supply (2.3 V to 5.5 V) and UVLO Detection. Connect VIN1 to VIN2.  
BUCK1 Output Voltage Sensing Input.  
BUCK2 Output Voltage Sensing Input.  
BUCK2 Input Supply (2.3 V to 5.5 V). Connect VIN2 to VIN1.  
Dedicated Power Ground for BUCK1.  
BUCK1 Switching Node.  
BUCK2 Switching Node.  
VIN4  
VOUT4  
AGND  
MODE  
ENA  
ENB  
VIN1  
VOUT1  
VOUT2  
VIN2  
PGND1  
SW1  
SW2  
PGND2  
Dedicated Power Ground for BUCK2.  
Rev. H | Page 7 of 28  
 
ADP5033  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
VIN1= VIN2 = VIN3= VIN4 = 3.6 V, TA = 25°C, unless otherwise noted.  
3.310  
3.305  
3.300  
3.295  
3.290  
3.285  
3.280  
3.275  
3.270  
140  
120  
100  
80  
–40°C  
+25°C  
+85°C  
60  
40  
20  
0
0
0.1  
0.2  
0.3  
0.4  
(A)  
0.5  
0.6  
0.7  
0.8  
2.3  
2.8  
3.3  
3.8  
4.3  
4.8  
5.3  
I
OUT  
INPUT VOLTAGE (V)  
Figure 6. BUCK1 Load Regulation Across Temperature, VIN = 4.2 V,  
VOUT1 = 3.3 V, PWM Mode  
Figure 3. System Quiescent Current vs. Input Voltage, VOUT1 = 3.3 V,  
VOUT2 = 1.8 V, VOUT3 = 1.2 V, VOUT4 = 3.3 V, All Channels Unloaded  
1.812  
1.810  
T
SW  
–40°C  
4
1.808  
IOUT  
2
+25°C  
1.806  
1.804  
VOUT  
1
EN  
1.802  
+85°C  
1.800  
1.798  
3
B
B
B
B
CH1 2.00V  
CH3 5.00V  
CH2 50.0mA Ω  
CH4 5.00V  
M 40.0µs  
A CH3  
2.2V  
W
W
W
0
0.1  
0.2  
0.3  
0.4  
(A)  
0.5  
0.6  
0.7  
0.8  
W
I
OUT  
T
11.20%  
Figure 7. BUCK2 Load Regulation Across Temperature, VIN = 3.6 V,  
VOUT2 = 1.8 V, PWM Mode  
Figure 4. Buck1 Startup, VOUT1 = 1.8 V, IOUT1 = 5 mA  
0.808  
T
0.807  
SW  
4
2
+25°C  
0.806  
IOUT  
–40°C  
0.805  
VOUT  
EN  
1
3
0.804  
0.803  
0.802  
+85°C  
B
B
B
B
CH1 2.00V  
CH3 5.00V  
CH2 50.0mA Ω  
CH4 5.00V  
M 40.0µs  
T 11.20%  
A CH3  
2.2V  
W
W
W
0
0.1  
0.2  
0.3  
0.4  
(A)  
0.5  
0.6  
0.7  
0.8  
W
I
OUT  
Figure 5. BUCK2 Startup, VOUT2 = 3.3 V, IOUT2 = 10 mA  
Figure 8. BUCK1 Load Regulation Across Temperature, VIN = 3.6 V,  
VOUT1 = 0.8 V, PWM Mode  
Rev. H | Page 8 of 28  
 
