AD9629_17 [ADI]

12-Bit, 20 MSPS/40 MSPS/65 MSPS/80 MSPS, 1.8 V Analog-to-Digital Converter;
AD9629_17
型号: AD9629_17
厂家: ADI    ADI
描述:

12-Bit, 20 MSPS/40 MSPS/65 MSPS/80 MSPS, 1.8 V Analog-to-Digital Converter

文件: 总33页 (文件大小:906K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
12-Bit, 20 MSPS/40 MSPS/65 MSPS/80 MSPS,  
1.8 V Analog-to-Digital Converter  
Data Sheet  
AD9629  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
AVDD  
GND  
SDIO SCLK CSB  
DRVDD  
1.8 V analog supply operation  
1.8 V to 3.3 V output supply  
SNR  
RBIAS  
VCM  
SPI  
71.3 dBFS at 9.7 MHz input  
OR  
PROGRAMMING DATA  
69.0 dBFS at 200 MHz input  
SFDR  
95 dBc at 9.7 MHz input  
83 dBc at 200 MHz input  
Low power  
D11 (MSB)  
VIN+  
VIN–  
ADC  
CORE  
D0 (LSB)  
DCO  
VREF  
SENSE  
45 mW at 20 MSPS  
85 mW at 80 MSPS  
AD9629  
REF  
SELECT  
Differential input with 700 MHz bandwidth  
On-chip voltage reference and sample-and-hold circuit  
2 V p-p differential analog input  
DNL = 0.16 LSB  
MODE  
DIVIDE BY  
1, 2, 4  
CONTROLS  
CLK+ CLK–  
PDWN DFS MODE  
Serial port control options  
Figure 1.  
Offset binary, gray code, or twos complement data format  
Integer 1, 2, or 4 input clock divider  
Built-in selectable digital test pattern generation  
Energy-saving power-down modes  
Data clock out with programmable clock and data alignment  
PRODUCT HIGHLIGHTS  
1. The AD9629 operates from a single 1.8 V analog power  
supply and features a separate digital output driver supply  
to accommodate 1.8 V to 3.3 V logic families.  
2. The sample-and-hold circuit maintains excellent  
performance for input frequencies up to 200 MHz and is  
designed for low cost, low power, and ease of use.  
3. A standard serial port interface (SPI) supports various  
product features and functions, such as data output format-  
ting, internal clock divider, power-down, DCO and data  
output (D11 to D0) timing and offset adjustments, and  
voltage reference modes.  
4. The AD9629 is packaged in a 32-lead RoHS compliant  
LFCSP that is pin compatible with the AD9609 10-bit ADC  
and the AD9649 14-bit ADC, enabling a simple migration  
path between 10-bit and 14-bit converters sampling from  
20 MSPS to 80 MSPS.  
APPLICATIONS  
Communications  
Diversity radio systems  
Multimode digital receivers  
GSM, EDGE, W-CDMA, LTE, CDMA2000, WiMAX, TD-SCDMA  
Smart antenna systems  
Battery-powered instruments  
Hand held scope meters  
Portable medical imaging  
Ultrasound  
Radar/LIDAR  
PET/SPECT imaging  
Rev. B  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2009–2017 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
AD9629* PRODUCT PAGE QUICK LINKS  
Last Content Update: 02/23/2017  
COMPARABLE PARTS  
View a parametric search of comparable parts.  
REFERENCE DESIGNS  
CN0272  
EVALUATION KITS  
REFERENCE MATERIALS  
AD9629 Evaluation Board  
Technical Articles  
Improve The Design Of Your Passive Wideband ADC  
Front-End Network  
DOCUMENTATION  
MS-2210: Designing Power Supplies for High Speed ADC  
Application Notes  
AN-1142: Techniques for High Speed ADC PCB Layout  
AN-586: LVDS Outputs for High Speed A/D Converters  
DESIGN RESOURCES  
AD9629 Material Declaration  
PCN-PDN Information  
Quality And Reliability  
Symbols and Footprints  
AN-742: Frequency Domain Response of Switched-  
Capacitor ADCs  
AN-807: Multicarrier WCDMA Feasibility  
AN-808: Multicarrier CDMA2000 Feasibility  
AN-812: MicroController-Based Serial Port Interface (SPI)  
Boot Circuit  
DISCUSSIONS  
AN-827: A Resonant Approach to Interfacing Amplifiers to  
View all AD9629 EngineerZone Discussions.  
Switched-Capacitor ADCs  
AN-878: High Speed ADC SPI Control Software  
SAMPLE AND BUY  
Visit the product page to see pricing options.  
AN-935: Designing an ADC Transformer-Coupled Front  
End  
Data Sheet  
TECHNICAL SUPPORT  
Submit a technical question or find your regional support  
number.  
AD9629: 12-Bit, 20 MSPS/40 MSPS/65 MSPS/80 MSPS, 1.8  
V Analog-to-Digital Converter Data Sheet  
User Guides  
Evaluating the AD9266/AD9649/AD9629/AD9609 Analog-  
to-Digital Converters  
DOCUMENT FEEDBACK  
Submit feedback for this data sheet.  
TOOLS AND SIMULATIONS  
Visual Analog  
AD9629 IBIS Models  
This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not  
trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.  
AD9629  
Data Sheet  
TABLE OF CONTENTS  
Features .....................................................................................1  
Voltage Reference................................................................19  
Clock Input Considerations.................................................20  
Power Dissipation and Standby Mode.................................21  
Digital Outputs....................................................................22  
Timing.................................................................................22  
Built-In Self-Test (BIST) and Output Test ...............................23  
Built-In Self-Test (BIST)......................................................23  
Output Test Modes..............................................................23  
Serial Port Interface (SPI)........................................................24  
Configuration Using the SPI................................................24  
Hardware Interface..............................................................25  
Configuration Without the SPI............................................25  
SPI Accessible Features........................................................25  
Memory Map...........................................................................26  
Reading the Memory Map Register Table............................26  
Open Locations ...................................................................26  
Default Values......................................................................26  
Memory Map Register Table................................................27  
Memory Map Register Descriptions....................................29  
Applications Information ........................................................30  
Design Guidelines................................................................30  
Outline Dimensions................................................................31  
Ordering Guide ...................................................................31  
Applications...............................................................................1  
Functional Block Diagram.........................................................1  
Product Highlights ....................................................................1  
Revision History ........................................................................2  
General Description ..................................................................3  
Specifications.............................................................................4  
DC Specifications...................................................................4  
AC Specifications...................................................................5  
Digital Specifications .............................................................6  
Switching Specifications.........................................................7  
Timing Specifications.............................................................8  
Absolute Maximum Ratings......................................................9  
Thermal Characteristics.........................................................9  
ESD Caution..........................................................................9  
Pin Configuration and Function Descriptions.........................10  
Typical Performance Characteristics .......................................11  
AD9629-80...........................................................................11  
AD9629-65...........................................................................13  
AD9629-40...........................................................................14  
AD9629-20...........................................................................15  
Equivalent Circuits ..................................................................16  
Theory of Operation................................................................17  
Analog Input Considerations...............................................17  
REVISION HISTORY  
2/2017—Rev. A to Rev B  
Added Endnote 1, Table 16......................................................28  
Changes to Power and Ground RecommendationsSection.....30  
Added Soft Reset Section.........................................................30  
6/2015—Rev. 0 to Rev. A  
Change to Product Highlights Section.......................................1  
Changes to Figure 3 and Table 8..............................................10  
Updated Outline Dimensions..................................................31  
Changes to Ordering Guide.....................................................31  
10/2009—Revision 0: Initial Version  
Rev. B | Page 2 of 32  
 
Data Sheet  
AD9629  
GENERAL DESCRIPTION  
deterministic and pseudorandom patterns, along with custom  
user-defined test patterns entered via the serial port interface(SPI).  
The AD9629 is a monolithic, single channel 1.8 V supply, 12-bit,  
20 MSPS/40 MSPS/65MSPS/80 MSPS analog-to-digital conver-  
ter (ADC). It features a high performance sample-and-hold  
circuit and on-chip voltage reference.  
A differential clock inputwith optional1, 2, or 4 divide ratios  
controls all internalconversioncycles.  
The product uses multistage differential pipeline architecture  
with output error correction logic to provide 12-bit accuracy at  
80 MSPS data rates and to guarantee no missing codes over the  
full operating temperature range.  
The digital output data is presented inoffset binary, gray code,  
or twos complement format. A data output clock (DCO) is  
provided to ensure proper latch timingwith receivinglogic.Both  
1.8 V and 3.3 V CMOS levels are supported.  
The ADC contains several features designed to maximize  
flexibility and minimize system cost, such as programmable  
clock and data alignment and programmable digital test pattern  
generation. The available digital test patterns include built-in  
The AD9629 is available in a 32-lead RoHS compliant LFCSP  
and is specified over the industrial temperature range (−40°C  
to +85°C).  
Rev. B | Page 3 of 32  
 
AD9629  
Data Sheet  
SPECIFICATIONS  
DC SPECIFICATIONS  
AVDD = 1.8 V; DRVDD = 1.8 V, maximum sample rate, 2 V p-p differential input, 1.0 V internal reference; AIN = −1.0 dBFS, 50% duty  
cycle clock, unless otherwise noted.  
Table 1.  
AD9629-20/AD9629-40  
Temp Min Typ Max  
AD9629-65  
Typ  
AD9629-80  
Parameter  
Min  
Max  
Min  
Typ  
Max  
Unit  
RESOLUTION  
Full  
12  
12  
12  
Bits  
ACCURACY  
No Missing Codes  
Offset Error  
Gain Error1  
Full  
Full  
Full  
Full  
25°C  
Full  
25°C  
Guaranteed  
Guaranteed  
Guaranteed  
−0.40 +0.05  
−1.5  
+0.50  
−0.40 +0.05 +0.50 −0.40 +0.05 +0.50 % FSR  
−1.5 −1.5 % FSR  
0.30 LSB  
Differential Nonlinearity (DNL)2  
0.25  
0.25  
0.30  
0.11  
0.11  
2
0.11  
0.16  
LSB  
0.35 LSB  
LSB  
Integral Nonlinearity (INL)2  
0.40  
0.13  
2
0.16  
2
TEMPERATURE DRIFT  
Offset Error  
Full  
ppm/°C  
INTERNAL VOLTAGE REFERENCE  
Output Voltage (1 V Mode)  
Load Regulation Error at 1.0 mA  
INPUT-REFERRED NOISE  
VREF = 1.0 V  
Full  
Full  
0.984 0.996  
2
1.008  
0.984 0.996 1.008 0.984 0.996 1.008  
V
2
2
mV  
25°C  
0.25  
0.25  
0.25  
LSB rms  
ANALOG INPUT  
Input Span, VREF = 1.0 V  
Input Capacitance 3  
Input Common-Mode Voltage  
Input Common-Mode Range  
REFERENCE INPUT RESISTANCE  
POWER SUPPLIES  
Full  
Full  
Full  
Full  
Full  
2
6
0.9  
2
6
0.9  
2
6
0.9  
V p-p  
pF  
V
0.5  
1.3  
0.5  
1.3  
0.5  
1.3  
V
7.5  
7.5  
1.8  
7.5  
1.8  
kΩ  
Supply Voltage  
AVDD  
DRVDD  
Full  
Full  
1.7  
1.7  
1.8  
1.9  
3.6  
1.7  
1.7  
1.9  
3.6  
1.7  
1.7  
1.9  
3.6  
V
V
Supply Current  
IAVDD2  
IDRVDD2 (1.8 V)  
IDRVDD2 (3.3 V)  
Full  
Full  
Full  
24.9/31.1 26.7/33.2  
1.5/2.5  
2.7/4.7  
41.2  
4.2  
7.5  
46.0  
46.8  
5.0  
9.0  
50.0  
mA  
mA  
mA  
POWER CONSUMPTION  
DC Input  
Sine Wave Input2 (DRVDD = 1.8 V) Full  
Sine Wave Input2 (DRVDD = 3.3 V) Full  
Full  
45.0/56.7  
47.5/60.5 50.7/65.0  
53.7/71.7  
34  
75  
85.2  
93  
114  
34  
mW  
mW  
mW  
mW  
mW  
81.7  
98.9  
34  
86.0  
100  
Standby Power 4  
Full  
Full  
Power-Down Power  
0.5  
0.5  
0.5  
1 Measured with 1.0 V external reference.  
2 Measured with a 10 MHz input frequency at rated sample rate, full-scale sine wave, with approximately 5 pF loading on each output bit.  
3 Input capacitance refers to the effective capacitance between one differential input pin and AGND.  
4 Standby power is measured with a dc input and the clock active.  
Rev. B | Page 4 of 32  
 
