ADA4899-1YRDZ-RL [ADI]

Unity Gain Stable, Ultralow Distortion, 1 nV/ Hz Voltage Noise, High Speed Op Amp; 单位增益稳定,超低失真, 1内华达州/ Hz的电压噪声,高速运算放大器
ADA4899-1YRDZ-RL
型号: ADA4899-1YRDZ-RL
厂家: ADI    ADI
描述:

Unity Gain Stable, Ultralow Distortion, 1 nV/ Hz Voltage Noise, High Speed Op Amp
单位增益稳定,超低失真, 1内华达州/ Hz的电压噪声,高速运算放大器

运算放大器
文件: 总20页 (文件大小:622K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Unity Gain Stable, Ultralow Distortion,  
1 nV/Hz Voltage Noise, High Speed Op Amp  
ADA4899-1  
FEATURES  
CONNECTION DIAGRAMS  
Unity gain stable  
ADA4899-1  
1
2
3
4
8
7
6
5
DISABLE  
FEEDBACK  
–IN  
+V  
Ultralow noise: 1 nV/√Hz, 2.6 pA/√Hz  
Ultralow distortion −117 dBc at 1 MHz  
High speed  
−3 dB bandwidth: 600 MHz (G = +1)  
Slew rate: 310 V/μs  
S
V
OUT  
NC  
–V  
+IN  
S
Offset voltage: 230 μV maximum  
Low input bias current: 100 nA  
Wide supply voltage range: 5 V to 12 V  
Supply current: 14.7 mA  
High performance pinout  
Disable mode  
NC = NO CONNECT  
Figure 1. 8-Lead LFCSP_VD (CP-8-2)  
ADA4899-1  
1
2
3
4
8
7
6
5
FEEDBACK  
–IN  
DISABLE  
+V  
S
+IN  
V
OUT  
APPLICATIONS  
A-to-D drivers  
–V  
–V  
S
S
Instrumentation  
Filters  
Figure 2. 8-Lead SOIC_N_EP (RD-8-1)  
IF and baseband amplifiers  
DAC buffers  
Optical electronics  
GENERAL DESCRIPTION  
The ADA4899-1 is an ultralow noise (1 nV/√Hz) and distortion  
(<−117 dBc @1 MHz) unity gain stable voltage feedback op  
amp, the combination of which makes it ideal for 16-bit and  
18-bit systems. The ADA4899-1 features a linear, low noise  
input stage and internal compensation that achieves high slew  
rates and low noise even at unity gain. ADIs proprietary next  
generation XFCB process and innovative circuit design enable  
such high performance amplifiers.  
The ADA4899-1 is available in a 3 mm × 3 mm LFCSP and a  
8-lead SOIC package. Both packages feature an exposed metal  
paddle that improves heat transfer to the ground plane. This is a  
significant improvement over traditional plastic packages. The  
ADA4899-1 is rated to work over the extended industrial  
temperature range, −40°C to +125°C.  
–40  
G = +1  
V
R
V
= ±5V  
= 1k  
S
–50  
–60  
L
= 2V p-p  
OUT  
The ADA4899-1 drives 100 Ω loads at breakthrough performance  
levels with only 15 mA of supply current. With the wide supply  
voltage range (4.5 V to 12 V), low offset voltage (230 μV  
maximum), wide bandwidth (600 MHz), and slew rate  
(310 V/μs), the ADA4899-1 is designed to work in the most  
demanding applications. The ADA4899-1 also features an input  
bias current cancellation mode, which reduces input bias  
current by a factor of 60.  
–70  
–80  
HD3  
–90  
HD2  
–100  
–110  
–120  
–130  
0.1  
1
10  
FREQUENCY (MHz)  
100  
Figure 3. Harmonic Distortion vs. Frequency  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2006 Analog Devices, Inc. All rights reserved.  
 
ADA4899-1  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Packaging Innovation ................................................................ 13  
DISABLE  
Applications....................................................................................... 1  
Connection Diagrams...................................................................... 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications with 5 V Supply..................................................... 3  
Specifications with +5 V Supply..................................................... 4  
Absolute Maximum Ratings............................................................ 5  
Maximum Power Dissipation ..................................................... 5  
ESD Caution.................................................................................. 5  
Typical Performance Characteristics ............................................. 6  
Test Circuits ..................................................................................... 12  
Theory of Operation ...................................................................... 13  
Pin .............................................................................. 13  
Applications..................................................................................... 14  
Unity Gain Operation................................................................ 14  
Recommended Values for Various Gains................................ 14  
Noise ............................................................................................ 15  
ADC Driver................................................................................. 15  
DISABLE  
Pin Operation ........................................................... 16  
ADA4899-1 MUX ...................................................................... 16  
Circuit Considerations .............................................................. 16  
Outline Dimensions....................................................................... 18  
Ordering Guide .......................................................................... 19  
REVISION HISTORY  
4/06—Rev. 0 to Rev. A  
Changes to Figure 2.......................................................................... 1  
10/05—Revision 0: Initial Version  
Rev. A | Page 2 of 20  
 
