AD7988-1_17 [ADI]

16-Bit Lower Power PulSAR ADCs in MSOP/LFCSP;
AD7988-1_17
型号: AD7988-1_17
厂家: ADI    ADI
描述:

16-Bit Lower Power PulSAR ADCs in MSOP/LFCSP

文件: 总24页 (文件大小:577K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
16-Bit Lower Power  
PulSAR ADCs in MSOP/LFCSP  
Data Sheet  
AD7988-1/AD7988-5  
FEATURES  
GENERAL DESCRIPTION  
Low power dissipation  
AD7988-1  
400 µW at 100 kSPS (VDD only)  
700 µW at 100 kSPS (total)  
AD7988-5  
2 mW at 500 kSPS (VDD only)  
3.5 mW at 500 kSPS (total)  
16-bit resolution with no missing codes  
Throughput: 100 kSPS/500 kSPS options  
INL: 0.6 LSB typical, 1.25 LSB maximum  
SINAD: 91.5 dB at 10 kHz  
The AD7988-1/AD7988-51 are 16-bit, successive approximation,  
analog-to-digital converters (ADC) that operate from a single  
power supply, VDD. The AD7988-1 offers a 100 kSPS throughput,  
and the AD7988-5 offers a 500 kSPS throughput. They are low  
power, 16-bit sampling ADCs with a versatile serial interface  
port. On the CNV rising edge, they sample an analog input,  
IN+, between 0 V to VREF with respect to a ground sense, IN−.  
The reference voltage, REF, is applied externally and can be set  
independent of the supply voltage, VDD.  
The SPI-compatible serial interface also features the ability to  
daisy-chain several ADCs on a single 3-wire bus using the SDI  
input. It is compatible with 1.8 V, 2.5 V, 3 V, or 5 V logic using  
the separate supply, VIO.  
THD: −114 dB at 10 kHz  
Pseudo differential analog input range  
0 V to VREF with VREF from 2.5 V to 5.0 V  
No pipeline delay  
Single-supply 2.5 V operation with 1.8 V/2.5 V/3 V/5 V logic  
interface  
The AD7988-1/AD7988-5 generics are housed in a 10-lead  
MSOP or a 10-lead LFCSP with operation specified from −40°C  
to +125°C.  
Proprietary SPI-/QSPI™-/MICROWIRE™-/DSP-compatible  
serial interface  
Daisy-chain multiple ADCs  
10-lead MSOP and 10-lead, 3 mm × 3 mm LFCSP, same space  
as SOT-23  
Table 1. MSOP, LFCSP, LGA 14-/16-/18-/20-Bit Precision  
SAR ADCs and Integrated SAR ADC μModules®  
μModule  
400 kSPS  
to  
Data  
Acquisition  
Bits 100 kSPS  
250 kSPS 500 kSPS  
≥1000 kSPS System  
Wide operating temperature range: −40°C to +125°C  
201  
181  
AD40202  
AD40032  
AD40072  
APPLICATIONS  
AD7989-12 AD76912 AD40112  
AD76902  
Battery-powered equipment  
Low power data acquisition systems  
Portable medical instruments  
ATE equipment  
Data acquisitions  
Communications  
AD7989-52 AD79822  
AD79842  
AD76882  
AD76932  
AD79162  
AD76862  
161  
163  
AD7684  
AD76872  
AD40012  
AD40052  
AD79152  
AD40002  
AD7680  
AD7683  
AD7988-12  
AD76852  
AD7694  
ADAQ7980  
ADAQ7988  
AD7988-52 AD40042  
AD40082  
AD79802  
AD79832  
143  
AD7940  
AD79422  
AD79462  
1 True differential.  
2 Pin-for-pin compatible.  
3 Pseudo differential.  
1 Protected by U.S. Patent 6,703,961.  
Rev. G  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2012–2017 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
AD7988-1/AD7988-5  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Typical Connection Diagram ................................................... 16  
Analog Inputs ............................................................................. 17  
Driver Amplifier Choice ........................................................... 17  
Voltage Reference Input ............................................................ 18  
Power Supply............................................................................... 18  
Digital Interface.......................................................................... 18  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Typical Application Circuit ............................................................. 3  
Specifications..................................................................................... 4  
Timing Specifications .................................................................. 6  
Absolute Maximum Ratings............................................................ 8  
ESD Caution.................................................................................. 8  
Pin Configurations and Function Descriptions ........................... 9  
Terminology .................................................................................... 10  
Typical Performance Characteristics ........................................... 11  
Theory of Operation ...................................................................... 15  
Circuit Information.................................................................... 15  
Converter Operation.................................................................. 15  
CS  
CS  
Mode, 3-Wire........................................................................ 19  
Mode 4-Wire......................................................................... 20  
Chain Mode ................................................................................ 21  
Applications Information.............................................................. 22  
Interfacing to Blackfin® DSP..................................................... 22  
Layout .......................................................................................... 22  
Evaluating the Performance of the AD7988-1/AD7988-5..... 22  
Outline Dimensions....................................................................... 23  
Ordering Guide .......................................................................... 24  
REVISION HISTORY  
10/2017—Rev. F to Rev. G  
Changes to Table 1.............................................................................1  
Changes to AC Accuracy Parameter, Table 2 ................................3  
Changed nA to μA, Standby Current Parameter, Unit Column,  
Table 3 .................................................................................................4  
Changes to Table 8.......................................................................... 16  
Changes to Power Supply Section................................................ 17  
Updated Outline Dimensions....................................................... 22  
Changes to Features Section and Table 1 ...................................... 1  
Moved Typical Application Circuit Section and Figure 1........... 3  
Changes to Figure 5.......................................................................... 9  
Updated Outline Dimensions....................................................... 23  
Changes to Ordering Guide .......................................................... 24  
4/2016—Rev. E to Rev. F  
Changed AD7988-x to AD7988-1/AD7988-5........... Throughout  
Changes to Table 1............................................................................ 1  
Changes to Table 2............................................................................ 3  
Changes to Table 3............................................................................ 4  
Changes to Table 4............................................................................ 5  
Added Table 5: Renumbered Sequentially .................................... 6  
Changes to Figure 29...................................................................... 14  
Changes to Table 9.......................................................................... 16  
Changes to Voltage Reference Input Section .............................. 17  
Changes to Figure 35...................................................................... 18  
Changes to Figure 37...................................................................... 20  
Changes to Ordering Guide .......................................................... 23  
8/2013—Rev. C to Rev. D  
Changes to Features Section ............................................................1  
Changes to Table 3.............................................................................4  
Updated Outline Dimensions....................................................... 22  
Changes to Ordering Guide.......................................................... 23  
8/2012—Rev. B to Rev. C  
Changes to Ordering Guide.......................................................... 23  
5/2012—Rev. A to Rev. B  
Changes to Table 3.............................................................................4  
Updated Outline Dimensions....................................................... 22  
8/2014—Rev. D to Rev. E  
2/2012—Rev. 0 to Rev. A  
Deleted QFN .................................................................. Throughout  
Changed Typical Application Diagram Section to Typical  
Application Circuit Section............................................................. 1  
Changes to Features Section............................................................ 1  
Added Patent Note, Note 1.............................................................. 1  
Added LFCSP Thermal Impedance Values....................................7  
Updated Outline Dimensions....................................................... 23  
Changes to Ordering Guide.......................................................... 23  
2/2012—Revision 0: Initial Version  
Rev. G | Page 2 of 24  
 