 
Data Sheet  
AD9629  
AC SPECIFICATIONS  
AVDD = 1.8 V; DRVDD = 1.8 V, maximum sample rate, 2 V p-p differential input, 1.0 V internal reference; AIN = −1.0 dBFS, 50% duty  
cycle clock, unless otherwise noted.  
Table 2.  
AD9629-20/AD9629-40  
AD9629-65  
Min Typ Max Min Typ  
AD9629-80  
Max Unit  
Parameter1  
Temp Min  
Typ  
Max  
SIGNAL-TO-NOISE RATIO (SNR)  
fIN = 9.7 MHz  
fIN = 30.5 MHz  
25°C  
25°C  
Full  
25°C  
Full  
25°C  
71.4  
71.2  
71.3  
71.2  
71.3  
71.2  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
70.5/70.7  
70.6  
70.5  
fIN = 70 MHz  
70.5/71.0  
71.0  
69.0  
70.9  
69.0  
70.3  
70.2  
fIN = 200 MHz  
SIGNAL-TO-NOISE-AND-DISTORTION (SINAD)  
fIN = 9.7 MHz  
25°C  
25°C  
Full  
25°C  
Full  
71.4  
71.2  
71.3  
71.2  
71.2  
71.1  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
fIN = 30.5 MHz  
70.5/70.6  
fIN = 70 MHz  
70.4/70.9  
68  
70.9  
68  
70.8  
68  
fIN = 200 MHz  
EFFECTIVE NUMBER OF BITS (ENOB)  
fIN = 9.7 MHz  
fIN = 30.5 MHz  
fIN = 70 MHz  
25°C  
25°C  
25°C  
25°C  
25°C  
11.4/11.6  
11.4/11.5  
11.4/11.5  
11.0  
11.6  
11.5  
11.5  
11.0  
11.5  
11.5  
11.5  
11.0  
Bits  
Bits  
Bits  
Bits  
fIN = 200 MHz  
WORST SECOND OR THIRD HARMONIC  
fIN = 9.7 MHz  
fIN = 30.5 MHz  
25°C  
25°C  
Full  
−97  
−95  
−97  
−95  
−95  
−94  
dBc  
dBc  
dBc  
−83  
−83  
fIN = 70 MHz  
25°C  
Full  
25°C  
−96/−94  
−83  
−95  
−83  
−95  
−83  
dBc  
−81 dBc  
dBc  
fIN = 200 MHz  
SPURIOUS-FREE DYNAMIC RANGE (SFDR)  
fIN = 9.7 MHz  
fIN = 30.5 MHz  
25°C  
25°C  
Full  
25°C  
Full  
97  
96/95  
97  
95  
95  
93  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
83  
83  
fIN = 70 MHz  
96/94  
83  
95  
83  
95  
83  
81  
fIN = 200 MHz  
25°C  
WORST OTHER (HARMONIC OR SPUR)  
fIN = 9.7 MHz  
fIN = 30.5 MHz  
25°C  
25°C  
Full  
−100  
−100  
−100  
−100  
−100  
−100  
dBc  
dBc  
dBc  
−92/−91  
−93  
fIN = 70 MHz  
25°C  
Full  
25°C  
−97/−100  
−92  
−100  
−92  
−100  
−92  
dBc  
−89 dBc  
dBc  
fIN = 200 MHz  
TWO-TONE SFDR  
fIN = 30.5 MHz(−7 dBFS), 32.5 MHz (−7 dBFS)  
ANALOG INPUT BANDWIDTH  
25°C  
25°C  
90  
700  
90  
700  
90  
700  
dBc  
MHz  
1 See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions.  
Rev. B | Page 5 of 32  
 
AD9629  
Data Sheet  
DIGITAL SPECIFICATIONS  
AVDD = 1.8 V; DRVDD = 1.8 V, maximum sample rate, 2 V p-p differential input, 1.0 V internal reference; AIN = −1.0 dBFS, 50% duty  
cycle clock, unless otherwise noted.  
Table 3.  
AD9629-20/AD9629-40/AD9629-65/AD9629-80  
Parameter  
Temp  
Min  
Typ  
Max  
Unit  
DIFFERENTIAL CLOCK INPUTS (CLK+, CLK−)  
Logic Compliance  
Internal Common-Mode Bias  
Differential Input Voltage  
Input Voltage Range  
High Level Input Current  
Low Level Input Current  
Input Resistance  
CMO S/ LVDS/ LVPECL  
0.9  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
V
0.2  
3.6  
V p-p  
V
µA  
µA  
kΩ  
pF  
GND − 0.3  
AVDD + 0.2  
+10  
+10  
−10  
−10  
8
10  
4
12  
Input Capacitance  
LOGIC INPUTS (SCLK/DFS, MODE, SDIO/PDWN)1  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
Input Resistance  
Full  
Full  
Full  
Full  
Full  
Full  
1.2  
0
−50  
−10  
DRVDD + 0.3  
V
0.8  
−75  
+10  
V
µA  
µA  
kΩ  
pF  
30  
2
Input Capacitance  
LOGIC INPUTS (CSB)2  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
Input Resistance  
Full  
Full  
Full  
Full  
Full  
Full  
1.2  
0
−10  
40  
DRVDD + 0.3  
0.8  
+10  
135  
V
V
µA  
µA  
kΩ  
pF  
26  
2
Input Capacitance  
DIGITAL OUTPUTS  
DRVDD = 3.3 V  
High Level Output Voltage, IOH = 50 µA  
High Level Output Voltage, IOH = 0.5 mA  
Low Level Output Voltage, IOL = 1.6 mA  
Low Level Output Voltage, IOL = 50 µA  
DRVDD = 1.8 V  
Full  
Full  
Full  
Full  
3.29  
3.25  
V
V
V
V
0.2  
0.05  
High Level Output Voltage, IOH = 50 µA  
High Level Output Voltage, IOH = 0.5 mA  
Low Level Output Voltage, IOL = 1.6 mA  
Low Level Output Voltage, IOL = 50 µA  
Full  
Full  
Full  
Full  
1.79  
1.75  
V
V
V
V
0.2  
0.05  
1 Internal 30 kΩ pull-down.  
2 Internal 30 kΩ pull-up.  
Rev. B | Page 6 of 32  
 
Data Sheet  
AD9629  
SWITCHING SPECIFICATIONS  
AVDD = 1.8 V; DRVDD = 1.8 V, maximum sample rate, 2 V p-p differential input, 1.0 V internal reference; AIN = −1.0 dBFS, 50% duty  
cycle clock, unless otherwise noted.  
Table 4.  
AD9629-20/AD9629-40  
AD9629-65  
AD9629-80  
Max Min Typ Max Unit  
Parameter  
Temp Min  
Typ  
Max  
Min  
Typ  
CLOCK INPUT PARAMETERS  
Input Clock Rate1  
Conversion Rate2  
CLK Period, Divide-by-1 Mode (tCLK  
CLK Pulse Width High (tCH)  
Aperture Delay (tA)  
Aperture Uncertainty (Jitter, tJ)  
DATA OUTPUT PARAMETERS  
Data Propagation Delay (tPD)  
Full  
Full  
Full  
80/160  
20/40  
260  
65  
320  
80  
MHz  
MSPS  
ns  
ns  
ns  
3
3
3
12.5  
50/25  
)
15.38  
25.0/12.5  
1.0  
0.1  
7.69  
1.0  
0.1  
6.25  
1.0  
0.1  
Full  
Full  
ps rms  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
3
3
0.1  
8
350  
600/400  
2
3
3
3
3
ns  
ns  
ns  
Cycles  
μs  
DCO Propagation Delay (tDCO  
)
DCO to Data Skew (tSKEW  
)
0.1  
8
350  
300  
2
0.1  
8
350  
260  
2
Pipeline Delay (Latency)  
Wake-Up Time3  
Standby  
ns  
OUT-OF-RANGE RECOVERY TIME  
Cycles  
1 Input clock rate is the clock rate before the internal CLK divider.  
2 Conversion rate is the clock rate after the CLK divider.  
3 Wake-up time is dependent on the value of the decoupling capacitors.  
N – 1  
N + 4  
tA  
N + 5  
N
N + 3  
VIN  
N + 1  
N + 2  
tCH  
tCLK  
CLK+  
CLK–  
tDCO  
DCO  
tSKEW  
N – 8  
DATA  
N – 7  
N – 6  
N – 5  
N – 4  
tPD  
Figure 2. CMOS Output Data Timing  
Rev. B | Page 7 of 32  
 
 
AD9629  
Data Sheet  
TIMING SPECIFICATIONS  
Table 5.  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
SPI TIMING REQUIREMENTS  
tDS  
tDH  
tCLK  
tS  
Setup time between the data and the rising edge of SCLK  
Hold time between the data and the rising edge of SCLK  
Period of the SCLK  
Setup time between CSB and SCLK  
Hold time between CSB and SCLK  
SCLK pulse width high  
SCLK pulse width low  
Time required for the SDIO pin to switch from an input to an  
output relative to the SCLK falling edge  
2
2
40  
2
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tH  
2
tHIGH  
tLOW  
tEN_ SDIO  
10  
10  
10  
Time required for the SDIO pin to switch from an output to an  
input relative to the SCLK rising edge  
tDIS_ SDIO  
10  
ns  
Rev. B | Page 8 of 32  
 