ADA4899-1  
SPECIFICATIONS WITH ± ± V SUPPLY  
TA = 25°C, G = +1, RL = 1 kΩ to ground, unless otherwise noted.  
Table 1.  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
DYNAMIC PERFORMANCE  
–3 dB Bandwidth  
VOUT = 25 mV p-p  
VOUT = 2 V p-p  
G = +2, VOUT = 2 V p-p  
VOUT = 5 V step  
600  
80  
35  
310  
50  
MHz  
MHz  
MHz  
V/μs  
ns  
Bandwidth for 0.1 dB Flatness  
Slew Rate  
Settling Time to 0.1%  
VOUT = 2 V step  
NOISE/DISTORTION PERFORMANCE  
Harmonic Distortion (dBc) HD2/HD3  
fC = 500 kHz, VOUT = 2 V p-p  
fC = 10 MHz, VOUT = 2 V p-p  
f = 100 kHz  
f = 100 kHz, DISABLE pin floating  
f = 100 kHz, DISABLE pin = +VS  
−123/−123  
−80/−86  
1.0  
dBc  
dBc  
nV/√Hz  
pA/√Hz  
pA/√Hz  
Input Voltage Noise  
Input Current Noise  
2.6  
5.2  
DC PERFORMANCE  
Input Offset Voltage  
Input Offset Voltage Drift  
Input Bias Current  
35  
5
−6  
−0.1  
3
230  
μV  
μV/°C  
μA  
DISABLE pin floating  
DISABLE pin = +VS  
−12  
−1  
μA  
Input Bias Current Drift  
Input Bias Offset Current  
Open-Loop Gain  
nA/°C  
μA  
dB  
0.05  
85  
0.7  
82  
98  
INPUT CHARACTERISTICS  
Input Resistance  
Differential mode  
Common mode  
4
7.3  
4.4  
kΩ  
MΩ  
pF  
V
Input Capacitance  
Input Common-Mode Voltage Range  
Common-Mode Rejection Ratio  
DISABLE PIN  
−3.7 to +3.7  
130  
dB  
DISABLE Input Threshold Voltage  
Turn-Off Time  
Output disabled  
<2.4  
100  
V
50% of DISABLE voltage to 10% of VOUT  
,
ns  
VIN = 0.5 V  
Turn-On Time  
50% of DISABLE voltage to 90% of VOUT  
,
40  
ns  
VIN = 0.5 V  
Input Bias Current  
DISABLE = +VS (enabled)  
17  
21  
μA  
μA  
DISABLE = −VS (disabled)  
−44  
−35  
OUTPUT CHARACTERISTICS  
Output Overdrive Recovery Time (Rise/Fall)  
Output Voltage Swing  
VIN = −2.5 V to +2.5 V, G = +2  
RL = 1 kΩ  
30/50  
ns  
V
−3.65 to +3.65 −3.7 to +3.7  
RL = 100 Ω  
−3.13 to +3.15 −3.25 to +3.25  
V
Short-Circuit Current  
Off Isolation  
Sinking/sourcing  
f = 1 MHz, DISABLE = −VS  
160/200  
−48  
mA  
dB  
POWER SUPPLY  
Operating Range  
4.5  
12  
V
Quiescent Current  
14.7  
1.8  
16.2  
2.1  
mA  
mA  
dB  
dB  
Quiescent Current (Disabled)  
Positive Power Supply Rejection Ratio  
Negative Power Supply Rejection Ratio  
DISABLE = −VS  
+VS = 4 V to 6 V (input referred)  
−VS = −6 V to −4 V (input referred)  
84  
87  
90  
93  
Rev. A | Page 3 of 20  
 
ADA4899-1  
SPECIFICATIONS WITH +± V SUPPLY  
VS = 5 V @ TA = 25°C, G = +1, RL = 1 kΩ to midsupply, unless otherwise noted.  
Table 2.  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
DYNAMIC PERFORMANCE  
–3 dB Bandwidth  
VOUT = 25 mV p-p  
VOUT = 2 V p-p  
G = +2, VOUT = 2 V p-p  
VOUT = 2 V step  
535  
60  
25  
185  
50  
MHz  
MHz  
MHz  
V/μs  
ns  
Bandwidth for 0.1 dB Flatness  
Slew Rate  
Settling Time to 0.1%  
VOUT = 2 V step  
NOISE/DISTORTION PERFORMANCE  
Harmonic Distortion (dBc) HD2/HD3  
fC = 500 kHz, VOUT = 1 V p-p  
fC = 10 MHz, VOUT = 1 V p-p  
f = 100 kHz  
f = 100 kHz, DISABLE pin floating  
f = 100 kHz, DISABLE pin = +VS  
−100/−113  
−89/−100  
1.0  
dBc  
dBc  
nV/√Hz  
pA/√Hz  
pA/√Hz  
Input Voltage Noise  
Input Current Noise  
2.6  
5.2  
DC PERFORMANCE  
Input Offset Voltage  
Input Offset Voltage Drift  
Input Bias Current  
5
5
210  
−12  
μV  
μV/°C  
μA  
DISABLE pin floating  
DISABLE pin = +VS  
−6  
−0.2  
0.05  
2.5  
80  
−1.5 μA  
μA  
Input Bias Offset Current  
Input Bias Offset Current Drift  
Open-Loop Gain  
nA/°C  
dB  
76  
90  
INPUT CHARACTERISTICS  
Input Resistance  
Differential mode  
Common mode  
4
7.7  
4.4  
1.3 to 3.7  
114  
kΩ  
MΩ  
pF  
V
Input Capacitance  
Input Common-Mode Voltage Range  
Common-Mode Rejection Ratio  
DISABLE PIN  
dB  
DISABLE Input Threshold Voltage  
Turn-Off Time  
Output disabled  
<2.4  
100  
V
50% of DISABLE voltage to 10% of VOUT  
,
,
ns  
VIN = 0.5 V  
50% of DISABLE voltage to 90% of VOUT  
VIN = 0.5 V  
Turn-On Time  
60  
ns  
Input Bias Current  
DISABLE = +VS (enabled)  
16  
18  
μA  
μA  
DISABLE = −VS (disabled)  
−42  
−33  
OUTPUT CHARACTERISTICS  
Overdrive Recovery Time (Rise/Fall)  
Output Voltage Swing  
VIN = 0 V to 2.5 V, G = +2  
RL = 1 kΩ  
50/70  
ns  
V
1.25 to 3.75 1.2 to 3.8  
RL = 100 Ω  
Sinking/sourcing  
f = 1 MHz, DISABLE = −VS  
1.4 to 3.6  
1.35 to 3.65  
60/80  
−48  
V
mA  
dB  
Short-Circuit Current  
Off Isolation  
POWER SUPPLY  
Operating Range  
Quiescent Current  
4.5  
84  
12  
16  
1.7  
V
14.3  
1.5  
90  
mA  
mA  
dB  
dB  
Quiescent Current (Disabled)  
Positive Power Supply Rejection Ratio  
Negative Power Supply Rejection Ratio +VS = 5 V, −VS= −0.5 V to +0.5 V (input referred) 86  
DISABLE = −VS  
+VS = 4.5 V to 5.5 V, −VS = 0 V (input referred)  
90  
Rev. A | Page 4 of 20  
 