Data Sheet  
ADP5033  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= 2.4V  
= 3.6V  
= 4.5V  
= 5.5V  
IN  
IN  
IN  
IN  
V
V
V
V
V
V
= 3.9V  
= 4.2V  
= 5.5V  
IN  
IN  
IN  
0
1
0.001  
0.01  
0.1  
1
10  
100  
1000  
I
(A)  
I
(mA)  
OUT  
LOAD  
Figure 12. BUCK2 Efficiency vs. Load Current, Across Input Voltage,  
OUT2 = 1.8 V, PWM Mode  
Figure 9. BUCK1 Efficiency vs. Load Current, Across Input Voltage,  
OUT1 = 3.3 V, Auto Mode  
V
V
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
V
V
V
= 2.3V  
= 3.6V  
= 4.2V  
= 5.5V  
IN  
IN  
IN  
IN  
V
V
V
= 3.9V  
= 4.2V  
= 5.5V  
IN  
IN  
IN  
0.001  
0.01  
0.1  
1
0.001  
0.01  
0.1  
1
I (A)  
OUT  
I
(A)  
OUT  
Figure 13. BUCK1 Efficiency vs. Load Current, Across Input Voltage,  
OUT1 = 0.8 V, Auto Mode  
Figure 10. BUCK1 Efficiency vs. Load Current, Across Input Voltage,  
OUT1 = 3.3 V, PWM Mode  
V
V
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
V
V
V
= 2.3V  
= 3.6V  
= 4.2V  
= 5.5V  
V
V
V
V
= 2.3V  
= 3.6V  
= 4.2V  
= 5.5V  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
0.001  
0.01  
0.1  
1
0.001  
0.01  
0.1  
1
I
(A)  
I
(A)  
OUT  
OUT  
Figure 14. BUCK1 Efficiency vs. Load Current, Across Input Voltage,  
OUT1 = 0.8 V, PWM Mode  
Figure 11. BUCK2 Efficiency vs. Load Current, Across Input Voltage,  
OUT2 = 1.8 V, Auto Mode  
V
V
Rev. H | Page 9 of 28  
ADP5033  
Data Sheet  
3.3  
3.2  
3.1  
3.0  
2.9  
2.8  
2.7  
2.6  
2.5  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
T
T
T
= +25°C  
= –40°C  
= +85°C  
A
A
A
+25°C  
+85°C  
–40°C  
0
0
0.2  
0.4  
0.6  
(A)  
0.8  
1.0  
1.2  
0.001  
0.01  
0.1  
1
I
I
(A)  
OUT  
OUT  
Figure 18. BUCK2 Switching Frequency vs. Output Current, Across  
Temperature, VOUT2 = 1.8 V, PWM Mode  
Figure 15. BUCK1 Efficiency vs. Load Current, Across Temperature,  
IN1 = 3.9 V, VOUT1 = 3.3 V, Auto Mode  
V
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
T
VOUT  
1
I
SW  
2
SW  
+85°C  
+25°C  
–40°C  
4
CH1 50.0mV  
CH2 500mA Ω  
CH4 2.00V  
M 4.00µs A CH2  
28.40%  
240mA  
0.001  
0.01  
0.1  
1
I
(A)  
OUT  
T
Figure 16. BUCK2 Efficiency vs. Load Current, Across Temperature,  
OUT2 = 1.8 V, Auto Mode  
Figure 19. Typical Waveforms, VOUT1 = 3.3 V, IOUT1 = 30 mA, Auto Mode  
V
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
T
VOUT  
1
I
SW  
2
SW  
+85°C  
+25°C  
–40°C  
4
B
CH1 50.0mV  
W CH2 500mA Ω  
CH4 2.00V  
M 4.00µs A CH2  
220mA  
0.001  
0.01  
0.1  
1
B
W
I
(A)  
T
28.40%  
OUT  
Figure 17. BUCK1 Efficiency vs. Load Current, Across Temperature,  
OUT1 = 0.8 V, Auto Mode  
Figure 20. Typical Waveforms, VOUT2 = 1.8 V, IOUT2 = 30 mA, Auto Mode  
V
Rev. H | Page 10 of 28  
Data Sheet  
ADP5033  
T
T
VOUT  
1
2
VIN  
I
SW  
VOUT  
SW  
1
SW  
4
3
4
CH1 50mV  
CH2 500mA Ω  
CH4 2.00V  
M 400ns A CH2  
28.40%  
220mA  
CH1 50.0mV  
CH3 1.00V  
M 1.00ms  
30.40%  
A
CH3  
4.80V  
CH4 2.00V  
T
T
Figure 21. Typical Waveforms, VOUT1 = 3.3 V, IOUT1 = 30 mA, PWM Mode  
Figure 24. BUCK2 Response to Line Transient, VIN = 4.5 V to 5.0 V,  
VOUT2 = 1.8 V, PWM Mode  
T
T
SW  
VOUT  
1
4
I
SW  
2
VOUT  
1
SW  
I
OUT  
4
2
CH1 50mV  
CH2 500mA Ω  
CH4 2.00V  
M 400ns A CH2  
28.40%  
220mA  
CH1 50.0mV  
CH2 50.0mA Ω  
CH4 5.00V  
M 20.0µs A CH2  
60.000µs  
356mA  
T
T
Figure 22. Typical Waveforms, VOUT2 = 1.8 V, IOUT2 = 30 mA, PWM Mode  
Figure 25. BUCK1 Response to Load Transient, IOUT1 from 1 mA to 50 mA,  
VOUT1 = 3.3 V, Auto Mode  
T
T
SW  
4
VIN  
VOUT  
1
VOUT  
1
SW  
I
OUT  
3
2
CH1 50.0mV  
CH3 1.00V  
M 1.00ms  
30.40%  
A
CH3  
4.80V  
CH1 50.0mV  
CH2 50.0mA Ω  
CH4 5.00V  
M 20.0µs A CH2  
22.20%  
379mA  
CH4 2.00V  
T
T
Figure 26. BUCK2 Response to Load Transient, IOUT2 from 1 mA to 50 mA,  
VOUT2 = 1.8 V, Auto Mode  
Figure 23. Buck1 Response to Line Transient, Input Voltage from 4.5 V to  
5.0 V, VOUT1 = 3.3 V, PWM Mode  
Rev. H | Page 11 of 28  
ADP5033  
Data Sheet  
T
SW  
EN  
4
1
2
VOUT  
VOUT  
3
1
I
OUT  
I
IN  
2
CH1 50.0mV  
CH2 200mA Ω  
CH4 5.00V  
M 20.0µs A CH2  
20.40%  
408mA  
CH1 100mA  
CH3 1.00V  
CH2 5.00V  
M 40.0µs  
A CH2  
4.20V  
T
159.400µs  
T
Figure 27. BUCK1 Response to Load Transient, IOUT1 from 20 mA to 180 mA,  
VOUT1 = 3.3 V, Auto Mode  
Figure 30. LDO Startup, VOUT3 = 1.8 V  
3.304  
3.303  
3.302  
3.301  
3.300  
3.299  
3.298  
3.297  
3.296  
3.295  
3.294  
T
SW  
4
V
V
= 5.5V  
IN  
VOUT  
V
= 4.2V  
IN  
1
= 3.8V  
IN  
I
OUT  
2
CH1 100mV  
CH2 200mA Ω  
CH4 5.00V  
M 20.0µs A CH2  
19.20%  
88.0mA  
0
0.1  
0.2  
0.3  
I
(A)  
OUT  
T
Figure 31. LDO Load Regulation Across Input Voltage, VOUT3 = 3.3 V  
Figure 28. BUCK2 Response to Load Transient, IOUT2 from 20 mA to 180 mA,  
VOUT2 = 1.8 V, Auto Mode  
1.802  
1.801  
T
VOUT2  
–40°C  
1.800  
2
1.799  
1.798  
SW1  
3
1.797  
1.796  
1.795  
1.794  
1.793  
1.792  
+25°C  
+85°C  
VOUT1  
1
SW2  
4
CH1 5.00V  
CH3 5.00V  
CH2 5.00V  
CH4 5.00V  
M 400ns  
50.00%  
A
CH4  
1.90V  
0
0.1  
0.2  
0.3  
I
(A)  
OUT  
T
Figure 32. LDO Load Regulation Across Temperature, VIN3 = 3.6 V, VOUT3 = 1.8 V  
Figure 29. VOUT and SW Waveforms for BUCK1 and BUCK2 in PWM Mode  
Showing Out-of-Phase Operation  
Rev. H | Page 12 of 28  
Data Sheet  
ADP5033  
3.0  
I
= 10mA  
I
= 100µA  
OUT  
T
OUT  
I
= 1mA  
OUT  
= 100mA  
= 150mA  
= 300mA  
2.5  
2.0  
1.5  
1.0  
0.5  
0
I
OUT  
I
VIN  
OUT  
I
OUT  
VOUT  
1
3
CH1 20.0mV  
CH3 1.00V  
M 100µs  
28.40%  
A
CH3  
4.80V  
2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4  
V
(V)  
T
IN  
Figure 33. LDO Line Regulation Across Output Load, VOUT3 = 2.8 V  
Figure 36. LDO Response to Line Transient, Input Voltage from 4.5 V to 5 V,  
VOUT3 = 2.8 V  
60  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
V
= 5V  
IN  
55  
50  
45  
V
= 3.3V  
IN  
40  
35  
30  
25  
0.001  
0
0
0.05  
0.10  
0.15  
0.20  
0.25  
0.01  
0.1  
1
10  
100  
I
(mA)  
LOAD CURRENT (A)  
LOAD  
Figure 34. LDO Ground Current vs. Output Load, VIN3 = 3.3 V, VOUT3 = 2.8 V  
Figure 37. LDO Output Noise vs. Load Current, Across Input Voltage,  
VOUT3 = 2.8 V  
65  
T
V
= 5V  
IN  
60  
I
OUT  
V
= 3.3V  
IN  
55  
50  
45  
40  
35  
30  
2
1
VOUT  
25  
0.001  
CH1 100mV  
CH2 100mA Ω  
M 40.0µs A CH2  
19.20%  
52.0mA  
0.01  
0.1  
1
10  
100  
I
(mA)  
LOAD  
T
Figure 38. LDO Output Noise vs. Load Current, Across Input Voltage,  
VOUT3 = 3.0 V  
Figure 35. LDO Response to Load Transient, IOUT3 from 1 mA to 80 mA,  
VOUT3 = 2.8 V  
Rev. H | Page 13 of 28  
ADP5033  
Data Sheet  
0
0
100µA  
1mA  
10mA  
50mA  
100mA  
150mA  
100µA  
1mA  
10mA  
50mA  
100mA  
150mA  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–20  
–40  
–60  
–80  
–100  
–120  
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 39. LDO PSRR Across Output Load, VIN3 = 3.3 V, VOUT3 = 2.8 V  
Figure 41. LDO PSRR Across Output Load, VIN3 = 5.0 V, VOUT3 = 2.8 V  
0
–20  
–40  
–60  
0
100µA  
1mA  
10mA  
50mA  
100mA  
150mA  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–80  
100µA  
1mA  
10mA  
50mA  
–100  
100mA  
150mA  
100k  
FREQUENCY (Hz)  
–120  
10  
100  
1k  
10k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
Figure 40. LDO PSRR Across Output Load, VIN3 = 3.3 V, VOUT3 = 3.0 V  
Figure 42. LDO PSRR Across Output Load, VIN3 = 5.0 V, VOUT3 = 3.0 V  
Rev. H | Page 14 of 28  
Data Sheet  
ADP5033  
THEORY OF OPERATION  
VOUT1 VOUT2  
ENBK1  
ENBK2  
75Ω  
75Ω  
GM ERROR  
AMP  
GM ERROR  
AMP  
ADP5033  
VDDA  
PWM  
COMP  
PWM  
COMP  
SOFT START  
SOFT START  
VIN2  
VIN1  
I
I
LIMIT  
LIMIT  
PSM  
COMP  
PSM  
COMP  
PWM/  
PSM  
PWM/  
PSM  
CONTROL  
BUCK1  
CONTROL  
BUCK2  
LOW  
CURRENT  
LOW  
CURRENT  
SW2  
SW1  
DRIVER  
AND  
OSCILLATOR  
DRIVER  
AND  
ANTISHOOT  
THROUGH  
ANTISHOOT  
THROUGH  
SYSTEM  
UNDERVOLTAGE  
LOCKOUT  
OPMODE  
PGND2  
MODE  
SEL  
MODE2  
B
THERMAL  
SHUTDOWN  
ENLDO1  
600Ω  
Y
PGND1  
A
LDO  
UNDERVOLTAGE  
LOCK OUT  
LDO  
UNDERVOLTAGE  
LOCK OUT  
ENA  
ENB  
ENBK1  
R1  
R3  
R4  
ENBK2  
ENABLE  
AND MODE  
CONTROL  
ENLDO1  
ENLDO2  
LDO  
CONTROL  
LDO  
CONTROL  
VDDA  
VDDA  
ENLDO1  
600Ω  
R2  
VIN3  
AGND VOUT3  
VIN4  
VOUT4  
Figure 43. Functional Block Diagram  
The auto PWM/PSM mode transition is controlled independently  
for each buck regulator. The two bucks operate synchronized to  
each other.  
POWER MANAGEMENT UNIT  
The ADP5033 is a micropower management unit (µPMU)  
combing two step-down (buck) dc-to-dc convertors and two  
low dropout linear regulators (LDO). The high switching  
frequency and tiny 16-ball WLCSP package allow for a small  
power management solution.  
When a regulator is turned on, the output voltage ramp is  
controlled through a soft start circuit to avoid a large inrush  
current due to the charging of the output capacitors.  
Thermal Protection  
To combine these high performance regulators into the µPMU,  
there is a system controller allowing them to operate together.  
In the event that the junction temperature rises above 150°C,  
the thermal shutdown circuit turns off all the regulators. Extreme  
junction temperatures can be the result of high current opera-  
tion, poor circuit board design, or high ambient temperature.  
A 20°C hysteresis is included so that when thermal shutdown  
occurs, the regulators do not return to operation until the on-chip  
temperature drops below 130°C. When coming out of thermal  
shutdown, all regulators restart with soft start control.  
The buck regulators can operate in forced PWM mode if the  
MODE pin is at a logic high level. In forced PWM mode, the  
buck switching frequency is always constant and does not change  
with the load current. If the MODE pin is at logic low, the  
switching regulators operate in auto PWM/PSM mode. In this  
mode, the regulators operate at fixed PWM frequency when the  
load current is above the power saving current threshold. When  
the load current falls below the power save current threshold,  
the regulator in question enters PSM where the switching occurs in  
bursts. The burst repetition is a function of the current load and  
the output capacitor value. This operating mode reduces the  
switching and quiescent current losses.  
Rev. H | Page 15 of 28  
 