 
Data Sheet  
AD9629  
ABSOLUTE MAXIMUM RATINGS  
THERMAL CHARACTERISTICS  
Table 6.  
Parameter  
AVDD to AGND  
DRVDD to AGND  
VIN+, VIN− toAGND  
CLK+, CLK− to AGND  
VREF to AGND  
SENSE to AGND  
VCM to AGND  
Rating  
−0.3 V to +2.0 V  
−0.3 V to +3.9 V  
The exposed paddle is the only ground connection for the chip.  
The exposed paddle must be soldered to the AGND plane of the  
user’s circuit board. Soldering the exposed paddle to the user’s  
board also increases the reliability of the solder joints and  
maximizes the thermal capability of the package.  
−0.3 V to AVDD + 0.2 V  
−0.3 V to AVDD + 0.2 V  
−0.3 V to AVDD + 0.2 V  
−0.3 V to AVDD + 0.2 V  
−0.3 V to AVDD + 0.2 V  
−0.3 V to AVDD + 0.2 V  
−0.3 V to DRVDD + 0.3 V  
−0.3 V to DRVDD + 0.3 V  
−0.3 V to DRVDD + 0.3 V  
−0.3 V to DRVDD + 0.3 V  
−0.3 V to DRVDD + 0.3 V  
−0.3 V to DRVDD + 0.3 V  
−40°C to +85°C  
Table 7. Thermal Resistance  
Airflow  
Velocity  
(m/sec)  
Package  
Typ e  
32-Lead  
LFCSP  
5 mm ×  
5 mm  
RBIAS to AGND  
CSB to AGND  
1, 2  
1, 3  
1, 4  
1, 2  
θJA  
θJC  
3.1  
θJB  
20.7  
ΨJT  
0.3  
0.5  
0.8  
Unit  
°C/W  
°C/W  
°C/W  
0
1.0  
2.5  
37.1  
32.4  
29.1  
SCLK/DFS to AGND  
SDIO/PDWN to AGND  
MODE/OR to AGND  
D0 through D11 to AGND  
DCO to AGND  
1 Per JEDEC 51-7, plus JEDEC 51-5 2S2P test board.  
2 Per JEDEC JESD51-2 (still air) or JEDEC JESD51-6 (moving air).  
3 Per MIL-Std 883, Method 1012.1.  
Operating Temperature Range (Ambient)  
Maximum Junction Temperature Under Bias 150°C  
4 Per JEDEC JESD51-8 (still air).  
Storage Temperature Range (Ambient)  
−65°C to +150°C  
Ty pical θJA is specified for a 4-layer PCB with a solid ground  
plane. As shown in Table 7, airflow improves heat dissipation,  
which reduces θJA. In addition,metal in directcontact with the  
package leads from metal traces, through holes, ground, and  
power planes, reduces the θJA.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
ESD CAUTION  
Rev. B | Page 9 of 32  
 
 
 
 
AD9629  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
1
2
3
4
5
6
7
24 AVDD  
23  
22 DCO  
CLK+  
CLK–  
AVDD  
MODE/OR  
AD9629  
TOP VIEW  
(Not to Scale)  
21 D11 (MSB)  
CSB  
20  
19  
18  
D10  
D9  
D8  
SCLK/DFS  
SDIO/PDWN  
NIC  
NIC 8  
17 D7  
NOTES  
1. NIC = NOT INTERNALLY CONNECTED.  
2. THE EXPOSED PADDLE IS THE ONLY GROUND CONNECTION.  
IT MUST BE SOLDERED TO THE ANALOG GROUND OF THE  
CUSTOMER’S PCB TO ENSURE PROPER FUNCTIONALITY  
AND MAXIMIZE HEAT DISSIPATION, NOISE, AND MECHANICAL  
STRENGTH BENEFITS.  
Figure 3. Pin Configuration  
Table 8. Pin Function Description  
Pin No.  
Mnemonic  
Description  
0 (EPAD)  
GND  
Exposed Paddle. The exposed paddle is the only ground connection. It must be soldered to the analog  
ground of the customer’s PCB to ensure proper functionality and maximize heat dissipation, noise, and  
mechanical strength benefits.  
1, 2  
3, 24, 29, 32  
CLK+, CLK−  
AVDD  
Differential Encode Clock. PECL, LVDS, or 1.8 V CMOS inputs.  
1.8 V Supply Pin for ADC Core Domain.  
4
5
CSB  
SCLK/DFS  
SPI Chip Select. Active low enable. 30 kΩ internal pull-up.  
SPI Clock Input in SPI Mode (SCLK). 30 kΩ internal pull-down.  
Data Format Select in Non-SPI Mode (DFS). Static control of data output format. 30 kΩ internal pull-down.  
DFS high = twos complement output; DFS low = offset binary output.  
6
SDIO/PDWN  
SPI Data Input/Output (SDIO). Bidirectional SPI data I/O in SPI mode. 30 kΩ internal pull-down.  
Non-SPI Mode Power-Down (PDWN). Static control of power-down with 30 kΩ internal pull-down. See  
Table 14 for details.  
7, 8  
NIC  
Not Internally Connected.  
ADC Digital Outputs.  
9 to 12, 14 to 21 D0 (LSB) to  
D11 (MSB)  
13  
22  
23  
DRVDD  
DCO  
MODE/OR  
1.8 V to 3.3 V Supply Pin for Output Driver Domain.  
Data Clock Digital Output.  
Chip Mode Select Input or Out-of-Range (OR) Digital Output in SPI Mode.  
Default = out-of-range (OR) digital output (SPI Register 0x2A[0] = 1).  
Option = chip mode select input (SPI Register 0x2A[0] = 0).  
Chip power down (SPI Register 0x08[7:5] = 100b).  
Chip standby (SPI Register 0x08[7:5] = 101b).  
Normal operation, output disabled (SPI Register 0x08[7:5] = 110b).  
Normal operation, output enabled (SPI Register 0x08[7:5] = 111b).  
Out-of-Range (OR) digital output only in non-SPI mode.  
25  
26  
27  
28  
VREF  
SENSE  
VCM  
RBIAS  
VIN−, VIN+  
1.0 V Voltage Reference Input/Output. See Table 10.  
Reference Mode Selection. See Table 10.  
Analog Output Voltage at Mid AVDD Supply. Sets common mode of the analog inputs.  
Sets Analog Current Bias. Connect to 10 kΩ (1% tolerance) resistor to ground.  
ADC Analog Inputs.  
30, 31  
Rev. B | Page 10 of 32  
 
Data Sheet  
AD9629  
TYPICAL PERFORMANCE CHARACTERISTICS  
AD9629-80  
AVDD = 1.8 V; DRVDD = 1.8 V, maximum sample rate, 2 V p-p differential input, 1.0 V internal reference; AIN = −1.0 dBFS, 50% duty  
cycle clock, unless otherwise noted.  
0
–15  
0
–15  
80MSPS  
80MSPS  
9.7MHz @ –1dBFS  
SNR = 70.2dB (71.2dBFS)  
SFDR = 93.6dBc  
30.6MHz @ –1dBFS  
SNR = 70.1dB (71.1dBFS)  
SFDR = 94.4dBc  
–30  
–30  
–45  
–45  
–60  
–60  
–75  
–75  
–90  
–90  
+
2
+
3
5
3
6
4
6
2
4
5
–105  
–120  
–135  
–105  
–120  
–135  
0
4
8
12  
16  
20  
24  
28  
32  
36  
40  
0
4
8
12  
16  
20  
24  
28  
32  
36  
40  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 4. AD9629-80 Single-Tone FFT with fIN = 9.7 MHz  
Figure 7. AD9629-80 Single-Tone FFT with fIN = 30.6 MHz  
0
0
–15  
80MSPS  
80MSPS  
–15  
–30  
210.3MHz @ –1dBFS  
SNR = 67.9dB (68.9dBFS)  
SFDR = 83.2dBc  
69MHz @ –1dBFS  
SNR = 69.9dB (70.9dBFS)  
SFDR = 94.3dBc  
–30  
–45  
–45  
–60  
–60  
–75  
–75  
2
3
+
–90  
–90  
+
6
4
5
2
6
3
5
4
–105  
–120  
–135  
–105  
–120  
–135  
0
4
8
12  
16  
20  
24  
28  
32  
36  
40  
0
4
8
12  
16  
20  
24  
28  
32  
36  
40  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 8. AD9629-80 Single-Tone FFT with fIN = 210.3 MHz  
Figure 5. AD9629-80 Single-Tone FFT with fIN = 69 MHz  
0
0
–15  
80MSPS  
28.3 @ –7dBFS  
30.6 @ –7dBFS  
SFDR = 90dBc  
–20  
–30  
SFDR (dBc)  
IMD3 (dBc)  
–40  
–60  
–45  
–60  
–75  
–80  
–90  
F1 + F2  
F2 – F1 2F2 – F1  
2F2 – F1  
2F1 – F2  
2F1 + F2  
SFDR (dBFS)  
–105  
–120  
–135  
–100  
–120  
IMD3 (dBFS)  
–60  
–70  
–50  
–40  
–30  
–20  
–10  
0
4
8
12  
16  
20  
24  
28  
32  
36  
40  
INPUT AMPLITUDE (dBFS)  
FREQUENCY (MHz)  
Figure 9. Two-Tone SFDR/IMD3 vs. Input Amplitude (AIN) with fIN1 = 30.5 MHz  
and fIN2 = 32.5 MHz  
Figure 6. AD9629-80 Two-Tone FFT with fIN1 = 28.3 MHz and fIN2 = 30.6 MHz  
Rev. B | Page 11 of 32  
 