Data Sheet  
AD7988-1/AD7988-5  
TYPICAL APPLICATION CIRCUIT  
2.5V TO 5V 2.5V  
VIO  
SDI  
1.8V TO 5.5V  
REF VDD  
0V TO V  
REF  
IN+ AD7988-1/ SCK  
3- OR 4-WIRE INTERFACE  
(SPI, DAISY CHAIN, CS)  
IN– AD7988-5  
SDO  
GND  
CNV  
Figure 1.  
Rev. G | Page 3 of 24  
 
AD7988-1/AD7988-5  
Data Sheet  
SPECIFICATIONS  
VDD = 2.5 V, VIO = 1.71 V to 5.5 V, VREF = 5 V, TA = –40°C to +125°C, unless otherwise noted.  
Table 2.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
RESOLUTION  
16  
Bits  
ANALOG INPUT  
Voltage Range  
Absolute Input Voltage  
IN+ − IN−  
IN+  
IN−  
0
−0.1  
−0.1  
VREF  
VREF + 0.1  
+0.1  
V
V
V
Analog Input CMRR  
Leakage Current at 25°C  
Input Impedance  
fIN = 1 kHz  
Acquisition phase  
60  
1
dB  
nA  
See the Analog Inputs section  
ACCURACY  
No Missing Codes  
Differential Linearity Error  
16  
−0.9  
Bits  
VREF = 5 V  
VREF = 2.5 V  
VREF = 5 V  
VREF = 2.5 V  
VREF = 5 V  
VREF = 2.5 V  
0.4  
0.55  
0.6  
0.65  
0.6  
1.0  
2
0.35  
0.08  
0.54  
0.1  
+0.9  
LSB1  
LSB1  
LSB1  
LSB1  
LSB1  
LSB1  
LSB1  
ppm/°C  
mV  
Integral Linearity Error  
Transition Noise  
−1.25  
−0.5  
+1.25  
2
Gain Error, TMIN to TMAX  
Gain Error Temperature Drift  
Zero Error, TMIN to TMAX  
Zero Temperature Drift  
Power Supply Sensitivity  
THROUGHPUT  
2
+0.5  
ppm/°C  
LSB1  
VDD = 2.5 V 5%  
AD7988-1  
Conversion Rate  
Transient Response  
AD7988-5  
Conversion Rate  
Transient Response  
AC ACCURACY  
0
0
100  
500  
kSPS  
ns  
Full-scale step  
Full-scale step  
500  
400  
kSPS  
ns  
Dynamic Range  
VREF = 5 V  
VREF = 2.5 V  
fO = 10 kSPS  
fIN = 10 kHz, VREF = 5 V  
fIN = 10 kHz, VREF = 2.5 V  
fIN = 10 kHz  
fIN = 10 kHz  
fIN = 10 kHz, VREF = 5 V  
fIN = 10 kHz, VREF = 2.5 V  
92  
87  
dB3  
dB3  
dB3  
dB3  
dB3  
dB3  
dB3  
dB3  
dB3  
Oversampled Dynamic Range  
Signal-to-Noise Ratio, SNR  
111  
91.5  
87  
−110  
−114  
91  
90  
Spurious-Free Dynamic Range, SFDR  
Total Harmonic Distortion, THD  
Signal-to-(Noise + Distortion), SINAD  
86.5  
1 LSB means least significant bit. With the 5 V input range, 1 LSB is 76.3 µV.  
2 See the Terminology section. These specifications include full temperature range variation, but not the error contribution from the external reference.  
3 All specifications in dB are referred to a full-scale input FSR. Tested with an input signal at 0.5 dB below full scale, unless otherwise specified.  
Rev. G | Page 4 of 24  
 
