AD9630AQ [ADI]

IC BUFFER AMPLIFIER, CDIP8, CERDIP-8, Buffer Amplifier;
AD9630AQ
型号: AD9630AQ
厂家: ADI    ADI
描述:

IC BUFFER AMPLIFIER, CDIP8, CERDIP-8, Buffer Amplifier

缓冲放大器
文件: 总7页 (文件大小:105K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Distortion 750 MHz  
Closed-Loop Buffer Amp  
a
AD9630*  
PIN CONFIGURATION  
FEATURES  
Excellent Gain Accuracy: 0.99 V/V  
Wide Bandwidth: 750 MHz  
Slew Rate: 1200 V/s  
Low Distortion  
–65 dBc @ 20 MHz  
–80 dBc @ 4.3 MHz  
Settling Time  
+V  
OUTPUT  
NC  
1
2
3
4
8
7
6
5
S
**  
NC  
***  
–V  
S
INPUT  
AD9630  
NC = NO CONNECT  
5 ns to 0.1%  
**OPTIONAL +V  
***OPTIONAL –V  
S
S
8 ns to 0.02%  
Low Noise: 2.4 nV/Hz  
Improved Source for CLC-110  
NOTE: FOR BEST SETTLING TIME PERFORMANCE USE  
OPTIONAL POWER SUPPLIES. ALL SPECIFICATIONS  
ARE BASED ON USING SINGLE ؎V CONNECTIONS,  
S
EXCEPT FOR SETTLING TIME TO 0.02% AND SMALL  
SIGNAL S21. CONSULT THE FACTORY FOR VERSIONS  
WITH OPTIONAL POWER SUPPLY PINS DISCONNECTED  
INTERNAL TO THE PACKAGE.  
APPLICATIONS  
IF/Communications  
Impedance Transformations  
Drives Flash ADCs  
Line Driving  
The large signal bandwidth, low distortion over frequency, and  
drive capabilities of the AD9630 make the buffer an ideal flash  
ADC driver. The AD9630 provides better signal fidelity than  
many of the flash ADCs that it has been designed to drive.  
GENERAL DESCRIPTION  
The AD9630 is a monolithic buffer amplifier that utilizes a  
patented, innovative, closed-loop design technique to achieve  
exceptional gain accuracy, wide bandwidth, and low distortion.  
Slew rate limiting has been overcome as indicated by the  
1200 V/µs slew rate; this improvement allows the user greater  
flexibility in wideband and pulse applications. The second har-  
monic distortion terms for an analog input tone of 4.3 MHz  
and 20 MHz are –80 dBc and –66 dBc, respectively. Clearly,  
the AD9630 establishes a new standard by combining out-  
standing dc and dynamic performance in one part.  
Other applications that require increased current drive at unity  
voltage gain (such as cable driving) benefit from the AD9630’s  
performance.  
The AD9630 is available in plastic DIP (N) and SOIC (R).  
*Protected under U.S. patent numbers 5,150,074 and 5,537,079.  
REV. B  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 617/329-4700  
Fax: 617/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 1999  
AD9630–SPECIFICATIONS  
(unless otherwise noted, ؎VS = ؎5 V; RIN = 50 , RLOAD = 100 )  
ELECTRICAL CHARACTERISTICS  
Test  
AD9630AN/AR  
Typ  
Parameter  
Conditions  
Temp  
Level  
Min  
Max  
Units  
DC SPECIFICATIONS  
Output Offset Voltage  
Offset Voltage TC  
Input Bias Current  
Bias Current TC  
+25°C  
Full  
+25°C  
Full  
+25 to TMAX  
TMIN  
+25°C  
+25 to TMAX  
TMIN  
Full  
+25 to TMAX  
TMIN  
+25°C  
Full  
+25°C  
I
IV  
I
IV  
II  
VI  
V
–8  
±3  
±8  
±2  
±20  
450  
250  
1.0  
0.990  
0.985  
±3.6  
+8  
mV  
µV/°C  
µA  
nA/°C  
kΩ  
–40  
–25  
–100  
300  
150  
+40  
+25  
+100  
Input Resistance  
kΩ  
pF  
Input Capacitance  
Gain  
VOUT = 2 V p-p  
VOUT = 2 V p-p  
II  
0.983  
0.980  
+3.2  
50  
V/V  
V/V  
V
mA  
mA  
VI  
VI  
II  
VI  
V
Output Voltage Range  
Output Current (50 Load)  
–3.2  
40  
Output Impedance  
PSRR  
DC Nonlinearity  
At DC  
VS = ±5%  
±2 V Full Scale  
0.6  
55  
0.03  
VI  
V
44  