 
AD9629  
Data Sheet  
AVDD = 1.8 V; DRVDD = 1.8 V, maximum sample rate, 2 V p-p differential input, 1.0 V internal reference; AIN = −1.0 dBFS, 50% duty  
cycle clock, unless otherwise noted.  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.3  
SFDR  
0.2  
SNR  
0.1  
0
–0.1  
–0.2  
–0.3  
0
500  
1000 1500 2000 2500 3000  
OUTPUT CODE  
3500 4000  
0
50  
100  
INPUT FREQUENCY (MHz)  
150  
200  
Figure 13. DNL Error with fIN = 9.7 MHz  
Figure 10. AD9629-80 SNR/SFDR vs. Input Frequency (AIN) with2 Vp-p Full Scale  
100  
0.4  
0.2  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
SFDR  
SNRFS  
–0.2  
0.4  
0
500  
1000 1500 2000 2500 3000 3500 4000  
OUTPUT CODE  
10  
20  
30  
40  
50  
60  
70  
80  
SAMPLE RATE (MHz)  
Figure 11. AD9629-80 SNR/SFDR vs. Sample Rate with AIN = 9.7 MHz  
Figure 14. INL with fIN = 9.7 MHz  
100  
90  
SFDRFS  
80  
SNRFS  
70  
60  
SFDR  
50  
SNR  
40  
30  
20  
10  
0
–70  
–60  
–50  
–40  
–30  
–20  
–10  
0
INPUT AMPLITUDE (dBc)  
Figure 12. AD9629-80 SNR/SFDR vs. Input Amplitude (AIN) with fIN = 9.7 MHz  
Rev. B | Page 12 of 32  
Data Sheet  
AD9629  
AD9629-65  
AVDD = 1.8 V; DRVDD = 1.8 V, maximum sample rate, 2 V p-p differential input, 1.0 V internal reference; AIN = −1.0 dBFS, 50% duty  
cycle clock, unless otherwise noted.  
0
120  
100  
80  
60  
40  
20  
0
65MSPS  
–15  
9.7MHz @ –1dBFS  
SNR =70.3 (71.3dBFS)  
SFDR = 94.2dBc  
SFDRFS  
–30  
–45  
SNRFS  
SFDR  
–60  
–75  
–90  
+
2
3
5
6
4
SNR  
–105  
–120  
–135  
0
3
6
9
12  
15  
18  
21  
24  
27  
30  
33  
33  
33  
–70  
–60  
–50  
–40  
–30  
–20  
–10  
0
FREQUENCY (MHz)  
INPUT AMPLITUDE (dBc)  
Figure 15. AD9629-65 Single-Tone FFT with fIN = 9.7 MHz  
Figure 18. AD9629-65 SNR/SFDR vs. Input Amplitude (AIN) with fIN = 9.7 MHz  
0
100  
65MSPS  
90  
–15  
–30  
SFDR  
69MHz @ –1dBFS  
SNR = 69.9dB (70.9dBFS)  
SFDR = 92.0dBc  
80  
SNR  
70  
–45  
60  
50  
40  
30  
20  
10  
0
–60  
–75  
–90  
+
2
5
4
3
6
–105  
–120  
–135  
0
3
6
9
12  
15  
18  
21  
24  
27  
30  
0
50  
100  
150  
200  
FREQUENCY (MHz)  
INPUT FREQUENCY (MHz)  
Figure 16. AD9629-65 Single-Tone FFT with fIN = 69 MHz  
Figure 19. AD9629-65 SNR/SFDR vs. Input Frequency (AIN) with  
2 V p-p Full Scale  
0
65MSPS  
–15  
–30  
30.6MHz @ –1dBFS  
SNR = 70.2dB (71.2dBFS)  
SFDR = 94.1dBc  
–45  
–60  
–75  
–90  
+
3
2
5
6
4
–105  
–120  
–135  
0
3
6
9
12  
15  
18  
21  
24  
27  
30  
FREQUENCY (MHz)  
Figure 17. AD9629-65 Single-Tone FFT with fIN = 30.6 MHz  
Rev. B | Page 13 of 32  
 
AD9629  
Data Sheet  
AD9629-40  
AVDD = 1.8 V; DRVDD = 1.8 V, maximum sample rate, 2 V p-p differential input, 1.0 V internal reference; AIN = −1.0 dBFS, 50% duty  
cycle clock, unless otherwise noted.  
0
120  
100  
80  
60  
40  
20  
0
40MSPS  
–15  
9.7MHz @ –1dBFS  
SNR = 70.3dB (71.3dBFS)  
SFDR = 93.8dBc  
SFDRFS  
SNRFS  
–30  
–45  
–60  
–75  
SFDR  
SNR  
–90  
+
2
3
5
4
6
–105  
–120  
–135  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
–70  
–60  
–50  
–40  
–30  
–20  
–10  
0
FREQUENCY (MHz)  
INPUT AMPLITUDE (dBc)  
Figure 20. AD9629-40 Single-Tone FFT with fIN = 9.7 MHz  
Figure 22. AD9629-40 SNR/SFDR vs. Input Amplitude (AIN) with fIN = 9.7 MHz  
0
40MSPS  
–15  
–30  
30.6MHz @ –1dBFS  
SNR = 70.2dB (71.2dBFS)  
SFDR = 95.4dBc  
–45  
–60  
–75  
–90  
+
5
3
6
2
4
–105  
–120  
–135  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
FREQUENCY (MHz)  
Figure 21. AD9629-40 Single-Tone FFT with fIN = 30.6 MHz  
Rev. B | Page 14 of 32  
 
Data Sheet  
AD9629  
AD9629-20  
AVDD = 1.8 V; DRVDD = 1.8 V, maximum sample rate, 2 V p-p differential input, 1.0 V internal reference; AIN = −1.0 dBFS, 50% duty  
cycle clock, unless otherwise noted.  
0
120  
100  
80  
60  
40  
20  
0
20MSPS  
–15  
SFDRFS  
9.7MHz @ –1dBFS  
SNR = 70.3dB (71.3dBFS)  
SFDR = 94.1dBc  
–30  
–45  
SNRFS  
SFDR  
–60  
–75  
–90  
+
2
5
3
SNR  
4
6
–105  
–120  
–135  
0
0.95 1.90 2.85 3.80 4.75 5.70 6.65 7.60 8.55 9.50  
FREQUENCY (MHz)  
–70  
–60  
–50  
–40  
–30  
–20  
–10  
0
INPUT AMPLITUDE (dBc)  
Figure 23. AD9629-20 Single-Tone FFT with fIN = 9.7 MHz  
Figure 25. AD9629-20 SNR/SFDR vs. Input Amplitude (AIN) with fIN = 9.7 MHz  
0
20MSPS  
–15  
30.6MHz @ –1dBFS  
SNR = 70.2dB (71.2dBFS)  
SFDR = 94.6dBc  
–30  
–45  
–60  
–75  
–90  
+
5
4
2
3
6
–105  
–120  
–135  
0
0.95 1.90 2.85 3.80 4.75 5.70 6.65 7.60 8.55 9.50  
FREQUENCY (MHz)  
Figure 24. AD9629-20 Single-Tone FFT with fIN = 30.6 MHz  
Rev. B | Page 15 of 32  
 
AD9629  
Data Sheet  
EQUIVALENT CIRCUITS  
DRVDD  
AVDD  
VIN±  
Figure 26. Equivalent Analog Input Circuit  
Figure 30. Equivalent D0 to D11 and OR Digital Output Circuit  
DRVDD  
AVDD  
350Ω  
SCLK/DFS, MODE,  
SDIO/PDWN  
375Ω  
VREF  
30kΩ  
7.5kΩ  
Figure 27. Equivalent VREF Circuit  
Figure 31. Equivalent SCLK/DFS, MODE, and SDIO/PDWN Input Circuit  
AVDD  
DRVDD  
AVDD  
30kΩ  
375Ω  
350Ω  
SENSE  
CSB  
Figure 28. Equivalent SENSE Circuit  
Figure 32. Equivalent CSB Input Circuit  
5Ω  
CLK+  
15kΩ  
0.9V  
AVDD  
15kΩ  
5Ω  
CLK–  
375Ω  
RBIAS  
AND VCM  
Figure 29. Equivalent Clock Input Circuit  
Figure 33. Equivalent RBIAS and VCM Circuit  
Rev. B | Page 16 of 32  
 
 
Data Sheet  
AD9629  
THEORY OF OPERATION  
high IF frequencies. Either a shunt capacitor or two single-ended  
capacitors can be placed on the inputs to provide a matching  
passive network. This ultimately creates a low-pass filter at the  
input to limit unwanted broadband noise. See the AN-742  
Application Note, the AN-827 Application Note, and the Analog  
Dialogue article Transformer-Coupled Front-End for Wideband  
A/D Converters(Volume 39, April 2005) for more information.  
In general, the precise values depend on the application.  
The AD9629 architecture consists of a multistage, pipelined ADC.  
Each stage provides sufficient overlap to correct for flash errors in  
the preceding stage. The quantized outputs from each stage are  
combined into a final 12-bit result in the digital correction logic.  
The pipelined architecture permits the first stage to operate with a  
new input sample while the remaining stages operate with pre-  
ceding samples. Sampling occurs on the rising edge of the clock.  
Each stage of the pipeline, excluding the last, consists of a low  
resolution flash ADC connected to a switched-capacitor DAC  
and an interstage residue amplifier (for example, a multiplying  
digital-to-analog converter (MDAC)). The residue amplifier  
magnifies the difference between the reconstructed DAC output  
and the flash input for the next stage in the pipeline. One bit of  
redundancy is used in each stage to facilitate digital correction  
of flash errors. The last stage consists of a flash ADC.  
Input Common Mode  
The analog inputs of the AD9629 are not internally dc-biased.  
Therefore, in ac-coupled applications, the user must provide a  
dc bias externally. Setting the device so that VCM = AVDD/2  
is recommended for optimum performance, but the device can  
function over a wider range with reasonable performance, as  
shown in Figure 35 and Figure 36.  
An on-board, common-mode voltage reference is included in  
the design and is available from the VCM pin. The VCM pin  
must be decoupled to ground by a 0.1 μF capacitor, as described  
in the Applications Information section.  
The output staging block aligns the data, corrects errors, and  
passes the data to the CMOS output buffers. The output buffers  
are powered from a separate (DRVDD) supply, allowing adjust-  
ment of the output voltage swing. During power-down, the output  
buffers go into a high impedance state.  
100  
SFDR (dBc)  
ANALOG INPUT CONSIDERATIONS  
90  
80  
The analog input to the AD9629 is a differential switched-  
capacitor circuit designed for processing differential input  
signals. This circuit can support a wide common-mode range  
while maintaining excellent performance. By using an input  
common-mode voltage of midsupply, users can minimize  
signal-dependent errors and achieve optimum performance.  
SNR (dBFS)  
70  
60  
50  
H
CPAR  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
H
VIN+  
INPUT COMMON-MODE VOLTAGE (V)  
CSAMPLE  
Figure 35. SNR/SFDR vs. Input Common-Mode Voltage,  
fIN = 32.1 MHz, fS = 80 MSPS  
S
S
S
S
CSAMPLE  
100  
90  
VIN–  
H
CPAR  
SFDR (dBc)  
H
Figure 34. Switched-Capacitor Input Circuit  
80  
The clock signal alternately switches the input circuit between  
sample-and-hold mode (see Figure 34). When the input circuit  
is switched to sample mode, the signal source must be capable  
of charging the sample capacitors and settling within one-half  
of a clock cycle. A small resistor in series with each input can  
help reduce the peak transient current injected from the output  
stage of the driving source. In addition, low Q inductors or ferrite  
beads can be placed on each leg of the input to reduce high dif-  
ferential capacitance at the analog inputs and, therefore, achieve  
the maximum bandwidth of the ADC. Such use of low Q inductors  
or ferrite beads is required when driving the converter front end at  
SNR (dBFS)  
70  
60  
50  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
INPUT COMMON-MODE VOLTAGE (V)  
Figure 36. SNR/SFDR vs. Input Common-Mode Voltage,  
fIN = 10.3 MHz, fS = 20 MSPS  
Rev. B | Page 17 of 32  
 
 
 
 
 