 
ADP5033  
Data Sheet  
Figure 44 shows the regulator activation timings for the ADP5033  
when both enables are connected to VINx. Figure 44 also shows  
the active pull-down activation.  
Undervoltage Lockout  
To protect against battery discharge, undervoltage lockout  
(UVLO) circuitry is integrated in the system. If the input voltage  
on VIN1 drops below a typical 2.15 V UVLO threshold, all  
channels shut down. In the buck channels, both the power switch  
and the synchronous rectifier turn off. When the voltage on VIN1  
rises above the UVLO threshold, the part is enabled once more.  
BUCK1 AND BUCK2  
The two bucks use a fixed frequency and high speed current  
mode architecture. The bucks operate with an input voltage of  
2.3 V to 5.5 V.  
Alternatively, the user can request a new device model with a  
UVLO set at a higher level, suitable for 5 V supply applications.  
For these models, the device reaches the turn-off threshold when  
the input supply drops to 3.65 V typical. To order a device with  
options other than the default options listed in the Ordering  
Guide section, contact your local Analog Devices, Inc., sales or  
distribution representative.  
Control Scheme  
The bucks operate with a fixed frequency, current mode PWM  
control architecture at medium to high loads for high efficiency  
but shift to a PSM control scheme at light loads to lower the  
regulation power losses. When operating in fixed frequency  
PWM mode, the duty cycle of the integrated switches is adjusted  
and regulates the output voltage. When operating in PSM at  
light loads, the output voltage is controlled in a hysteretic  
manner, with higher output voltage ripple. During part of this  
time, the converter is able to stop switching and enters an idle  
mode, which improves conversion efficiency.  
In case of a thermal or UVLO event, the active pull-down resistors  
(if factory enabled) are enabled to discharge the output capacitors  
quickly. The pull-down resistors remain engaged until the  
thermal fault event is no longer present or the input supply  
voltage falls below the VPOR voltage level. The typical value of  
PWM Mode  
V
POR is approximately 1 V.  
In PWM mode, the bucks operate at a fixed frequency of 3 MHz  
set by an internal oscillator. At the start of each oscillator cycle,  
the PFET switch is turned on, sending a positive voltage across  
the inductor. Current in the inductor increases until the current  
sense signal crosses the peak inductor current threshold that  
turns off the PFET switch and turns on the NFET synchronous  
rectifier. This sends a negative voltage across the inductor,  
causing the inductor current to decrease. The synchronous  
rectifier stays on for the rest of the cycle. The buck regulates the  
output voltage by adjusting the peak inductor current threshold.  
Enable/Shutdown  
The ADP5033 has two enable pins (ENA and ENB). A high  
level applied to the enable pins enables a certain selection of  
regulators defined by factory programming. For example, the  
ADP5033 can be factory programmed to enable BUCK1 and  
LDO2 with ENA and BUCK2 and LDO1 with ENB. When both  
enables are low, all regulators are turned off. When both enable  
pins are high, all regulators are turned on. All possible regulator  
combinations can be factory programmed to operate with the  
ENA and ENB pins.  
VIN1  
VUVLO  
VPOR  
VOUT1  
VOUT3  
VOUT4  
30µs (MIN)  
30µs (MIN)  
50µs (MIN)  
50µs (MIN)  
VOUT2  
BUCK1, LDO1, LDO2  
PULL-DOWNS  
BUCK2  
PULL-DOWN  
Figure 44. Regulators Sequencing on the ADP5033 (ENx = VINx)  
Rev. H | Page 16 of 28  
 