dB  
%
FREQUENCY DOMAIN  
Bandwidth (–3 dB)  
Small Signal  
V
V
O 0.7 V p-p  
O 0.7 V p-p  
TMIN to +25  
TMAX  
TMIN to +25  
TMAX  
Full  
Full  
+25°C  
+25°C  
Full  
Full  
Full  
Full  
Full  
TMIN to +25  
TMAX  
+25°C  
+25°C  
II  
II  
V
400  
330  
750  
550  
120  
105  
0.4  
0
0.7  
0.7  
–80  
–66  
–52  
–86  
–75  
–47  
–46  
2.4  
32  
MHz  
MHz  
MHz  
MHz  
dB  
dB  
ns  
Degrees  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
nV/Hz  
µV  
Large Signal  
VO = 5 V p-p  
VO = 5 V p-p  
200 MHz  
200 MHz  
V
Output Peaking  
Output Rolloff  
Group Delay  
Linear Phase Deviation  
2nd Harmonic Distortion  
II  
II  
V
1.2  
0.3  
DC to 150 MHz  
DC to 150 MHz  
2 V p-p; 4.3 MHz  
2 V p-p; 20 MHz  
2 V p-p; 50 MHz  
2 V p-p; 4.3 MHz  
2 V p-p; 20 MHz  
2 V p-p; 50 MHz  
2 V p-p; 50 MHz  
10 MHz  
V
IV  
IV  
II  
IV  
IV  
II  
II  
V
–73  
–58  
–43  
–79  
–68  
–41  
–40  
3rd Harmonic Distortion  
Spectral Input Noise Voltage  
Integrated Output Noise  
100 kHz – 200 MHz  
V
TIME DOMAIN  
Slew Rate  
Rise/Fall Time  
VOUT = 5 V Step  
VOUT = 1 V Step  
VOUT = 1 V Step  
VOUT = 5 V Step  
VOUT = 5 V Step  
VOUT = 2 V Step  
+25°C  
+25°C  
TMIN to TMAX  
+25°C  
TMIN to TMAX  
Full  
IV  
IV  
IV  
IV  
IV  
IV  
700  
1200  
1.1  
1.3  
4.2  
5.0  
2
V/µs  
ns  
ns  
ns  
ns  
1.7  
1.9  
5.7  
6.5  
12  
Overshoot Amplitude  
Settling Time  
To 0.1%  
%
VOUT = 2 V Step  
VOUT = 2 V Step  
VOUT = 2 V Step  
VOUT = 2 V Step  
4.4 MHz  
TMIN to +25  
TMAX  
TMIN to +25  
TMAX  
+25°C  
+25°C  
IV  
IV  
IV  
V
V
V
6
7
8
12  
0.015  
0.025  
10  
12  
ns  
ns  
ns  
ns  
%
Degree  
To 0.02%4  
Differential Gain  
Differential Phase  
4.4 MHz  
SUPPLY CURRENTS  
VCC (+IS)  
VEE (–IS)  
VCC = +5 V  
VEE = –5 V  
Full  
Full  
II  
II  
19  
19  
26  
26  
mA  
mA  
NOTES  
1Short-term settling with 50 source impedance.  
Specifications subject to change without notice.  
REV. B  
–2–  
AD9630  
ABSOLUTE MAXIMUM RATINGS1  
Supply Voltages (±VS) . . . . . . . . . . . . . . . . . . . . . . . . . . . ±7 V  
Continuous Output Current2 . . . . . . . . . . . . . . . . . . . . . 70 mA  
Temperature Range over Which Specifications Apply  
AD9630AN/AR . . . . . . . . . . . . . . . . . . . . . –40°C to +85°C  
Lead Soldering Temperature (10 sec) . . . . . . . . . . . . . +300°C  
Storage Temperature  
EXPLANATION OF TEST LEVELS  
Test Level  
I
100% Production tested.  
II 100% Production tested at +25°C and sample tested at  
specified temperatures. AC testing of AN and AR grades  
done on sample basis only.  
III Sample tested only.  
AD9630AN/AR . . . . . . . . . . . . . . . . . . . . –65°C to +150°C  
IV Parameter is guaranteed by design and characterization  
testing.  
Junction Temperature3  
AD9630AN/AR . . . . . . . . . . . . . . . . . . . . . . . . . . . . +150°C  
V
Typical value.  
NOTES  
1Absolute maximum ratings are limiting values to be applied individually, and  
beyond which the serviceability of the circuit may be impaired. Functional  
operability is not necessarily implied. Exposure to absolute maximum rating  
conditions for an extended period of time may affect device reliability.  
2Output is short-circuit protected to ground, but not to supplies. Prolonged short  
circuit to ground may affect device reliability.  
VI S Versions are 100% production tested at temperature  