Data Sheet  
AD7988-1/AD7988-5  
VDD = 2.5 V, VIO = 1.71 V to 5.5 V, VREF = 5 V, TA = –40°C to +125°C, unless otherwise noted.  
Table 3.  
Parameter  
REFERENCE  
Voltage Range  
Load Current  
SAMPLING DYNAMICS  
−3 dB Input Bandwidth  
Aperture Delay  
DIGITAL INPUTS  
Logic Levels  
VIL  
Test Conditions/Comments  
VREF = 5 V  
Min  
Typ  
Max  
Unit  
2.4  
5.1  
V
µA  
250  
10  
2.0  
MHz  
ns  
VDD = 2.5 V  
VIO > 3 V  
VIO > 3 V  
VIO ≤ 3 V  
VIO ≤ 3 V  
–0.3  
0.7 × VIO  
–0.3  
0.9 × VIO  
−1  
−1  
0.3 × VIO  
VIO + 0.3  
0.1 × VIO  
VIO + 0.3  
+1  
V
V
V
V
µA  
µA  
VIH  
VIL  
VIH  
IIL  
IIH  
+1  
DIGITAL OUTPUTS  
Data Format  
Pipeline Delay  
Serial 16 bits straight binary  
Conversion results available immediately  
after completed conversion  
VOL  
VOH  
ISINK = 500 µA  
ISOURCE = −500 µA  
0.4  
V
V
VIO − 0.3  
POWER SUPPLIES  
VDD  
VIO  
2.375  
1.71  
2.5  
2.625  
5.5  
V
V
Standby Current1, 2  
AD7988-1 Power Dissipation  
Total  
VDD and VIO = 2.5 V, 25°C  
VDD = 2.625 V, VREF = 5 V, VIO = 3 V  
10 kSPS throughput  
0.35  
µA  
70  
700  
µW  
µW  
mW  
µW  
µW  
µW  
100 kSPS throughput  
1
5
VDD Only  
REF Only  
VIO Only  
AD7988-5 Power Dissipation  
Total  
VDD Only  
400  
170  
130  
VDD = 2.625 V, VREF = 5 V, VIO = 3 V  
500 kSPS throughput  
3.5  
2
mW  
mW  
REF Only  
VIO Only  
Energy per Conversion  
TEMPERATURE RANGE  
Specified Performance  
0.85  
0.65  
7.0  
mW  
mW  
nJ/sample  
TMIN to TMAX  
−40  
+125  
°C  
1 With all digital inputs forced to VIO or GND as required.  
2 During the acquisition phase.  
Rev. G | Page 5 of 24  
AD7988-1/AD7988-5  
Data Sheet  
TIMING SPECIFICATIONS  
VDD = 2.37 V to 2.63 V, VIO = 3.3 V to 5.5 V, 40°C to +125°C unless otherwise stated. See Figure 2 and Figure 3 for load conditions.  
Table 4.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
AD7988-1  
Throughput Rate  
Conversion Time: CNV Rising Edge to Data Available  
Acquisition Time  
Time Between Conversions  
100  
9.5  
kHz  
μs  
ns  
tCONV  
tACQ  
tCYC  
500  
10  
μs  
AD7988-5  
Throughput Rate  
500  
kHz  
Conversion Time: CNV Rising Edge to Data Available  
tCONV  
B Grade  
C Grade  
1.6  
1.2  
µs  
µs  
Acquisition Time  
tACQ  
B Grade  
C Grade  
Time Between Conversions  
CNV Pulse Width (CS Mode)  
SCK Period (CS Mode)  
400  
800  
2
ns  
ns  
μs  
ns  
tCYC  
tCNVH  
tSCK  
500  
VIO Above 4.5 V  
VIO Above 3 V  
VIO Above 2.7 V  
VIO Above 2.3 V  
10.5  
12  
13  
ns  
ns  
ns  
ns  
15  
SCK Period (Chain Mode)  
tSCK  
VIO Above 4.5 V  
VIO Above 3 V  
VIO Above 2.7 V  
VIO Above 2.3 V  
SCK Low Time  
SCK High Time  
SCK Falling Edge to Data Remains Valid  
SCK Falling Edge to Data Valid Delay  
VIO Above 4.5 V  
11.5  
13  
14  
16  
4.5  
4.5  
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tSCKL  
tSCKH  
tHSDO  
tDSDO  
9.5  
11  
12  
14  
ns  
ns  
ns  
ns  
VIO Above 3 V  
VIO Above 2.7 V  
VIO Above 2.3 V  
CNV or SDI Low to SDO D15 MSB Valid (CS Mode)  
VIO Above 3 V  
VIO Above 2.3V  
tEN  
10  
15  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CNV or SDI High or Last SCK Falling Edge to SDO High Impedance (CS Mode)  
SDI Valid Setup Time from CNV Rising Edge  
SDI Valid Hold Time from CNV Rising Edge (CS Mode)  
SDI Valid Hold Time from CNV Rising Edge (Chain Mode)  
SCK Valid Setup Time from CNV Rising Edge (Chain Mode)  
SCK Valid Hold Time from CNV Rising Edge (Chain Mode)  
SDI Valid Setup Time from SCK Falling Edge (Chain Mode)  
SDI Valid Hold Time from SCK Falling Edge (Chain Mode)  
tDIS  
tSSDICNV  
tHSDICNV  
tHSDICNV  
tSSCKCNV  
tHSCKCNV  
tSSDISCK  
tHSDISCK  
5
2
0
5
5
2
3
Rev. G | Page 6 of 24  
 