 
Data Sheet  
ADP5033  
PSM  
Current Limit  
The bucks smoothly transition to PSM operation when the load  
current decreases below the PSM current threshold. When either of  
the bucks enters PSM, an offset is induced in the PWM regulation  
level, which makes the output voltage rise. When the output  
voltage reaches a level approximately 1.5% above the PWM  
regulation level, PWM operation is turned off. At this point,  
both power switches are off, and the buck enters an idle mode.  
The output capacitor discharges until the output voltage falls to  
the PWM regulation voltage, at which point the device drives  
the inductor to make the output voltage rise again to the upper  
threshold. This process is repeated while the load current is  
below the PSM current threshold.  
Each buck has protection circuitry to limit the amount of  
positive current flowing through the PFET switch and the  
amount of negative current flowing through the synchronous  
rectifier. The positive current limit on the power switch limits  
the amount of current that can flow from the input to the output.  
The negative current limit prevents the inductor current from  
reversing direction and flowing out of the load.  
100% Duty Operation  
With a dropin input voltage or with an increase in load current,  
the buck may reach a limit where, even with the PFET switch on  
100% of the time, the output voltage drops below the desired  
output voltage. At this limit, the buck transitions to a mode where  
the PFET switch stays on 100% of the time. When the input  
conditions change again and the required duty cycle falls, the  
buck immediately restarts PWM regulation without allowing  
overshoot on the output voltage.  
The ADP5033 has a dedicated MODE pin controlling the PSM  
and PWM operation. A high logic level applied to the MODE  
pin forces both bucks to operate in PWM mode. A logic level  
low sets the bucks to operate in auto PSM/PWM.  
PSM Current Threshold  
Active Pull-Downs  
The PSM current threshold is set to 100 mA. The bucks employ a  
scheme that enables this current to remain accurately controlled,  
independent of input and output voltage levels. This scheme  
also ensures that there is very little hysteresis between the PSM  
current threshold for entry to and exit from the PSM. The PSM  
current threshold is optimized for excellent efficiency over all  
load currents.  
All regulators have optional, factory programmable, active pull-  
down resistors discharging the respective output capacitors when  
the regulators are disabled by the ENx pins or by a faulty condition.  
The pull-down resistors are connected between VOUTx and  
AGND. Active pull-downs are disabled when the regulators are  
turned on. The typical value of the pull-down resistor is 600 Ω for  
the LDOs and 75 Ω for the bucks. Figure 44 shows the activation  
timings for the active pull-down during regulator activation and  
deactivation.  
Oscillator/Phasing of Inductor Switching  
The ADP5033 ensures that both bucks operate at the same  
switching frequency when both bucks are in PWM mode.  
LDO1 AND LDO2  
Additionally, the ADP5033 ensures that when both bucks are in  
PWM mode, they operate out of phase, whereby the BUCK2 PFET  
starts conducting exactly half a clock period after the BUCK1  
PFET starts conducting.  
The ADP5033 contains two LDOs with low quiescent current  
and low dropout voltage, and provides up to 300 mA of output  
current. Drawing a low 25 μA quiescent current (typical) at no load  
makes the LDO ideal for battery-operated portable equipment.  
Short-Circuit Protection  
Each LDO operates with an input voltage of 1.7 V to 5.5 V. The  
wide operating range makes these LDOs suitable for cascading  
configurations where the LDO supply voltage is provided from  
one of the buck regulators.  
The bucks include frequency foldback to prevent output current  
runaway on a hard short. When the voltage at the feedback pin  
falls below half the target output voltage, indicating the possibility  
of a hard short at the output, the switching frequency is reduced  
to half the internal oscillator frequency. The reduction in the  
switching frequency allows more time for the inductor to  
discharge, preventing a runaway of output current.  
Each LDO also provides high power supply rejection ratio (PSRR),  
low output noise, and excellent line and load transient response  
with just a small 1 µF ceramic input and output capacitor.  
LDO1 is optimized to supply analog circuits because it offers  
better noise performance compared to LDO2. LDO1 should be  
used in applications where noise performance is critical.  
Soft Start  
The bucks have an internal soft start function that ramps the output  
voltage in a controlled manner upon startup, thereby limiting  
the inrush current. This prevents possible input voltage drops  
when a battery or a high impedance power source is connected  
to the input of the converter.  
Rev. H | Page 17 of 28  
 