AD9629  
Data Sheet  
Differential Input Configurations  
~10 MHz where SNR is a key parameter, differential double balun  
coupling is the recommended input configuration (see Figure 40).  
Optimum performanceis achieved while drivingthe AD9629 in a  
differential input configuration. For baseband applications, the  
AD8138, ADA4937-2, and ADA4938-2 differential drivers provide  
excellent performance and a flexible interface to the ADC.  
An alternative to using a transformer-coupled inputat frequencies  
in the second Nyquist zone is to use the AD8352 differential driver.  
An example is shown in Figure 41. See the AD8352 data sheet  
for more information.  
The output common-mode voltage of the ADA4938-2 is easily  
set with the VCM pin of the AD9629 (see Figure 37), and the  
driver can be configured in a Sallen-Key filter topology to  
provide band limiting of the input signal.  
In any configuration, thevalue of ShuntCapacitor C is dependent  
on the input frequency and source impedance and may need to  
be reduced or removed. Table 9 displays the suggested values to set  
the RC network. However, these values are dependent on the  
input signal and should be used only as a starting guide.  
200Ω  
33Ω  
VIN–  
VIN  
76.8Ω  
AVDD  
90Ω  
10pF  
ADC  
ADA4938  
Table 9. Example RC Network  
0.1µF  
120Ω  
33Ω  
VCM  
VIN+  
R Series  
200Ω  
Frequency Range (MHz)  
0 to 70  
(Ω Each)  
C Differential (pF)  
Figure 37. Differential Input Configuration Using the ADA4938-2  
33  
22  
70 to 200  
125  
Open  
For baseband applications below ~10 MHz where SNR is a key  
parameter, differential transformer-coupling is the recommended  
input configuration. An example is shown in Figure 38. To bias  
the analog input, the VCM voltage can be connected to the  
center tap of the secondary winding of the transformer.  
Single-Ended Input Configuration  
A single-ended input can provide adequate performance in  
cost-sensitive applications. In this configuration, SFDR and  
distortion performancedegrade due to thelarge inputcommon-  
mode swing. If the source impedances oneach input are matched,  
there should be little effect on SNR performance. Figure 39  
shows a typical single-ended input configuration.  
VIN+  
R
2V p-p  
49.9Ω  
C
ADC  
R
VCM  
VIN–  
10µF  
AVDD  
0.1µF  
1kΩ  
R
VIN+  
VIN–  
Figure 38. Differential Transformer-Coupled Configuration  
1V p-p  
0.1µF  
49.9Ω  
1kΩ  
The signal characteristics must be considered when selecting  
a transformer. Most RF transformers saturate at frequencies  
below a few megahertz (MHz). Excessive signal power can  
also cause core saturation, which leads to distortion.  
AVDD  
ADC  
C
1kΩ  
R
10µF  
0.1µF  
1kΩ  
Figure 39. Single-Ended Input Configuration  
At input frequencies in the second Nyquist zone and above, the  
noise performance of most amplifiers is not adequate to achieve  
the true SNR performanceof theAD9629. For applications above  
0.1µF  
R
0.1µF  
VIN+  
2V p-p  
25Ω  
25Ω  
P
A
S
S
P
C
ADC  
0.1µF  
0.1µF  
R
VCM  
VIN–  
Figure 40. Differential Double Balun Input Configuration  
V
CC  
0.1µF  
0Ω  
0.1µF  
16  
1
8, 13  
11  
0.1µF  
0.1µF  
ANALOG INPUT  
R
R
VIN+  
VIN–  
2
200Ω  
C
ADC  
AD8352  
10  
R
R
G
C
D
D
3
4
5
200Ω  
VCM  
14  
0.1µF  
ANALOG INPUT  
0Ω  
0.1µF  
0.1µF  
Figure 41. Differential Input Configuration Using the AD8352  
Rev. B | Page 18 of 32  
 
 
 
 
 
 
Data Sheet  
AD9629  
External Reference Operation  
VOLTAGE REFERENCE  
The use of an external reference may be necessary to enhance  
the gain accuracy of the ADC or improve thermal drift charac-  
teristics. Figure 44 shows the typical drift characteristics of the  
internal reference in 1.0 V mode.  
A stable and accurate 1.0 V voltage reference is built into the  
AD9629. The VREF can be configured using either the internal  
1.0 V reference or an externally applied 1.0 V reference voltage.  
The various reference modes are summarized in the sections  
that follow. The Reference Decoupling section describes the  
best practices PCB layout of the reference.  
4
3
Internal Reference Connection  
2
VREF ERROR (mV)  
1
0
A comparator within the AD9629 detects the potential at the  
SENSE pin and configures the reference into two possible modes,  
which are summarized in Table 10. If SENSE is grounded, the  
reference amplifier switch is connected to the internal resistor  
divider (see Figure 42), setting VREF to 1.0 V.  
–1  
–2  
–3  
–4  
–5  
–6  
VIN+  
VIN–  
ADC  
CORE  
–40  
–20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
Figure 44. Typical VREF Drift  
VREF  
When the SENSE pin is tied to AVDD, the internal reference is  
disabled, allowing the use of an external reference. An internal  
reference buffer loads the external reference with an equivalent  
7.5 kΩ load (see Figure 27). The internal buffer generates the  
positive and negative full-scale references for the ADC core.  
Therefore, the external reference must be limited to a maximum  
of 1.0 V.  
1.0µF  
0.1µF  
SELECT  
LOGIC  
SENSE  
0.5V  
ADC  
Figure 42. Internal Reference Configuration  
If the internal reference of the AD9629 is used to drive multiple  
converters to improve gain matching, the loading of the reference  
by the other converters must be considered. Figure 43 shows  
how the internal reference voltage is affected by loading.  
0
–0.5  
–1.0  
INTERNAL VREF = 0.996V  
–1.5  
–2.0  
–2.5  
–3.0  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
LOAD CURRENT (mA)  
Figure 43. VREF Accuracy vs. Load Current  
Table 10. Reference Configuration Summary  
Selected Mode  
SENSE Voltage (V) Resulting VREF (V)  
Resulting Differential Span (V p-p)  
Fixed Internal Reference  
Fixed External Reference  
AGND to 0.2  
AVDD  
1.0 internal  
1.0 applied to external VREF pin  
2.0  
2.0  
Rev. B | Page 19 of 32  
 
 
 
 
 
AD9629  
Data Sheet  
This limit helps prevent the large voltage swings of the clock  
from feeding through to other portions of the AD9629 while  
preserving the fast rise and fall timesof the signal that are critical  
to a low jitter performance.  
CLOCK INPUT CONSIDERATIONS  
For optimum performance, clock the AD9629 sample clock  
inputs, CLK+ and CLK−, with a differential signal. The signal  
is typically ac-coupled into the CLK+and CLK− pins via a  
transformer or capacitors. These pins are biased internally (see  
Figure 45) and require no external bias.  
If a low jitter clock source is not available, another option is to  
ac couple a differential PECL signal to the sample clock input  
pins, as shown in Figure 48. The AD9510/AD9511/AD9512/  
AD9513/AD9514/AD9515/AD9516-4/AD9517-4 clock drivers  
offer excellent jitter performance.  
AVDD  
0.9V  
CLK+  
CLK–  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK+  
2pF  
2pF  
AD951x  
PECL DRIVER  
100Ω  
ADC  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK–  
240Ω  
240Ω  
50kΩ  
50kΩ  
Figure 45. Equivalent Clock Input Circuit  
Clock Input Options  
Figure 48. Differential PECL Sample Clock (Up to 4× Rated Sample Rate)  
The AD9629 has a very flexible clock input structure. The clock  
input can be a CMOS, LVDS, LVPECL, or sine wave signal.  
Regardless of the type of signal being used, clock source jitter is  
of great concern,as described in the Jitter Considerations section.  
A third option is to ac couple a differential LVDS signal to the  
sample clock input pins, as shown in Figure 49. The AD9510/  
AD9511/AD9512/AD9513/AD9514/AD9515/AD9516-4/  
AD9517-4 clock drivers offer excellent jitter performance.  
Figure 46 and Figure 47 show two preferred methods for clock-  
ing the AD9629. The CLK inputs support up to 4× therated  
sample rate when using the internal clockdivider feature. A low  
jitterclock source is converted from a single-ended signal to a  
differential signal using either an RF transformer or an RF balun.  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK+  
AD951x  
LVDS DRIVER  
100Ω  
ADC  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK–  
50kΩ  
50kΩ  
®
Mini-Circuits  
ADT1-1WT, 1:1 Z  
0.1µF  
0.1µF  
Figure 49. Differential LVDS Sample Clock (Up to 4× Rated Sample Rate)  
XFMR  
CLOCK  
INPUT  
CLK+  
100Ω  
50Ω  
In some applications, it may be acceptable to drive the sample  
clock inputs with a single-ended 1.8 V CMOS signal. In such  
applications, drive the CLK+ pin directly from a CMOS gate, and  
bypass the CLK− pin to ground with a 0.1 μF capacitor (see  
Figure 50).  
ADC  
0.1µF  
CLK–  
SCHOTTKY  
DIODES:  
HSMS2822  
0.1µF  
Figure 46. Transformer-Coupled Differential Clock (3 MHz to 200 MHz)  
V
CC  
OPTIONAL  
100Ω  
0.1µF  
1
0.1µF  
1kΩ  
1kΩ  
AD951x  
CMOS DRIVER  
CLOCK  
INPUT  
1nF  
50Ω  
1nF  
0.1µF  
0.1µF  
CLK+  
CLOCK  
INPUT  
CLK+  
50Ω  
ADC  
ADC  
CLK–  
CLK–  
0.1µF  
SCHOTTKY  
DIODES:  
HSMS2822  
1
50Ω RESISTOR IS OPTIONAL.  
Figure 47. Balun-Coupled Differential Clock (Up to 4× Rated Sample Rate)  
Figure 50. Single-Ended 1.8 V CMOS Input Clock (Up to 200 MHz)  
The RF balun configuration is recommended for clockfrequencies  
between 80 MHz and 320 MHz, and the RF transformer is recom-  
mended for clock frequencies from 3 MHz to 200 MHz. The  
back-to-back Schottky diodes across the transformer/balun  
secondary limit clock excursions into the AD9629 to ~0.8 Vp-p  
differential.  
Input Clock Divider  
The AD9629 contains an input clock divider with the ability  
to divide the input clock by integer values of 1, 2, or 4.  
Rev. B | Page 20 of 32  
 
 
 
 
 
 
 