ADA4899-1  
ABSOLUTE MAXIMUM RATINGS  
Table 3.  
The difference between the total drive power and the load  
power is the drive power dissipated in the package.  
Parameter  
Rating  
Supply Voltage  
12.6 V  
PD = Quiescent Power + (Total Drive Power Load Power)  
Power Dissipation  
See Figure 4  
1.2 V  
2
Differential Input Voltage  
Differential Input Current  
Storage Temperature Range  
Operating Temperature Range  
Lead Temperature (Soldering 10 sec)  
Junction Temperature  
VS VOUT  
VOUT  
RL  
PD =  
(
VS ×IS  
)
+
×
10 mA  
2
RL  
–65°C to +150°C  
–40°C to +125°C  
300°C  
RMS output voltages should be considered. If RL is referenced to  
VS–, as in single-supply operation, then the total drive power is  
VS × IOUT. If the rms signal levels are indeterminate, consider the  
worst case, when VOUT = VS/4 for RL to midsupply:  
150°C  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
2
(
VS /4  
RL  
)
PD =  
(
VS ×IS +  
)
In single-supply operation with RL referenced to VS–, worst case  
is VOUT = VS/2.  
Airflow increases heat dissipation, effectively reducing θJA. In  
addition, more metal directly in contact with the package leads  
from metal traces, through holes, ground, and power planes  
reduces the θJA. Soldering the exposed paddle to the ground  
plane significantly reduces the overall thermal resistance of the  
package.  
MAXIMUM POWER DISSIPATION  
The maximum safe power dissipation in the ADA4899-1  
package is limited by the associated rise in junction temperature  
(TJ) on the die. The plastic encapsulating the die locally reaches  
the junction temperature. At approximately 150°C, which is the  
glass transition temperature, the plastic changes its properties.  
Even temporarily exceeding this temperature limit may change  
the stresses that the package exerts on the die, permanently  
shifting the parametric performance of the ADA4899-1.  
Exceeding a junction temperature of 150°C for an extended  
period can result in changes in silicon devices, potentially  
causing failure.  
Figure 4 shows the maximum safe power dissipation in the  
package vs. the ambient temperature for the exposed paddle  
(e-pad) SOIC-8 (70°C/W) and LFCSP (70°C/W) packages on a  
JEDEC standard 4-layer board. θJA values are approximations.  
4.0  
3.5  
3.0  
2.5  
2.0  
The still-air thermal properties of the package and PCB (θJA),  
the ambient temperature (TA), and the total power dissipated in  
the package (PD) determine the junction temperature of the die.  
The junction temperature is calculated as  
TJ = TA + (PD × θJA)  
1.5  
LFCSP AND SOIC  
The power dissipated in the package (PD) is the sum of the  
quiescent power dissipation and the power dissipated in the  
package due to the load drive for all outputs. The quiescent  
power is the voltage between the supply pins (VS) times the  
quiescent current (IS). Assuming the load (RL) is referenced to  
midsupply, the total drive power is VS/2 × IOUT, some of which is  
dissipated in the package and some in the load (VOUT × IOUT).  
1.0  
0.5  
0.0  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
AMBIENT TEMPERATURE (°C)  
Figure 4. Maximum Power Dissipation vs. Ambient Temperature  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. A | Page 5 of 20  
 
 
ADA4899-1  
TYPICAL PERFORMANCE CHARACTERISTICS  
3
3
0
V
= ±5V  
G = +1  
S
G = +1  
R
= 100  
R
V
= 1kΩ  
L
L
V
= 25mV p-p  
= 25mV p-p  
OUT  
OUT  
G = –1  
0
–3  
G = +2  
G = +5  
–3  
–6  
–9  
–12  
V
= ±5V  
S
G = +10  
–6  
V
= +5V  
S
–9  
–12  
1
10  
100  
1000  
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 8. Small Signal Frequency Response for Various Supply Voltages  
Figure 5. Small Signal Frequency Response for Various Gains  
3
6
C
R
= 15pF  
L
V
R
V
= ±5V  
= 100Ω  
G = +1  
S
C
= 15pF  
L
= 10  
R
V
= 1kΩ  
SNUB  
L
L
G = +1  
G = –1  
= 25mV p-p  
= 25mV p-p  
OUT  
OUT  
3
0
0
–3  
C = 5pF  
L
C
= 2pF  
L
G = +2  
G = +5  
C
= 0pF  
L
–3  
–6  
–9  
–12  
G = +10  
–6  
–9  
–12  
1
10  
100  
1000  
10  
100  
FREQUENCY (MHz)  
1000  
FREQUENCY (MHz)  
Figure 6. Small Signal Frequency Response for Various Gains  
Figure 9. Small Signal Frequency Response for Capacitive Loads  
3
5.0  
V
V
= ±5V  
S
T = +125°C  
= 25mV p-p  
OUT  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
G = +1  
= 100Ω  
G = +1  
R
0
L
R
= 1kΩ  
L
G = +1  
V
= ±5V  
T = –40°C  
S
R
= 1kΩ  
–3  
–6  
L
V
= 25mV p-p  
OUT  
G = +1  
R
R
= 1kΩ  
L
= 10Ω  
SNUB  
G = +2  
R
= 1kΩ  
L
–9  
–12  
10  
100  
1000  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
FREQUENCY (MHz)  
CAPACITIVE LOAD (pF)  
Figure 7. Small Signal Frequency Response for Various Temperatures  
Figure 10. Small Signal Frequency Response Peaking vs.  
Capacitive Load for Various Gains  
Rev. A | Page 6 of 20  
 