ADP5033  
Data Sheet  
APPLICATIONS INFORMATION  
Output Capacitor  
BUCK EXTERNAL COMPONENT SELECTION  
Higher output capacitor values reduce the output voltage ripple  
and improve load transient response. When choosing this value,  
it is also important to account for the loss of capacitance due to  
output voltage dc bias.  
Trade-offs between performance parameters such as efficiency  
and transient response can be made by varying the choice of  
external components in the applications circuit, as shown in  
Figure 1.  
Ceramic capacitors are manufactured with a variety of dielectrics,  
each with a different behavior over temperature and applied  
voltage. Capacitors must have a dielectric adequate to ensure  
the minimum capacitance over the necessary temperature range  
and dc bias conditions. X5R or X7R dielectrics with a voltage  
rating of 6.3 V or 10 V are recommended for best performance.  
Y5V and Z5U dielectrics are not recommended for use with any  
dc-to-dc converter because of their poor temperature and dc  
bias characteristics.  
Inductor  
The high switching frequency of the ADP5033 bucks allows for  
the selection of small chip inductors. For best performance, use  
inductor values between 0.7 μH and 3 μH. Suggested inductors  
are shown in Table 9.  
The peak-to-peak inductor current ripple is calculated using  
the following equation:  
VOUT ×(VIN VOUT  
)
IRIPPLE  
=
V
IN × fSW ×L  
The worst-case capacitance accounting for capacitor variation  
over temperature, component tolerance, and voltage is calculated  
using the following equation:  
where:  
SW is the switching frequency.  
L is the inductor value.  
f
C
EFF = COUT × (1 − TEMPCO) × (1 − TOL)  
where:  
EFF is the effective capacitance at the operating voltage.  
The minimum dc current rating of the inductor must be greater  
than the inductor peak current. The inductor peak current is  
calculated using the following equation:  
C
TEMPCO is the worst-case capacitor temperature coefficient.  
TOL is the worst-case component tolerance.  
IRIPPLE  
2
IPEAK = ILOAD(MAX)  
+
In this example, the worst-case temperature coefficient (TEMPCO)  
over −40°C to +85°C is assumed to be 15% for an X5R dielectric.  
The tolerance of the capacitor (TOL) is assumed to be 10%, and  
Inductor conduction losses are caused by the flow of current  
through the inductor, which has an associated internal dc  
resistance (DCR). Larger sized inductors have smaller DCR,  
which may decrease inductor conduction losses. Inductor core  
losses are related to the magnetic permeability of the core material.  
Because the bucks are high switching frequency dc-to-dc  
converters, shielded ferrite core material is recommended for  
its low core losses and low EMI.  
C
OUT is 9.2 μF at 1.8 V, as shown in Figure 45.  
Substituting these values in the equation yields  
EFF = 9.2 μF × (1 − 0.15) × (1 − 0.1) ≈ 7.0 μF  
C
To guarantee the performance of the bucks, it is imperative that  
the effects of dc bias, temperature, and tolerances on the behavior  
of the capacitors be evaluated for each application.  
12  
Table 9. Suggested 1.0 μH Inductors  
Dimensions  
(mm)  
ISAT  
DCR  
10  
8
Vendor  
Murata  
Murata  
Model  
(mA) (mΩ)  
LQM2MPN1R0NG0B 2.0 × 1.6 × 0.9 1400 85  
LQM18FN1R0M00B 1.6 × 0.8 × 0.8 150  
26  
Taiyo  
Yuden  
BRC1608T1R0M  
1.6 × 0.8 × 0.8 520  
180  
6
Coilcraft  
TDK  
Coilcraft  
Toko  
EPL2014-102ML  
GLFR1608T1R0M-LR 1.6 × 0.8 × 0.8 230  
0603LS-102  
MDT2520-CN  
2.0 × 2.0 × 1.4 900  
59  
80  
81  
4
1.8 × 1.69 × 1.1 400  
2.5 × 2.0 × 1.2 1350 85  
2
0
0
1
2
3
4
5
6
DC BIAS VOLTAGE (V)  
Figure 45. Typical Capacitor Performance  
Rev. H | Page 18 of 28  
 
 
 
 
Data Sheet  
ADP5033  
The peak-to-peak output voltage ripple for the selected output  
capacitor and inductor values is calculated using the following  
equation:  
The effective capacitance needed for stability, which includes  
temperature and dc bias effects, is a minimum of 7 µF and a  
maximum of 40 µF.  
IRIPPLE  
8× fSW ×COUT  
VIN  
2 ×L×COUT  
The buck regulators require 10 µF output capacitors to guarantee  
stability and response to rapid load variations and to transition  
into and out of the PWM/PSM modes. In certain applications,  
where one or both buck regulators power a processor, the  
operating state is known because it is controlled by software.  
In this condition, the processor can drive the MODE pin  
according to the operating state; consequently, it is possible to  
reduce the output capacitor from 10 µF to 4.7 µF because the  
regulator does not expect a large load variation when working  
in PSM mode (see Figure 47).  
VRIPPLE  
=
(
2π× fSW  
)
Capacitors with lower equivalent series resistance (ESR) are  
preferred to guarantee low output voltage ripple, as shown in  
the following equation:  
VRIPPLE  
IRIPPLE  
ESRCOUT  
Table 10. Suggested 10 μF Capacitors  
Vendor  
Murata  
TDK  
Type  
X5R  
X5R  
X5R  
Model  
Case Size  
0603  
0603  
Voltage Rating (V)  
GRM188R60J106  
C1608JB0J106K  
ECJ1VB0J106M  
6.3  
6.3  
6.3  
Panasonic  
0603  
Rev. H | Page 19 of 28  
ADP5033  
Data Sheet  
Input Capacitor  
applied voltage. Capacitors must have a dielectric adequate to  
ensure the minimum capacitance over the necessary temperature  
range and dc bias conditions. X5R or X7R dielectrics with a voltage  
rating of 6.3 V or 10 V are recommended for best performance.  
Y5V and Z5U dielectrics are not recommended for use with any  
LDO because of their poor temperature and dc bias characteristics.  
Higher value input capacitors help to reduce the input voltage  
ripple and improve transient response. Maximum input  
capacitor current is calculated using the following equation:  
VOUT (VIN VOUT  
)
ICIN ILOAD(MAX)  
VIN  
Figure 46 depicts the capacitance vs. voltage bias characteristic  
of a 0402 1 µF, 10 V, X5R capacitor. The voltage stability of a  
capacitor is strongly influenced by the capacitor size and voltage  
rating. In general, a capacitor in a larger package or higher voltage  
rating exhibits better stability. The temperature variation of the  
X5R dielectric is about 15% over the −40°C to +85°C temperature  
range and is not a function of package or voltage rating.  
1.2  
To minimize supply noise, place the input capacitor as close to  
the VINx pin of the buck as possible. As with the output capacitor,  
a low ESR capacitor is recommended.  
The effective capacitance needed for stability, which includes  
temperature and dc bias effects, is a minimum of 3 µF and a  
maximum of 10 µF. A list of suggested capacitors is shown in  
Table 11.  
1.0  
0.8  
0.6  
0.4  
0.2  
0
Table 11. Suggested 4.7 μF Capacitors  
Case Voltage  
Vendor  
Type Model  
Size  
Rating (V)  
Murata  
X5R GRM188R60J475ME19D 0402 6.3  
Taiyo Yuden X5R  
Panasonic X5R  
JMK107BJ475  
ECJ-0EB0J475M  
0402 6.3  
0402 6.3  
LDO CAPACITOR SELECTION  
Output Capacitor  
The ADP5033 LDOs are designed for operation with small,  
space-saving ceramic capacitors, but function with most commonly  
used capacitors as long as care is taken with the ESR value. The  
ESR of the output capacitor affects the stability of the LDO control  
loop. A minimum of 0.70 µF capacitance with an ESR of 1 Ω or  
less is recommended to ensure the stability of the ADP5033.  
Transient response to changes in load current is also affected by  
output capacitance. Using a larger value of output capacitance  
improves the transient response of the ADP5033 to large changes  
in load current.  
0
1
2
3
4
5
6
DC BIAS VOLTAGE (V)  
Figure 46. Capacitance vs. Voltage Characteristic  
Use the following equation to determine the worst-case capacitance  
accounting for capacitor variation over temperature, component  
tolerance, and voltage:  
C
EFF = CBIAS × (1 − TEMPCO) × (1 − TOL)  
where:  
Input Bypass Capacitor  
C
BIAS is the effective capacitance at the operating voltage.  
Connecting a 1 µF capacitor from VIN3 and VIN4 to ground  
reduces the circuit sensitivity to printed circuit board (PCB)  
layout, especially when long input traces or high source  
impedance is encountered. If greater than 1 µF of output  
capacitance is required, increase the input capacitor to match it.  
TEMPCO is the worst-case capacitor temperature coefficient.  
TOL is the worst-case component tolerance.  
In this example, the worst-case temperature coefficient (TEMPCO)  
over −40°C to +85°C is assumed to be 15% for an X5R dielectric.  
The tolerance of the capacitor (TOL) is assumed to be 10%, and  
C
BIAS is 0.85 μF at 1.8 V, as shown in Figure 46.  
Substituting these values into the following equation,  
EFF = 0.85 μF × (1 − 0.15) × (1 − 0.1) ≈ 0.65 μF  
Table 12. Suggested 1.0 μF Capacitors  
Case  
Size  
Voltage  
Rating (V)  
Vendor  
Murata  
Type  
X5R  
X5R  
X5R  
X5R  
Model  
C
GRM155B30J105K  
C1005JB0J105KT  
ECJ0EB0J105K  
LMK105BJ105MV-F  
0402  
0402  
0402  
0402  
6.3  
6.3  
6.3  
10.0  
Therefore, the capacitor chosen in this example meets the  
minimum capacitance requirement of the LDO over  
temperature and tolerance at the chosen output voltage.  
TDK  
Panasonic  
Taiyo Yuden  
To guarantee the performance of the ADP5033, it is imperative  
that the effects of dc bias, temperature, and tolerances on the  
behavior of the capacitors be evaluated for each application.  
Input and Output Capacitor Properties  
Use any good quality ceramic capacitors with the ADP5033 as  
long as they meet the minimum capacitance and maximum ESR  
requirements. Ceramic capacitors are manufactured with a variety  
of dielectrics, each with a different behavior over temperature and  
Rev. H | Page 20 of 28  
 