Data Sheet  
AD9629  
Clock Duty Cycle  
The clock input should be treated as an analog signal in cases in  
which aperture jitter may affect the dynamic range of the AD9629.  
To avoid modulating the clock signal with digital noise, keep  
power supplies for clock drivers separate from the ADC output  
driver supplies. Low jitter, crystal-controlled oscillators make  
the best clock sources. If the clock is generated from another type  
of source (by gating, dividing, or another method), it should be  
retimed by the original clock at the last step.  
Typical high speed ADCs use both clock edges to generate  
a variety of internal timing signals and, as a result, may be  
sensitive to clock duty cycle. Commonly, a 50% duty cycle clock  
with 5% tolerance is required to maintain optimum dynamic  
performance as shown in Figure 51.  
Jitter on the rising edge of the clock input can also impact dynamic  
performance and should be minimized as discussed in the Jitter  
Considerations section.  
For more information, see the AN-501 Application Note and the  
AN-756 Application Note available on www.analog.com.  
80  
POWER DISSIPATION AND STANDBY MODE  
75  
70  
65  
60  
55  
50  
45  
40  
As shown in Figure 53, the analog core power dissipated by  
the AD9629 is proportional to its sample rate. The digital  
power dissipation of the CMOS outputs are determined  
primarily by the strength of the digital drivers and the load  
on each output bit.  
The maximum DRVDD current (IDRVDD) can be calculated as  
IDRVDD = VDRVDD × CLOAD × fCLK × N  
where N is the number of output bits (13, in the case of the  
AD9629).  
10  
20  
30  
40  
50  
60  
70  
80  
This maximum current occurs when every output bit switches  
on every clock cycle, that is, a full-scale square wave at the Nyquist  
frequency of fCLK/2. In practice, the DRVDD current is estab-  
lished by the average number of output bits switching, which  
is determined by the sample rate and the characteristics of the  
analog input signal.  
POSITIVE DUTY CYCLE (%)  
Figure 51. SNR vs. Clock Duty Cycle  
Jitter Considerations  
High speed, high resolution ADCs are sensitive to the quality  
of the clock input. The degradation in SNR from the low fre-  
quency SNR (SNRLF) at a given input frequency (fINPUT) due to  
jitter (tJRMS) can be calculated by  
Reducing the capacitive load presented to the output drivers  
can minimize digital power consumption. The data in Figure 53  
was taken using the same operating conditions as those used for  
the Typical Performance Characteristics, with a 5 pF load on  
each output driver.  
SNRHF = −10 log[(2π × fINPUT × tJRMS)2 + 10 (SNR /10)  
]
LF  
In the previous equation, the rms aperture jitter represents the  
clock input jitter specification. IF undersampling applications  
are particularly sensitive to jitter, as illustrated in Figure 52.  
85  
80  
80  
AD9231-80  
75  
75  
70  
65  
0.05ps  
0.2ps  
70  
65  
60  
55  
50  
45  
40  
35  
AD9231-65  
60  
55  
50  
0.5ps  
AD9231-40  
1.0ps  
1.5ps  
AD9231-20  
20  
2.0ps  
2.5ps  
10  
30  
40  
50  
60  
70  
80  
3.0ps  
CLOCK RATE (MSPS)  
45  
1
10  
100  
1k  
Figure 53. Analog Core Power vs. Clock Rate  
FREQUENCY (MHz)  
Figure 52. SNR vs. Input Frequency and Jitter  
Rev. B | Page 21 of 32  
 
 
 
 
 
AD9629  
Data Sheet  
In SPI mode, the AD9629 can be placed in power-down mode  
directly via the SPI port, or by using the programmable external  
MODE pin. In non-SPI mode, power-down is achieved by  
asserting the PDWN pin high. In this state, the ADC typically  
dissipates 500 µW. During power-down, the output drivers are  
placed in a high impedance state. Asserting PDWN low (or the  
MODE pin in SPI mode) returns the AD9629 to itsnormal  
operating mode. Note that PDWN isreferenced to the digital  
output driver supply (DRVDD) and should not exceed that  
supply voltage.  
As detailed in the AN-877 Application Note, Interfacing to High  
Speed ADCs via SPI, the data format can be selected for offset  
binary, twos complement,or graycode when using theSPI control.  
Table 11. SCLK/DFS and SDIO/PDWN Mode Selection  
(External Pin Mode)  
Voltage at Pin SCLK/DFS  
SDIO/PDWN  
Normal operation  
(default)  
AGND  
Offset binary (default)  
DRVDD  
Twos complement  
Outputs disabled  
Low power dissipation in power-down mode is achieved by  
shutting down the reference, reference buffer, biasing networks,  
and clock. Internal capacitors are discharged when entering power-  
down mode and then mustbe recharged when returning to normal  
operation. As a result, wake-up time is related to the time spent  
in power-down mode, and shorter power-down cycles result in  
proportionally shorter wake-up times.  
Digital Output Enable Function (OEB)  
When using the SPI interface, the data outputs and DCO can be  
independently three-stated by using the programmable external  
MODE pin. The MODE pin (OEB) function is enabled via  
Bits[6:5] of Register 0x08.  
If the MODE pin is configured to operate in traditional OEB  
mode and the OEB pin is low, the output data drivers and  
DCOs are enabled. If the OEB pin is high, the output data  
drivers and DCOs are placed in a high impedance state. This  
OEB function is not intended forrapid access to the data bus.  
Note that OEB is referenced to the digital output driver supply  
(DRVDD) and should not exceed that supply voltage.  
When using the SPI port interface, the user can place the ADC  
in power-down mode or standby mode. Standby mode allows  
the user to keep the internal reference circuitry powered when  
faster wake-up times are required. See the Memory Map section  
for more details.  
DIGITAL OUTPUTS  
TIMING  
The AD9629 output drivers can be configured to interface with  
1.8 V to 3.3 V CMOS logic families. Output data can also be  
multiplexed onto a single outputbus to reduce the total number  
of traces required.  
The AD9629 provides latched data with a pipeline delay of  
9 clock cycles. Data outputs are available one propagation  
delay (tPD) after the rising edge of the clock signal.  
Minimize the length of the output data lines and loads placed  
on them to reduce transientswithin the AD9629. These  
transients candegrade converter dynamic performance.  
The CMOS output drivers are sized to provide sufficient output  
current to drive a wide variety of logic families. However, large  
drive currents tend to cause current glitches on the supplies and  
may affect converter performance.  
The lowest typical conversion rate of the AD9629 is 3 MSPS. At  
clock rates below 3 MSPS, dynamic performance can degrade.  
Applications requiring the ADC to drive large capacitive loads  
or large fanouts may require external buffers or latches.  
Data Clock Output (DCO)  
The AD9629 provides a data clock output (DCO) signal  
intended for capturing the data in an external regist er. The CMOS  
data outputs are valid on the rising edge of DCO, unless the DCO  
clock polarity has been changed via the SPI. See Figure 2 for a  
graphical timingdescription.  
The output data format can be selected to be either offset binary  
or twos complement bysettingthe SCLK/DFS pinwhen operating  
in the external pin mode (see Table 11).  
Table 12. Output Data Format  
Input (V)  
Condition (V)  
< −VREF − 0.5 LSB  
= −VREF  
Offset Binary Output Mode  
0000 0000 0000  
0000 0000 0000  
1000 0000 0000  
1111 1111 1111  
Twos Complement Mode  
1000 0000 0000  
1000 0000 0000  
0000 0000 0000  
0111 1111 1111  
OR  
1
0
0
0
VIN+ − VIN−  
VIN+ − VIN−  
VIN+ − VIN−  
VIN+ − VIN−  
VIN+ − VIN−  
= 0  
= +VREF − 1.0 LSB  
> +VREF − 0.5 LSB  
1111 1111 1111  
0111 1111 1111  
1
Rev. B | Page 22 of 32  
 
 
 
Data Sheet  
AD9629  
BUILT-IN SELF-TEST (BIST) AND OUTPUT TEST  
generator, Bit2 (BIST INIT) of Register 0x0E. At the completion  
of the BIST, Bit0 of Register 0x24 is automaticallycleared.The PN  
sequence can be continued from its last value by writing a 0 in  
Bit 2 of Register 0x0E. However, if the PN sequence is not reset,  
the signature calculation does not equal the predetermined  
value at the end of the test. At that point, the user needs to rely  
on verifying the output data.  
The AD9629 includes a built-in self-test feature designed to  
enable verification of the integrity of each channel as well as to  
facilitate board level debugging. A built-in self-test (BIST)feature  
that verifies the integrity of the digital datapath of the AD9629  
is included. Various output test options are also provided to place  
predictable values on the outputs of the AD9629.  
BUILT-IN SELF-TEST (BIST)  
OUTPUT TEST MODES  
The BIST is a thorough test of the digital portion of the selected  
AD9629 signal path. Perform the BIST test after a reset to ensure  
the part isin a known state.During BIST, data from an internal  
pseudorandom noise (PN) source is driven through the digital  
datapath of both channels, starting at the ADC block output.  
At the datapath output, CRC logic calculates a signature from  
the data. The BIST sequence runs for512 cyclesand then stops.  
Once completed, the BIST compares the signature results with a  
predetermined value. If the signatures match, the BIST sets Bit 0  
of Register 0x24, signifying the test passed. If the BIST test failed,  
Bit 0 of Register 0x24 is cleared. The outputs are connected  
during this test, so the PN sequence can be observed as it runs.  
Writing 0x05 to Register 0x0E runs the BIST. This enables the Bit 0  
(BIST enable) of Register 0x0E and resets the PN sequence  
The output test optionsare described in Table 16 at Address  
0x0D. When an output test mode is enabled, the analog section  
of the ADC is disconnected from the digital back-end blocks  
and the test pattern is run through the output formatting block.  
Some of the test patternsare subject to output formatting, and  
some are not. The PN generators from the PN sequence tests  
can be reset by setting Bit 4 or Bit 5 of Register 0x0D. These  
tests can be performed with or without an analog signal (if  
present, the analog signal is ignored), but they do require an  
encode clock. For more information, see the AN-877  
Application Note, Interfacing to High Speed ADCs via SPI.  
Rev. B | Page 23 of 32  
 
 
 