ADA4899-1  
0.1  
0
3
0
G = +1  
V
= ±5V  
S
R
= 100  
L
V
= 1V p-p  
OUT  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
V
= 4V p-p  
OUT  
V
= 100mV p-p  
OUT  
–3  
–6  
–9  
–12  
V
= 7V p-p  
OUT  
V
= 2V p-p  
OUT  
G = +2  
V
= ±5V  
S
R
= 150Ω  
L
1
10  
FREQUENCY (MHz)  
100  
1
10  
100  
1000  
FREQUENCY (MHz)  
Figure 11. 0.1 dB Flatness for Various Output Voltages  
Figure 14. Large Signal Frequency Response for Various Output Voltages  
3
0
100  
80  
60  
40  
20  
0
180  
150  
120  
90  
G = +1  
V
R
= ±5V  
= 100Ω  
S
R
= 1kΩ  
L
L
V
= 2V p-p  
OUT  
V
= ±5V  
S
–3  
–6  
–9  
–12  
V
= +5V  
S
60  
30  
–20  
0
10  
100  
FREQUENCY (MHz)  
1000  
0.001  
0.01  
0.1  
1
10  
100  
1000  
FREQUENCY (MHz)  
Figure 15. Open-Loop Gain/Phase vs. Frequency  
Figure 12. Large Signal Frequency Response for Various Supply Voltages  
1k  
100  
10  
10  
1
DISABLE = 5V  
DISABLE = NC  
1
10  
0.1  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
100  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 16. Input Current Noise vs. Frequency  
Figure 13. Voltage Noise vs. Frequency  
Rev. A | Page 7 of 20  
 
