AD8177 [ADI]

500 MHz, Triple 16 】 5 Video Crosspoint Switch; 500兆赫,三16 】 5视频交叉点开关
AD8177
型号: AD8177
厂家: ADI    ADI
描述:

500 MHz, Triple 16 】 5 Video Crosspoint Switch
500兆赫,三16 】 5视频交叉点开关

开关
文件: 总40页 (文件大小:664K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
500 MHz, Triple 16 × 5  
Video Crosspoint Switch  
AD8177  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
D0 D1 D2 D3 D4 VPOS VNEG VDD DGND  
High channel count, triple 16 × 5 high speed, nonblocking  
switch array  
Pin compatible with AD8175/AD8176 (16 × 9 switch arrays)  
and AD8178 (16 × 5 switch array)  
Differential or single-ended operation  
Supports sync-on common-mode and sync-on color  
operating modes  
Decoded HV sync outputs available  
G = +2 operation (differential input to differential output)  
Flexible power supplies: +5 V or 2.5 V  
Logic ground for convenient control interface  
Serial or parallel programming of switch array  
High impedance output disable allows connection of  
multiple devices with minimal loading on output bus  
Adjustable output CM and black level through external pins  
Excellent ac performance (to support 1600 × 1200 @ 85 Hz)  
Bandwidth: 500 MHz  
AD8177  
A0  
A1  
A2  
SERIN  
CLR  
SER/PAR  
45-BIT SHIFT  
REGISTER WITH  
5-BIT PARALLEL  
LOADING  
1
0
WE  
SEROUT  
CLK  
20  
25  
NO  
CONNECT  
CS  
UPDATE  
RST  
PARALLEL LATCH  
CMENC  
25  
5
DECODE  
5 × 5:16 DECODERS  
80  
INPUT  
RECEIVER  
G = +1  
OUTPUT  
BUFFER  
G = +1  
Slew rate: 1800 V/μs  
Settling time: 4 ns to 1%  
Low power of 2.3 W  
Low all-hostile crosstalk  
2
2
2
2
2
2
R
G
B
R
G
B
H
V
−88 dB @ 5 MHz  
−46 dB @ 500 MHz  
SWITCH  
MATRIX  
G = +2  
Wide input common-mode range of 4 V  
Reset pin allows disabling of all outputs  
Fully populated 26 × 26 ball PBGA package  
(27 mm × 27 mm, 1 mm ball pitch)  
2
2
2
2
R
G
B
R
G
B
H
V
2
2
Convenient grouping of RGB signals for easy routing  
APPLICATIONS  
RGB video switching  
KVM  
Professional video  
VBLK  
VOCM_CMENCON  
VOCM_CMENCOFF  
Figure 1.  
GENERAL DESCRIPTION  
The AD8177 is a high speed, triple 16 × 5 video crosspoint  
switch matrix. It supports 1600 × 1200 RGB displays @ 85 Hz  
refresh rate by offering a 500 MHz bandwidth and a slew rate of  
1800 V/μs. With −88 dB of crosstalk and −94 dB isolation  
(@ 5 MHz), the AD8177 is useful in many high speed video  
applications.  
with CM signaling removed through the switch. The output  
CM and black level can be conveniently set via external pins.  
The independent output buffers of the AD8177 can be placed  
into a high impedance state to create larger arrays by paralleling  
crosspoint outputs. Inputs can be paralleled as well. The  
AD8177 offers both serial and parallel programming modes.  
The AD8177 supports two modes of operation: differential-in  
to differential-out mode with sync-on CM signaling passed  
through the switch and differential-in to differential-out mode  
The AD8177 is packaged in a fully populated 26 × 26 ball  
PBGA package and is available over the extended industrial  
temperature range of −40°C to +85°C.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2007 Analog Devices, Inc. All rights reserved.  
 
AD8177  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Pin Configuration and Function Descriptions..............................8  
Truth Table and Logic Diagram ............................................... 17  
Equivalent Circuits......................................................................... 19  
Typical Performance Characteristics ........................................... 21  
Theory of Operation ...................................................................... 26  
Applications Information.............................................................. 27  
Operating Modes........................................................................ 27  
Programming.............................................................................. 28  
Differential and Single-Ended Operation............................... 30  
Outline Dimensions....................................................................... 39  
Ordering Guide .......................................................................... 39  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Timing Characteristics (Serial Mode) ....................................... 5  
Timing Characteristics (Parallel Mode).................................... 6  
Absolute Maximum Ratings............................................................ 7  
Thermal Resistance ...................................................................... 7  
Power Dissipation......................................................................... 7  
ESD Caution.................................................................................. 7  
REVISION HISTORY  
7/07—Revision 0: Initial Version  
Rev. 0 | Page 2 of 40  
 
AD8177  
SPECIFICATIONS  
VS = 2.5 V at TA = 25°C, G = +2, RL = 100 Ω (each output), VBLK = 0 V, output CM voltage = 0 V, differential I/O mode, unless  
otherwise noted.  
Table 1.  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
−3 dB Bandwidth  
200 mV p-p  
2 V p-p  
0.1 dB, 200 mV p-p  
2 V p-p  
1%, 2 V step  
500  
450  
25  
1.3  
4
MHz  
MHz  
MHz  
ns  
Gain Flatness  
Propagation Delay  
Settling Time  
ns  
Slew Rate, Differential Output  
2 V step  
1800  
1500  
300  
400  
V/μs  
V/μs  
V/μs  
V/μs  
2 V step, 10% to 90%  
1 V step, 10% to 90%  
Rail-to-rail, TTL load  
Slew Rate, RGB Common Mode  
Slew Rate, HV Outputs  
NOISE/DISTORTION PERFORMANCE  
Crosstalk, All Hostile  
f = 5 MHz  
f = 10 MHz  
f = 100 MHz  
f = 500 MHz  
f = 5 MHz, RL = 100 Ω, one channel  
0.01 MHz to 100 MHz  
−88  
−82  
−58  
−46  
−94  
40  
dB  
dB  
dB  
dB  
dB  
nV/√Hz  
Off Isolation, Input to Output  
Input Voltage Noise  
DC PERFORMANCE  
Gain Error  
1
%
Gain Matching  
R, G, B same channel  
0.5  
40  
%
Gain Temperature Coefficient  
OUTPUT CHARACTERISTICS  
Output Offset Voltage  
ppm/°C  
CMENC on or off  
Temperature coefficient  
CMENC on or off  
10  
31  
10  
mV  
μV/°C  
mV  
Output Offset Voltage,  
RGB Common Mode  
Temperature coefficient  
Enabled, differential  
Disabled, differential  
Disabled  
Disabled  
No load, differential  
Short circuit  
−7.6  
1.5  
2.7  
2
μV/°C  
Ω
kΩ  
pF  
μA  
Output Impedance  
Output Disable Capacitance  
Output Leakage Current  
Output Voltage Range  
Output Current  
1
4
2
V p-p  
mA  
45  
INPUT CHARACTERISTICS  
Input Voltage Range,  
Differential Mode  
Input Voltage Range,  
Common Mode  
V p-p  
V
V
IN = 1 V p-p, differential  
2.25  
CMR, RGB Input  
ΔVOUT, DM/ΔVIN, CM, ΔVIN, CM  
ΔVOUT, DM/ΔVIN, CM, ΔVIN, CM  
ΔVOUT, CM/ΔVIN, CM, ΔVIN, CM  
ΔVOUT, CM/ΔVIN, CM, ΔVIN, CM  
Any switch configuration  
Differential  
=
=
=
=
0.5 V, CMENC off  
0.5 V, CMENC on  
0.5 V CMENC off  
0.5 V, CMENC on  
–62  
−45  
−70  
0
2
3.33  
1
dB  
dB  
dB  
dB  
pF  
kΩ  
μA  
CM Gain, RGB Input  
Input Capacitance  
Input Resistance  
Input Offset Current  
Rev. 0 | Page 3 of 40  
 
 
AD8177  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
SWITCHING CHARACTERISTICS  
Enable On Time  
50% UPDATE to 50% output  
50% UPDATE to 50% output  
80  
70  
ns  
ns  
Switching Time, 2 V Step  
POWER SUPPLIES  
Supply Current  
VPOS, outputs enabled, no load  
Outputs disabled  
VNEG, outputs enabled, no load  
Outputs disabled  
DVDD, outputs enabled, no load  
VPOS − VNEG  
VDD to DGND  
460  
290  
460  
290  
mA  
mA  
mA  
mA  
mA  
V
V
dB  
dB  
4
Supply Voltage Range  
PSR  
4.5 to 5.5  
3.3 to 5.5  
−55  
ΔVOUT, DM/ΔVPOS, ΔVPOS  
ΔVOUT, DM/ΔVNEG, ΔVNEG  
=
=
0.5 V  
0.5 V  
−55  
OPERATING TEMPERATURE RANGE  
Temperature Range  
θJA  
Operating (still air)  
Operating (still air)  
−40 to +85  
15  
°C  
°C/W  
Rev. 0 | Page 4 of 40  
AD8177  
TIMING CHARACTERISTICS (SERIAL MODE)  
Table 2.  
Limit  
Typ  
Parameter  
Symbol  
Min  
40  
60  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
μs  
ns  
Serial Data Setup Time  
CLK Pulse Width  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
Serial Data Hold Time  
CLK Pulse Separation  
CLK to UPDATE Delay  
UPDATE Pulse Width  
CLK to SEROUT Valid  
Propagation Delay, UPDATE to Switch On  
Data Load Time, CLK = 5 MHz, Serial Mode  
RST Time  
50  
140  
10  
90  
120  
80  
9
140  
200  
t2  
t4  
1
CLK  
0
LOAD DATA INTO  
SERIAL REGISTER  
ON FALLING EDGE  
t1  
t3  
1
0
SERIN  
OUT4 (D4)  
OUT4 (D3)  
OUT0 (D0)  
t5  
t6  
1 = LATCHED  
TRANSFER DATA FROM SERIAL  
REGISTER TO PARALLEL  
LATCHES DURING LOW LEVEL  
UPDATE  
0 = TRANSPARENT  
t7  
1
SEROUT  
0
Figure 2. Timing Diagram, Serial Mode  
Table 3. Logic Levels, VDD = 3.3 V  
VIH  
VIL  
VOH  
SEROUT  
VOL  
IIH  
IIL  
IOH  
IOL  
SER/PAR, CLK,  
SER/PAR, CLK,  
SEROUT  
SER/PAR, CLK,  
SER/PAR, CLK,  
SEROUT  
SEROUT  
SERIN, UPDATE SERIN, UPDATE  
SERIN, UPDATE SERIN, UPDATE  
2.0 V min 0.6 V max  
2.8 V min  
0.4 V max  
20 μA max  
–20 μA max  
–1 mA min  
1 mA min  
Table 4. H and V Logic Levels, VDD = 3.3 V  
VOH  
VOL  
IOH  
IOL  
2.7 V min  
0.5 V max  
–3 mA max  
3 mA max  
RST  
Table 5.  
VIH  
Logic Levels, VDD = 3.3 V  
VIL  
IIH  
IIL  
2.0 V min  
0.6 V max  
−60 μA max  
−120 μA max  
CS  
Table 6.  
VOH  
Logic Levels, VDD = 3.3 V  
VOL  
IIH  
IOL  
2.0 V min  
0.6 V max  
100 μA max  
40 μA max  
Rev. 0 | Page 5 of 40  
 
AD8177  
TIMING CHARACTERISTICS (PARALLEL MODE)  
Table 7.  
Limit  
Typ  
Parameter  
Symbol  
Min  
80  
110  
150  
90  
Max  
Unit  
ns  
ns  
Parallel Data Setup Time  
WE Pulse Width  
t1  
t2  
t3  
t4  
t5  
t6  
Parallel Hold Time  
ns  
ns  
WE Pulse Separation  
WE to UPDATE Delay  
UPDATE Pulse Width  
Propagation Delay, UPDATE to Switch On  
RST Time  
10  
ns  
90  
ns  
80  
ns  
140  
200  
ns  
t2  
t4  
1
0
WE  
t1  
t3  
1
D0 TO D4  
A0 TO A2  
0
t5  
t6  
1 = LATCHED  
UPDATE  
0 = TRANSPARENT  
Figure 3. Timing Diagram, Parallel Mode  
Table 8. Logic Levels, VDD = 3.3 V  
VIH  
VIL  
VOH  
VOL  
IIH  
IIL  
SER/PAR, WE,  
IOH  
IOL  
SER/PAR, WE,  
SER/PAR, WE,  
SEROUT  
SEROUT  
SER/PAR, WE,  
SEROUT  
SEROUT  
D0, D1, D2, D3, D0, D1, D2, D3,  
D4, A0, A1, A2, D4, A0, A1, A2,  
D0, D1, D2, D3, D0, D1, D2, D3,  
D4, A0, A1, A2, D4, A0, A1, A2,  
UPDATE  
UPDATE  
UPDATE  
UPDATE  
2.0 V min  
0.6 V max  
Disabled  
Disabled  
20 μA max  
−20 μA max  
Disabled  
Disabled  
Table 9. H and V Logic Levels, VDD = 3.3 V  
VOH  
VOL  
IOH  
IOL  
2.7 V min  
0.5 V max  
–3 mA max  
3 mA max  
RST  
Table 10.  
VIH  
Logic Levels, VDD = 3.3 V  
VIL  
IIH  
IIL  
2.0 V min  
0.6 V max  
−60 μA max  
−120 μA max  
CS  
Table 11.  
VOH  
Logic Levels, VDD = 3.3 V  
VOL  
IIH  
IOL  
2.0 V min  
0.6 V max  
100 μA max  
40 μA max  
Rev. 0 | Page 6 of 40  
 