extremes. Other grades are sample tested at extremes.  
100⍀  
(5%, 0.25W)  
+5V  
1
2
3
4
8
7
6
5
0.1F  
3Typical thermal impedances (part soldered onto board): Plastic DIP (N): θJA  
110°C/W; θJC = 30°C/W; SOIC (R): θJA = 155°C/W; θJC = 40°C/W.  
=
NC  
NC  
AD9630  
TOP VIEW  
(Not to Scale)  
NC  
NC  
–5.2V  
24⍀  
(5%, 0.25W)  
0.1F  
ORDERING GUIDE  
NC = NO CONNECT  
Temperature  
Range  
Package  
Description  
Package  
Option  
Model  
AD9630 Burn-In Circuit  
AD9630AN  
AD9630AR  
–40°C to +85°C 8-Lead Plastic DIP N-8  
–40°C to +85°C 8-Lead SOIC SO-8  
AD9630AR-REEL –40°C to +85°C 13" Tape and Reel SO-8  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the AD9630 features proprietary ESD protection circuitry, permanent damage may  
occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
THEORY OF OPERATION  
Parasitic or load capacitance (>7 pF) connected directly to the  
AD9630 output will result in frequency peaking. A small series  
resistor (RS) connected between the buffer output and capaci-  
tive load will negate this effect. Figure 1 shows the optimal value  
of RS as a function of CL to obtain the flattest frequency re-  
sponse. Figure 2 illustrates frequency response for various  
capacitive loads utilizing the recommended RS.  
The AD9630 is a wide-bandwidth, closed-loop, unity-gain  
buffer that makes use of a new voltage-feedback architecture.  
This architecture brings together wide bandwidth and high slew  
rate along with exceptional dc linearity. Most previous wide-  
bandwidth buffers achieved their bandwidth by utilizing an  
open-loop topology which sacrificed both dc linearity and fre-  
quency distortion when driven into low load impedances. The  
design’s high loop correction factor radically improves dc lin-  
earity and distortion characteristics without diminishing  
bandwidth. This, in combination with high slew rate, results in  
exceptionally low distortion over a wide frequency range.  
50  
R
S
40  
30  
20  
200⍀  
"R"  
C
L
The AD9630 is an excellent choice to drive high speed and high  
resolution analog-to-digital converters. Its output stage is de-  
signed to drive high speed flash converters with minimal or no  
series resistance. A current booster built into the output driver  
helps to maintain low distortion.  
NO R NEEDED  
S
WHEN C < 7pF;  
FOR C > 30pF, "R"  
L
CAN BE OMITTED  
L
10  
0
0
7
20  
40  
60  
80  
100  
C
– pF  
L
Figure 1. Recommended RS vs. CL  
REV. B  
–3–  
AD9630  
2
the device output. To avoid this occurrence, the power supply  
leads should be tightly twisted (if appropriate). Ferrite beads  
mounted between the tantalum and ceramic capacitors will  
serve the same purpose.  
1
10pF  
25pF  
0
–1  
–2  
–3  
–4  
–5  
–6  
–7  
All unused pins (except the optional power supply pins) should  
be connected to ground to reduce pin-to-pin capacitive coupling  
and prevent external RF interference. If the source and drive  
electronics require “remote” operation (> 1 inch from the  
AD9630), the PC board line impedances should be matched  
with the buffer input and output resistances. Basic microstrip  
techniques should be observed. RIN and RS should be connected  
as close to the AD9630 as possible.  
50pF  
With only minimal pulse overshoot and ringing, the AD9630  
can drive terminated cables directly without the use of an output  
–8  
<0.1MHz  