Data Sheet  
AD7988-1/AD7988-5  
VDD = 2.37 V to 2.63 V, VIO = 1.71 V to 3.3 V, 40°C to +125°C unless otherwise stated. See Figure 2 and Figure 3 for load conditions.  
Table 5.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
AD7988-1  
Throughput Rate  
Conversion Time: CNV Rising Edge to Data Available  
Acquisition Time  
100  
9.5  
kHz  
μs  
ns  
tCONV  
tACQ  
tCYC  
500  
10  
Time Between Conversions  
μs  
AD7988-5  
Throughput Rate  
500  
kHz  
Conversion Time: CNV Rising Edge to Data Available  
B Grade  
C Grade  
tCONV  
1.6  
1.2  
μs  
μs  
Acquisition Time  
tACQ  
B Grade  
C Grade  
Time Between Conversions  
CNV Pulse Width (CS Mode)  
400  
800  
2
500  
22  
23  
6
ns  
ns  
μs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tCYC  
tCNVH  
tSCK  
SCK Period (CS Mode)  
SCK Period (Chain Mode)  
SCK Low Time  
SCK High Time  
tSCK  
tSCKL  
tSCKH  
tHSDO  
tDSDO  
tEN  
6
3
SCK Falling Edge to Data Remains Valid  
SCK Falling Edge to Data Valid Delay  
CNV or SDI Low to SDO D15 MSB Valid (CS Mode)  
CNV or SDI High or Last SCK Falling Edge to SDO High Impedance (CS Mode)  
SDI Valid Setup Time from CNV Rising Edge  
SDI Valid Hold Time from CNV Rising Edge (CS Mode)  
SDI Valid Hold Time from CNV Rising Edge (Chain Mode)  
SCK Valid Setup Time from CNV Rising Edge (Chain Mode)  
SCK Valid Hold Time from CNV Rising Edge (Chain Mode)  
SDI Valid Setup Time from SCK Falling Edge (Chain Mode)  
SDI Valid Hold Time from SCK Falling Edge (Chain Mode)  
14  
18  
21  
40  
20  
tDIS  
tSSDICNV  
tHSDICNV  
tHSDICNV  
tSSCKCNV  
tHSCKCNV  
tSSDISCK  
tHSDISCK  
5
10  
0
5
5
2
3
500µA  
I
OL  
1.4V  
TO SDO  
C
L
20pF  
500µA  
I
OH  
Figure 2. Load Circuit for Digital Interface Timing  
1
Y% VIO  
1
X% VIO  
tDELAY  
tDELAY  
2
2
V
V
V
IH  
IH  
2
2
V
IL  
IL  
1
2
FOR VIO ≤ 3.0V, X = 90 AND Y = 10; FOR VIO > 3.0V X = 70, AND Y = 30.  
MINIMUM V AND MAXIMUM V USED. SEE DIGITAL INPUTS  
IH  
IL  
SPECIFICATIONS IN TABLE 3.  
Figure 3. Voltage Levels for Timing  
Rev. G | Page 7 of 24  
 
 
AD7988-1/AD7988-5  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
Table 6.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Parameter  
Rating  
Analog Inputs  
IN+,1 IN−1 to GND  
Supply Voltage  
REF, VIO to GND  
VDD to GND  
VDD to VIO  
−0.3 V to VREF + 0.3 V or 130 mA  
−0.3 V to +6 V  
−0.3 V to +3 V  
+3 V to −6 V  
Digital Inputs to GND  
Digital Outputs to GND  
Storage Temperature Range  
Junction Temperature  
θJA Thermal Impedance  
10-Lead MSOP  
−0.3 V to VIO + 0.3 V  
−0.3 V to VIO + 0.3 V  
−65°C to +125°C  
150°C  
ESD CAUTION  
200°C/W  
80°C/W  
10-Lead LFCSP  
θJC Thermal Impedance  
10-Lead MSOP  
44°C/W  
10-Lead LFCSP  
15°C/W  
Reflow Soldering  
JEDEC Standard (J-STD-020)  
1 See the Analog Inputs section.  
Rev. G | Page 8 of 24  
 