AD8177  
ABSOLUTE MAXIMUM RATINGS  
Table 12.  
POWER DISSIPATION  
Parameter  
Rating  
The AD8177 is operated with 2.5 V or +5 V supplies and can  
drive loads down to 100 ꢀ, resulting in a large range of possible  
power dissipations. For this reason, extra care must be taken  
derating the operating conditions based on ambient temperature.  
Analog Supply Voltage (VPOS – VNEG  
Digital Supply Voltage (VDD – DGND  
Ground Potential Difference  
)
)
6 V  
6 V  
+0.5 V to −2.5 V  
(VNEG – DGND  
Maximum Potential Difference  
(VDD – VNEG  
Common-Mode Analog Input Voltage (VNEG – 0.5 V)  
to (VPOS + 0.5 V)  
Differential Analog Input Voltage  
Digital Input Voltage  
Output Voltage  
)
Packaged in a 676-lead PBGA the AD8177 junction-to-ambient  
thermal impedance (θJA) is 15°C/W. For long-term reliability,  
the maximum allowed junction temperature of the die should  
not exceed 150°C. Temporarily exceeding this limit may cause  
a shift in parametric performance due to a change in stresses  
exerted on the die by the package. Exceeding a junction  
temperature of 175°C for an extended period can result in  
device failure. The following curve shows the range of allowed  
internal die power dissipations that meet these conditions over  
the −40°C to +85°C ambient temperature range. When using  
Table 13, do not include external load power in the maximum  
power calculation, but do include load current dropped on the  
die output transistors.  
8 V  
)
2 V  
VDD  
(VPOS – 1 V) to (VNEG + 1 V)  
(Disabled Analog Output)  
Output Short-Circuit Duration  
Storage Temperature Range  
Operating Temperature Range  
Lead Temperature (Soldering, 10 sec)  
Junction Temperature  
Momentary  
−65°C to +125°C  
−40°C to +85°C  
300°C  
150°C  
10  
T
= 150°C  
J
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
9
8
7
6
5
4
3
THERMAL RESISTANCE  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
Table 13. Thermal Resistance  
15  
25  
35  
45  
55  
65  
75  
85  
AMBIENT TEMPERATURE (°C)  
Package Type  
θJA  
Unit  
Figure 4. Maximum Die Power Dissipation vs. Ambient Temperature  
PBGA  
15  
°C/W  
ESD CAUTION  
Rev. 0 | Page 7 of 40  
 
 
 
AD8177  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
VNEG  
VNEG  
VNEG  
NC  
NC  
VNEG  
OPR4  
ONB4  
VPOS  
IPR8  
INB8  
VNEG  
IPR9  
INB9  
VPOS  
IPR10  
INB10  
VNEG  
IPR11  
INB11  
VPOS  
IPR12  
INB12  
VNEG  
VNEG  
VNEG  
A
A
VNEG  
VNEG  
VNEG  
VNEG  
VPOS  
ONB3  
OPR3  
VNEG  
NC  
VNEG  
VNEG  
VNEG  
VNEG  
VPOS  
OPB3  
ONR3  
VNEG  
NC  
VNEG  
VNEG  
VNEG  
VNEG  
VPOS  
ONG3  
OPG3  
VNEG  
NC  
NC  
NC  
NC  
VNEG  
VNEG  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
ONR4  
OPG4  
H4  
OPB4  
ONG4  
V4  
VPOS  
VPOS  
VPOS  
DGND  
VPOS  
VPOS  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VPOS  
VPOS  
DGND  
VPOS  
VNEG  
VNEG  
INR8  
IPG8  
IPB8  
ING8  
VNEG  
VNEG  
VPOS  
CS  
INR9  
IPG9  
IPB9  
ING9  
VPOS  
VPOS  
INR10  
IPG10  
VPOS  
A2  
IPB10  
ING10  
VPOS  
A1  
VNEG  
VNEG  
VPOS  
A0  
INR11  
IPG11  
VPOS  
CLR  
IPB11  
ING11  
VPOS  
VDD  
VPOS  
VPOS  
VPOS  
DGND  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
DGND  
VPOS  
VNEG  
VNEG  
INR12  
IPG12  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
IPB12  
ING12  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
IPG4  
VNEG  
VNEG  
IPG13  
ING13  
VPOS  
VPOS  
IPG14  
ING14  
VNEG  
IPG15  
ING15  
VPOS  
VPOS  
IPG7  
VNEG  
VNEG  
INR13  
IPB13  
VPOS  
VPOS  
INR14  
IPB14  
VNEG  
INR15  
IPB15  
VPOS  
VPOS  
INR7  
VNEG  
VNEG  
IPR13  
INB13  
VPOS  
VPOS  
IPR14  
INB14  
VNEG  
IPR15  
INB15  
VPOS  
VPOS  
IPR7  
B
B
NC  
C
C
NC  
NC  
VPOS  
VDD  
VPOS  
SEROUT  
VPOS  
CLK  
VPOS  
SERIN  
VPOS  
VPOS  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VPOS  
VPOS  
CMENC  
VPOS  
IPG1  
VPOS  
D
D
SER/PAR  
VPOS  
VPOS  
V3  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
NC  
VPOS  
VPOS  
VPOS  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VPOS  
VPOS  
VPOS  
V0  
VPOS  
VPOS  
VPOS  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VPOS  
VPOS  
VPOS  
H0  
E
E
VPOS  
VPOS  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VPOS  
VPOS  
VDD  
VPOS  
VPOS  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VPOS  
VPOS  
RST  
VPOS  
VPOS  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VPOS  
VPOS  
UPDATE  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VPOS  
VPOS  
WE  
VPOS  
VPOS  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VPOS  
VPOS  
D4  
VPOS  
VPOS  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VPOS  
VPOS  
D3  
VPOS  
VPOS  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VPOS  
VPOS  
D2  
VPOS  
VPOS  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VPOS  
VPOS  
D1  
VPOS  
VPOS  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VPOS  
VPOS  
D0  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VDD  
F
F
G
G
H3  
H
H
VPOS  
NC  
J
J
K
K
NC  
NC  
NC  
NC  
L
L
VPOS  
ONB2  
OPR2  
VNEG  
NC  
VPOS  
OPB2  
ONR2  
VNEG  
NC  
VPOS  
ONG2  
OPG2  
VNEG  
NC  
VPOS  
V2  
M
N
M
N
VOCM_  
CMENCON  
H2  
VBLK  
P
P
VOCM_  
CMENCOFF  
VPOS  
NC  
R
R
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
ING4  
ING7  
IPB7  
INB7  
T
T
NC  
NC  
NC  
NC  
VNEG  
IPG6  
VNEG  
INR6  
VNEG  
IPR6  
U
U
VPOS  
ONB1  
OPR1  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VPOS  
OPB1  
ONR1  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VPOS  
ONG1  
OPG1  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VPOS  
V1  
V
V
ING6  
IPB6  
INB6  
W
Y
W
Y
H1  
VPOS  
VPOS  
IPG5  
VPOS  
VPOS  
INR5  
VPOS  
VPOS  
IPR5  
VPOS  
VPOS  
NC  
AA  
AB  
AC  
AD  
AE  
AF  
AA  
AB  
AC  
AD  
AE  
AF  
VPOS  
ING0  
VPOS  
IPG0  
VPOS  
ING1  
VPOS  
VNEG  
VNEG  
VPOS  
ING2  
VPOS  
IPG2  
VPOS  
VPOS  
VPOS  
VPOS  
ING3  
VPOS  
IPG3  
ING5  
IPB5  
INB5  
NC  
NC  
ONG0  
OPB0  
OPG0  
ONR0  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
NC  
NC  
IPB0  
INR0  
IPB1  
INR1  
IPB2  
INR2  
IPB3  
INR3  
IPB4  
INR4  
VNEG  
VNEG  
VNEG  
NC  
NC  
VPOS  
ONB0  
OPR0  
VNEG  
INB0  
IPR0  
VPOS  
INB1  
IPR1  
VNEG  
INB2  
IPR2  
VPOS  
INB3  
IPR3  
VNEG  
INB4  
IPR4  
VNEG  
VNEG  
VNEG  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
Figure 5. Pin Configuration, Package Bottom View  
Rev. 0 | Page 8 of 40  
 