ADA4899-1  
–40  
–40  
–50  
G = +1  
G = +5  
V
= ±5V  
R
= 1kΩ  
S
L
–50  
–60  
R
= 1kΩ  
V
V
= ±5V  
L
S
V
= 2V p-p  
= 2V p-p  
OUT  
OUT  
–60  
–70  
–70  
–80  
–80  
HD3  
–90  
HD2  
HD2  
–90  
–100  
–110  
–120  
–130  
–100  
–110  
–120  
HD3  
0.1  
1
10  
FREQUENCY (MHz)  
100  
0.1  
1
10  
FREQUENCY (MHz)  
100  
Figure 20. Harmonic Distortion vs. Frequency  
Figure 17. Harmonic Distortion vs. Frequency  
–40  
–50  
–40  
–50  
G = +5  
= ±5V  
G = +1  
= 1kΩ  
f = 5MHz  
V
R
S
L
R
= 100Ω  
L
V
= 2V p-p  
OUT  
HD2  
SOIC  
–60  
–60  
–V ON PIN 4  
S
–70  
–70  
HD2  
LFCSP  
HD2  
SOIC  
–80  
–80  
–V ON PIN 5  
HD2  
S
–90  
–90  
HD3  
–100  
–110  
–120  
HD3  
–100  
–110  
–120  
SOIC  
HD3  
LFCSP  
–V ON PIN 4 OR PIN 5  
S
0.1  
10  
10  
100  
1
2
3
4
5
6
7
8
FREQUENCY (MHz)  
OUTPUT AMPLITUDE (V p-p)  
Figure 18. Harmonic Distortion vs. Output Amplitude  
Figure 21. Harmonic Distortion vs. Frequency for  
Various Pinouts and Packages  
–40  
–50  
–40  
–50  
G = +1  
G = +1  
R
V
= 1kΩ  
= 5V  
V
= ±5V  
L
S
R
= 100Ω  
S
L
V
= 2V p-p  
OUT  
–60  
–60  
HD3  
–70  
–70  
V
= 2V p-p  
OUT  
HD2  
–80  
–80  
HD2  
SOIC  
HD2  
LFCSP  
–90  
–90  
HD2  
HD3  
–100  
–110  
–120  
–100  
–110  
–120  
HD3  
V
= 1V p-p  
OUT  
LFCSP OR SOIC  
0.1  
1
10  
FREQUENCY (MHz)  
100  
0.1  
10  
10  
100  
FREQUENCY (MHz)  
Figure 19. Harmonic Distortion vs. Frequency  
Figure 22. Harmonic Distortion vs. Frequency for Both Packages  
Rev. A | Page 8 of 20  
ADA4899-1  
0.10  
0.08  
0.06  
0.04  
0.02  
0
0.10  
0.08  
0.06  
0.04  
0.02  
0
G = +1  
G = +1  
C
= 15pF  
C = 5pF  
L
L
V
= ±5V  
V
= ±5V  
S
S
C
R
= 15pF  
L
R
= 1kΩ  
R
= 1kΩ  
L
L
= 10Ω  
SNUB  
C
= 0pF  
L
C
= 15pF  
L
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
C
= 0pF  
L
C
R
= 15pF  
L
= 10Ω  
SNUB  
C
= 5pF  
10  
L
0
5
10  
15  
0
5
15  
TIME (ns)  
TIME (ns)  
Figure 23. Small Signal Transient Response for  
Various Capacitive Loads (Rising Edge)  
Figure 26. Small Signal Transient Response for  
Various Capacitive Loads (Falling Edge)  
0.08  
0.06  
0.04  
0.02  
0
1.5  
1.0  
R
V
= 1kΩ  
= ±5V  
L
S
R
V
= 1k  
= ±5V  
G = +2  
L
S
G = +2  
G = +10  
G = +5  
G = +5  
0.5  
G = +10  
0
–0.02  
–0.04  
–0.06  
–0.08  
–0.5  
–1.0  
–1.5  
0
10  
20  
30  
40  
50  
TIME (ns)  
60  
70  
80  
90  
100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
TIME (ns)  
Figure 24. Small Signal Transient Response for Various Gains  
Figure 27. Large Signal Transient Response for Various Gains  
1.5  
1.5  
G = +1  
G = +1  
R
= 100Ω  
R = 1kΩ  
L
L
1.0  
0.5  
1.0  
0.5  
V
= ±5V  
V = ±5V  
S
S
V
= +5V  
S
V
= +5V  
S
0
0
–0.5  
–1.0  
–1.5  
–0.5  
–1.0  
–1.5  
0
10  
20  
30  
40  
50  
TIME (ns)  
60  
70  
80  
90  
100  
0
10  
20  
30  
40  
50  
TIME (ns)  
60  
70  
80  
90  
100  
Figure 25. Large Signal Transient Response for Various Supply Voltages  
Figure 28. Large Signal Transient Response for Various Supply Voltages  
Rev. A | Page 9 of 20  
ADA4899-1  
1.5  
1.0  
0.5  
0.3  
0.2  
0.1  
0
10  
1
G = +1  
= ±5V  
DISABLE = NC  
V
S
INPUT  
ERROR  
0
–0.5  
–1.0  
–1.5  
0.1  
OUTPUT  
–0.1  
–0.2  
–0.3  
0.01  
G = +1  
V
= ±5V  
S
R
= 1k  
L
0.001  
0
25  
50  
75  
100  
125  
150  
0.001  
0.01  
0.1  
1
10  
100  
1000  
TIME (ns)  
FREQUENCY (MHz)  
Figure 29. Settling Time  
Figure 32. Output Impedance vs. Frequency  
1.5  
1.0  
0.3  
0.2  
0.1  
0
100k  
10k  
1k  
G = +1  
V
= ±5V  
S
DISABLE = –5V  
INPUT  
0.5  
0
OUTPUT  
ERROR  
–0.5  
–1.0  
–1.5  
–0.1  
–0.2  
–0.3  
100  
G = +5  
V
= ±5V  
S
R
= 1k  
L
10  
0.1  
0
25  
50  
75  
100  
125  
150  
1
10  
100  
1000  
TIME (ns)  
FREQUENCY (MHz)  
Figure 30. Settling Time  
Figure 33. Output Impedance vs. Frequency (Disabled)  
100k  
10k  
1k  
–20  
G = +1  
= ±5V  
DISABLE = NC  
G = +1  
R
R
= 1kΩ  
= 1kΩ  
–30  
–40  
V
L
F
S
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
–130  
–140  
V
= +5V  
S
100  
V
= ±5V  
S
10  
0.1  
1
10  
100  
1000  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
1G  
FREQUENCY (MHz)  
FREQUENCY (Hz)  
Figure 31. Input Impedance vs. Frequency  
Figure 34. Common-Mode Rejection vs. Frequency  
Rev. A | Page 10 of 20  
ADA4899-1  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
N: 4651  
MEAN: –4.92µV  
SD: 29.22µV  
500  
400  
300  
200  
100  
0
V
= 5V  
S
–PSR  
+PSR  
–200  
–150  
–100  
–50  
0
50  
100  
150  
200  
0.001  
0.01  
0.1  
1
10  
100  
1000  
VOLTAGE OFFSET (µV)  
FREQUENCY (MHz)  
Figure 38. Input Offset Voltage Distribution (VS = 5 V)  
Figure 35. Power Supply Rejection  
–22  
–28  
–34  
–40  
–46  
–52  
–58  
–64  
–70  
N: 4655  
V
= ±5V  
S
500  
400  
300  
200  
100  
0
MEAN: –34.62µV  
SD: 28.94µV  
= ±5V  
DISABLE = –5V  
V
S
–200  
–150  
–100  
–50  
0
50  
100  
150  
200  
0.1  
1
10  
100  
1000  
VOLTAGE OFFSET (µV)  
FREQUENCY (MHz)  
Figure 39. Input Offset Voltage Distribution(VS = 5 V)  
Figure 36. Off Isolation vs. Frequency  
N: 4653  
MEAN: –0.083µA  
SD: 0.13µA  
700  
V
= ±5V  
S
600  
500  
400  
300  
200  
100  
0
–0.9  
–0.6  
–0.3  
0
0.3  
0.6  
0.9  
INPUT BIAS CURRENT (µA)  
Figure 37. Input Bias Current Distribution  
Rev. A | Page 11 of 20  
ADA4899-1  
TEST CIRCUITS  
+V  
S
+V  
S
10µF  
10µF  
R
R
F
G
0.1µF  
0.1µF  
V
OUT  
V
OUT  
R
SNUB  
V
24.9  
IN  
C
R
L
L
V
IN  
R
L
R
10µF  
T
0.1µF  
10µF  
49.9Ω  
0.1µF  
–V  
S
–V  
S
Figure 40. Typical Noninverting Load Configuration  
Figure 43. Typical Capacitive Load Configuration  
+V  
S
+V  
S
10µF  
AC  
49.9  
10Ω  
10Ω  
1kΩ  
10Ω  
10Ω  
1kΩ  
0.1µF  
V
V
OUT  
OUT  
R
R
L
L
AC  
10µF  
0.1µF  
49.9Ω  
–V  
–V  
S
S
Figure 41. Positive Power Supply Rejection  
Figure 44. Negative Power Supply Rejection  
+V  
S
10µF  
1k  
1kΩ  
1kΩ  
0.1µF  
V
V
OUT  
IN  
53.6Ω  
R
L
1kΩ  
10µF  
0.1µF  
–V  
S
Figure 42. Common-Mode Rejection  
Rev. A | Page 12 of 20  
 