 
 
Data Sheet  
ADP5033  
POWER DISSIPATION AND THERMAL CONSIDERATIONS  
The ADP5033 is a highly efficient micropower management  
unit (µPMU), and, in most cases, the power dissipated in the  
device is not a concern. However, if the device operates at high  
ambient temperatures and maximum loading condition, the  
junction temperature can reach the maximum allowable  
operating limit (125°C).  
BUCK REGULATOR POWER DISSIPATION  
The power loss of the buck regulator is approximated by  
LOSS = PDBUCK + PL  
where:  
DBUCK is the power dissipation on one of the ADP5033 buck  
P
(3)  
P
regulators.  
PL is the inductor power losses.  
When the temperature exceeds 150°C, the ADP5033 turns off  
all the regulators, allowing the device to cool down. When the  
die temperature falls below 130°C, the ADP5033 resumes  
normal operation.  
The inductor losses are external to the device, and they do not  
have any effect on the die temperature.  
This section provides guidelines to calculate the power dissi-  
pated in the device and ensure that the ADP5033 operates  
below the maximum allowable junction temperature.  
The inductor losses are estimated (without core losses) by  
PL IOUT1(RMS)2 × DCRL  
where:  
DCRL is the inductor series resistance.  
(4)  
The efficiency for each regulator on the ADP5033 is given by  
POUT  
PIN  
I
OUT1(RMS) is the rms load current of the buck regulator.  
(1)  
η =  
×100%  
r
IOUT1(RMS) = IOUT1 × 1+  
12  
(5)  
(6)  
where:  
η is the efficiency.  
IN is the input power.  
where r is the normalized inductor ripple current  
r = VOUT1 × (1 − D)/(IOUT1 × L × fSW  
where:  
L is the inductance.  
SW is the switching frequency.  
P
P
)
OUT is the output power.  
Power loss is given by  
P
LOSS = PIN POUT  
(2a)  
(2b)  
f
or  
D is the duty cycle.  
P
LOSS = POUT (1− η)/η  
D = VOUT1/VIN1  
(7)  
Power dissipation can be calculated in several ways. The most  
intuitive and practical is to measure the power dissipated at the  
input and all the outputs. Perform the measurements at the  
worst-case conditions (voltages, currents, and temperature).  
The difference between input and output power is dissipated in  
the device and the inductor. Use Equation 4 to derive the power  
lost in the inductor and, from this, use Equation 3 to calculate  
the power dissipation in the ADP5033 buck converter.  
The ADP5033 buck regulator power dissipation, PDBUCK, includes  
the power switch conductive losses, the switch losses, and the  
transition losses of each channel. There are other sources of  
loss, but these are generally less significant at high output load  
currents, where the thermal limit of the application is. Equation 8  
captures the calculation that must be made to estimate the  
power dissipation in the buck regulator.  
P
DBUCK = PCOND + PSW + PTRAN  
(8)  
A second method to estimate the power dissipation uses the  
efficiency curves provided for the buck regulator, and the power  
lost on each LDO can be calculated using Equation 12. When  
the buck efficiency is known, use Equation 2b to derive the total  
power lost in the buck regulator and inductor, use Equation 4 to  
derive the power lost in the inductor, and then calculate the  
power dissipation in the buck converter using Equation 3. Add  
the power dissipated in the buck and in the two LDOs to find  
the total dissipated power.  
The power switch conductive losses are due to the output current,  
IOUT1, flowing through the P-MOSFET and the N-MOSFET  
power switches that have internal resistance, RDSON-P and  
RDSON-N. The amount of conductive power loss is found by  
2
P
COND = [RDSON-P × D + RDSON-N × (1 − D)] × IOUT1(RMS) (9)  
where RDSON-P is approximately 0.2 Ω, and RDSON-N is approxi-  
mately 0.16 Ω at 25°C junction temperature and VIN1 = VIN2 =  
3.6 V. At VIN1 = VIN2 = 2.3 V, these values change to 0.31 Ω and  
0.21 Ω, respectively, and at VIN1 = VIN2 = 5.5 V, the values are  
0.16 Ω and 0.14 Ω, respectively.  
Note that the buck efficiency curves are typical values and may  
not be provided for all possible combinations of VIN, VOUT, and  
I
OUT. To account for these variations, it is necessary to include a  
safety margin when calculating the power dissipated in the buck.  
A third way to estimate the power dissipation is analytical and  
involves modeling the losses in the buck circuit provided by  
Equation 8 to Equation 11 and the losses in the LDO provided  
by Equation 12.  
Rev. H | Page 21 of 28  
 