AD8177  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
A
B
VNEG  
VNEG  
VNEG  
INB12  
IPR12  
VPOS  
INB11  
IPR11  
VNEG  
INB10  
IPR10  
VPOS  
INB9  
IPR9  
VNEG  
INB8  
IPR8  
VPOS  
ONB4  
OPR4  
VNEG  
NC  
NC  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VPOS  
ONB3  
OPR3  
VNEG  
NC  
A
B
VNEG  
VNEG  
IPR13  
INB13  
VPOS  
VPOS  
IPR14  
INB14  
VNEG  
IPR15  
INB15  
VPOS  
VPOS  
IPR7  
VNEG  
VNEG  
INR13  
IPB13  
VPOS  
VPOS  
INR14  
IPB14  
VNEG  
INR15  
IPB15  
VPOS  
VPOS  
INR7  
VNEG  
VNEG  
IPG13  
ING13  
VPOS  
VPOS  
IPG14  
ING14  
VNEG  
IPG15  
ING15  
VPOS  
VPOS  
IPG7  
IPB12  
ING12  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
IPG4  
INR12  
IPG12  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
DGND  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
DGND  
VPOS  
VNEG  
VNEG  
VNEG  
6
IPB11  
ING11  
VPOS  
VDD  
INR11  
IPG11  
VPOS  
CLR  
VNEG  
VNEG  
VPOS  
A0  
IPB10  
ING10  
VPOS  
A1  
INR10  
IPG10  
VPOS  
A2  
VPOS  
VPOS  
VPOS  
SER/PAR  
VPOS  
VPOS  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VPOS  
VPOS  
D4  
IPB9  
ING9  
INR9  
IPG9  
VNEG  
VNEG  
VPOS  
CS  
IPB8  
ING8  
INR8  
IPG8  
VPOS  
VPOS  
VPOS  
DGND  
VPOS  
VPOS  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VPOS  
VPOS  
DGND  
VPOS  
VNEG  
VNEG  
VNEG  
18  
OPB4  
ONG4  
V4  
ONR4  
OPG4  
H4  
VNEG  
VNEG  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
21  
NC  
NC  
NC  
VNEG  
VNEG  
VNEG  
VNEG  
VPOS  
ONG3  
OPG3  
VNEG  
NC  
VNEG  
VNEG  
VNEG  
VNEG  
VPOS  
OPB3  
ONR3  
VNEG  
NC  
C
NC  
C
D
VPOS  
SERIN  
VPOS  
VPOS  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VPOS  
VPOS  
CMENC  
VPOS  
IPG1  
VPOS  
CLK  
VPOS  
SEROUT  
VPOS  
VPOS  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VPOS  
VPOS  
RST  
VPOS  
VDD  
NC  
NC  
D
E
VPOS  
VPOS  
VPOS  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VPOS  
VPOS  
VPOS  
H0  
VPOS  
VPOS  
VPOS  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VPOS  
VPOS  
VPOS  
V0  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
NC  
VPOS  
VPOS  
V3  
E
F
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VDD  
VPOS  
VPOS  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VPOS  
VPOS  
D0  
VPOS  
VPOS  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VPOS  
VPOS  
D1  
VPOS  
VPOS  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VPOS  
VPOS  
D2  
VPOS  
VPOS  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VPOS  
VPOS  
D3  
VPOS  
VPOS  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VPOS  
VPOS  
WE  
VPOS  
VPOS  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VPOS  
VPOS  
UPDATE  
VPOS  
VPOS  
VPOS  
VPOS  
15  
VPOS  
VPOS  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VPOS  
VPOS  
VDD  
F
G
G
H
H3  
H
J
VPOS  
NC  
J
K
K
L
NC  
NC  
NC  
NC  
L
M
N
VPOS  
V2  
VPOS  
ONG2  
OPG2  
VNEG  
NC  
VPOS  
OPB2  
ONR2  
VNEG  
NC  
VPOS  
ONB2  
OPR2  
VNEG  
NC  
M
N
VOCM_  
CMENCON  
P
VBLK  
H2  
P
VOCM_  
CMENCOFF  
R
VPOS  
NC  
R
T
INB7  
IPB7  
ING7  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
ING4  
IPB4  
T
U
VNEG  
IPR6  
VNEG  
INR6  
VNEG  
IPG6  
NC  
NC  
NC  
NC  
U
V
VPOS  
V1  
VPOS  
ONG1  
OPG1  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
24  
VPOS  
OPB1  
ONR1  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
25  
VPOS  
ONB1  
OPR1  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
26  
V
W
Y
INB6  
IPB6  
ING6  
W
Y
VPOS  
VPOS  
IPR5  
VPOS  
VPOS  
INR5  
VPOS  
VPOS  
IPG5  
H1  
AA  
AB  
AC  
AD  
AE  
AF  
VPOS  
VPOS  
NC  
AA  
AB  
AC  
AD  
AE  
AF  
INB5  
IPB5  
ING5  
VPOS  
IPG3  
VPOS  
ING3  
VPOS  
VPOS  
VPOS  
VPOS  
9
VPOS  
IPG2  
VPOS  
ING2  
VPOS  
VNEG  
VNEG  
VNEG  
12  
VPOS  
ING1  
VPOS  
IPG0  
VPOS  
ING0  
VNEG  
VNEG  
VNEG  
1
VNEG  
VNEG  
VNEG  
2
VNEG  
VNEG  
VNEG  
3
OPG0  
ONR0  
OPR0  
19  
ONG0  
OPB0  
ONB0  
20  
NC  
NC  
INR4  
INR3  
IPB3  
INR2  
IPB2  
INR1  
IPB1  
INR0  
IPB0  
NC  
NC  
IPR4  
INB4  
5
IPR3  
INB3  
IPR2  
INB2  
IPR1  
INB1  
IPR0  
INB0  
NC  
NC  
4
7
8
10  
11  
13  
14  
16  
17  
22  
23  
Figure 6. Pin Configuration, Package Top View  
Rev. 0 | Page 9 of 40  
AD8177  
Table 14. Ball Grid Function Descriptions  
Ball No. Mnemonic  
Description  
Ball No. Mnemonic  
Description  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
VNEG  
VNEG  
VNEG  
INB12  
IPR12  
VPOS  
INB11  
IPR11  
VNEG  
INB10  
IPR10  
VPOS  
INB9  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Input Number 12, Negative Phase.  
Input Number 12, Positive Phase.  
Positive Analog Power Supply.  
Input Number 11, Negative Phase.  
Input Number 11, Positive Phase.  
Negative Analog Power Supply.  
Input Number 10, Negative Phase.  
Input Number 10, Positive Phase.  
Positive Analog Power Supply.  
Input Number 9, Negative Phase.  
Input Number 9, Positive Phase.  
Negative Analog Power Supply.  
Input Number 8, Negative Phase.  
Input Number 8, Positive Phase.  
Positive Analog Power Supply.  
Output Number 4, Negative Phase.  
Output Number 4, Positive Phase.  
Negative Analog Power Supply.  
No Connect.  
B26  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
VNEG  
VNEG  
VNEG  
VNEG  
ING12  
IPG12  
VPOS  
ING11  
IPG11  
VNEG  
ING10  
IPG10  
VPOS  
ING9  
IPG9  
VNEG  
ING8  
IPG8  
VPOS  
ONG4  
OPG4  
VNEG  
NC  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Input Number 12, Negative Phase.  
Input Number 12, Positive Phase.  
Positive Analog Power Supply.  
Input Number 11, Negative Phase.  
Input Number 11, Positive Phase.  
Negative Analog Power Supply.  
Input Number 10, Negative Phase.  
Input Number 10, Positive Phase.  
Positive Analog Power Supply.  
Input Number 9, Negative Phase.  
Input Number 9, Positive Phase.  
Negative Analog Power Supply.  
Input Number 8, Negative Phase.  
Input Number 8, Positive Phase.  
Positive Analog Power Supply.  
Output Number 4, Negative Phase.  
Output Number 4, Positive Phase.  
Negative Analog Power Supply.  
No Connect.  
A9  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
A23  
A24  
A25  
A26  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
B20  
B21  
B22  
B23  
B24  
B25  
C9  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
C20  
C21  
C22  
C23  
C24  
C25  
C26  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D20  
D21  
D22  
D23  
D24  
IPR9  
VNEG  
INB8  
IPR8  
VPOS  
ONB4  
OPR4  
VNEG  
NC  
NC  
No Connect.  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
IPB12  
INR12  
VPOS  
IPB11  
INR11  
VNEG  
IPB10  
INR10  
VPOS  
IPB9  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Input Number 12, Positive Phase.  
Input Number 12, Negative Phase.  
Positive Analog Power Supply.  
Input Number 11, Positive Phase.  
Input Number 11, Negative Phase.  
Negative Analog Power Supply.  
Input Number 10, Positive Phase.  
Input Number 10, Negative Phase.  
Positive Analog Power Supply.  
Input Number 9, Positive Phase.  
Input Number 9, Negative Phase.  
Negative Analog Power Supply.  
Input Number 8, Positive Phase.  
Input Number 8, Negative Phase.  
Positive Analog Power Supply.  
Output Number 4, Positive Phase.  
Output Number 4, Negative Phase.  
Negative Analog Power Supply.  
No Connect.  
NC  
No Connect.  
VNEG  
VNEG  
VNEG  
IPR13  
INR13  
IPG13  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
V4  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Input Number 13, Positive Phase.  
Input Number 13, Negative Phase.  
Input Number 13, Positive Phase.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Output Number 4, V Sync.  
INR9  
VNEG  
IPB8  
INR8  
VPOS  
OPB4  
ONR4  
VNEG  
NC  
NC  
VNEG  
VNEG  
H4  
VPOS  
NC  
NC  
VNEG  
Output Number 4, H Sync.  
Positive Analog Power Supply.  
No Connect.  
No Connect.  
Negative Analog Power Supply.  
No Connect.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Rev. 0 | Page 10 of 40  
AD8177  
Ball No. Mnemonic  
Description  
Ball No. Mnemonic  
Description  
D25  
D26  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
VNEG  
VNEG  
INB13  
IPB13  
ING13  
VPOS  
VPOS  
DGND  
VDD  
CLR  
A0  
A1  
A2  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Input Number 13, Negative Phase.  
Input Number 13, Positive Phase.  
Input Number 13, Negative Phase.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Digital Power Supply.  
F25  
F26  
G1  
G2  
G3  
G4  
G5  
G6  
G7  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
V3  
ONG3  
OPB3  
ONB3  
IPR14  
INR14  
IPG14  
VPOS  
VPOS  
VPOS  
VPOS  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VPOS  
VPOS  
H3  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Output Number 3, V Sync.  
Output Number 3, Negative Phase.  
Output Number 3, Positive Phase.  
Output Number 3, Negative Phase.  
Input Number 14, Positive Phase.  
Input Number 14, Negative Phase.  
Input Number 14, Positive Phase.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Output Number 3, H Sync.  
Digital Power Supply.  
Internal Register Clearing  
E8  
E9  
G8  
G9  
Control Pin 0, Output Address Bit 0.  
Control Pin 1, Output Address Bit 1.  
Control Pin 2, Output Address Bit 2.  
Control Pin: Serial Parallel Select Mode.  
Control Pin: Serial Data In.  
E10  
E11  
E12  
E13  
E14  
E15  
E16  
E17  
E18  
E19  
E20  
E21  
E22  
E23  
E24  
E25  
E26  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
F8  
F9  
F10  
F11  
F12  
F13  
F14  
F15  
F16  
F17  
F18  
F19  
F20  
F21  
F22  
F23  
F24  
G10  
G11  
G12  
G13  
G14  
G15  
G16  
G17  
G18  
G19  
G20  
G21  
G22  
G23  
G24  
G25  
G26  
H1  
H2  
H3  
H4  
H5  
H6  
H7  
H8  
H9  
H10  
H11  
H12  
H13  
H14  
H15  
H16  
H17  
H18  
H19  
H20  
H21  
H22  
H23  
H24  
SER/PAR  
SERIN  
CLK  
Control Pin: Serial Data Clock.  
Control Pin: Chip Select.  
CS  
SEROUT  
VDD  
Control Pin: Serial Data Out.  
Digital Power Supply.  
Digital Power Supply.  
DGND  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VNEG  
VNEG  
VNEG  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
OPG3  
Output Number 3, Positive Phase.  
Rev. 0 | Page 11 of 40  
AD8177  
Ball No. Mnemonic  
Description  
Ball No. Mnemonic  
Description  
H25  
H26  
J1  
J2  
J3  
J4  
J5  
J6  
J7  
ONR3  
OPR3  
INB14  
IPB14  
ING14  
VPOS  
VPOS  
VPOS  
VPOS  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VPOS  
VPOS  
VPOS  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VPOS  
VPOS  
VPOS  
VPOS  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VPOS  
VPOS  
NC  
Output Number 3, Negative Phase.  
Output Number 3, Positive Phase.  
Input Number 14, Negative Phase.  
Input Number 14, Positive Phase.  
Input Number 14, Negative Phase.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
No Connect.  
K25  
K26  
L1  
L2  
L3  
L4  
L5  
L6  
L7  
NC  
NC  
No Connect.  
No Connect.  
IPR15  
INR15  
IPG15  
VPOS  
VPOS  
VPOS  
VPOS  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VPOS  
VPOS  
NC  
Input Number 15, Positive Phase.  
Input Number 15, Negative Phase.  
Input Number 15, Positive Phase.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
No Connect.  
J8  
J9  
L8  
L9  
J10  
J11  
J12  
J13  
J14  
J15  
J16  
J17  
J18  
J19  
J20  
J21  
J22  
J23  
J24  
J25  
J26  
K1  
K2  
K3  
K4  
K5  
K6  
K7  
K8  
K9  
K10  
K11  
K12  
K13  
K14  
K15  
K16  
K17  
K18  
K19  
K20  
K21  
K22  
K23  
K24  
L10  
L11  
L12  
L13  
L14  
L15  
L16  
L17  
L18  
L19  
L20  
L21  
L22  
L23  
L24  
L25  
L26  
M1  
M2  
M3  
M4  
M5  
M6  
M7  
M8  
M9  
M10  
M11  
M12  
M13  
M14  
M15  
M16  
M17  
M18  
M19  
M20  
M21  
M22  
M23  
M24  
NC  
NC  
NC  
No Connect.  
No Connect.  
No Connect.  
INB15  
IPB15  
ING15  
VPOS  
VPOS  
VPOS  
VPOS  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VPOS  
VPOS  
VPOS  
VPOS  
Input Number 15, Negative Phase.  
Input Number 15, Positive Phase.  
Input Number 15, Negative Phase.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
NC  
No Connect.  
Rev. 0 | Page 12 of 40  
AD8177  
Ball No. Mnemonic  
Description  
Ball No. Mnemonic  
Description  
M25  
M26  
N1  
N2  
N3  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
P25  
P26  
R1  
R2  
R3  
ONR2  
OPR2  
IPR7  
INR7  
IPG7  
VPOS  
Output Number 2, Negative Phase.  
Output Number 2, Positive Phase.  
Input Number 7, Positive Phase.  
Input Number 7, Negative Phase.  
Input Number 7, Positive Phase.  
Positive Analog Power Supply.  
N4  
R4  
N5  
VOCM_  
CMENCON  
Output CM Reference with CM  
Encoding On.  
R5  
VOCM_  
CMENCOFF  
Output Reference with CM  
Encoding Off.  
N6  
N7  
N8  
N9  
VPOS  
VPOS  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VPOS  
VPOS  
V2  
ONG2  
OPB2  
ONB2  
VPOS  
VPOS  
VPOS  
VPOS  
VBLK  
VPOS  
VPOS  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VPOS  
VPOS  
H2  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Output Number 2, V Sync.  
Output Number 2, Negative Phase.  
Output Number 2, Positive Phase.  
Output Number 2, Negative Phase.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Output Blank Level.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Output Number 2, H Sync.  
R6  
R7  
R8  
R9  
VPOS  
VPOS  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VPOS  
VPOS  
VPOS  
VNEG  
VNEG  
VNEG  
INB7  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Input Number 7, Negative Phase.  
Input Number 7, Positive Phase.  
Input Number 7, Negative Phase.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
No Connect.  
N10  
N11  
N12  
N13  
N14  
N15  
N16  
N17  
N18  
N19  
N20  
N21  
N22  
N23  
N24  
N25  
N26  
P1  
P2  
P3  
P4  
P5  
P6  
P7  
P8  
P9  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
P17  
P18  
P19  
P20  
P21  
P22  
P23  
P24  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
R19  
R20  
R21  
R22  
R23  
R24  
R25  
R26  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
T22  
T23  
T24  
IPB7  
ING7  
VPOS  
VPOS  
VPOS  
VPOS  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VPOS  
VPOS  
NC  
OPG2  
Output Number 2, Positive Phase.  
NC  
No Connect.  
Rev. 0 | Page 13 of 40  
AD8177  
Ball No. Mnemonic  
Description  
Ball No. Mnemonic  
Description  
T25  
T26  
U1  
U2  
U3  
U4  
U5  
U6  
U7  
NC  
NC  
No Connect.  
No Connect.  
V25  
V26  
W1  
W2  
W3  
W4  
W5  
W6  
W7  
VPOS  
VPOS  
INB6  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Input Number 6, Negative Phase.  
Input Number 6, Positive Phase.  
Input Number 6, Negative Phase.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Output Number 1, V Sync.  
Output Number 1, Negative Phase.  
Output Number 1, Positive Phase.  
Output Number 1, Negative Phase.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Output Number 1, H Sync.  
VNEG  
VNEG  
VNEG  
VPOS  
VPOS  
VPOS  
VPOS  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VPOS  
VPOS  
NC  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
No Connect.  
IPB6  
ING6  
VPOS  
VPOS  
VPOS  
VPOS  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VPOS  
VPOS  
V1  
ONG1  
OPB1  
ONB1  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
H1  
U8  
U9  
W8  
W9  
U10  
U11  
U12  
U13  
U14  
U15  
U16  
U17  
U18  
U19  
U20  
U21  
U22  
U23  
U24  
U25  
U26  
V1  
V2  
V3  
V4  
V5  
V6  
V7  
V8  
V9  
V10  
V11  
V12  
V13  
V14  
V15  
V16  
V17  
V18  
V19  
V20  
V21  
V22  
V23  
V24  
W10  
W11  
W12  
W13  
W14  
W15  
W16  
W17  
W18  
W19  
W20  
W21  
W22  
W23  
W24  
W25  
W26  
Y1  
Y2  
Y3  
Y4  
Y5  
Y6  
Y7  
Y8  
Y9  
Y10  
Y11  
Y12  
Y13  
Y14  
Y15  
Y16  
Y17  
Y18  
Y19  
Y20  
Y21  
Y22  
Y23  
Y24  
NC  
NC  
NC  
IPR6  
INR6  
IPG6  
No Connect.  
No Connect.  
No Connect.  
Input Number 6, Positive Phase.  
Input Number 6, Negative Phase.  
Input Number 6, Positive Phase.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
VPOS  
VPOS  
VPOS  
VPOS  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VPOS  
VPOS  
VPOS  
VPOS  
OPG1  
Output Number 1, Positive Phase.  
Rev. 0 | Page 14 of 40  
AD8177  
Ball No. Mnemonic  
Description  
Ball No. Mnemonic  
Description  
Y25  
Y26  
AA1  
AA2  
AA3  
AA4  
AA5  
AA6  
ONR1  
OPR1  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VNEG  
VNEG  
VNEG  
IPR5  
Output Number 1, Negative Phase.  
Output Number 1, Positive Phase.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Input Number 5, Positive Phase.  
Input Number 5, Negative Phase.  
Input Number 5, Positive Phase.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Digital Power Supply.  
AB25  
AB26  
AC1  
AC2  
AC3  
AC4  
AC5  
AC6  
AC7  
VNEG  
VNEG  
INB5  
IPB5  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Input Number 5, Negative Phase.  
Input Number 5, Positive Phase.  
Input Number 5, Negative Phase.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Output Number 0, H Sync.  
ING5  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
H0  
AA7  
AA8  
AA9  
AC8  
AC9  
AA10  
AA11  
AA12  
AA13  
AA14  
AA15  
AA16  
AA17  
AA18  
AA19  
AA20  
AA21  
AA22  
AA23  
AA24  
AA25  
AA26  
AB1  
AB2  
AB3  
AB4  
AB5  
AB6  
AB7  
AB8  
AB9  
AB10  
AB11  
AB12  
AB13  
AB14  
AB15  
AB16  
AB17  
AB18  
AB19  
AB20  
AB21  
AB22  
AB23  
AB24  
AC10  
AC11  
AC12  
AC13  
AC14  
AC15  
AC16  
AC17  
AC18  
AC19  
AC20  
AC21  
AC22  
AC23  
AC24  
AC25  
AC26  
AD1  
AD2  
AD3  
AD4  
AD5  
AD6  
AD7  
AD8  
AD9  
AD10  
AD11  
AD12  
AD13  
AD14  
AD15  
AD16  
AD17  
AD18  
AD19  
AD20  
AD21  
AD22  
AD23  
AD24  
V0  
VPOS  
NC  
Output Number 0, V Sync.  
Positive Analog Power Supply.  
No Connect.  
NC  
No Connect.  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
IPG4  
ING4  
VNEG  
IPG3  
ING3  
VPOS  
IPG2  
ING2  
VNEG  
IPG1  
ING1  
VPOS  
IPG0  
ING0  
VNEG  
OPG0  
ONG0  
VPOS  
NC  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Input Number 4, Positive Phase.  
Input Number 4, Negative Phase.  
Negative Analog Power Supply.  
Input Number 3, Positive Phase.  
Input Number 3, Negative Phase.  
Positive Analog Power Supply.  
Input Number 2, Positive Phase.  
Input Number 2, Negative Phase.  
Negative Analog Power Supply.  
Input Number 1, Positive Phase.  
Input Number 1, Negative Phase.  
Positive Analog Power Supply.  
Input Number 0, Positive Phase.  
Input Number 0, Negative Phase.  
Negative Analog Power Supply.  
Output Number 0, Positive Phase.  
Output Number 0, Negative Phase.  
Positive Analog Power Supply.  
No Connect.  
INR5  
IPG5  
VPOS  
VPOS  
DGND  
VDD  
D0  
D1  
D2  
D3  
Digital Power Supply.  
Control Pin, Input Address Bit 0.  
Control Pin, Input Address Bit 1.  
Control Pin, Input Address Bit 2.  
Control Pin, Input Address Bit 3.  
Control Pin, Input Address Bit 4.  
Control Pin, Pass/Stop CM Encoding.  
Control Pin, 1st Rank Write Strobe.  
Control Pin, 2nd Rank Write Strobe.  
Control Pin, 2nd Rank Data Reset.  
Digital Power Supply.  
D4  
CMENC  
WE  
UPDATE  
RST  
VDD  
DGND  
VPOS  
VPOS  
VPOS  
VPOS  
VPOS  
VNEG  
Digital Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Positive Analog Power Supply.  
Negative Analog Power Supply.  
NC  
VNEG  
No Connect.  
Negative Analog Power Supply.  
Rev. 0 | Page 15 of 40  
AD8177  
Ball No. Mnemonic  
Description  
Ball No. Mnemonic  
Description  
AD25  
AD26  
AE1  
AE2  
AE3  
AE4  
AE5  
AE6  
AE7  
VNEG  
VNEG  
VNEG  
VNEG  
VNEG  
INR4  
IPB4  
VNEG  
INR3  
IPB3  
VPOS  
INR2  
IPB2  
VNEG  
INR1  
IPB1  
VPOS  
INR0  
IPB0  
VNEG  
ONR0  
OPB0  
VPOS  
NC  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Input Number 4, Negative Phase.  
Input Number 4, Positive Phase.  
Negative Analog Power Supply.  
Input Number 3, Negative Phase.  
Input Number 3, Positive Phase.  
Positive Analog Power Supply.  
Input Number 2, Negative Phase.  
Input Number 2, Positive Phase.  
Negative Analog Power Supply.  
Input Number 1, Negative Phase.  
Input Number 1, Positive Phase.  
Positive Analog Power Supply.  
Input Number 0, Negative Phase.  
Input Number 0, Positive Phase.  
Negative Analog Power Supply.  
Output Number 0, Negative Phase.  
Output Number 0, Positive Phase.  
Positive Analog Power Supply.  
No Connect.  
AE26  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
VNEG  
VNEG  
VNEG  
VNEG  
IPR4  
INB4  
VNEG  
IPR3  
INB3  
VPOS  
IPR2  
INB2  
VNEG  
IPR1  
INB1  
VPOS  
IPR0  
INB0  
VNEG  
OPR0  
ONB0  
VPOS  
NC  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Input Number 4, Positive Phase.  
Input Number 4, Negative Phase.  
Negative Analog Power Supply.  
Input Number 3, Positive Phase.  
Input Number 3, Negative Phase.  
Positive Analog Power Supply.  
Input Number 2, Positive Phase.  
Input Number 2, Negative Phase.  
Negative Analog Power Supply.  
Input Number 1, Positive Phase.  
Input Number 1, Negative Phase.  
Positive Analog Power Supply.  
Input Number 0, Positive Phase.  
Input Number 0, Negative Phase.  
Negative Analog Power Supply.  
Output Number 0, Positive Phase.  
Output Number 0, Negative Phase.  
Positive Analog Power Supply.  
No Connect.  
AE8  
AE9  
AF9  
AF10  
AF11  
AF12  
AF13  
AF14  
AF15  
AF16  
AF17  
AF18  
AF19  
AF20  
AF21  
AF22  
AF23  
AF24  
AF25  
AF26  
AE10  
AE11  
AE12  
AE13  
AE14  
AE15  
AE16  
AE17  
AE18  
AE19  
AE20  
AE21  
AE22  
AE23  
AE24  
AE25  
NC  
No Connect.  
NC  
VNEG  
VNEG  
No Connect.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
VNEG  
VNEG  
VNEG  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Negative Analog Power Supply.  
Rev. 0 | Page 16 of 40  
AD8177  
TRUTH TABLE AND LOGIC DIAGRAM  
Table 15. Operation Truth Table  
WE  
X1  
UPDATE CLK  
RST  
SER/PAR CS  
SERIN  
SEROUT  
CMENC  
Operation/Comment  
X
X
X
X
0
X
X
X
Asynchronous reset. All outputs  
are disabled. Contents of the  
45-bit shift register are  
unchanged.  
1
0
1
SERINi  
SERINi-45  
1
1
0
0
X
X
Serial mode. The data on the  
SERIN line is loaded into the  
45-bit shift register. The first bit  
clocked into the shift register  
appears at SEROUT 45 clock  
cycles later. Data is not applied  
to the switch array.  
Parallel mode. The data on  
parallel lines D0 through D4 is  
loaded into the shift register  
location addressed by A0  
through A2. Data is not applied  
to the switch array.  
1
1
X
X
1
0
1
1
0
1
X
X
X
X
1
1
X
1
0
0
X
X
Switch array update. Data in  
the 45-bit shift register is trans-  
ferred to the parallel latches  
and applied to the switch array.  
X
X
No change in logic.  
1 X = don’t care.  
Rev. 0 | Page 17 of 40  
 