100MHz  
200MHz  
300MHz  
C
L
termination resistor (RS). Termination resistors (RS and RIN  
)
can be either standard carbon composition or microwave type.  
For matching characteristic impedances, precision microwave  
resistors of 1% or better tolerance are preferred.  
Figure 2. Frequency Response vs. CL  
with Recommended RS  
In pulse mode applications, with RS equal to approximately  
12 , capacitive loads of up to 50 pF can be driven with mini-  
mal settling time degradation.  
The AD9630 should be soldered directly to the PC board with  
as little vertical clearance as possible. The use of zero insertion  
sockets is strongly discouraged because of the high effective pin  
inductances. Use of this type socket will result in peaking and  
possibly induce oscillation.  
The output stage has short circuit protection to ground. The  
output driver will shut down if more than approximately  
130 mA of instantaneous sink or source current is reached. This  
level of current ensures that output clipping will not result when  
driving heavy capacitive loads during high slew conditions,  
although average load currents above 70 mA may reduce device  
reliability.  
+V  
S
4.7F  
0.1F  
0.1F  
LAYOUT CONSIDERATIONS  
Due to the high frequency operation of the AD9630 attention to  
board layout is necessary to achieve optimum dynamic perfor-  
mance. A two ounce copper ground plane on the top side of the  
board is recommended; it should cover as much of the board as  
possible with appropriate openings for supply decoupling ca-  
pacitors as well as for load and source termination resistors, (see  
Figure 3).  
1
*
2
R **  
S
V
V
OUT  
8
IN  
AD9630  
*
6
R
IN  
5
0.1F  
0.1F  
Optimum settling time and ac performance results will be  
achieved with surface mount 0.1 µF supply decoupling ceramic  
chip capacitors mounted within 50 mils of the corresponding  
device pins with the other side soldered directly to the ground  
plane. For best high resolution (<0.02%) settling times, the op-  
tional power supply pins should be decoupled as shown above.  
If the optional power supply pins are not used, they should be  
left open.  
4.7F  
–V  
S
*SEE PINOUTS  
**SEE FIGURE 1  
Figure 3. AD9630 Application Circuit  
If surface mount capacitors cannot be used, radial lead ceramic  
capacitors with leads less than 30 mils long are recommended.  
Low frequency power supply decoupling is necessary and can be  
accomplished with 4.7 µF tantalum capacitors mounted within  
0.5 inches of the supply pins. Due to the series inductance of  
these capacitors interacting with the 0.1 µF capacitors and  
power supply leads, high frequency oscillations might appear on  
REV. B  
–4–  
Typical Performance Curves – AD9630  
1M  
100k  
10k  
1k  
30  
100  
80  
60  
40  
20  
0
0
–100  
–200  
–300  
–400  
–500  
–600  
–700  
–800  
–900  
–1000  
R
R
= 200⍀  
= 100⍀  
L
25  
20  
15  
|Zo|  
L
100  
10  
10  
5
1
0
1M  
1M  
10M  
100M  
1G  
10M  
100M  
FREQUENCY – Hz  
1G  
–3  
–2  
–1  
0
1
2
3
FREQUENCY – Hz  
VOLTS  
Figure 4. Endpoint DC Linearity  
Figure 5. Input Impedance  
Figure 6. Output Impedance  
10  
50  
40  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
8
50⍀  
30  
6
4
50⍀  
20  
TEST  
CIRCUIT  
BIAS CURRENT  
10  
2
0
0
–2  
–10  
–20  
–30  
–40  
–50  
–4  
–6  
OFFSET VOLTAGE  
–8  
–10  
–55  
25  