AD9629  
Data Sheet  
SERIAL PORT INTERFACE (SPI)  
The falling edge of CSB, in conjunction with the rising edge of  
SCLK, determines the start of the framing. An example of the  
serial timing and its definitions can be found in Figure 54 and  
Table 5.  
The AD9629 serial port interface (SPI) allows the user to configure  
the converter for specific functions or operations through a  
structured register space provided inside the ADC. The SPI  
gives the user added flexibility and customization, depending  
on the application. Addresses are accessed via the serial port  
and can be written to or read from via the port. Memory is  
organized into bytes that can be further divided into fields,  
which are documented in the Memory Map section. For  
detailed operational information, see the AN-877 Application  
Note, Interfacing to High Speed ADCs via SPI.  
Other modes involving the CSB are available. The CSB can be  
held low indefinitely, which permanently enables the device;  
this is called streaming. The CSB can stall high between bytes to  
allow for additional external timing. When CSB is tied high, SPI  
functions are placed in high impedance mode. This mode turns  
on any SPI pin secondary functions.  
During an instruction phase, a 16-bit instruction is transmitted.  
Data follows the instruction phase, and its length is determined  
by the W0 and W1 bits as shown in Figure 54.  
CONFIGURATION USING THE SPI  
Three pins define the SPI of this ADC: the SCLK, the SDIO,  
and the CSB (see Table 13). The SCLK (a serial clock) is used  
to synchronize the read and write data presented from and to  
the ADC. The SDIO (serial data input/output) is a dual-purpose  
pin that allows data to be sent and read from the internal ADC  
memory map registers. The CSB (chip select bar) is an active-  
low control that enables or disables the read and write cycles.  
All data is composed of 8-bit words. The first bit of the first byte in  
a multibyte serial data transfer frame indicates whether a read  
command or a write command is issued. This allows the serial  
data input/output (SDIO) pin to change direction from an input  
to an output at the appropriate point in the serial frame.  
In addition to word length, the instruction phase determines  
whether the serial frame is a read or write operation, allowing  
the serial port to be used both to program the chip and to read  
the contents of the on-chip memory. If the instruction is a readback  
operation, performing a readback causes the serial data input/  
output (SDIO) pin to change direction from an input to an output  
at the appropriate point in the serial frame.  
Table 13. Serial Port Interface Pins  
Pin  
Function  
SCLK Serial clock. The serial shift clock input, which is used to  
synchronize serial interface reads and writes.  
SDIO Serial data input/output. A dual-purpose pin that  
typically serves as an input or an output, depending on  
the instruction being sent and the relative position in the  
timing frame.  
Data can be sent in MSB-first mode or in LSB-first mode. MSB  
first is the default on power-up and can be changed via the SPI  
port configuration register. For more information about this  
and other features, see the AN-877 Application Note, Interfacing  
to High Speed ADCs via SPI.  
CSB  
Chip select bar. An active-low control that gates the read  
and write cycles.  
tHIGH  
tDS  
tCLK  
tH  
tS  
tDH  
tLOW  
CSB  
SCLK DON’T CARE  
SDIO DON’T CARE  
DON’T CARE  
R/W  
W1  
W0  
A12  
A11  
A10  
A9  
A8  
A7  
D5  
D4  
D3  
D2  
D1  
D0  
DON’T CARE  
Figure 54. Serial Port Interface Timing Diagram  
Rev. B | Page 24 of 32  
 
 
 
 
Data Sheet  
AD9629  
HARDWARE INTERFACE  
CONFIGURATION WITHOUT THE SPI  
The pins described in Table 13 constitute the physical interface  
between the programming device of the user and the serial  
port of the AD9629. The SCLK pin and the CSB pin function  
as inputs when using the SPI interface. The SDIO pin is  
bidirectional, functioning as an input during write phases  
and as an output during readback.  
In applications that do not interface to the SPI control registers,  
the SDIO/PDWN pin, theSCLK/DFS pin serve as standalone  
CMOS-compatible control pins. Whenthe device is powered up, it  
is assumed that the user intends to use the pins as static control  
lines for the power-down and output data format feature control.  
In this mode, connect the CSB chip select to DRVDD, which  
disables the serial port interface.  
The SPI interface is flexible enough to be controlled by  
either FPGAs or microcontrollers. One method for SPI  
configuration is described in detail in the AN-812 Appli-  
cation Note, Microcontroller-Based Serial Port Interface  
(SPI) Boot Circuit.  
Table 14. Mode Selection  
External  
Pin  
SDIO/PDWN DRVDD  
AGND (default)  
DRVDD  
AGND (default)  
Configuration  
Voltage  
Chip power-down mode  
Normal operation(default)  
Twos complement enabled  
Offset binary enabled  
The SPI port should not be active during periods when the full  
dynamic performance of the converter is required. Because the  
SCLK signal, the CSB signal, and the SDIO signal are typically  
asynchronous to the ADC clock, noise from these signals can  
degrade converter performance.If theon-board SPIbus is used for  
other devices, it may be necessary to provide buffers between  
this bus and the AD9629 to prevent these signals from transi-  
tioning at the converter inputs during critical sampling periods.  
SCLK/DFS  
SPI ACCESSIBLE FEATURES  
Table 15 provides a brief description of the general features that  
are accessible via the SPI. These features are described in detail  
in the AN-877 Application Note, Interfacing to High Speed ADCs  
via SPI. The AD9629 part-specific features are described in  
detail in Table 16.  
SDIO/PDWN and SCLK/DFS serve a dual function when the  
SPI interface is not being used. When the pins are strapped to  
DRVDD or ground during device power-on, they are associated  
with a specific function. The Digital Outputs section describes  
the strappable functions supported on the AD9629.  
Table 15. Features Accessible Using the SPI  
Feature  
Description  
Allows the user to seteither power-down mode or  
standby mode  
Modes  
Allows the user to digitally adjust the converter  
offset  
Allows the user to set test modes to have known  
data on output bits  
Offset Adjust  
Te st M o de  
Output Mode Allows the user to set up outputs  
Output Phase Allows the user to setthe outputclock polarity  
Output Delay Allows the user to vary the DCO delay  
Rev. B | Page 25 of 32  
 
 
 
 
 
AD9629  
Data Sheet  
MEMORY MAP  
READING THE MEMORY MAP REGISTER TABLE  
DEFAULT VALUES  
Each row in the memory map register table (see Table 16)  
contains eight bit locations. The memory map is roughly  
divided into four sections: the chip configuration registers  
(Address 0x00 to Address 0x02); the device transfer register  
(Address 0xFF); the program registers, including setup, control,  
and test (Address 0x08 to Address 0x2A); and the AD9629  
specific customer SPI control register (Address 0x101).  
After the AD9629 is reset, critical registers are loaded with  
default values. The default values for the registers are given in the  
memory map register table (see Table 16).  
Logic Levels  
An explanation of logic level terminology follows:  
“Bit is set” is synonymous with “bit is set to Logic 1” or  
“writing Logic 1 for the bit.”  
Table 16 documents the default hexadecimal value for each  
hexadecimal address shown. The column with the heading Bit 7  
(MSB) is the start of the default hexadecimal value given. For  
example, Address 0x2A,the OR/MODE select register, has a hexa-  
decimal default value of 0x01. This means that in Address 0x2A,  
Bits[7:1] = 0,and Bit 0 = 1. This setting is the default OR/MODE  
setting. The default value results in the programmable external  
MODE/ORpin (Pin 23) functioning asan out-of-range digital  
output. For more informationonthis functionand others, see the  
AN-877 Application Note, Int erfacing to High SpeedADCs via SPI.  
This application note details the functions controlled by Register  
0x00 to Register 0xFF. The remaining register, Register 0x101, is  
documented in the Memory Map section that follows Table 16.  
“Clear a bit” is synonymous with “bit is set to Logic 0” or  
“writing Logic 0 for the bit.”  
Transfer Register Map  
Address 0x08 to Address 0x18 are shadowed. Writes to these  
addresses do not affect part operation until a transfer command  
is issued by writing 0x01 to Address 0xFF, setting the transfer bit.  
This allows these registers to be updated internally and simulta-  
neously when the transfer bit is set. The internal update takes  
place when the transfer bit is set, and then the bit autoclears.  
OPEN LOCATIONS  
All address and bit locations that are notincluded in the SPImap  
are not currentlysupported for this device.Unused bits of a valid  
address location should be written with 0s. Writing to these loca-  
tions is required only when part of an address location is open  
(for example, Address 0x2A). If the entire address location is  
open, it is omitted fromthe SPI map (for example, Address 0x13)  
and should not be written.  
Rev. B | Page 26 of 32  
 
 
 
 
Data Sheet  
AD9629  
MEMORY MAP REGISTER TABLE  
All address and bit locations that are not included in Table 16 are not currently supported for this device.  
Table 16.  
Default  
Value  
(Hex)  
Addr  
(Hex)  
Bit 7  
(MSB)  
Bit 0  
(LSB)  
Register Name  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Comments  
Chip Configuration Registers  
0x00  
SPI port  
0
LSB  
first  
Soft  
reset1  
1
1
Soft reset1  
LSB  
first  
0
0x18  
The nibbles are  
mirrored so that LSB  
or MSB first mode  
registers correctly,  
regardless of shift  
mode  
configuration  
0x01  
0x02  
Chip ID  
8-bit chip ID, Bits[7:0]  
AD9629 = 0x70  
Read  
only  
Unique chip ID used  
to differentiate  
devices; read only  
Chip grade  
Open  
Speed grade ID, Bits[6:4]  
(identify device variants of  
chip ID)  
Open  
Read  
only  
Unique speed grade  
ID used to  
differentiate devices;  
20 MSPS = 000  
Read only  
40 MSPS = 001  
65 MSPS = 010  
80 MSPS = 011  
Device Index and Transfer Register  
0xFF Transfer Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open Transfer  
0x00  
0x00  
Synchronously  
transfers data from  
the master shift  
register to the slave  
Program Registers  
0x08  
Modes  
External External Pin 23  
00 = chip run  
01 = full power down  
10 = standby  
11 = chip wide digital  
reset  
Determines various  
generic modes of  
chip operation  
Pin 23  
mode  
input  
enable  
function when h igh  
00 = full power  
down  
01 = standby  
10 = normal  
mode: output  
disabled  
11 = normal  
mode: output  
enabled  
0x0B  
0x0D  
Clock divide  
Test mode  
Open  
Clock divider, Bits[2:0]  
0x00  
0x00  
The divide ratio is  
the value plus 1  
Clock divide ratio  
000 = divide-by-1  
001 = divide-by-2  
011 = divide-by-4  
User test mode  
00 = single  
01 = alternate  
10 = single once  
11 = alternate  
once  
Reset PN  
long gen PN  
short  
Reset  
Output test mode, Bits[3:0] (local)  
0000 = off (default)  
0001 = midscale short  
0010 = positive FS  
When set, the test  
data is placed on the  
output pins in place  
of normal data  
gen  
0011 = negative FS  
0100 = alternating checkerboard  
0101 = PN 23 sequence  
0110 = PN 9 sequence  
0111 = 1/0 word toggle  
1000 = user input  
1001 = one/zero bit toggle  
1010 = 1× sync  
1011 = one bit high  
1100 = mixed bit frequency  
0x0E  
0x10  
BIST enable  
Offset adjust  
Open  
Open  
Open  
Open  
Open  
BIST INIT  
Open BIST enable  
0x00  
0x00  
When Bit 0 is set, the  
built-in self-test  
function is initiated  
8-bit device offset adjustment [7:0] (local)  
Device offset trim  
Offset adjust in LSBs from +127 to −128 (twos complement format)  
Rev. B | Page 27 of 32  
 