AD8177  
2 9 0 - 5 6 0 0 6  
R
D E C E O D 5 O T 3  
S S R E A D D  
T U P T O U  
Figure 7. Logic Diagram  
Rev. 0 | Page 18 of 40  
AD8177  
EQUIVALENT CIRCUITS  
VPOS  
0.1pF  
10k  
10kΩ  
OPn, ONn  
VBLK,  
VOCM_CMENCOFF  
0.1pF  
1k  
1kΩ  
VNEG  
(VPOS – VNEG)  
2
Figure 13. VBLK and VOCM_CMENCOFF Inputs  
(see also ESD Protection Map, Figure 19)  
Figure 8. Enabled Output (see also ESD Protection Map, Figure 19)  
VPOS  
VPOS  
20k  
OPn  
0.3pF  
3.33kΩ  
3.33kΩ  
20kΩ  
3.4pF  
VOCM_CMENCON  
VNEG  
0.4pF  
3.1kΩ  
VPOS  
0.3pF  
3.4pF  
20kΩ  
ONn  
VNEG  
20kΩ  
VNEG  
Figure 9. Disabled Output (see also ESD Protection Map, Figure 19)  
Figure 14. VOCM_CMENCON Input (see also ESD Protection Map, Figure 19)  
VDD  
2500  
10kΩ  
2525Ω  
IPn  
INn  
1.3pF  
1.3pF  
25k  
0.3pF  
1kΩ  
RST  
2500Ω  
2525Ω  
DGND  
RST  
Figure 15.  
Input (see also ESD Protection Map, Figure 19)  
Figure 10. Receiver, Differential (see also ESD Protection Map, Figure 19)  
IPn  
1.3pF  
2500  
CLK, SER/PAR, WE,  
UPDATE, SERIN  
A[2:0], D[4:0],  
0.3pF  
10kΩ  
1kΩ  
2500Ω  
1.3pF  
CMENC, CLR  
INn  
DGND  
Figure 11. Receiver Simplified Equivalent Circuit When Driving Differentially  
Figure 16. Logic Input (see also ESD Protection Map, Figure 19)  
IPn  
1.6pF  
2.5kΩ  
1k  
CS  
25kΩ  
INn  
DGND  
Figure 12. Receiver Simplified Equivalent Circuit  
When Driving Single-Ended  
CS  
Figure 17. Input (see also ESD Protection Map, Figure 19)  
Rev. 0 | Page 19 of 40  
 
AD8177  
VPOS  
VDD  
VDD  
CLK, RST,  
SER/PAR,  
WE,  
UPDATE,  
SERIN,  
SEROUT,  
A[2:0],  
IPn, INn,  
OPn, ONn, VBLK,  
VOCM_CMENCOFF  
VOCM_CMENCON  
SEROUT,  
H, V  
D[4:0],  
CMENC,  
CS, CLR  
DGND  
VNEG  
DGND  
Figure 19. ESD Protection Map  
Figure 18. SEROUT, H, V Logic Outputs  
(see also ESD Protection Map, Figure 19)  
Rev. 0 | Page 20 of 40  
 
AD8177  
TYPICAL PERFORMANCE CHARACTERISTICS  
VS = 2.5 V at TA = 25°C, G = +2, RL = 100 Ω (each output), VBLK = 0 V, output CM voltage = 0 V, differential I/O mode, unless  
otherwise noted.  
12  
10  
8
0.15  
0.10  
0.05  
0
6
4
2
0
–0.05  
–0.10  
–0.15  
–2  
–4  
–6  
1
10  
100  
1000  
2
4
6
8
10  
12  
14  
16  
18  
20  
FREQUENCY (MHz)  
TIME (ns)  
Figure 23. Small Signal Pulse Response, 200 mV p-p  
Figure 20. Small Signal Frequency Response, 200 mV p-p  
1.5  
1.0  
12  
10  
8
0.5  
6
4
0
2
–0.5  
–1.0  
–1.5  
0
–2  
–4  
–6  
2
4
6
8
10  
12  
14  
16  
18  
20  
1
10  
100  
1000  
TIME (ns)  
FREQUENCY (MHz)  
Figure 24. Large Signal Pulse Response, 2 V p-p  
Figure 21. Large Signal Frequency Response, 2 V p-p  
5
1.2  
0.8  
0.4  
0
16  
14  
12  
10  
8
V
10pF  
5pF  
IN  
0
–5  
2pF  
0pF  
–10  
–15  
–20  
–25  
6
4
V
OUT  
–0.4  
–0.8  
–1.2  
2
ERROR  
0
–2  
–4  
0
1
2
3
4
5
6
7
8
9
10  
1
10  
100  
1000  
TIME (ns)  
FREQUENCY (MHz)  
Figure 25. Settling Time  
Figure 22. Small Signal Frequency Response with Capacitive Loads  
Rev. 0 | Page 21 of 40  
 