 
Data Sheet  
AD7988-1/AD7988-5  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
REF  
VDD  
IN+  
1
2
3
4
5
10 VIO  
9
8
7
6
SDI  
AD7988-1/  
SCK  
SDO  
CNV  
REF  
VDD  
IN+  
1
2
3
4
5
10 VIO  
AD7988-5  
TOP VIEW  
AD7988-1/  
AD7988-5  
TOP VIEW  
(Not to Scale)  
9
8
7
6
SDI  
IN–  
(Not to Scale)  
SCK  
SDO  
CNV  
GND  
IN–  
NOTES  
GND  
1. THE EXPOSED PAD CAN BE CONNECTED TO GND.  
Figure 4. 10-Lead MSOP Pin Configuration  
Figure 5. 10-Lead LFCSP Pin Configuration  
Table 7. Pin Function Descriptions  
Pin No. Mnemonic Type1 Description  
1
REF  
AI  
Reference Input Voltage. The VREF range is from 2.4 V to 5.1 V. It is referred to the GND pin. The GND pin  
should be decoupled closely to the REF pin with a 10 μF capacitor.  
2
3
VDD  
IN+  
P
AI  
Power Supply.  
Analog Input. It is referred to IN−. The voltage range, for example, the difference between IN+ and IN−, is  
0 V to VREF  
.
4
5
6
IN−  
GND  
CNV  
AI  
P
DI  
Analog Input Ground Sense. Connect to the analog ground plane or to a remote sense ground.  
Power Supply Ground.  
Convert Input. This input has multiple functions. On its leading edge, it initiates the conversions and  
selects the interface mode of the part: chain mode or CS mode. In CS mode, the SDO pin is enabled when  
CNV is low. In chain mode, the data should be read when CNV is high.  
7
8
9
SDO  
SCK  
SDI  
DO  
DI  
DI  
Serial Data Output. The conversion result is output on this pin. It is synchronized to SCK.  
Serial Data Clock Input. When the part is selected, the conversion result is shifted out by this clock.  
Serial Data Input. This input provides multiple features. It selects the interface mode of the ADC as  
follows:  
Chain mode is selected if this pin is low during the CNV rising edge. In this mode, SDI is used as a data  
input to daisy-chain the conversion results of two or more ADCs onto a single SDO line. The digital data  
level on SDI is output on SDO with a delay of 16 SCK cycles.  
CS mode is selected if SDI is high during the CNV rising edge. In this mode, either SDI or CNV can enable  
the serial output signals when low.  
10  
VIO  
EP  
P
Input/Output Interface Digital Power. Nominally at the same supply as the host interface (1.8 V, 2.5 V, 3 V,  
or 5 V).  
Exposed Pad. The exposed pad can be connected to GND.  
1AI = analog input, DI = digital input, DO = digital output, and P = power.  
Rev. G | Page 9 of 24  
 
AD7988-1/AD7988-5  
Data Sheet  
TERMINOLOGY  
Effective Resolution  
Effective resolution is calculated as  
Integral Nonlinearity Error (INL)  
INL refers to the deviation of each individual code from a line  
drawn from negative full scale through positive full scale. The  
point used as negative full scale occurs ½ LSB before the first  
code transition. Positive full scale is defined as a level 1½ LSB  
beyond the last code transition. The deviation is measured from  
the middle of each code to the true straight line (see Figure 30).  
Effective Resolution = log2(2N/RMS Input Noise)  
and is expressed in bits.  
Total Harmonic Distortion (THD)  
THD is the ratio of the rms sum of the first five harmonic  
components to the rms value of a full-scale input signal and is  
expressed in dB.  
Differential Nonlinearity Error (DNL)  
In an ideal ADC, code transitions are 1 LSB apart. DNL is the  
maximum deviation from this ideal value. It is often specified in  
terms of resolution for which no missing codes are guaranteed.  
Dynamic Range  
Dynamic range is the ratio of the rms value of the full scale to  
the total rms noise measured with the inputs shorted together.  
The value for dynamic range is expressed in dB. It is measured  
with a signal at −60 dBFS to include all noise sources and DNL  
artifacts.  
Offset Error  
The first transition should occur at a level ½ LSB above analog  
ground (38.1 µV for the 0 V to 5 V range). The offset error is  
the deviation of the actual transition from that point.  
Signal-to-Noise Ratio (SNR)  
SNR is the ratio of the rms value of the actual input signal to the  
rms sum of all other spectral components below the Nyquist  
frequency, excluding harmonics and dc. The value for SNR is  
expressed in dB.  
Gain Error  
The last transition (from 111 … 10 to 111 … 11) should  
occur for an analog voltage 1½ LSB below the nominal full  
scale (4.999886 V for the 0 V to 5 V range). The gain error is  
the deviation of the actual level of the last transition from the  
ideal level after the offset is adjusted out.  
Signal-to-(Noise + Distortion) Ratio (SINAD)  
SINAD is the ratio of the rms value of the actual input signal to  
the rms sum of all other spectral components below the Nyquist  
frequency, including harmonics but excluding dc. The value for  
SINAD is expressed in dB.  
Spurious-Free Dynamic Range (SFDR)  
SFDR is the difference, in decibels (dB), between the rms  
amplitude of the input signal and the peak spurious signal.  
Aperture Delay  
Effective Number of Bits (ENOB)  
Aperture delay is the measure of the acquisition performance. It  
is the time between the rising edge of the CNV input and when  
the input signal is held for a conversion.  
ENOB is a measurement of the resolution with a sine wave  
input. It is related to SINAD by the following formula:  
ENOB = (SINADdB − 1.76)/6.02  
Transient Response  
and is expressed in bits.  
Transient response is the time required for the ADC to  
accurately acquire its input after a full-scale step function is  
applied.  
Noise-Free Code Resolution  
Noise-free code resolution is the number of bits beyond which  
it is impossible to distinctly resolve individual codes. It is  
calculated as  
Noise-Free Code Resolution = log2(2N/Peak-to-Peak Noise)  
and is expressed in bits.  
Rev. G | Page 10 of 24  
 