 
AD9629  
Data Sheet  
Default  
Value  
(Hex)  
Addr  
(Hex)  
Bit 7  
(MSB)  
Bit 0  
(LSB)  
Register Name  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Comments  
0x14  
Output mode  
00 = 3.3 V CMOS  
10 = 1.8 V CMOS  
Open  
Output Open  
disable  
Output  
invert  
00 = offset binary  
01 = twos  
0x00  
Configures the  
outputs and the  
complement  
format of the data  
10 = gray code  
11 = offset binary  
0x15  
0x16  
Output adjust  
3.3 V DCO  
1.8 V DCO  
3.3 V data  
1.8 V data  
0x22  
Determines CMOS  
output drive  
strength properties  
drive strength  
00 = 1 stripe  
(default)  
01 = 2 stripes  
10 = 3 stripes  
11 = 4 stripes  
drive strength  
00 = 1 stripe  
01 = 2 stripes  
10 = 3 stripes  
(default)  
drive strength  
00 = 1 stripe  
(default)  
01 = 2 stripes  
10 = 3 stripes  
11 = 4 stripes  
drive strength  
00 = 1 stripe  
01 = 2 stripes  
10 = 3 stripes  
(default)  
11 = 4 stripes  
11 = 4 stripes  
Output phase  
DCO  
Open  
Open  
Open  
Open  
Input clock phase adjust, Bits[2:0]  
(Value is number of input clock  
cycles of phase delay)  
0x00  
On devices that  
utilize global clock  
divide, determines  
which phase of the  
divider output is  
used to supply the  
output clock;  
Output  
polarity  
0 =  
normal  
1 =  
000 = no delay  
001 = 1 input clock cycle  
010 = 2 input clock cycles  
011 = 3 input clock cycles  
100 = 4 input clock cycles  
101 = 5 input clock cycles  
110 = 6 input clock cycles  
111 = 7 input clock cycles  
inverted  
internal latching is  
unaffected  
0x17  
Output delay  
Enable  
DCO  
delay  
Open  
Enable  
data  
delay  
Open  
DCO/data delay, Bits[2:0]  
000 = 0.56 ns  
001 = 1.12 ns  
010 = 1.68 ns  
011 = 2.24 ns  
100 = 2.80 ns  
101 = 3.36 ns  
110 = 3.92 ns  
111 = 4.48 ns  
0x00  
Sets the fine output  
delay of the output  
clock, but does not  
change internal  
timing  
0x19  
0x1A  
0x1B  
0x1C  
0x24  
USER_PATT1_LSB  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B9  
B1  
B9  
B0  
B8  
B0  
B8  
0x00  
0x00  
0x00  
0x00  
0x00  
User-defined  
pattern, 1 LSB  
USER_PATT1_MSB B15  
USER_PATT2_LSB B7  
B14  
B6  
B13  
B5  
B12  
B4  
B11  
B3  
B10  
B2  
User-defined  
pattern, 1 MSB  
User-defined  
pattern, 2 LSB  
USER_PATT2_MSB B15  
BIST signature LSB  
B14  
B13  
B12  
B11  
B10  
User-defined  
pattern, 2 MSB  
BIST signature, Bits[7:0]  
Least significant byte  
of BIST signature,  
read only  
0x2A  
OR/MODE select  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
0 =  
0x01  
Selects I/O  
MODE  
1 = OR  
(default)  
functionality in  
conjunction w/  
Address 0x08 for  
MODE (input) or OR  
(output) on external  
Pin 23  
1.1. AD9629 Specific Customer SPI Control  
0x101 USR2 Open  
1
Open  
Open  
Enable Run GCLK  
GCLK  
detect  
Open  
Disable  
SDIO  
pull-  
0x88  
Enables internal  
oscillator for clock  
rates of <5 MHz  
down  
1. See the Soft Reset section for limitations on the use of soft reset.  
Rev. B | Page 28 of 32  
Data Sheet  
AD9629  
Bit 2—Run GCLK  
MEMORY MAP REGISTER DESCRIPTIONS  
This bit enables the GCLK oscillator. For some applications  
with encode rates below 10 MSPS, it may be preferable to set  
this bit high to supersede the GCLK detector.  
For additional information about functions controlled in  
Register 0x00 to Register 0xFF, see the AN-877 Application  
Note, Interfacing toHighSpeed ADCs via SPI.  
Bit 0—DisableSDIO Pull-Down  
USR2 (Register 0x101)  
Bit 3—Enable GCLK Detect  
This bit can be set high to disable the internal 30 kΩ pull-down  
on the SDIO pin, which can be used to limit the loading when  
many devices are connected to the SPI bus.  
Normally set high, this bit enables a circuit that detects encode  
rates below about 5 MSPS. When a low encode rate is detected,  
an internal oscillator, GCLK, is enabled ensuring the proper  
operation of several circuits. If set low the detector is disabled.  
Rev. B | Page 29 of 32  
 
AD9629  
Data Sheet  
APPLICATIONS INFORMATION  
To maximize the coverage and adhesion between the ADC and  
the PCB, a silkscreen should be overlaid to partition thecontinuous  
plane on the PCB into several uniform sections. This provides  
several tie points betweenthe ADC and the PCBduringthe reflow  
process. Using one continuous plane with no partitions guarantees  
only one tie pointbetween the ADC and the PCB. For detailed  
information about packaging and PCBlayout of chip scale  
packages, see the AN-772 Application Note, A Design and  
Manufacturing Guide for the Lead Frame Chip Scale Package  
(LFCSP), at www.analog.com.  
DESIGN GUIDELINES  
Before starting design and layout of the AD9629 as a system,  
it is recommended that the designer become familiar with these  
guidelines, which discuss the special circuit connections and  
layout requirements needed for certain pins.  
Power and Ground Recommendations  
When connecting power to the AD9629, it is strongly recom-  
mended that two separate supplies be used. Use one 1.8 V supply  
for analog (AVDD); use a separate 1.8 V to 3.3 V supply for the  
digital output supply (DRVDD). If a common 1.8 V AVDD and  
DRVDD supply must be used, the AVDD and DRVDD domains  
must be isolated with a ferrite bead or filter choke and separate  
decoupling capacitors. Several different decoupling capacitors  
can be used to cover both high and low frequencies. Locate  
these capacitors close to the point of entry at the PCB level  
and close to the pins of the part, with minimal trace length.  
Encode Clock  
For optimum dynamic performance a low jitter encode clock  
source with a 50% duty cycle 5% should be used to clock the  
AD9629.  
VCM  
The VCM pin should be decoupled to ground with a 0.1 μF  
capacitor, as shown in Figure 38.  
A single PCB ground plane should be sufficient when using the  
AD9629. With proper decoupling and smart partitioning of the  
PCB analog, digital, and clock sections, optimum performance  
is easily achieved.  
RBIAS  
The AD9629 requires that a 10 kΩ resistor be placed between  
the RBIAS pin and ground. This resistor sets the master current  
reference of theADC core and should have atleast a 1% tolerance.  
When powering down the AD9629, power off AVDD and  
DRVDD simultaneously, or DRVDD must be removed before  
AVDD.  
Reference Decoupling  
Externally decouple the VREF pin to ground with a low ESR,  
1.0 μF capacitor in parallel with a low ESR, 0.1 μF ceramic  
capacitor.  
Exposed Paddle Thermal Heat Sink Recommendations  
The exposed paddle (Pin 0) is the only ground connection for  
the AD9629; therefore, it must be connected to analog ground  
(AGND) on the customer’s PCB. To achieve the best electrical  
and thermal performance, mate an exposed (no solder mask)  
continuous copper plane on the PCB to the AD9629 exposed  
paddle, Pin 0.  
SPI Port  
The SPI port should not be active during periods when the full  
dynamic performance of the converter is required. Because the  
SCLK, CSB, and SDIO signals are typically asynchronous to the  
ADC clock, noise from these signals can degrade converter  
performance. If the on-board SPI bus is used for other devices,  
it may be necessary to provide buffers between this bus and the  
AD9629 to keep these signals fromtransitioning at the converter  
inputs during critical sampling periods.  
The copper plane should have several vias to achieve the  
lowest possible resistive thermal path for heat dissipation to  
flow through the bottom of the PCB. Fill or plug these vias  
with nonconductive epoxy.  
Soft Reset  
In applications where DRVDD ≥ 2.75 V, do not perform soft  
reset (Register 0x00 Bit 2 and Bit 5 = 1). Soft reset restores  
AD9629 defaults already available at power-up and is not  
needed.  
Rev. B | Page 30 of 32  
 
 
 
 
Data Sheet  
AD9629  
OUTLINE DIMENSIONS  
5.10  
5.00 SQ  
4.90  
0.30  
0.25  
0.18  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
25  
24  
32  
1
0.50  
BSC  
3.65  
3.50 SQ  
3.45  
EXPOSED  
PAD  
8
9
17  
16  
0.50  
0.40  
0.30  
0.25 MIN  
TOP VIEW  
BOTTOM VIEW  
3.50 REF  
0.80  
0.75  
0.70  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-WHHD.  
Figure 55. 32-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
5 mm × 5 mm Body, Very Very Thin Quad (CP-32-11)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model 1  
Temperature Range  
–40°C to +85°C  
Package Description  
Package Option  
CP-32-11  
CP-32-11  
CP-32-11  
CP-32-11  
CP-32-11  
CP-32-11  
CP-32-11  
CP-32-11  
AD9629BCPZ-80  
AD9629BCPZRL7-80  
AD9629BCPZ-65  
AD9629BCPZRL7-65  
AD9629BCPZ-40  
AD9629BCPZRL7-40  
AD9629BCPZ-20  
AD9629BCPZRL7-20  
AD9629-80EBZ  
AD9629-65EBZ  
AD9629-40EBZ  
AD9629-20EBZ  
32-Lead Lead Frame Chip Scale Package (LFCSP_WQ)  
32-Lead Lead Frame Chip Scale Package (LFCSP_WQ)  
32-Lead Lead Frame Chip Scale Package (LFCSP_WQ)  
32-Lead Lead Frame Chip Scale Package (LFCSP_WQ)  
32-Lead Lead Frame Chip Scale Package (LFCSP_WQ)  
32-Lead Lead Frame Chip Scale Package (LFCSP_WQ)  
32-Lead Lead Frame Chip Scale Package (LFCSP_WQ)  
32-Lead Lead Frame Chip Scale Package (LFCSP_WQ)  
Evaluation Board  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
Evaluation Board  
Evaluation Board  
Evaluation Board  
1 Z = RoHS Compliant Part.  
Rev. B | Page 31 of 32  
 
 
AD9629  
NOTES  
Data Sheet  
©2009–2017 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D08540-0-2/17(B)  
Rev. B | Page 32 of 32  

相关型号:

AD9630

Low Distortion 750 MHz Closed-Loop Buffer Amp
ADI

AD9630*

Low Distortion 750 MHz Closed-Loop Buffer Amp
ADI

AD9630AN

Low Distortion 750 MHz Closed-Loop Buffer Amp
ADI

AD9630AQ

IC BUFFER AMPLIFIER, CDIP8, CERDIP-8, Buffer Amplifier
ADI

AD9630AR

Low Distortion 750 MHz Closed-Loop Buffer Amp
ADI

AD9630AR-REEL

Low Distortion 750 MHz Closed-Loop Buffer Amp
ADI

AD9630SQ

Analog Buffer/Voltage Follower
ETC

AD9630SZ

暂无描述
ADI

AD9631

Ultralow Distortion, Wide Bandwidth Voltage Feedback Op Amps
ADI

AD9631(SMD)

IC VIDEO AMPLIFIER, CDIP8, CERDIP-8, Audio/Video Amplifier
ADI

AD9631-EB

Ultralow Distortion, Wide Bandwidth Voltage Feedback Op Amps
ADI

AD9631AN

Ultralow Distortion, Wide Bandwidth Voltage Feedback Op Amps
ADI