AD8177  
0
–20  
5
4
3
2
–40  
1
–60  
0
–1  
–2  
–3  
–4  
–80  
–100  
–120  
–5  
0
1
10  
100  
1000  
1
2
3
4
5
6
7
8
9
10  
FREQUENCY (MHz)  
TIME (ns)  
Figure 26. Settling Time, 1% Zoom  
Figure 29. Crosstalk, All Hostile  
2
1
6000  
5000  
4000  
3000  
2000  
1000  
0
0
–20  
0
–40  
–1  
–2  
–3  
–4  
–5  
1850V/µs PEAK  
–60  
–80  
–100  
–120  
–1000  
10  
0
1
2
3
4
5
6
7
8
9
1
10  
100  
1000  
TIME (ns)  
FREQUENCY (MHz)  
Figure 30. Crosstalk, Off Isolation  
Figure 27. Large Signal Rising Edge Slew Rate  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–20  
–40  
CMENC HIGH  
CMENC LOW  
–60  
–80  
–100  
–120  
1
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 31. Common-Mode Rejection  
Figure 28. Crosstalk, All Hostile, Single-Ended  
Rev. 0 | Page 22 of 40  
AD8177  
600  
10000  
500  
400  
300  
200  
100  
0
ALL OUTPUTS ENABLED  
ALL OUTPUTS DISABLED  
1000  
100  
1
10  
100  
1000  
–50 –40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90 100  
FREQUENCY (MHz)  
TEMPERATURE (°C)  
Figure 32. Quiescent Supply Currents vs. Temperature  
Figure 35. Input Impedance  
3000  
2500  
2000  
1500  
1000  
500  
10000  
1000  
0
100  
1
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 33. Output Impedance, Disabled  
Figure 36. Input Impedance, Single-Ended  
120  
100  
80  
60  
40  
20  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
1
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 34. Output Impedance, Enabled  
Figure 37. Output Balance Error  
Rev. 0 | Page 23 of 40  
AD8177  
1.0  
0.5  
0
20  
15  
10  
5
2500  
2250  
2000  
1750  
1500  
1250  
1000  
750  
RED  
GREEN  
BLUE  
–0.5  
HSYNC  
VSYNC  
–1.0  
–1.5  
0
500  
250  
–5  
0
0
0
100 200 300 400 500 600 700 800 900 1000  
–70 –60 –50 –40 –30 –20 –10  
0
10 20 30 40 50 60 70  
TIME (ns)  
V
(mV)  
OS  
Figure 38. Common-Mode Pulse Response  
Figure 41. VOS Distribution  
2.0  
1.5  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
1.0  
31µV/°C  
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
1
10  
100  
1000  
–40  
–20  
0
20  
40  
60  
80  
100  
FREQUENCY (MHz)  
TEMPERATURE (°C)  
Figure 42. VOS Drift, RTO  
Figure 39. Common-Mode Isolation, CMENC Low  
0.6  
0.4  
200  
160  
120  
80  
0.2  
–7.6µV/°C  
0
–0.2  
–0.4  
–0.6  
40  
0
–40  
–20  
0
20  
40  
60  
80  
100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
TEMPERATURE (°C)  
FREQUENCY (MHz)  
Figure 43. VOS Drift, Common Mode, RTO  
Figure 40. Noise Spectral Density  
Rev. 0 | Page 24 of 40  
AD8177  
6
5
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
0.025  
0.020  
0.015  
0.010  
0.005  
0
V
UPDATE  
OUT  
4
3
40ppm/°C  
2
–0.005  
–0.010  
–0.015  
–0.020  
–0.025  
1
0
–1  
–0.2  
0
20 40 60 80 100 120 140 160 180 200 220 240 260 280  
–40  
–20  
0
20  
40  
60  
80  
100  
TIME (ns)  
TEMPERATURE (°C)  
Figure 44. Enable Time  
Figure 45. Normalized DC Gain vs. Temperature  
Rev. 0 | Page 25 of 40  
AD8177  
THEORY OF OPERATION  
The AD8177 is a nonblocking crosspoint with 16 differential  
RGB input channels and 5 differential RGB output channels.  
Although the AD8177 is primarily meant for differential-in,  
differential-out, middle-of-Cat-5-run applications, each differ-  
ential RGB output channel is complemented by H and V syncs  
for use in end-of-Cat-5-run, single-ended output applications.  
The outputs of the AD8177 can be disabled to minimize on-  
chip power dissipation. When disabled, there is a feedback  
network of approximately 2.7 kꢀ between the differential outputs.  
This high impedance allows multiple ICs to be bussed together  
without additional buffering. Care must be taken to reduce  
output capacitance, which can result in overshoot and frequency-  
domain peaking. A series of internal amplifiers drive internal  
nodes such that wideband high impedance is presented at the  
disabled output, even while the output bus experiences fast signal  
swings. When the outputs are disabled and driven externally, the  
voltage applied to them should not exceed the valid output  
swing range for the AD8177 to keep these internal amplifiers  
in their linear range of operation. Applying excessive differential  
voltages to the disabled outputs can cause damage to the AD8177  
and should be avoided (see the Absolute Maximum Ratings  
section of this data sheet for guidelines).  
Processing of common-mode (CM) voltage levels is achieved by  
placing the AD8177 in either of its two operation modes. In the  
first operation mode (CMENC low), the input CM of each RGB  
differential pair (possibly present either in the form of sync-on  
CM signaling or noise) is removed through the switch, and the  
output CM is set to a global reference voltage via the VOCM_  
CMENCOFF analog input. Therefore, the AD8177 can behave  
as a differential-in, differential-out switch. If sync-on CM signaling  
is present at the differential RGB inputs, then the H and V outputs  
represent decoded syncs. In the second operation mode, input  
sync-on CM signaling is propagated through the switch. Note  
that in this mode, as in the previous one, the overall input CM  
is blocked through the switch. In this mode, the overall output  
CM is set to a global reference voltage via the VOCM_CMENCON  
analog input.  
The connectivity of the AD8177 is controlled by a flexible TTL-  
compatible logic interface. Either parallel or serial loading into  
a first rank of latches preprograms each output. A global update  
signal moves the programming data into the second rank of  
latches, simultaneously updating all outputs. In serial mode,  
a serial-out pin allows devices to be daisy-chained together for  
single-pin programming of multiple ICs. A power-on reset pin  
is available to avoid bus conflicts by disabling all outputs. This  
power-on reset clears the second rank of latches but does not  
clear the first rank of latches. In serial mode, preprogramming  
individual inputs is not possible and the entire shift register needs  
to be flushed. A global chip-select pin gates the input clock and  
the global update signal to the second rank of buffers.  
In either operation mode, input pin VBLK defines the black  
level of the positive output phase. The combination of VBLK  
and VOCM_CMENCOFF allows the user to position the positive  
and negative output phases anywhere in the allowable output  
voltage range.  
The switch is organized into five 16:1 RGB multiplexers, with each  
being responsible for connecting an RGB input channel to its  
respective RGB output channel. Decoding logic selects a single  
input (or none) in each multiplexer and connects it to its respective  
output. Feedback around each multiplexer realizes a closed-  
loop differential-in, differential-out gain of +2. A second loop  
realizes a closed-loop common-mode-in gain of +1.  
The AD8177 can operate on a single 5 V supply, powering both  
the signal path (with the VPOS/VNEG supply pins) and the  
control logic interface (with the VDD/DGND supply pins).  
Split supply operation is possible with 2.5 V supplies to easily  
interface to ground-referenced video signals. In this case,  
a flexible logic interface allows the control logic supplies  
(VDD/DGND) to be run off 5 V/0 V to 3.3 V/0 V, and the  
analog core remains on split supplies. Additional flexibility in  
the analog output common-mode level (VOCM_CMENCOFF)  
and output black level (VBLK) facilitates operation with unequally  
split supplies. If +3 V/−2 V supplies to +2 V/−3 V supplies are  
desired, the output CM can still be set to 0 V for ground-referenced  
video signals.  
Each differential RGB input channel is buffered by a differential  
receiver, which is capable of accepting input CM voltages extending  
all the way to either supply rail. In addition to passing differential  
information, each receiver processes and routes input CM  
voltages. Excess closed-loop receiver bandwidth reduces the  
receivers effect on the overall device bandwidth.  
The output stage is designed for fast slew rate and settling time  
while driving a series-terminated Cat-5 cable. Unlike competing  
multiplexer designs, the small signal bandwidth closely  
approaches the large signal bandwidth.  
Rev. 0 | Page 26 of 40  
 
AD8177  
APPLICATIONS INFORMATION  
The positive and negative outputs are shown with VOCM_  
OPERATING MODES  
CMENCOFF and VBLK both set to 0 V. (Note that both pulses  
have been slightly shifted off the 0 V line for clarity.)  
VOCM_CMENCOFF = 0V  
Depending on the state of the CMENC logic input, the AD8177  
can be set in either of two differential-in, differential-out operating  
modes. An additional application is possible by tapping the outputs  
single-ended and making use of the decoded H and V outputs.  
0.7V  
POSITIVE  
PHASE  
Middle-of-Cat-5-Run Application, CM Encoding Turned Off  
VBLK = 0V  
In this application, the AD8177 is placed somewhere in the  
middle of a Cat-5 run. By tying CMENC low, the CM of each  
RGB differential pair is removed through the device (or turned  
off), while the overall CM at the output is defined by the reference  
value VOCM_CMENCOFF. In this mode of operation, CM noise  
is removed, while the intended differential RGB signals are  
buffered and passed to the outputs. The AD8177 is placed in  
this operation mode when used in a sync-on color scheme.  
Figure 46 shows the voltage levels and CM handling for a single  
input channel connected to a single output channel in a middle-  
of-Cat-5-run application with CM encoding turned off.  
NEGATIVE  
PHASE  
–0.7V  
Figure 47. Output for 0 V to 0.7 V Input Differential Pulse, VBLK = 0 V,  
VOCM_CMENCOFF = 0 V  
As a second example, refer to Figure 48. VCOM_CMENCOFF  
is set to +0.35 V, and VBLK is set to −0.35 V. The input is still  
a differential pulse with a low level of 0 V and a high level of  
0.7 V. Note how the positive phase and the negative phase are  
now shifted with respect to each other by an amount equal to  
VBLK − VOCM_CMENCOFF or −0.35 V − 0.35 V = −0.7 V.  
Because the negative output phase spans the same voltage range  
as the positive output phase, the usable voltage range for single-  
ended applications is effectively doubled over the previous example.  
(Note that the output pulses have been slightly shifted with  
respect to each other for clarity.)  
DIFF. R  
DIFF. B  
CM  
R
CM  
B
DIFF. R  
DIFF. B  
CM  
DIFF. G  
G
AD8177  
INPUT  
OVERALL  
CM  
CM  
CM  
R
B
OUTPUT  
OVERALL  
CM  
CM  
G
DIFF. G  
CMENC  
VOCM_CMENCOFF = +0.35V  
NEGATIVE  
PHASE  
VOCM_CMENCOFF  
0.7V  
Figure 46. AD8177 in a Middle-of-Cat-5-Run Application, CM Encoding Off  
(Note that in this application, the H and V outputs,  
though asserted, are not used.)  
VBLK = –0.35V  
0V  
Input VBLK and Input VOCM_CMENCOFF allow the user  
complete flexibility in defining the output CM level and the  
amount of overlap between the positive and negative phases,  
thus maximizing output headroom usage. Whenever VBLK  
differs from VOCM_CMENCOFF by more than approximately  
100 mV, a differential voltage Δdiff is added at the outputs  
according to the expression Δdiff = VBLK − VOCM_CMENCOFF.  
Conversely, whenever the difference between VBLK and  
VOCM_CMENCOFF is less than approximately 100 mV,  
no differential voltage is added at the outputs.  
POSITIVE  
PHASE  
Figure 48. Output for 0 V to 0.7 V Input Differential Pulse,  
VBLK = −0.35 V, VOCM_CMENCOFF = +0.35 V  
Middle-of-Cat-5-Run Application, CM Encoding Turned On  
In this application, the AD8177 is also placed somewhere in the  
middle of a Cat-5 run, although the common-mode handling is  
different. By tying CMENC high, the CM of each RGB input is  
passed through the part, while at the same time, the overall output  
CM is stripped and set equal to the voltage applied at the VOCM_  
CMENCON pin. The AD8177 is placed in this operation mode  
when used with a sync-on CM scheme. Although asserted, the  
H and V outputs are not used in this application. Figure 49 shows  
the voltage levels and CM handling for a single input channel  
connected to a single output channel in a middle-of-Cat-5-run  
application with CM encoding turned on.  
As a first example, refer to Figure 47. The positive phase of a  
differential output is shown by the solid line, while the negative  
phase is shown by the dashed line. The input to the crosspoint is  
a positive differential pulse with a low level of 0 V and a high  
level of 0.7 V.  
Rev. 0 | Page 27 of 40  
 
 
 
 
 
AD8177  
DIFF. R  
PROGRAMMING  
DIFF. B  
CM  
R
DIFF. R  
The AD8177 has two options for changing the programming of  
the crosspoint matrix. In the first option, a serial word of 45 bits  
can be provided that updates the entire matrix each time. The  
second option allows for changing the programming of a single  
output via a parallel interface. The serial option requires fewer  
signals, but more time (clock cycles) for changing the program-  
ming; the parallel programming technique requires more  
signals but allows for changing a single output at a time,  
therefore requiring fewer clock cycles.  
CM  
B
DIFF. B  
CM  
R
CM  
B
AD8177  
INPUT  
OVERALL  
CM  
OUTPUT  
OVERALL  
CM  
DIFF. G  
CM  
G
DIFF. G  
CM  
G
CMENC  
VOCM_CMENCON  
Serial Programming Description  
Figure 49. AD8177 in Middle-of-Cat-5-Run Application, CM Encoding On  
(Note that in this application, the H and V outputs,  
though asserted, are not used.)  
CS CLK  
,
The serial programming mode uses the device pins  
UPDATE SER  
/PAR. The first step is to enable the  
,
SERIN,  
CLK  
, and  
CS  
In this operation mode, the difference Δdiff = VBLK − VOCM_  
CMENCOFF still adds an output differential voltage, as described  
in the Middle-of-Cat-5-Run Application, CM Encoding Turned  
Off section.  
SER  
by pulling  
the serial programming mode. The parallel clock  
held high during the entire serial programming operation.  
UPDATE  
low. Next,  
/PAR is pulled low to enable  
WE  
should be  
The  
shifted into the serial port of the device. Although the data still  
UPDATE  
signal should be high during the time that data is  
End-of-Cat-5-Run, CM Encoding Turned Off  
In this application, each AD8177 output is tapped single-ended  
at the positive phase and followed by a fast buffer to drive  
a monitor at the end of a Cat-5 run (a suitable choice is the  
AD8003 set up in a noninverting configuration with gain of +4).  
The H and V outputs can then be used to drive the monitor  
sync inputs directly. The relationship between the incoming  
sync-on CM signaling and the H and V syncs is defined according  
to Table 16.  
shifts in when  
is low, the transparent, asynchronous  
latches allow the shifting data to reach the matrix. This causes  
the matrix to try to update to every intermediate state as defined  
by the shifting data.  
CLK  
The data at SERIN is clocked in at every falling edge of  
.
A total of 45 bits must be shifted in to complete the programming.  
A total of five bits must be supplied for each of the five RGB  
output channels: an output enable bit (D4) and four bits (D3  
to D0) that determine the input channel. If D4 is low (output  
disabled), the four associated bits (D3 to D0) do not matter  
because no input is switched to that output. A sequence of five  
bits at Logic 0 must be supplied in between each D4 to D0  
group of bits for padding purposes. There are a total of four such  
sequences of zeros.  
Table 16. H and V Sync Truth Table (VPOS/VNEG  
=
2.5 V)  
V
CMR  
0.5  
0
CMG  
CMB  
H
0
0
−0.5  
0
Low  
Low  
High  
High  
High  
Low  
Low  
High  
0.5  
0.5  
−0.5  
−0.5  
0
0.5  
The most significant output-address data is shifted in first, with  
the enable bit (D4) shifted in first, followed by the input address  
(D3 to D0) entered sequentially with D3 first and D0 last. The first  
sequence of five bits at Logic 0 is shifted in next. Each remaining  
output is programmed sequentially in a similar fashion, until  
the least-significant-output-address data is shifted in. Note that  
the last D4 to D0 group is not followed by a corresponding group  
The following two statements are equivalent to the truth table  
(see Table 16) in producing H and V for all allowable CM inputs:  
H sync is high when the CM of Blue is larger than the CM  
of Red.  
V sync is high when the combined CM of Red and Blue is  
larger than the CM of Green.  
UPDATE  
of five zeros. At this point,  
causes the programming of the device according to the data that  
UPDATE  
can be taken low, which  
was just shifted in. The  
latches are asynchronous; and  
is low, they are transparent.  
UPDATE  
when  
Rev. 0 | Page 28 of 40  
 
 
 