Data Sheet  
AD7988-1/AD7988-5  
TYPICAL PERFORMANCE CHARACTERISTICS  
VDD = 2.5 V, VREF = 5.0 V, VIO = 3.3 V, unless otherwise noted.  
0
0
–20  
fS = 500kSPS  
fS = 100kSPS  
fIN = 10kHz  
SNR = 86.7dB  
THD = –110.4dB  
SFDR = 103.9dB  
SINAD = 86.6dB  
fIN = 10kHz  
–20  
–40  
SNR = 91.17dB  
THD = –113.63dB  
SFDR = 110.30dB  
SINAD = 91.15dB  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–160  
–180  
–100  
–120  
–140  
–160  
–180  
0
50  
100  
150  
200  
250  
0
10  
20  
30  
40  
50  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 6. AD7988-5 FFT Plot, VREF = 5 V  
Figure 9. AD7988-1 FFT Plot, VREF = 2.5 V  
0
–20  
1.25  
1.00  
0.75  
0.50  
0.25  
0
POSITIVE INL: +0.40 LSB  
NEGATIVE INL: –0.35 LSB  
fS = 500kSPS  
fIN = 10kHz  
SNR = 86.8dB  
THD = –111.4dB  
SFDR = 105.9dB  
SINAD = 86.8dB  
–40  
–60  
–80  
–100  
–120  
–140  
–160  
–180  
–0.25  
–0.50  
–0.75  
–1.00  
–1.25  
0
50  
100  
150  
200  
250  
0
16384  
32768  
CODE  
49152  
65536  
FREQUENCY (kHz)  
Figure 10. Integral Nonlinearity vs. Code, VREF = 5 V  
Figure 7. AD7988-5 FFT Plot, VREF = 2.5 V  
0
1.25  
1.00  
0.75  
0.50  
0.25  
0
POSITIVE INL: +0.45 LSB  
NEGATIVE INL: –0.29 LSB  
fS = 100kSPS  
fIN = 10kHz  
–20  
–40  
SNR = 91.09dB  
THD = –113.12dB  
SFDR = 110.30dB  
SINAD = 91.05dB  
–60  
–80  
–100  
–120  
–140  
–160  
–180  
–0.25  
–0.50  
–0.75  
–1.00  
–1.25  
0
10  
20  
30  
40  
50  
0
16384  
32768  
CODE  
49152  
65536  
FREQUENCY (kHz)  
Figure 11. Integral Nonlinearity vs. Code, VREF = 2.5 V  
Figure 8. AD7988-1 FFT Plot, VREF = 5 V  
Rev. G | Page 11 of 24  
 