 
ADA4899-1  
THEORY OF OPERATION  
The ADA4899-1 is a voltage feedback op amp that combines  
unity gain stability with a 1 nV/√Hz input noise. It employs a  
highly linear input stage that can maintain greater than −80 dBc  
(@ 2 V p-p) distortion out to 10 MHz while in a unity gain  
configuration. This rare combination of low gain stability,  
input referred noise, and extremely low distortion is the result  
of Analog Devices proprietary op amp architecture and high  
speed complementary bipolar processing technology.  
Both the SOIC and LFCSP have modified pinouts to improve  
heavy load second harmonic distortion performance. The intent  
of both is to isolate the negative supply pin from the noninverting  
input. The LFCSP accomplishes this by rotating the standard  
8-lead package pinout counterclockwise by one pin. This puts  
the supply pins and output pins on one side of the package and  
the input pins on the other. The SOIC is slightly different with  
the intent of both isolating the inputs from the supply pins and  
giving the user the option of using the ADA4899-1 in a  
standard SOIC board layout with little or no modification.  
Taking the unused Pin 5 and making it a second negative supply  
pin allows for both an input isolated layout and a traditional  
layout to be supported.  
The simplified ADA4899-1 topology, shown in Figure 45, is a  
single gain stage with a unity gain output buffer. It has over  
80 dB of open-loop gain and maintains precision specifications  
such as CMRR, PSRR, and offset to levels that are normally  
associated with topologies having two or more gain stages.  
DISABLE PIN  
A three-state input pin is provided on the ADA4899-1 for a  
high impedance disable and an optional input bias current  
cancellation circuit. The high impedance output allows several  
ADA4899-1s to drive the same ADC or output line time-  
V
gm  
BUFFER  
OUT  
R1  
R
L
C
C
Figure 45. ADA4899-1 Topology  
DISABLE  
interleaved. Pulling the  
pin low activates the high  
A pair of internally connected diodes limits the differential  
voltage between the noninverting input and the inverting input  
of the ADA4899-1. Each set of diodes has two series diodes,  
which are connected in antiparallel. This limits the differential  
voltage between the inputs to approximately 1.2 V. All of the  
ADA4899-1 pins are ESD protected with voltage-limiting diodes  
connected between both rails. The protection diodes can handle  
10 mA. Currents should be limited through these diodes to 10 mA  
or less by using a series limiting resistor.  
impedance state. See Table 7 for threshold levels. When the  
DISABLE  
pin is left floating (open), the ADA4899-1 operates  
DISABLE  
normally. With the  
pin pulled within 0.7 V of the  
positive supply, an optional input bias current cancellation  
circuit is turned on, which lowers the input bias current to less  
than 200 nA. In this mode, the user can drive the ADA4899-1  
from a high dc source impedance and still maintain minimal  
output-referred offset without having to use impedance  
matching techniques. In addition, the ADA4899-1 can be  
ac-coupled while setting the bias point on the input with a high  
dc impedance network. The input bias current cancellation  
circuit doubles the input referred current noise, but this effect is  
minimal as long as the wideband impedances are kept low (see  
Figure 16).  
PACKAGING INNOVATION  
The ADA4899-1 is available in both a SOIC and a LFCSP, each  
of which has a thermal pad that allows the device to run cooler,  
thereby increasing reliability. To help avoid routing around this  
pad in board layout, both packages have an extra output pin on  
the opposite side of the packages for ease in connecting a feedback  
network to the inputs. The secondary output pin also isolates  
the interaction of any capacitive load on the output and the self-  
inductance of the package and bond wire from the feedback  
loop. While using the secondary output for feedback, inductance in  
the primary output helps to isolate capacitive loads from the  
output impedance of the amplifier.  
Rev. A | Page 13 of 20  
 
 
ADA4899-1  
APPLICATIONS  
3
0
UNITY GAIN OPERATION  
G = +1  
= 100  
R
L
50mV p-p  
The ADA4899-1 schematic for unity gain configuration is  
nearly a textbook example (see Figure 46). The only exception is  
the small 24.9 Ω series resistor at the noninverting input. The  
series resistor is only required in unity gain configurations;  
higher gains negate the need for the resistor. In Table 4, it can be  
seen that the overall noise contribution of the amplifier and the  
24.9 Ω resistor is equivalent to the noise of a single 87 Ω resistor.  
25mV p-p  
200mV p-p  
–3  
–6  
–9  
–12  
100mV p-p  
Figure 47 shows the small signal frequency response for the  
unity gain amplifier shown in Figure 46.  
+V  
S
1
10  
100  
FREQUENCY (MHz)  
1000  
10000  
0.1µF  
Figure 47. Small Signal Frequency Response for Various Output Voltages  
V
OUT  
24.9  
V
IN  
RECOMMENDED VALUES FOR VARIOUS GAINS  
0.1µF  
Table 4 provides a handy reference for determining various  
gains and associated performance. For noise gains greater than  
one, the series resistor RS is not required. Resistors RF and RG  
are kept low to minimize their contribution to the overall noise  
performance of the amplifier.  
–V  
S
Figure 46. Unity Gain Schematic  
Table 4. Conditions: VS = 5 Vꢀ TA = 25°Cꢀ RL = 1 kΩ  
−3 dB SS BW (MHz)  
(25 mV p-p)  
Slew Rate (V/μs)  
(2 V Step)  
ADA4899-1 Voltage  
Noise (nV/√Hz)  
Total Voltage  
Noise (nV/√Hz)  
Gain  
+1  
RF (Ω)  
0
RG (Ω)  
NA  
RS (Ω)  
24.9  
0
605  
294  
277  
77  
274  
265  
253  
227  
161  
1
2
2
5
1.2  
2.7  
2.7  
6.5  
13.3  
−1  
100  
100  
200  
453  
100  
+2  
100  
0
+5  
+10  
49.9  
49.9  
0
0
37  
10  
Rev. A | Page 14 of 20  
 
 
 