 
AD8177  
If more than one AD8177 device is to be serially programmed  
in a system, the SEROUT signal from one device can be  
connected to the SERIN of the next device to form a serial  
To change the programming of an output via parallel program-  
CS  
SER  
UPDATE  
ming,  
should be taken low, while /PAR and  
CLK  
should be taken high. The serial programming clock,  
should be left high during parallel programming. The parallel  
WE  
,
CLK UPDATE SER  
chain. All of the  
,
, and /PAR pins should be  
connected in parallel and operated as described previously. The  
serial data is input to the SERIN pin of the first device of the  
chain, and it ripples through to the last. Therefore, the data for  
the last device in the chain should come at the beginning of the  
programming sequence. The length of the programming sequence  
clock,  
, should start in the high state. The 3-bit address of  
the output to be programmed should be put on A2 to A0. Data  
Bit D3 to Data Bit D0 should contain the information that identifies  
the input that gets programmed to the output that is addressed.  
Data Bit D4 determines the enabled state of the output. If D4 is low  
(output disabled), the data on D3 to D0 does not matter.  
CS  
is 45 bits times the number of devices in the chain.  
gates the  
is held high, both  
are held in their inactive high state. When  
CLK UPDATE  
CLK  
CLK  
UPDATE  
UPDATE  
CS  
signals, so that when  
and  
and  
After the desired address and data signals have been established,  
they can be latched into the shift register by a high-to-low transi-  
CS  
is held low, both  
and  
function normally.  
WE  
UPDATE  
tion of the  
until the  
signal. The matrix is not programmed, however,  
signal is taken low. It is thus possible to latch  
in new data for several or all of the outputs first via successive  
WE UPDATE  
Parallel Programming Description  
When using the parallel programming mode, it is not necessary  
to reprogram the entire device when making changes to the  
matrix. In fact, parallel programming allows modification of  
a single output or more at a time. Because this takes only one  
negative transitions of  
then have all the new data take effect when  
while  
is held high, and  
UPDATE  
goes low.  
This is the technique that should be used when programming  
the device for the first time after power-up when using parallel  
programming.  
WE UPDATE  
/
cycle, significant time savings can be realized by  
using parallel programming.  
Programming the device to a known state can be accomplished  
in serial programming mode by clocking in the entire 45-bit  
sequence immediately after reset or power-up.  
One important consideration in using parallel programming is  
RST  
that the  
signal does not reset all registers in the AD8177.  
RST  
When taken low, the  
signal only sets each output to the  
disabled state. This is helpful during power-up to ensure that  
two parallel outputs are not active at the same time.  
Reset  
When powering up the AD8177, it is usually desirable to have  
RST  
the outputs come up in the disabled state. The  
taken low, causes all outputs to be in the disabled state. However,  
RST  
pin, when  
After initial power-up, the internal registers in the device  
RST  
generally have random data, even though the  
signal has  
the  
signal does not reset all registers in the AD8177. This  
been asserted. If parallel programming is used to program one  
output, then that output is properly programmed, but the rest  
of the device has a random program state, depending on the  
internal register content at power-up. Therefore, when using  
parallel programming, it is essential that the device be pro-  
grammed to a desired state after power-up. This ensures that  
the programming matrix is always in a known state. From then  
on, parallel programming can be used to modify a single output  
or more at a time.  
is important when operating in the parallel programming mode.  
Refer to the Serial Programming Description section for informa-  
tion about programming internal registers after power-up. Serial  
programming programs the entire matrix each time, so no  
special considerations apply.  
Because the data in the shift register is random after power-up,  
it should not be used to program the matrix, or the matrix can  
enter unknown states. To prevent this, do not apply a logic low  
UPDATE  
UPDATE  
In similar fashion, if  
is taken low after initial power-up,  
signal to  
should first be loaded with the desired data, and only then can  
the  
initially after power-up. The shift register  
the random power-up data in the shift register is programmed into  
the matrix. Therefore, to prevent the crosspoint from being  
programmed into an unknown state, do not apply a logic level  
after power is initially applied. Programming the  
device into a known state after reset or power-up is a one-time  
event that is accomplished by the following two steps:  
UPDATE  
be taken low to program the device.  
RST  
The  
pin has a 20 kꢀ pull-up resistor to VDD that can be  
UPDATE  
to  
used to create a simple power-up reset circuit. A capacitor from  
RST RST  
to ground holds  
low for some time while the rest of the  
device stabilizes. The low condition causes all the outputs to be  
disabled. The capacitor then charges through the pull-up resistor  
to the high state, thus allowing full programming capability of  
the device.  
1. First, Output 4 to Output 0 are programmed to the off-state  
while holding the CLR input at a logic high.  
2. Next, each output (Output 4 to Output 0) is programmed to  
its desired state while holding the CLR input at a logic low.  
CLR is held at logic low thereafter.  
Rev. 0 | Page 29 of 40  
AD8177  
When operating with a differential input, care must be taken to  
keep the common-mode, or average, of the input voltages  
within the linear operating range of the AD8177 receiver. For  
the AD8177 receiver, this common-mode range can extend rail-  
to-rail, provided the differential signal swing is small enough to  
avoid forward biasing the ESD diodes (it is safest to keep the  
common-mode plus differential signal excursions within the  
supply voltages of the part).  
DIFFERENTIAL AND SINGLE-ENDED OPERATION  
Although the AD8177 has fully differential inputs and outputs,  
it can also be operated in a single-ended fashion. Single-ended  
and differential configurations are discussed in the following  
sections, along with implications on gain, impedances, and  
terminations.  
Differential Input  
Each differential input to the AD8177 is applied to a differential  
receiver. These receivers allow the user to drive the inputs with  
an uncertain common-mode voltage, such as from a remote  
source over twisted pair. The receivers respond only to the  
differences in input voltages and restore an internal common-  
mode suitable for the internal signal path. Noise or crosstalk,  
which affect the inputs of each receiver equally, are rejected by  
the input stage, as specified by its common-mode rejection ratio  
(CMRR).  
The input voltage of the AD8177 is linear for 1 V of differential  
input voltage difference (this limitation is primarily due to  
ability of the output to swing close to the rails because the  
differential gain through the part is +2). Beyond this level,  
the signal path saturates and limits the signal swing. This is not  
a desired operation, because the supply current increases and  
the signal path is slow to recover from clipping. The absolute  
maximum allowed differential input signal is limited by long-  
term reliability of the input stage. The limits in the Absolute  
Maximum Ratings section of the data sheet should be observed  
to avoid degrading device performance permanently.  
Furthermore, the overall common-mode voltage of all three  
differential pairs comprising an RGB channel is processed and  
rejected by a separate circuit block. For example, a static discharge  
or a resistive voltage drop in a middle-of-Cat-5-run with sync-  
on CM signaling coupling into all three pairs in an RGB channel  
are rejected at the output of the AD8177, and the sync-on  
CM signals are allowed through the switch.  
AC Coupling of Inputs  
It is possible to ac-couple the inputs of the AD8177 receiver,  
so that bias current does not need to be supplied externally.  
A capacitor in series with the inputs to the AD8177 creates  
a high-pass filter with the input impedance of the device. This  
capacitor needs to be sized large enough so that the corner  
frequency includes all frequencies of interest.  
The circuit configuration used by the differential input receivers  
is similar to that of several Analog Devices general-purpose  
differential amplifiers, such as the AD8131. The topology is that  
of a voltage-feedback amplifier with internal gain resistors. The  
input differential impedance for each receiver is 5 kꢀ in parallel  
with 10 kꢀ or 3.33 kꢀ, as shown in Figure 50.  
Single-Ended Input  
The AD8177 input receiver can be driven single-endedly  
(unbalanced). Single-ended inputs apply a component of  
common-mode signal to the receiver inputs, which is then  
rejected by the receiver (see the Specifications section for  
common-mode-to-differential-mode ratio of the part).  
R
F
R
G
IN+  
IN–  
OUT–  
OUT+  
TO SWITCH  
MATRIX  
The single-ended input resistance, RIN, differs from the  
differential input impedance, and is equal to  
RCVR  
R
CM  
R
G
RG  
RF  
R
F
RIN  
=
1 −  
Figure 50. Input Receiver Equivalent Circuit  
2 × (RG + RF )  
This impedance creates a small differential termination error  
if the user does not account for the 3.33 kꢀ parallel element.  
However, this error is less than 1% in most cases. Additionally,  
the source impedance driving the AD8177 appears in parallel  
with the internal gain-setting resistors, such that there may be  
a gain error for some values of source resistance. The AD8177  
is adjusted such that its gain is correct when driven by a back-  
terminated Cat-5 cable (25 ꢀ effective impedance to ground at  
each input pin, or 100 ꢀ differential source impedance across  
pairs of input pins). If a different source impedance is presented,  
the differential gain of the AD8177 can be calculated as  
with RG and RF, as shown in Figure 50.  
Note that this value is smaller than the differential input  
resistance, but it is larger than RG. The difference is due to the  
component of common-mode level applied to the receiver by  
single-ended inputs. A second, smaller component of input  
resistance (RCM, also shown in Figure 50) is present across the  
inputs in both single-ended and differential operation.  
In single-ended operation, an input is driven, and the undriven  
input is often tied to midsupply or ground. Because signal-  
frequency current flows at the undriven input, such input  
should be treated as a signal line in the board design.  
2.525 kꢀ  
Gdm  
=
2.5 k+ RS  
where RS is the effective impedance to ground at each input pin.  
Rev. 0 | Page 30 of 40  
 