AD7988-1/AD7988-5  
Data Sheet  
1.00  
0.75  
0.50  
0.25  
0
60k  
50k  
40k  
30k  
20k  
10k  
0
POSITIVE INL: +0.18 LSB  
NEGATIVE INL: –0.21 LSB  
50970  
45198  
–0.25  
–0.50  
–0.75  
–1.00  
18848  
12424  
1217  
2290  
94  
30  
0
0
1
0
0
7FFA 7FFB 7FFC 7FFD 7FFE 7FFF 8000 8001 8002 8003 8004 8005 8006  
CODE IN HEX  
0
16384  
32768  
CODE  
49152  
65536  
Figure 15. Histogram of a DC Input at the Code Transition, VREF = 2.5 V  
Figure 12. Differential Nonlinearity vs. Code, VREF = 5 V  
100  
95  
16  
15  
14  
1.00  
0.75  
0.50  
0.25  
0
POSITIVE INL: +0.25 LSB  
NEGATIVE INL: –0.22 LSB  
SNR  
SINAD  
ENOB  
90  
–0.25  
–0.50  
–0.75  
–1.00  
85  
80  
13  
12  
2.25  
2.75  
3.25  
3.75  
4.25  
4.75  
5.25  
0
16384  
32768  
CODE  
49152  
65536  
REFERENCE VOLTAGE (V)  
Figure 16. SNR, SINAD, and ENOB vs. Reference Voltage  
Figure 13. Differential Nonlinearity vs. Code, VREF = 2.5 V  
60k  
180k  
160k  
140k  
120k  
100k  
80k  
60k  
40k  
20k  
0
162595  
53412  
50k  
40k  
30k  
20k  
10k  
0
37417  
31540  
52720  
42731  
7285  
5807  
590  
512  
19  
1291  
852  
11  
0
0
0
0
29  
0
0
22  
2
0
0
0
7FFA 7FFB 7FFC 7FFD 7FFE 7FFF 8000 8001 8002 8003 8004 8005 8006  
CODE IN HEX  
8003 8004 8005 8006 8007 8008 8009 800A 800B 800C 800D 800E 800F  
CODE IN HEX  
Figure 17. Histogram of a DC Input at the Code Center, VREF = 2.5 V  
Figure 14. Histogram of a DC Input at the Code Center, VREF = 5 V  
Rev. G | Page 12 of 24  
Data Sheet  
AD7988-1/AD7988-5  
95  
93  
91  
89  
87  
85  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
–55  
–35  
–15  
5
25  
45  
65  
85  
105  
125  
–10  
–9  
–8  
–7  
–6  
–5  
–4  
–3  
–2  
–1  
0
TEMPERATURE (°C)  
INPUT LEVEL (dB OF FULL SCALE)  
Figure 21. SNR vs. Temperature  
Figure 18. SNR vs. Input Level  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
–95  
–100  
–105  
–110  
–115  
115  
110  
105  
100  
95  
I
VDD  
SFDR  
I
REF  
THD  
I
VIO  
0.1  
0
–120  
–125  
90  
85  
2.375  
2.425  
2.475  
2.525  
2.575  
2.625  
2.25  
2.75  
3.25  
3.75  
4.25  
4.75  
5.25  
VDD VOLTAGE (V)  
REFERENCE VOLTAGE (V)  
Figure 22. Operating Currents vs. Supply (AD7988-5)  
Figure 19. THD, SFDR vs. Reference Voltage  
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0
100  
95  
90  
85  
80  
I
VDD  
I
REF  
I
VIO  
2.375  
2.425  
2.475  
2.525  
2.575  
2.625  
10  
100  
1k  
VDD VOLTAGE (V)  
FREQUENCY (kHz)  
Figure 23. Operating Currents vs. Supply (AD7988-1)  
Figure 20. SINAD vs. Frequency  
Rev. G | Page 13 of 24  
AD7988-1/AD7988-5  
Data Sheet  
–85  
0.14  
0.12  
0.10  
008  
I
VDD  
–90  
–95  
–100  
–105  
–110  
–115  
–120  
–125  
0.06  
I
REF  
0.04  
0.02  
0
I
VIO  
–55  
–35  
–15  
5
25  
45  
65  
85  
105  
125  
10  
100  
1k  
125  
125  
TEMPERATURE (°C)  
FREQUENCY (kHz)  
Figure 24. THD vs. Frequency  
Figure 27. Operating Currents vs. Temperature (AD7988-1)  
8
–110  
7
6
5
4
3
2
1
–112  
–114  
–116  
–118  
–120  
I
+ I  
VIO  
VDD  
0
–55  
–35  
–15  
5
25  
45  
65  
85  
105  
125  
–55  
–35  
–15  
5
25  
45  
65  
85  
105  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 25. THD vs. Temperature  
Figure 28. Power-Down Currents vs. Temperature  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
I
VDD  
I
REF  
I
VIO  
–55  
–35  
–15  
5
25  
45  
65  
85  
105  
TEMPERATURE (°C)  
Figure 26. Operating Currents vs. Temperature (AD7988-5)  
Rev. G | Page 14 of 24  
Data Sheet  
AD7988-1/AD7988-5  
THEORY OF OPERATION  
IN+  
SWITCHES CONTROL  
SW+  
MSB  
LSB  
32,768C 16,384C  
4C  
4C  
2C  
2C  
C
C
C
C
REF  
CONTROL  
LOGIC  
COMP  
OUTPUT CODE  
GND  
32,768C 16,384C  
MSB  
LSB  
SW–  
CNV  
IN–  
Figure 29. ADC Simplified Schematic  
During the acquisition phase, terminals of the array tied to the  
comparator’s input are connected to GND via SW+ and SW−.  
All independent switches are connected to the analog inputs.  
Therefore, the capacitor arrays are used as sampling capacitors  
and acquire the analog signal on the IN+ and IN− inputs. When  
the acquisition phase is completed and the CNV input goes high, a  
conversion phase is initiated. When the conversion phase begins,  
SW+ and SW− are opened first. The two capacitor arrays are then  
disconnected from the inputs and connected to the GND input.  
Therefore, the differential voltage between the IN+ and IN−  
inputs captured at the end of the acquisition phase are applied  
to the comparator inputs, causing the comparator to become  
unbalanced. By switching each element of the capacitor array  
between GND and REF, the comparator input varies by binary  
weighted voltage steps (VREF/2, VREF/4 … VREF/65,536). The  
control logic toggles these switches, starting with the MSB, to  
bring the comparator back into a balanced condition. After the  
completion of this process, the part returns to the acquisition phase  
and the control logic generates the ADC output code.  
CIRCUIT INFORMATION  
The AD7988-1/AD7988-5 devices are fast, low power, single-  
supply, precise 16-bit ADCs that use a successive approximation  
architecture.  
The AD7988-1 is capable of converting 100,000 samples per  
second (100 kSPS), whereas the AD7988-5 is capable of a  
throughput of 500 kSPS, and they power down between  
conversions. When operating at 10 kSPS, for example, the  
ADC consumes 70 µW typically, ideal for battery-powered  
applications.  
The AD7988-1/AD7988-5 provide the user with on-chip track-  
and-hold and does not exhibit any pipeline delay or latency,  
making it ideal for multiple multiplexed channel applications.  
The AD7988-1/AD7988-5 can be interfaced to any 1.8 V to 5 V  
digital logic family. It is housed in a 10-lead MSOP or a tiny 10-  
lead LFCSP that combines space savings and allows flexible  
configurations.  
CONVERTER OPERATION  
Because the AD7988-1/AD7988-5 have an on-board conversion  
clock, the serial clock, SCK, is not required for the conversion  
process.  
The AD7988-1/AD7988-5 are successive approximation ADCs  
based on a charge redistribution DAC. Figure 29 shows the  
simplified schematic of the ADC. The capacitive DAC consists  
of two identical arrays of 16 binary weighted capacitors, which  
are connected to the two comparator inputs.  
Rev. G | Page 15 of 24  
 