 
ADP5033  
Data Sheet  
Switching losses are associated with the current drawn by the  
driver to turn on and turn off the power devices at the switching  
frequency. The amount of switching power loss is given by  
JUNCTION TEMPERATURE  
In cases where the board temperature TA is known, the thermal  
resistance parameter, θJA, can be used to estimate the junction  
temperature rise. TJ is calculated from TA and PD using the  
formula  
P
SW = (CGATE-P + CGATE-N) × VIN12 × fSW  
(10)  
where:  
C
C
GATE-P is the P-MOSFET gate capacitance.  
GATE-N is the N-MOSFET gate capacitance.  
TJ = TA + (PD × θJA)  
(14)  
The typical θJA value for the 16-ball, 0.5 mm pitch WLCSP is  
57°C/W (see Table 7). A very important factor to consider is  
that θJA is based on a 4-layer 4 in × 3 in, 2.5 oz copper, as per  
JEDEC standard, and real applications may use different sizes  
and layers. It is important to maximize the copper used to remove  
the heat from the device. Copper exposed to air dissipates heat  
better than copper used in the inner layers. The exposed pad  
should be connected to the ground plane with several vias.  
For the ADP5033, the total of (CGATE-P + CGATE-N) is approxi-  
mately 150 pF.  
The transition losses occur because the P-channel power  
MOSFET cannot be turned on or off instantaneously, and the  
SW node takes some time to slew from near ground to near  
VOUT1 (and from VOUT1 to ground). The amount of transition  
loss is calculated by  
If the case temperature can be measured, the junction tempera-  
ture is calculated by  
P
TRAN = VIN1 × IOUT1 × (tRISE + tFALL) × fSW  
(11)  
where tRISE and tFALL are the rise time and the fall time of the  
switching node, SW. For the ADP5033, the rise and fall times of  
SW are in the order of 5 ns.  
TJ = TC + (PD × ΨJB)  
(15)  
where TC is the case temperature and ΨJB is the junction-to-  
board thermal resistance provided in Table 7.  
If the preceding equations and parameters are used for estimat-  
ing the converter efficiency, it must be noted that the equations  
do not describe all of the converter losses, and the parameter  
values given are typical numbers. The converter performance  
also depends on the choice of passive components and board  
layout; therefore, a sufficient safety margin should be included  
in the estimate.  
When designing an application for a particular ambient  
temperature range, calculate the expected ADP5033 power  
dissipation (PD) due to the losses of all channels by using the  
Equation 8 to Equation 13. From this power calculation, the  
junction temperature, TJ, can be estimated using Equation 14.  
The reliable operation of the converter and the two LDO regulators  
can be achieved only if the estimated die junction temperature of  
the ADP5033 (Equation 14) is less than 125°C. Reliability and  
mean time between failures (MTBF) is highly affected by increas-  
ing the junction temperature. Additional information about  
product reliability can be found in the ADI Reliability Handbook,  
which can be found at www.analog.com/reliability_handbook.  
LDO Regulator Power Dissipation  
The power loss of an LDO regulator is given by  
P
DLDO = [(VIN VOUT) × ILOAD] + (VIN × IGND  
)
(12)  
where:  
I
V
LOAD is the load current of the LDO regulator.  
IN and VOUT are input and output voltages of the LDO,  
respectively.  
GND is the ground current of the LDO regulator.  
I
Power dissipation due to the ground current is small, and it  
can be ignored.  
The total power dissipation in the ADP5033 simplifies to  
PD = PDBUCK1 + PDBUCK2 + PDLDO1 + PDLDO2  
(13)  
Rev. H | Page 22 of 28  
 
Data Sheet  
ADP5033  
PCB LAYOUT GUIDELINES  
Poor layout can affect ADP5033 performance, causing electro-  
magnetic interference (EMI) and electromagnetic compatibility  
(EMC) problems, ground bounce, and voltage losses. Poor  
layout can also affect regulation and stability. A good layout is  
implemented using the following guidelines:  
Maximize the size of ground metal on the component side  
to help with thermal dissipation.  
Use a ground plane with several vias connecting to the  
component side ground to further reduce noise interfer-  
ence on sensitive circuit nodes.  
Connect VIN1 and VIN2 together close to the IC using  
short tracks.  
Place the inductor, input capacitor, and output capacitor  
close to the IC using short tracks. These components carry  
high switching frequencies, and large tracks act as antennas.  
Route the output voltage path away from the inductor and  
SW node to minimize noise and magnetic interference.  
Rev. H | Page 23 of 28  
 
ADP5033  
Data Sheet  
TYPICAL APPLICATION SCHEMATIC  
ADP5033  
PROCESSOR  
VCORE  
VCORE  
L1 1µH  
SW1  
VIN1  
VOUT1  
C1  
4.7µF  
C5  
4.7µF  
BUCK1  
PGND1  
ALWAYS ON  
ENA  
BK1  
BK2  
LD1  
MODE  
ACT  
ON  
OFF  
GPIO  
VIO  
ENB  
VIN2  
LD2  
VIO  
VIN:  
2.3V TO 5.5V  
L2 1µH  
C2  
4.7µF  
SW2  
VOUT2  
BUCK2  
LDO1  
C6  
4.7µF  
PGND2  
VOUT3  
ANALOG  
SUBSYSTEM  
VIN3  
VIN4  
FROM VIO  
(1.7V MIN)  
VANA  
C7  
1µF  
C3  
1µF  
VOUT4  
FROM VCORE  
(1.7V MIN)  
LDO2  
AGND  
VDIG  
C8  
1µF  
C4  
1µF  
Figure 47. Processor System Power Management with PSM/PWM Control  
Rev. H | Page 24 of 28  
 
 
Data Sheet  
ADP5033  
OUTLINE DIMENSIONS  
2.040  
2.000 SQ  
1.960  
4
3
2
1
A
B
C
D
BALL A1  
IDENTIFIER  
1.50  
REF  
0.50  
REF  
TOP VIEW  
(BALL SIDE DOWN)  
BOTTOM VIEW  
(BALL SIDE UP)  
0.390  
0.360  
0.330  
0.660  
0.600  
0.540  
SIDE VIEW  
COPLANARITY  
0.04  
0.360  
0.320  
0.280  
SEATING  
PLANE  
0.270  
0.240  
0.210  
Figure 48. 16-Ball Wafer Level Chip Scale Package [WLCSP]  
Back-Coating Included  
(CB-16-8)  
Dimensions shown in millimeters  
Rev. H | Page 25 of 28  
 