 
AD8177  
For example, to achieve best dynamic performance, the undriven  
input should be terminated with an impedance matching that seen  
by the part at the driven input.  
Termination  
The AD8177 is designed to drive 100 ꢀ terminated to ground  
on each output (or an effective 200 ꢀ differential) while meeting  
data sheet specifications over the specified operating tempera-  
ture range, if care is taken to observe the maximum power  
derating curves.  
Differential Output  
Benefits of Differential Operation  
The AD8177 has a fully-differential switch core with differential  
outputs. The two output voltages move in opposite directions,  
with a differential feedback loop maintaining a fixed output  
stage differential gain of +2. This differential output stage  
provides improved crosstalk cancellation due to parasitic  
coupling from one output to another being equal and out of  
phase. Additionally, if the output of the device is utilized in a  
differential design, then noise, crosstalk, and offset voltages  
generated on-chip that are coupled equally into both outputs  
are reduced by the common-mode rejection ratio of the next  
device in the signal chain. By utilizing the AD8177 outputs in a  
differential application, the best possible noise and offset  
specifications can be realized.  
Termination at the load end is recommended to shorten settling  
time and for best signal integrity. In differential signal paths, it  
is often desirable to series-terminate the outputs, with a resistor  
in series with each output. A side effect of termination is an  
attenuation of the output signal by a factor of two. In this case,  
gain is usually necessary somewhere else in the signal path to  
restore the signal level.  
Whenever a differential output is used single-ended, it is desir-  
able to terminate the used single-ended output with a series  
resistor, as well as to place a resistor on the unused output to  
match the load seen by the used output.  
When disabled, the outputs float to midsupply. A small current  
is required to drive the outputs away from their midsupply state.  
This current is easily provided by an AD8177 output (in its enabled  
state) bussed together with the disabled output. Exceeding the  
allowed output voltage range may saturate internal nodes in the  
disabled output, and consequently, an increase in disabled output  
current may be observed.  
Common-Mode Gain  
The common mode, or average voltage of pairs of output  
signals, is set by the voltage on the VOCM_CMENCOFF pin  
when common-mode encoding is off (CMENC is logic low), or  
by the voltage on the VOCM_CMENCON pin when common-  
mode encoding is on (CMENC is logic high). Note that in the  
latter case, VCOM_CMENCON sets the overall common-mode  
of RGB triplets of differential outputs, while the individual  
common-mode of each RGB output is free to change. VCOM_  
CMENCON and VCOM_CMENCOFF are typically set to  
midsupply (often ground), but can be moved approximately  
0.5 V to accommodate cases where the desired output common-  
mode voltage may not be midsupply (as in the case of unequal  
split supplies). Adjusting the output common-mode voltage  
beyond 0.5 V can limit differential swing internally below the  
specifications on the data sheet. The overall common mode of  
the output voltages follows the voltage applied to VOCM_  
CMENCON or VCOM_CMENCOFF, implying a gain of +1.  
Likewise, sync-on common-mode signaling is carried through  
the AD8177 (CMENC must be in its high state), implying a gain  
of +1 for this path, as well.  
Single-Ended Output  
Usage  
The AD8177 output pairs can be used single-ended, taking only  
one output and not using the second. This is often desired to  
reduce the routing complexity in the design, or because a single-  
ended load is being driven directly. This mode of operation  
produces good results, but has some shortcomings when compared  
to taking the output differentially. When observing the single-  
ended output, noise that is common to both outputs appears in  
the output signal.  
When observing the output as single-ended, the distribution of  
offset voltages appears greater. In the differential case, the difference  
between the outputs, when the difference between the inputs is  
zero, is a small differential offset. This offset is created from  
mismatches in devices in the signal path. In the single-ended  
case, this differential offset is still observed, but an additional  
offset component is also relevant. This additional component is  
the common-mode offset, which is the difference between the  
average of the outputs and the output common-mode reference.  
This offset is created by mismatches that affect the signal path  
in a common-mode manner. A differential receiver rejects this  
common-mode offset voltage, but in the single-ended case, this  
offset is observed with respect to the signal ground. The single-  
ended output sums half the differential offset voltage and all of the  
common-mode offset voltage for a net increase in observed offset.  
The common-mode reference pins are analog signal inputs,  
common to all output stages on the device. They require only  
small amounts of bias current, but noise appearing on these  
pins is buffered to all the output stages. As such, they should  
be connected to low noise, low impedance voltage references  
to avoid being sources of noise, offset, and crosstalk in the  
signal path.  
Rev. 0 | Page 31 of 40  
AD8177  
This supply fluctuation appears as crosstalk in all outputs,  
attenuated by the power supply rejection ratio (PSRR) of the  
device. At low frequencies, this is a negligible component of  
crosstalk, but PSRR falls off as frequency increases. With the  
use of differential, balanced loads, as one output draws current  
from the positive supply, the other output draws current from  
the negative supply. When the phase alternates, the first output  
draws current from the negative supply and the second from the  
positive supply. The effect is that a more constant current is  
drawn from each supply, such that the crosstalk-inducing  
supply fluctuation is minimized.  
Single-Ended Gain  
The AD8177 operates as a closed-loop differential amplifier.  
The primary control loop forces the difference between the  
output terminals to be a ratio of the difference between the  
input terminals. One output increases in voltage, while the  
other decreases an equal amount to make the total output  
voltage difference correct. The average of these output voltages  
is forced to the voltage on the common-mode reference terminal  
(VOCM_CMENCOFF or VOCM_CMENCON) by a second  
control loop. If only one output terminal is observed with respect  
to the common-mode reference terminal, only half of the differ-  
ence voltage is observed. This implies that when using only one  
output of the device, half of the differential gain is observed.  
An AD8177 taken with single-ended output appears to have  
a gain of +1.  
A third benefit of driving balanced loads is that the output pulse  
response changes as load changes. The differential signal control  
loop in the AD8177 forces the difference of the outputs to be  
a fixed ratio to the difference of the inputs. If the two output  
responses are different due to loading, the control loop sees this  
difference as signal response error and attempts to correct this  
error. The output signal is distorted from the ideal response,  
compared to the case when the two outputs are balanced.  
It is important to note that all considerations applying to the  
used output phase regarding output voltage headroom, apply  
unchanged to the complement output phase even if this is not  
actually used.  
Decoupling  
Termination  
The signal path of the AD8177 is based on high open-loop gain  
amplifiers with negative feedback. Dominant-pole compensation  
is used on-chip to stabilize these amplifiers over the range of  
expected applied swing and load conditions. To guarantee this  
designed stability, proper supply decoupling is necessary with  
respect to both the differential control loops and the common-  
mode control loops of the signal path. Signal-generated currents  
must return to their sources through low impedance paths at all  
frequencies in which there is still loop gain (up to 700 MHz at  
a minimum).  
When operating the AD8177 with a single-ended output, the  
preferred output termination scheme is to refer the load to the  
output common mode. A series-termination can be used, at an  
additional cost of one half the signal gain.  
In single-ended output operation, the complementary phase  
of the output is not used and may or may not be terminated  
locally. Although the unused output can be floated to reduce  
power dissipation, there are several reasons for terminating the  
unused output with a load resistance matched to the load on the  
signal output.  
The signal path compensation capacitors in the AD8177 are  
connected to the VNEG supply. At high frequencies, this limits  
the power supply rejection ratio (PSRR) from the VNEG supply  
to a lower value than that from the VPOS supply. When possible,  
an application board should be designed such that the VNEG  
power is supplied from a low inductance plane, subject to the  
least amount of noise.  
One component of crosstalk is magnetic coupling by mutual  
inductance between output package traces and bond wires that  
carry load current. In a differential design, there is coupling  
from one pair of outputs to other adjacent pairs of outputs. The  
differential nature of the output signal simultaneously drives the  
coupling field in one direction for one phase of the output and  
in an opposite direction for the other phase of the output. These  
magnetic fields do not couple equally into adjacent output pairs  
due to different proximities, but they do destructively cancel the  
crosstalk to some extent. If the load current in each output is  
equal, this cancellation is greater, and less adjacent crosstalk is  
observed (regardless of whether the second output is actually  
being used).  
VOCM_CMENCON and VOCM_CMENCOFF are high speed  
common-mode control loops of all output drivers. In the single-  
ended output sense, there is no rejection from noise on these  
inputs to the outputs. For this reason, care must be taken to  
produce low noise sources over the entire range of frequencies  
of interest. This is important not only to single-ended operation but  
to differential operation, as well, because there is a common-mode-  
to-differential gain conversion that becomes greater at higher  
frequencies.  
A second benefit of balancing the output loads in a differential  
pair is the reduction of fluctuations in current requirements  
from the power supply. In single-ended loads, the load currents  
alternate from the positive supply to the negative supply. This  
creates a parasitic signal voltage in the supply pins due to the  
finite resistance and inductance of the supplies.  
VOCM_CMENCON and VOCM_CMENCOFF are internally  
buffered to prevent transient currents from flowing into or out  
of these inputs and becoming sources of crosstalk by acting on  
their respective source impedances.  
Rev. 0 | Page 32 of 40  
AD8177  
V
POS  
Power Dissipation  
Calculation of Power Dissipation  
I
O, QUIESCENT  
10  
QNPN  
QPNP  
T
= 150°C  
J
V
I
OUTPUT  
9
8
7
6
5
4
3
OUTPUT  
I
O, QUIESCENT  
V
NEG  
Figure 52. Simplified Output Stage  
Example  
With an ambient temperature of 85°C, all five RGB output channels  
driving 1 Vrms into 100 ꢀ loads, and power supplies at 2.5 V,  
follow these steps:  
15  
25  
35  
45  
55  
65  
75  
85  
AMBIENT TEMPERATURE (°C)  
1. Calculate power dissipation using data sheet quiescent  
currents. Neglect VDD current because it is insignificant.  
Figure 51. Maximum Die Power Dissipation vs. Ambient Temperature  
The curve in Figure 51 was calculated from the following:  
TJUNCTION, MAX TAMBIENT  
PD,QUIESCENT = (VPOS × IVPOS) + (VNEG × IVNEG  
)
(4)  
PD,QUIESCENT = (2.5 V × 460 mA) + (2.5 V × 460 mA) = 2.3 W  
PD, MAX  
=
(1)  
θJA  
2. Calculate power dissipation from loads. For a differential  
output and ground-referenced load, the output power is  
symmetrical in each output phase.  
As an example, if the AD8177 is enclosed in an environment  
at 45°C (TA), the total on-chip dissipation under all load and  
supply conditions must not be allowed to exceed 7.0 W.  
PD, OUTPUT = (VPOS VOUTPUT, RMS) × IOUTPUT, RMS  
PD, OUTPUT = (2.5 V − 1 V) × 1 V/100 Ω = 15 mW  
There are 15 output pairs, or 30 output currents.  
nPD, OUTPUT = 30 × 15 mW = 0.45 W  
(5)  
When calculating on-chip power dissipation, it is necessary to  
include the power dissipated in the output devices due to  
current flowing in the loads. For a sinusoidal output about  
ground and symmetrical split supplies, the on-chip power  
dissipation due to the load can be approximated by  
3. Subtract quiescent output stage current for the number  
of loads (30 in this example). The output stage is either  
standing or driving a load, but the current needs to be  
counted only once (valid for output voltages > 0.5 V).  
PD,OUTPUT = (VPOS VOUTPUT,RMS) × IOUTPUT,RMS  
(2)  
For nonsinusoidal output, the power dissipation should be  
calculated by integrating the on-chip voltage drop across the  
output devices multiplied by the load current over one period.  
PDQ, OUTPUT = (VPOS VNEG) × IOUTPUT, QUIESCENT  
PDQ, OUTPUT = (2.5 V − (−2.5 V)) × 1.65 mA = 8.25 mW  
There are 15 output pairs, or 30 output currents.  
nPDQ, OUTPUT = 30 × 8.25 mW = 0.25 W  
(6)  
The user can subtract the quiescent current for the Class AB  
output stage when calculating the loaded power dissipation.  
For each output stage driving a load, subtract a quiescent power,  
according to  
4. Verify that power dissipation does not exceed the maximum  
allowed value.  
PDQ, OUTPUT = (VPOS VNEG) × IOUTPUT, QUIESCENT  
(3)  
where IOUTPUT, QUIESCENT = 1.65 mA for each single-ended output  
pin of the AD8177.  
PD, ON-CHIP = PD,QUIESCENT + nPD, OUTPUT nPDQ, OUTPUT  
PD, ON-CHIP = 2.3 W + 0.45 W − 0.25 W = 2.5 W  
(7)  
For each disabled RGB output channel, the quiescent power supply  
current in VPOS and VNEG drops by approximately 34 mA.  
From Figure 51 or Equation 1, this power dissipation is below  
the maximum allowed dissipation for all ambient temperatures  
up to, and including, 85°C.  
Rev. 0 | Page 33 of 40  
 