125  
1M  
10M  
100M  
1G  
dc  
50  
100  
150  
200  
250  
CASE TEMPERATURE – ؇C  
FREQUENCY – Hz  
FREQUENCY – MHz  
Figure 9. Offset Voltage and Bias  
Current vs. Temperature  
Figure 7. PSRR vs. Frequency  
Figure 8. 2-Tone Intermodulation  
Distortion  
2
1
3
2
V
= 100mV  
IN  
0.5  
R
= 200  
L
0
1
0
V
= 750mV  
= 100mV  
0.25  
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
GAIN  
IN  
R
= 50⍀  
L
0
R
= 100⍀  
–1  
–2  
–3  
–4  
–5  
–6  
–7  
L
–45  
–90  
–135  
–180  
0
PHASE  
TEST CIRCUIT  
50⍀  
V
IN  
–0.25  
6pF  
50⍀  
–0.5  
0M  
200M  
400M 600M  
800M  
1G  
0
40  
80  
120  
160  
200  
2ns/DIVISION  
FREQUENCY – Hz  
FREQUENCY – MHz  
Figure 10 . Forward Gain and Phase  
Figure 11. Frequency Response vs.  
RLOAD  
Figure 12. Small-Signal Pulse  
Response  
REV. B  
–5–  
AD9630  
0.1  
0.08  
0.06  
0.04  
0.02  
0.1  
0.08  
0.06  
0.04  
0.02  
3.0  
TEST CIRCUIT  
TEST CIRCUIT  
2.5  
2.0  
1.5  
1.0  
100⍀  
6pF  
100⍀  
6pF  
0.5  
0
0
0
TEST CIRCUIT  
50⍀  
–0.5  
–0.02  
–0.02  
–1.0  
–0.04  
–0.06  
–0.04  
–0.06  
–1.5  
–2.0  
–2.5  
–3.0  
6pF  
50⍀  
–0.08  
–0.1  
–0.08  
–0.1  
V
= 2V STEP  
V
= 2V STEP  
40 50  
OUT  
OUT  
1
10  
100  
1k  
10k  
100k  
10  
20  
30  
5ns/DIVISION  
TIME – ns  
TIME – ns  
Figure 13. Short-Term Settling Time  
Figure 14. Long-Term Settling Time  
Figure 15. Large-Signal Pulse  
Response  
40  
40  
R
= 100⍀  
R
= 100⍀  
L
L
50  
60  
70  
80  
50  
60  
70  
80  
2nd  
3rd  
2nd  
3rd  
90  
90  
100  
100  
1
10  
FREQUENCY – MHz  
100  
1
10  
FREQUENCY – MHz  
100  
Figure 16. Harmonic Distortion  
OUT = 4 V p-p  
Figure 17. Harmonic Distortion  
OUT = 2 V p-p  
V
V
REV. B  
–6–  
AD9630  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
8-Lead Plastic DIP  
(N-8)  
8-Lead SOIC  
(SO-8)  
0.430 (10.92)  
0.348 (8.84)  
0.1968 (5.00)  
0.1890 (4.80)  
8
5
8
1
5
4
0.280 (7.11)  
0.240 (6.10)  
0.2440 (6.20)  
0.2284 (5.80)  
0.1574 (4.00)  
0.1497 (3.80)  
1
4
0.325 (8.25)  
0.300 (7.62)  
PIN 1  
PIN 1  
0.100 (2.54)  
BSC  
0.0196 (0.50)  
؋
 45؇  
0.0500 (1.27)  
BSC  
0.060 (1.52)  
0.015 (0.38)  
0.0099 (0.25)  
0.210  
(5.33)  
MAX  
0.195 (4.95)  
0.115 (2.93)  
0.0688 (1.75)  
0.0532 (1.35)  
0.0098 (0.25)  
0.0040 (0.10)  
0.130  
(3.30)  
MIN  
8؇  
0؇  
0.160 (4.06)  
0.115 (2.93)  
0.0500 (1.27)  
0.0160 (0.41)  
0.0192 (0.49)  
0.0138 (0.35)  
0.0098 (0.25)  
0.0075 (0.19)  
SEATING  
PLANE  
0.015 (0.381)  
0.008 (0.204)  
0.022 (0.558) 0.070 (1.77) SEATING  
0.014 (0.356) 0.045 (1.15)  
PLANE  
REV. B  
–7–  

相关型号:

AD9630AR

Low Distortion 750 MHz Closed-Loop Buffer Amp
ADI

AD9630AR-REEL

Low Distortion 750 MHz Closed-Loop Buffer Amp
ADI

AD9630SQ

Analog Buffer/Voltage Follower
ETC

AD9630SZ

暂无描述
ADI

AD9631

Ultralow Distortion, Wide Bandwidth Voltage Feedback Op Amps
ADI

AD9631(SMD)

IC VIDEO AMPLIFIER, CDIP8, CERDIP-8, Audio/Video Amplifier
ADI

AD9631-EB

Ultralow Distortion, Wide Bandwidth Voltage Feedback Op Amps
ADI

AD9631AN

Ultralow Distortion, Wide Bandwidth Voltage Feedback Op Amps
ADI

AD9631ANZ

Ultralow Distortion, High Speed Op Amp, Stable at Gain of 1
ADI

AD9631AR

Ultralow Distortion, Wide Bandwidth Voltage Feedback Op Amps
ADI

AD9631AR-REEL

Ultralow Distortion, Wide Bandwidth Voltage Feedback Op Amps
ADI

AD9631AR-REEL7

Ultralow Distortion, Wide Bandwidth Voltage Feedback Op Amps
ADI