 
ADA4899-1  
ADC DRIVER  
NOISE  
The ultralow noise and distortion performance of the  
ADA4899-1 makes it an excellent candidate for driving 16-bit  
ADCs. The schematic for a single-ended input buffer using the  
ADA4899-1 and the AD7677, a 1 MSPS, 16-bit ADC, is shown  
in Figure 49. Table 5 shows the performance data of the  
ADA4899-1 and the AD7677.  
To analyze the noise performance of an amplifier circuit, first  
identify the noise sources, then determine if the source has a  
significant contribution to the overall noise performance of the  
amplifier. To simplify the noise calculations, noise spectral  
densities were used, rather than actual voltages to leave  
bandwidth out of the expressions (noise spectral density, which  
is generally expressed in nV/Hz, is equivalent to the noise in a  
1 Hz bandwidth).  
+5V  
+5V  
15  
The noise model shown in Figure 48 has six individual noise  
sources: the Johnson noise of the three resistors, the op amp  
voltage noise, and the current noise in each input of the  
amplifier. Each noise source has its own contribution to the  
noise at the output. Noise is generally specified referred to input  
(RTI), but it is often simpler to calculate the noise referred to  
the output (RTO) and then divide by the noise gain to obtain  
the RTI noise.  
IN+  
25Ω  
ANALOG  
2.7nF  
AD7677  
+
INPUT  
ADA4899-1  
IN–  
REF  
–5V  
+5V  
–5V +2.5V  
REF  
15Ω  
25Ω  
ANALOG  
INPUT  
2.7nF  
ADA4899-1  
V
N, R2  
R2  
–5V  
GAIN FROM  
"A" TO OUTPUT  
=
Figure 49. Single-Ended Input ADC Driver  
4kTR2  
NOISE GAIN =  
V
I
N, R1  
N–  
R2  
R1  
B
A
R1  
R3  
NG = 1 +  
Table 5. ADA4899-1ꢀ Single-Ended Driver for AD7677  
16-Bitꢀ 1 MSPSꢀ fc = 50 kHz  
V
N
4kTR1  
V
V
OUT  
N, R3  
Parameter  
Measurement (dB)  
I
N+  
GAIN FROM  
"B" TO OUTPUT  
R2  
R1  
Second Harmonic Distortion  
−116.5  
= –  
4kTR3  
Third Harmonic Distortion  
−111.9  
THD  
SFDR  
SNR  
−108.6  
+101.4  
+92.6  
2
R2  
R1 + R2  
2
2
V
+ 4kTR3 + 4kTR1  
N
2
2
R1 × R2  
2
R1  
R1 + R2  
2
RTI NOISE =  
+I  
R3 + I  
N–  
+ 4kTR2  
N+  
R1 + R2  
The ADA4899-1 configured as a single-ended-to-differential  
driver for the AD7677 is shown in Figure 50. Table 6 shows the  
associated performance.  
RTO NOISE = NG × RTI NOISE  
Figure 48. Op Amp Noise Analysis Model  
All resistors have a Johnson noise that is calculated by  
+5V  
(4kBTR)  
+2.5V REF  
590  
where:  
ANALOG  
INPUT  
+5V  
590Ω  
590Ω  
15Ω  
15Ω  
ADA4899-1  
590Ω  
k is Boltzmann’s Constant (1.38 × 10–23 J/K).  
T is the absolute temperature in Kelvin.  
B is the bandwidth in Hz.  
2.7nF  
2.7nF  
–5V  
IN+  
AD7677  
+5V  
IN–  
REF  
590Ω  
590Ω  
–5V +2.5V  
+2.5V  
REF  
R is the resistance in ohms.  
ADA4899-1  
–5V  
A simple relationship that is easy to remember is that a 50 Ω  
resistor generates a Johnson noise of 1 nVHz at 25°C.  
Figure 50. Single-Ended-to-Differential ADC Driver  
Table 6. ADA4899-1ꢀ Single Ended-to-Differential Driver for  
AD7677 16-Bitꢀ 1 MSPSꢀ fc = 500 kHz  
In applications where noise sensitivity is critical, care must be  
taken not to introduce other significant noise sources to the  
amplifier. Each resistor is a noise source. Attention to the  
following areas is critical to maintain low noise performance:  
design, layout, and component selection. A summary of noise  
performance for the amplifier and associated resistors can be  
seen in Table 4.  
Parameter  
Measurement (dB)  
THD  
SFDR  
SNR  
−92.7  
+91.8  
+90.6  
Rev. A | Page 15 of 20  
 
 
 
 
 
 
ADA4899-1  
DISABLE PIN OPERATION  
An AD8137 differential amplifier is used as a level translator  
that converts the TTL input to a complementary 3 V output to  
The ADA4899-1  
pin performs three functions:  
DISABLE  
enable, disable, and reduction of the input bias current. When  
the pin is brought to within 0.7 V of the positive  
drive the  
pins of the ADA4899-1s. The transient  
DISABLE  
response for the 2:1 mux is shown in Figure 52.  
DISABLE  
supply, the input bias current circuit is enabled. This reduces  
the input bias current by a factor of 100. In this state, the input  
current noise doubles from 2.6 pA to 5.2 pA/Hz. Table 7  
1
outlines the  
pin operation.  
DISABLE  
Table 7.  
Pin Truth Table  
DISABLE  
Supply Voltage  
Disable  
Enable  
5 V  
+5 V  
−5 to +2.4  
Open  
0 to 2.4  
Open  
2
Low Input Bias Current  
4.3 to 5  
4.3 to 5  
CH1 = 500mV/DIV  
CH2 = 5V/DIV  
200ns/DIV  
ADA4899-1 MUX  
With a true output disable, the ADA4899-1 can be used in  
multiplexer applications. The outputs of two ADA4899-1s are  
wired together to form a 2:1 mux. Figure 51 shows the 2:1 mux  
schematic.  
Figure 52. ADA4899-1 2:1 Mux Transient Response  
CIRCUIT CONSIDERATIONS  
Careful and deliberate attention to detail when laying out the  
ADA4899-1 board yields optimal performance. Power supply  
bypassing, parasitic capacitance, and component selection all  
contribute to the overall performance of the amplifier.  
+5V  
0.1µF  
ADA4899-1  
PCB Layout  
Because the ADA4899-1 can operate up to 600 MHz, it is  
essential that RF board layout techniques be employed. All  
ground and power planes under the pins of the ADA4899-1  
should be cleared of copper to prevent the formation of  
parasitic capacitance between the input pins to ground and the  
output pins to ground. A single mounting pad on a SOIC  
footprint can add as much as 0.2 pF of capacitance to ground if  
the ground plane is not cleared from under the mounting pads.  
The low distortion pinout of the ADA4899-1 reduces the  
distance between the output and the inverting input of the  
amplifier. This helps minimize the parasitic inductance and  
capacitance of the feedback path, which reduces ringing and  
second harmonic distortion.  
0.1µF  
1V p-p  
2k  
–5V  
15MHz  
+5V  
2.2µF  
+
0.1µF  
DISABLE  
50Ω  
50Ω  
1kΩ  
50Ω  
1MHz  
0V TO 5V  
V
OUT  
R
AD8137  
T
50Ω  
DISABLE  
+5V  
2.2µF  
0.1µF  
+
–5V  
0.1µF  
2kΩ  
1.02kΩ  
Power Supply Bypassing  
V
= 2.50V  
Power supply bypassing for the ADA4899-1 has been optimized  
for frequency response and distortion performance. Figure 40  
shows the recommended values and location of the bypass  
capacitors. Power supply bypassing is critical for stability,  
frequency response, distortion, and PSR performance. The  
0.1 μF capacitors shown in Figure 40 should be as close to the  
supply pins of the ADA4899-1 as possible. The electrolytic  
capacitors should be directly adjacent to the 0.1 μF capacitors.  
The capacitor between the two supplies helps improve PSR and  
distortion performance. In some cases, additional paralleled  
capacitors can help improve frequency and transient response.  
REF  
ADA4899-1  
0.1µF  
–5V  
2V p-p  
15MHz  
Figure 51. ADA4899-1 2:1 Mux Schematic  
Rev. A | Page 16 of 20  
 