AD8177  
In a general case, the power delivered by the digital supply and  
dissipated into the digital output devices has to be taken into  
account following a similar derivation. However, because the  
loads driven by the H and V outputs are high and because the  
voltage at these outputs typically sits close to either rail, the  
correction to the on-chip power estimate is small. Furthermore,  
the H and V outputs are active only briefly during sync genera-  
tion and are returned to digital ground thereafter.  
All these sources of crosstalk are vector quantities, so the magni-  
tudes cannot simply be added together to obtain the total crosstalk.  
In fact, there are conditions where driving additional circuits in  
parallel in a given configuration can actually reduce the crosstalk.  
The fact that the AD8177 is a fully differential design means that  
many sources of crosstalk either destructively cancel, or are  
common mode to, the signal and can be rejected by a differential  
receiver.  
Short-Circuit Output Conditions  
Areas of Crosstalk  
Although there is short-circuit current protection on the AD8177  
outputs, the output current can reach values of 80 mA into  
a grounded output. Any sustained operation with too many  
shorted outputs can exceed the maximum die temperature  
and can result in device failure (see the Absolute Maximum  
Ratings section).  
A practical AD8177 circuit must be mounted to an actual circuit  
board to connect it to power supplies and measurement equipment.  
Great care has been taken to create an evaluation board (available  
upon request) that adds minimum crosstalk to the intrinsic device.  
This, however, raises the issue that system crosstalk is a combi-  
nation of the intrinsic crosstalk of the devices, in addition to the  
circuit board to which they are mounted. It is important to try  
to separate these two areas when attempting to minimize the  
effect of crosstalk.  
Crosstalk  
Many systems (such as KVM switches) that handle numerous  
analog signal channels have strict requirements for keeping the  
various signals from influencing any of the other signals in the  
system. Crosstalk is the term used to describe the coupling of  
the signals of other nearby channels to a given channel.  
In addition, crosstalk can occur among the inputs to a crosspoint  
and among the outputs. It can also occur from input to output.  
The following sections discuss techniques to diagnose which  
part of a system is contributing to crosstalk.  
When there are many signals in close proximity in a system, as  
is undoubtedly the case in a system that uses the AD8177, the  
crosstalk issues can be quite complex. A good understanding of  
the nature of crosstalk and some definition of terms is required  
to specify a system that uses one or more crosspoint devices.  
Measuring Crosstalk  
Crosstalk is measured by applying a signal to one or more  
channels and measuring the relative strength of that signal on a  
desired selected channel. The measurement is usually expressed  
as decibels (dB) down from the magnitude of the test signal.  
The crosstalk is expressed by  
Types of Crosstalk  
Crosstalk can be propagated by means of any of three methods.  
These fall into the categories of electric field, magnetic field,  
and the sharing of common impedances. This section explains  
these effects.  
A
SEL (s)  
XT = 20 log10  
(8)  
ATEST (s)  
where:  
Every conductor can be both a radiator of electric fields and a  
receiver of electric fields. The electric field crosstalk mechanism  
occurs when the electric field created by the transmitter propagates  
across a stray capacitance (for example, free space) and couples  
with the receiver and induces a voltage. This voltage is an  
unwanted crosstalk signal in any channel that receives it.  
s = , the Laplace transform variable.  
ASEL(s) is the amplitude of the crosstalk induced signal in the  
selected channel.  
ATEST(s) is the amplitude of the test signal.  
It can be seen that crosstalk is a function of frequency but not  
a function of the magnitude of the test signal (to first order).  
In addition, the crosstalk signal has a phase relative to the test  
Currents flowing in conductors create magnetic fields that  
circulate around the currents. These magnetic fields then  
generate voltages in any other conductors whose paths they  
link. The undesired induced voltages in these other channels are  
crosstalk signals. The channels that crosstalk can be said to have  
a mutual inductance that couples signals from one channel to  
another.  
signal associated with it.  
A network analyzer is most commonly used to measure  
crosstalk over a frequency range of interest. It can provide both  
magnitude and phase information about the crosstalk signal.  
As a crosspoint system or device grows larger, the number of  
theoretical crosstalk combinations and permutations can  
become extremely large.  
The power supplies, grounds, and other signal return paths of  
a multichannel system are generally shared by the various channels.  
When a current from one channel flows in one of these paths,  
a voltage that is developed across the impedance becomes an  
input crosstalk signal for other channels that share the common  
impedance.  
Rev. 0 | Page 34 of 40  
AD8177  
For example, in the case of the triple 16 × 5 matrix of the AD8177,  
we can look at the number of crosstalk terms that can be  
considered for a single channel, such as Input Channel INPUT0.  
INPUT0 is programmed to connect to one of the AD8177  
outputs where the measurement can be made.  
of-phase fields. In the case of driving low impedance video loads,  
output inductances contribute highly to output crosstalk.  
The flexible programming capability of the AD8177 can be used  
to diagnose whether crosstalk is occurring more on the input  
side or the output side. Some examples are illustrative. A given  
input channel (INPUT7, roughly in the middle for this example)  
can be programmed to drive OUTPUT2 (exactly in the middle).  
The inputs to INPUT7 are just terminated to ground (via 50 ꢀ  
or 75 ꢀ), and no signal is applied.  
First, the crosstalk terms associated with driving a test signal into  
each of the other 15 input channels can be measured one at a  
time, while applying no signal to INPUT0. Then, the crosstalk  
terms associated with driving a parallel test signal into all 15 other  
inputs can be measured two at a time in all possible combinations,  
then three at a time, and so on, until, finally, there is only one  
way to drive a test signal into all 15 other input channels in  
parallel.  
All the other inputs are driven in parallel with the same test signal  
(practically provided by a distribution amplifier), with all other  
outputs except OUTPUT2 disabled. Because grounded INPUT7  
is programmed to drive OUTPUT2, no signal should be present.  
Any signal that is present can be attributed to the other 15 hostile  
input signals because no other outputs are driven (they are all  
disabled). Thus, this method measures the all-hostile input  
contribution to crosstalk into INPUT7. Of course, the method  
can be used for other input channels and combinations of  
hostile inputs.  
Each of these cases is legitimately different from the others and  
might yield a unique value, depending on the resolution of the  
measurement system; but it is hardly practical to measure all  
these terms and then specify them. In addition, this describes  
the crosstalk matrix for just one input channel. A similar crosstalk  
matrix can be proposed for every other input. In addition, if the  
possible combinations and permutations for connecting inputs  
to the other outputs (not used for measurement) are taken into  
consideration, the numbers rather quickly grow to astronomical  
proportions. If a larger crosspoint array of multiple AD8177s is  
constructed, the numbers grow larger still.  
For output crosstalk measurement, a single input channel is  
driven (INPUT0, for example) and all outputs other than a given  
output (OUTPUT2 in the middle) are programmed to connect  
to INPUT0. OUTPUT2 is programmed to connect to INPUT15  
(far away from INPUT0), which is terminated to ground. Thus,  
OUTPUT2 should not have a signal present because it is listening  
to a quiet input. Any signal measured at the OUTPUT2 can be  
attributed to the output crosstalk of the other four hostile outputs.  
Again, this method can be modified to measure other channels  
and other crosspoint matrix combinations.  
Obviously, some subset of all these cases must be selected to be  
used as a guide for a practical measure of crosstalk. One common  
method is to measure all hostile crosstalk; this means that the  
crosstalk to the selected channel is measured while all other system  
channels are driven in parallel. In general, this yields the worst  
crosstalk number, but this is not always the case, due to the  
vector nature of the crosstalk signal.  
Effect of Impedances on Crosstalk  
The input side crosstalk can be influenced by the output imped-  
ance of the sources that drive the inputs. The lower the impedance  
of the drive source, the lower the magnitude of the crosstalk.  
The dominant crosstalk mechanism on the input side is capacitive  
coupling. The high impedance inputs do not have significant  
current flow to create magnetically induced crosstalk. However,  
significant current can flow through the input termination  
resistors and the loops that drive them. Thus, the PC board on  
the input side can contribute to magnetically coupled crosstalk.  
Other useful crosstalk measurements are those created by one  
nearest neighbor or by the two nearest neighbors on either side.  
These crosstalk measurements are generally higher than those  
of more distant channels, so they can serve as a worst-case  
measure for any other one-channel or two-channel crosstalk  
measurements.  
Input and Output Crosstalk  
Capacitive coupling is voltage-driven (dV/dt) but is generally  
a constant ratio. Capacitive crosstalk is proportional to input or  
output voltage, but this ratio is not reduced by simply reducing  
signal swings. Attenuation factors must be changed by changing  
impedances (lowering mutual capacitance), or destructive  
canceling must be utilized by summing equal and out-of-phase  
components. For high input impedance devices such as the  
AD8177, capacitances generally dominate input-generated  
crosstalk.  
From a circuit standpoint, the input crosstalk mechanism looks  
like a capacitor coupling to a resistive load. For low frequencies,  
the magnitude of the crosstalk is given by  
XT = 20 log10  
where:  
RS is the source resistance.  
[
(RSCM ) × s  
]
(9)  
CM is the mutual capacitance between the test signal circuit and  
the selected circuit.  
s is the Laplace transform variable.  
Inductive coupling is proportional to current (dI/dt) and often  
scales as a constant ratio with signal voltage, but it also shows  
a dependence on impedances (load current). Inductive coupling  
can also be reduced by constructive canceling of equal and out-  
Rev. 0 | Page 35 of 40  
AD8177  
From Equation 9, it can be observed that this crosstalk mechanism  
has a high-pass nature; it can also be minimized by reducing the  
coupling capacitance of the input circuits and lowering the output  
impedance of the drivers. If the input is driven from a 75 ꢀ  
terminated cable, the input crosstalk can be reduced by buffering  
this signal with a low output impedance buffer.  
PCB Termination Layout  
As frequencies of operation increase, the importance of proper  
transmission line signal routing becomes more important. The  
bandwidth of the AD8177 is large enough that using high imped-  
ance routing does not provide a flat in-band frequency response  
for practical signal trace lengths. It is necessary for the user to  
choose a characteristic impedance suitable for the application and  
properly terminate the input and output signals of the AD8177.  
Traditionally, video applications have used 75 ꢀ single-ended  
environments. RF applications are generally 50 ꢀ single-ended  
(and board manufacturers have the most experience with this  
application). Cat-5 cabling is usually driven as differential pairs of  
100 ꢀ differential impedance.  
On the output side, the crosstalk can be reduced by driving  
a lighter load. Although the AD8177 is specified with excellent  
settling time when driving a properly terminated Cat-5, the  
crosstalk is higher than the minimum obtainable, due to the high  
output currents. These currents induce crosstalk via the mutual  
inductance of the output pins and bond wires of the AD8177.  
From a circuit standpoint, this output crosstalk mechanism looks  
like a transformer with a mutual inductance between the windings  
that drives a load resistor. For low frequencies, the magnitude of  
the crosstalk is given by  
For flexibility, the AD8177 does not contain on-chip termina-  
tion resistors. This flexibility in application comes with some  
board layout challenges. The distance between the termination  
of the input transmission line and the AD8177 die is a high  
impedance stub and causes reflections of the input signal. With  
some simplification, it can be shown that these reflections cause  
peaking of the input at regular intervals in frequency, dependent  
on the propagation speed (VP) of the signal in the chosen board  
material and the distance (d) between the termination resistor  
and the AD8177. If the distance is great enough, these peaks  
can occur in-band. In fact, practical experience shows that these  
peaks are not high-Q, and should be pushed out to three or four  
times the desired bandwidth to not have an effect on the signal.  
For a board designer using FR4 (VP = 144 × 106 m/s), this means  
the AD8177 should be no more than 1.5 cm after the termination  
resistors; preferably, it should be placed even closer. The BGA  
substrate routing inside the AD8177 is approximately 1 cm in  
length and adds to the stub length, so 1.5 cm PCB routing  
equates to d = 2.5 × 10–2 m in the calculations.  
s
XT = 20 log10 MXY  
×
(10)  
RL  
where:  
MXY is the mutual inductance of Output X to Output Y.  
RL is the load resistance on the measured output.  
This crosstalk mechanism can be minimized by keeping the  
mutual inductance low and increasing RL. The mutual inductance  
can be kept low by increasing the spacing of the conductors and  
minimizing their parallel length.  
PCB Layout  
Extreme care must be exercised to minimize additional crosstalk  
generated by the system circuit board(s). The areas that must  
be carefully detailed are grounding, shielding, signal routing,  
and supply bypassing.  
(
2n + 1 VP  
)
Packaging of the AD8177 is designed to help keep crosstalk to  
a minimum. On the PBGA substrate, each pair is carefully routed  
to predominately couple to each other, with shielding traces  
separating adjacent signal pairs. The ball grid array is arranged  
such that similar board routing can be achieved. Input and output  
differential pairs are grouped by channel rather than by color to  
allow for easy, convenient board routing.  
fPEAK  
=
(11)  
4d  
where n = {0, 1, 2, 3, ...}.  
In some cases, it is difficult to place the termination close to the  
AD8177 due to space constraints, differential routing, and large  
resistor footprints. A preferable solution in this case is to main-  
tain a controlled transmission line past the AD8177 inputs and  
terminate the end of the line. This is known as fly-by termination.  
The input impedance of the AD8177 is large enough, and stub  
length inside the package is small enough that this works well  
in practice. Implementation of fly-by input termination often  
includes bringing the signal in on one routing layer, then passing  
through a filled via under the AD8177 input ball, then back out  
to termination on another signal layer. In this case, care must be  
taken to tie the reference ground planes together near the signal  
via if the signal layers are referenced to different ground planes.  
The input and output signals have minimum crosstalk if they  
are located between ground planes on layers above and below  
and separated by ground in between. Vias should be located as  
close to the IC as possible to carry the inputs and outputs to the  
inner layer. The input and output signals surface at the input  
termination resistors and the output series back-termination  
resistors. To the extent possible, these signals should also be  
separated as soon as they emerge from the IC package.  
Rev. 0 | Page 36 of 40  
AD8177  
One solution is to adjust the trace width to create a transmission  
AD8177  
line of half the characteristic impedance and terminate the far  
end with this resistance (25 ꢀ in a 50 ꢀ system). This is not  
often practical as trace widths become large. In most cases, the  
best practical solution is to place the half-characteristic impedance  
resistor as close as possible (preferably less than 1.5 cm away)  
and to reduce the parasitics of the stub (by removing the ground  
plane under the stub, for example). In either case, the designer  
must decide if the layout complexity created by a balanced,  
terminated solution is preferable to simply grounding the undriven  
input at the ball with no trace.  
OPn  
ONn  
IPn  
INn  
50Ω  
Figure 53. Fly-By Input Termination  
(Grounds for the two transmission lines shown  
must be tied together close to the INn pin.)  
If multiple AD8177s are to be driven in parallel, a fly-by input  
termination scheme is very useful, but the distance from each  
AD8177 input to the driven input transmission line is a stub  
that should be minimized in length and parasitics using the  
discussed guidelines.  
The examples discussed so far are for input termination, but the  
theory is similar for output back-termination. Taking the AD8177  
as an ideal voltage source, any distance of routing between the  
AD8177 and a back-termination resistor is an impedance  
mismatch that potentially creates reflections. For this reason,  
back-termination resistors should also be placed close to the  
AD8177. In practice, because back-termination resistors are  
series elements, they can be placed close to the AD8177 outputs.  
When driving the AD8177 single-endedly, the undriven input is  
often terminated with a resistance to balance the input stage.  
By terminating the undriven input with a resistor of one-half  
the characteristic impedance, the input stage is perfectly balanced  
(25 ꢀ, for example, to balance the two parallel 50 ꢀ terminations  
on the driven input). However, due to the feedback in the input  
receiver, there is high speed signal current leaving the undriven  
input. To terminate this high speed signal, proper transmission  
line techniques should be used.  
Finally, the AD8177 pinout allows the user to bring the outputs  
out as surface traces to the back-termination resistors. The  
designer can avoid creating stubs and reflections by keeping the  
AD8177 output signal path on the surface of the board. A stub  
is created when a top-to-bottom via connection is made on the  
output signal path that is perpendicular to the signal flow.  
Rev. 0 | Page 37 of 40  
AD8177  
VPOS  
VDD  
FOUR AD8147  
(G = +2)  
AD8003  
(G = +4)  
FOUR 15-PIN HD  
CONNECTORS  
15-PIN HD  
CONNECTOR  
THREE 15-PIN HD  
CONNECTORS  
THREE RGB, HV  
CHANNELS  
FOUR RGB, HV  
CHANNELS  
RGB  
MONITOR  
PC  
OUT0 TO OUT1  
IN0 TO IN3  
THREE 15-PIN HD  
CONNECTORS  
THREE RGB, HV  
CHANNELS  
FOUR DIFFERENTIAL  
RGB WITH SYNC-ON  
CM CHANNELS  
FOUR AD8147  
(G = +2)  
RGB  
MONITOR  
THREE RGB  
CHANNELS  
FOUR 15-PIN HD  
CONNECTORS  
OUT2  
15-PIN HD  
CONNECTOR  
FOUR RGB, HV  
CHANNELS  
THREE HV  
PAIRS  
RJ-45  
PC  
IN0 TO IN3  
OUT0 TO OUT1  
OUT2  
CONNECTOR  
IN4 TO IN7  
THREE RGB, HV  
CHANNELS  
RGB, HV  
CHANNEL  
AD8145  
(G = +2)  
IN4 TO IN7  
IN8 TO IN11  
IN12 TO IN13  
IN14 TO IN15  
OUT3  
DIFFERENTIAL  
OFFSET  
DIFFERENTIAL  
RGB WITH  
SYNC-ON CM  
CAT-5  
OUT3  
15-PIN HD  
CONNECTORS  
RGB  
MONITOR  
OUT4  
RJ-45  
CONNECTOR  
AD8177 DUT  
CAT5  
PC  
IN8 TO IN11  
FOUR RJ-45  
CONNECTORS  
RGB, HV  
CHANNEL  
TWO  
AD8147 (G = +2)  
EVALUATION BOARD  
DIFFERENTIAL  
RGB CHANNELS  
TWELVE SMA  
CONNECTORS  
DIFFERENTIAL  
RGB, HV  
CHANNEL  
SIGNAL GENERATOR/  
NETWORK ANALYZER  
IN12 TO IN13  
GORE  
HEADER  
RIBBON CABLE  
OUT4  
IN14 TO IN15  
NATIONAL  
INSTRUMENTS  
CONTROLLER BOARD  
TWO GORE  
HEADERS  
USB  
AD8177  
CUSTOMER  
EVALUATION BOARD  
GND  
VNEG  
TO CONTROLLER PC USB  
Figure 54. Evaluation Board Block Diagram  
Rev. 0 | Page 38 of 40  
AD8177  
OUTLINE DIMENSIONS  
27.20  
27.00 SQ  
26.80  
A1 CORNER  
INDEX AREA  
26 24 22 20 18 16 14 12 10  
25 23 21 19 17 15 13 11  
8
6
4
2
9
7
5
3
1
A
B
C
D
E
F
A1 BALL  
PAD CORNER  
G
H
J
K
24.20  
24.00 SQ  
23.80  
L
M
N
TOP VIEW  
P
R
T
U
V
W
Y
1.00  
BSC  
AA  
AB  
AC  
AD  
AE  
AF  
2.43  
2.32  
2.15  
DETAIL A  
1.19  
1.17  
1.15  
DETAIL A  
0.60  
0.55  
0.50  
COPLANARITY  
0.20 MAX  
0.70  
0.60  
0.50  
0.70  
0.60  
0.50  
SEATING  
PLANE  
BALL DIAMETER  
COMPLIANT TO JEDEC STANDARDS MS-034-AAL-1  
Figure 55. 676-Ball Plastic Ball Grid Array [PBGA]  
(B-676)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
Temperature Range  
Package Description  
Package Option  
AD8177ABPZ1  
AD8177-EVALZ1  
−40°C to +85°C  
676-Ball Plastic Ball Grid Array [PBGA]  
Evaluation Board  
B-676  
1 Z = RoHS Compliant Part.  
Rev. 0 | Page 39 of 40  
 
 
 
AD8177  
NOTES  
©2007 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06605-0-7/07(0)  
Rev. 0 | Page 40 of 40  
 
 

相关型号:

AD8177-EVALZ

500 MHz, Triple 16 】 5 Video Crosspoint Switch
ADI

AD8177ABPZ

500 MHz, Triple 16 】 5 Video Crosspoint Switch
ADI

AD8178

450 MHz, Triple 16 】 5 Video Crosspoint Switch
ADI

AD8178-EVALZ1

450 MHz, Triple 16 】 5 Video Crosspoint Switch
ADI

AD8178ABPZ

450 MHz, Triple 16 x 5 Video Crosspoint Switch
ADI

AD8178ABPZ1

450 MHz, Triple 16 】 5 Video Crosspoint Switch
ADI

AD817AN

High Speed, Low Power Wide Supply Range Amplifier
ADI

AD817AN

1 CHANNEL, VIDEO AMPLIFIER, PDIP8, MINI, PLASTIC, DIP-8
ROCHESTER

AD817ANZ

High Speed, Low Power Wide Supply Range Amplifier
ADI

AD817ANZ

1 CHANNEL, VIDEO AMPLIFIER, PDIP8, MINI, PLASTIC, DIP-8
ROCHESTER

AD817AR

High Speed, Low Power Wide Supply Range Amplifier
ADI

AD817AR

1 CHANNEL, VIDEO AMPLIFIER, PDSO8, PLASTIC, SOIC-8
ROCHESTER