ADP5033  
Data Sheet  
ORDERING GUIDE  
ENA  
Temperature  
Range  
Output  
Controlled Package  
Package  
Option  
Marking  
Code  
Model1  
Voltage (V)2 Options  
Channels3  
Description  
ADP5033ACBZ-1-R7 −40°C to  
+125°C  
VOUT1: 1.2 V, UVLO: low,  
VOUT2: 3.3 V, pull-downs on  
VOUT3: 2.8 V, buck channels  
BUCK2,  
LDO1  
16-Ball WLCSP  
16-Ball WLCSP  
16-Ball WLCSP  
16-Ball WLCSP  
16-Ball WLCSP  
16-Ball WLCSP  
16-Ball WLCSP  
16-Ball WLCSP  
16-Ball WLCSP  
16-Ball WLCSP  
16-Ball WLCSP  
CB-16-8  
LHX  
LMD  
LNC  
LNR  
LQ3  
LQ5  
LRB  
LRC  
LRD  
LV6  
VOUT4: 1.8 V  
only  
ADP5033ACBZ-2-R7 −40°C to  
+125°C  
VOUT1: 1.8 V, UVLO: low,  
VOUT2: 2.8 V, pull-downs on  
VOUT3: 2.8 V, all channels  
VOUT4: 3.0 V  
VOUT1: 3.0 V, UVLO: low,  
VOUT2: 1.2 V, pull-downs on  
VOUT3: 1.8 V, all channels  
VOUT4: 3.0 V  
VOUT1: 0.9 V, UVLO: low,  
VOUT2: 0.9 V, pull-downs  
VOUT3: 3.0 V, disabled  
VOUT4: 2.8 V  
VOUT1: 3.3 V, UVLO: low,  
VOUT2: 1.8 V, pull-downs on  
VOUT3: 1.2 V, all channels  
VOUT4: 1.5 V  
VOUT1: 1.8 V, UVLO: low,  
VOUT2: 2.5 V, pull-downs on  
VOUT3: 3.0 V, all channels  
VOUT4: 3.0 V  
VOUT1: 1.1 V, UVLO: low,  
VOUT2: 1.8 V, pull-downs on  
VOUT3: 2.5 V, all channels  
VOUT4: 3.2 V  
VOUT1: 2.8 V, UVLO: low,  
VOUT2: 1.5 V, pull-downs on  
VOUT3: 2.8 V, all channels  
VOUT4: 1.8 V  
VOUT1: 1.1 V, UVLO: low,  
VOUT2: 1.8 V, pull-downs on  
VOUT3: 1.2 V, all channels  
VOUT4: 3.2 V  
BUCK1,  
BUCK2,  
LDO1  
CB-16-8  
CB-16-8  
CB-16-8  
CB-16-8  
CB-16-8  
CB-16-8  
CB-16-8  
CB-16-8  
CB-16-8  
CB-16-8  
ADP5033ACBZ-3-R7 −40°C to  
+125°C  
BUCK1,  
LDO1,  
LDO2  
ADP5033ACBZ-4-R7 −40°C to  
+125°C  
BUCK1,  
BUCK2  
ADP5033ACBZ-5-R7 −40°C to  
+125°C  
BUCK1  
ADP5033ACBZ-6-R7 −40°C to  
+125°C  
BUCK1,  
LDO1  
ADP5033ACBZ-7-R7 −40°C to  
+125°C  
BUCK1  
ADP5033ACBZ-8-R7 −40°C to  
+125°C  
BUCK1,  
BUCK2,  
LDO2  
ADP5033ACBZ-9-R7 −40°C to  
+125°C  
BUCK1  
ADP5033ACBZ-10-  
R7  
−40°C to  
+125°C  
VOUT1: 1.8 V, UVLO: low,  
VOUT2: 3.3 V, pull-downs on  
VOUT3: 1.8 V, all channels  
VOUT4: 3.3 V  
VOUT1: 1.2 V, UVLO: low,  
VOUT2: 3.3 V, pull-downs on  
VOUT3: 1.8 V, all channels  
VOUT4: 2.5 V  
BUCK1,  
LDO1  
ADP5033ACBZ-11-  
R7  
−40°C to  
+125°C  
BUCK1,  
BUCK2  
LV7  
ADP5033-1-EVALZ  
Evaluation Board  
for  
ADP5033ACBZ-  
1-R7  
1 Z = RoHS Compliant Part.  
2 For additional options, contact a local sales or distribution representative. Additional options available include the following:  
BUCK1 and BUCK2: 3.3 V, 3.0 V, 2.8 V, 2.5 V, 2.3 V, 2.0 V, 1.8 V, 1.6 V, 1.5 V, 1.4 V, 1.3 V, 1.2 V, 1.1 V, 1.0 V, or 0.9 V.  
LDO1 and LDO2: 3.3 V, 3.0 V, 2.8 V, 2.5 V, 2.25 V, 2 V, 1.8 V, 1.7 V, 1.6 V, 1.5 V, 1.2 V, 1.1 V, 1.0 V, 0.9 V, or 0.8 V.  
UVLO: low or high.  
In addition, for BUCK1, BUCK2, LDO1, and LDO2, active pull-down resistor is programmable to be either enabled or disabled.  
3 ENA activated channels (ENB controls the other channels).  
Rev. H | Page 26 of 28  
 
Data Sheet  
NOTES  
ADP5033  
Rev. H | Page 27 of 28  
ADP5033  
NOTES  
Data Sheet  
©2011–2019 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D09788-0-3/19(H)  
Rev. H | Page 28 of 28  

相关型号:

ADP5033ACBZ-9-R7

Dual 3 MHz, 800 mA Buck Regulators with Two 300 mA LDOs
ADI

ADP5034

Dual 3 MHz, 1200 mA Buck Regulators with Two 300 mA LDOs
ADI

ADP5034-1-EVALZ

Dual 3 MHz, 1200 mA Buck Regulators with Two 300 mA LDOs
ADI

ADP5034-2-EVALZ

Dual 3 MHz, 1200 mA Buck Regulators with Two 300 mA LDOs
ADI

ADP5034ACPZ-1-R7

Dual 3 MHz, 1200 mA Buck Regulators with Two 300 mA LDOs
ADI

ADP5034ACPZ-2-R7

Dual 3 MHz, 1200 mA Buck Regulators with Two 300 mA LDOs
ADI

ADP5034ACPZ-3-R7

Dual 3 MHz, 1200mA Buck Regulator with Two 300 mA LDOs
ADI

ADP5034ACPZ-R2

Dual 3 MHz, 1200mA Buck Regulator with Two 300 mA LDOs
ADI

ADP5034ACPZ-R7

Dual 3 MHz, 1200 mA Buck Regulators with Two 300 mA LDOs
ADI

ADP5034AREZ

Dual 3 MHz, 1200mA Buck Regulator with Two 300 mA LDOs
ADI

ADP5034AREZ-1

Dual 3 MHz, 1200mA Buck Regulator with Two 300 mA LDOs
ADI

ADP5034AREZ-1-R7

Dual 3 MHz, 1200mA Buck Regulator with Two 300 mA LDOs
ADI