 
 
 
ADA4899-1  
Grounding  
Ground and power planes should be used where possible.  
Ground and power planes reduce the resistance and inductance  
of the power planes and ground returns. The returns for the  
input, output terminations, bypass capacitors, and RG should all  
be kept as close to the ADA4899-1 as possible. The output load  
ground and the bypass capacitor grounds should be returned to  
the same point on the ground plane to minimize parasitic trace  
inductance, ringing, and overshoot and to improve distortion  
performance.  
The ADA4899-1 packages feature an exposed paddle. For  
optimum electrical and thermal performance, solder this  
paddle to ground. For more information on high-speed circuit  
design, see A Practical Guide to High-Speed Printed-Circuit-  
Board Layout.  
Rev. A | Page 17 of 20  
ADA4899-1  
OUTLINE DIMENSIONS  
5.00 (0.197)  
4.90 (0.193)  
4.80 (0.189)  
2.29 (0.092)  
4.00 (0.157)  
3.90 (0.154)  
3.80 (0.150)  
2.29 (0.092)  
8
5
6.20 (0.244)  
6.00 (0.236)  
5.80 (0.228)  
TOP VIEW  
1
4
BOTTOM VIEW  
(PINS UP)  
1.27 (0.05)  
BSC  
0.50 (0.020)  
0.25 (0.010)  
45°  
1.65 (0.065)  
1.25 (0.049)  
1.75 (0.069)  
1.35 (0.053)  
1.27 (0.050)  
0.40 (0.016)  
0.10 (0.004)  
MAX  
SEATING  
PLANE  
8°  
0°  
0.25 (0.0098)  
0.17 (0.0068)  
0.51 (0.020)  
0.31 (0.012)  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETER; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 53. 8-Lead Standard Small Outline Package with Exposed Pad [SOIC_N_EP]  
(RD-8-1)  
Dimensions shown in millimeters and (inches)  
0.50  
0.40  
0.30  
3.00  
BSC SQ  
0.60 MAX  
8
PIN 1  
INDICATOR  
1
PIN 1  
INDICATOR  
1.89  
1.74  
1.59  
2.75  
BSC SQ  
1.50  
REF  
TOP  
VIEW  
0.50  
BSC  
4
5
1.60  
1.45  
1.30  
0.70 MAX  
0.65TYP  
12° MAX  
0.90 MAX  
0.85 NOM  
0.05 MAX  
0.01 NOM  
SEATING  
PLANE  
0.30  
0.23  
0.18  
0.20 REF  
Figure 54. 8-Lead Lead Frame Chip Scale Package [LFCSP_VD]  
3 mm × 3 mm Body, Very Thin, Dual Lead  
(CP-8-2)  
Dimensions shown in millimeters  
Rev. A | Page 18 of 20  
 
ADA4899-1  
ORDERING GUIDE  
Model  
Temperature Range  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
Package Description  
8-Lead SOIC_N_EP  
8-Lead SOIC_N_EP  
8-Lead SOIC_N_EP  
8-Lead LFCSP_VD  
8-Lead LFCSP_VD  
8-Lead LFCSP_VD  
Package Option  
RD-8-1  
RD-8-1  
RD-8-1  
CP-8-2  
Branding  
Ordering Quantity  
ADA4899-1YRDZ1  
ADA4899-1YRDZ-R71  
ADA4899-1YRDZ-RL1  
ADA4899-1YCPZ-R21  
ADA4899-1YCPZ-R71  
ADA4899-1YCPZ-RL1  
1
1,000  
2,500  
250  
1,500  
5,000  
CP-8-2  
CP-8-2  
HBC  
HBC  
1 Z = Pb-free part.  
Rev. A | Page 19 of 20  
 
 
ADA4899-1  
NOTES  
©2006 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D05720-0-4/06(A)  
Rev. A | Page 20 of 20  

相关型号:

ADA4899-1_07

Unity-Gain Stable, Ultralow Distortion, 1 nV/☆Hz Voltage Noise, High Speed Op Amp
ADI

ADA4922-1

High Voltage, Differential 18-Bit ADC Driver
ADI

ADA4922-1ACP-EBZ

High Voltage, Differential 18-Bit ADC Driver
ADI

ADA4922-1ACPZ-R2

High Voltage, Differential 18-Bit ADC Driver
ADI

ADA4922-1ACPZ-RL

High Voltage, Differential 18-Bit ADC Driver
ADI

ADA4922-1ACPZ-RL7

High Voltage, Differential 18-Bit ADC Driver
ADI

ADA4922-1ARDZ

High Voltage, Differential 18-Bit ADC Driver
ADI

ADA4922-1ARDZ-R7

High Voltage, Differential 18-Bit ADC Driver
ADI

ADA4922-1ARDZ-RL

High Voltage, Differential 18-Bit ADC Driver
ADI

ADA4922-1_16

High Voltage, Differential 18-Bit ADC Driver
ADI

ADA4927-1

Ultralow Distortion Current Feedback Differential ADC Driver
ADI

ADA4927-1XCPZ

IC LINE DRIVER, QCC16, 3 X 3 MM, ROHS COMPLIANT, MO-220VEED2, LFCSP-16, Line Driver or Receiver
ADI