 
 
 
AD7988-1/AD7988-5  
Data Sheet  
Transfer Functions  
Table 8. Output Codes and Ideal Input Voltages  
Analog Input  
The ideal transfer characteristic for the AD7988-1/AD7988-5 is  
shown in Figure 30 and Table 8.  
Description  
VREF = 5 V  
Digital Output Code (Hex)  
FSR – 1 LSB  
4.999924 V  
FFFF1  
8001  
8000  
7FFF  
0001  
00002  
Midscale + 1 LSB 2.500076 V  
Midscale 2.5 V  
Midscale – 1 LSB 2.499924 V  
–FSR + 1 LSB  
–FSR  
111 ... 111  
111 ... 110  
111 ... 101  
76.3 µV  
0 V  
1 This is also the code for an overranged analog input (VIN+ − VIN− above VREF − VGND).  
2 This is also the code for an underranged analog input (VIN+ − VIN− below VGND).  
TYPICAL CONNECTION DIAGRAM  
Figure 31 shows an example of the recommended connection  
diagram for the AD7988-1/AD7988-5 when multiple supplies  
are available.  
000 ... 010  
000 ... 001  
000 ... 000  
–FSR  
–FSR + 1LSB  
+FSR – 1 LSB  
–FSR + 0.5LSB  
+FSR – 1.5 LSB  
ANALOG INPUT  
Figure 30. ADC Ideal Transfer Function  
1
V+  
REF  
2.5V  
2
10µF  
100nF  
V+  
1.8V TO 5.5V  
100nF  
20Ω  
REF  
VDD  
VIO  
0V TO V  
REF  
3
IN+  
IN–  
SDI  
SCK  
SDO  
CNV  
2.7nF  
AD7988-1/  
AD7988-5  
V–  
5
3- OR 4-WIRE INTERFACE  
4
GND  
1
2
3
4
5
SEE THE VOLTAGE REFERENCE INPUT SECTION FOR REFERENCE SELECTION.  
IS USUALLY A 10µF CERAMIC CAPACITOR (X5R).  
SEE THE DRIVER AMPLIFIER CHOICE SECTION.  
OPTIONAL FILTER. SEE THE ANALOG INPUTS SECTION.  
SEE THE DIGITAL INTERFACE SECTION FOR THE MOST CONVENIENT INTERFACE MODE.  
C
REF  
Figure 31. Typical Application Diagram with Multiple Supplies  
Rev. G | Page 16 of 24  
 
 
 
 
Data Sheet  
AD7988-1/AD7988-5  
ANALOG INPUTS  
DRIVER AMPLIFIER CHOICE  
Figure 32 shows an equivalent circuit of the input structure of  
the AD7988-1/AD7988-5.  
Although the AD7988-1/AD7988-5 are easy to drive, the driver  
amplifier needs to meet the following requirements:  
The two diodes, D1 and D2, provide ESD protection for the  
analog inputs, IN+ and IN−. Care must be taken to ensure that  
the analog input signal never exceeds the supply rails by more  
than 0.3 V, because this causes these diodes to become forward-  
biased and start conducting current. These diodes can handle a  
forward-biased current of 130 mA maximum. For instance,  
these conditions may eventually occur when the input buffers  
supplies are different from VDD. In such a case (for example, an  
input buffer with a short circuit), the current limitation can be  
used to protect the part.  
The noise generated by the driver amplifier must be kept as  
low as possible to preserve the SNR and transition noise  
performance of the AD7988-1/AD7988-5. The noise  
coming from the driver is filtered by the AD7988-1/  
AD7988-5 analog input circuit’s one-pole, low-pass filter  
made by RIN and CIN or by the external filter, if one is used.  
Because the typical noise of the AD7988-1/AD7988-5 is  
47.3 µV rms, the SNR degradation due to the amplifier is  
47.3  
REF  
SNRLOSS = 20 log  
π
47.32 + f3dB (NeN )2  
D1  
C
2
IN  
R
IN  
IN+  
OR IN–  
where:  
–3dB is the input bandwidth in MHz of the AD7988-1/  
C
D2  
PIN  
f
GND  
AD7988-5 (10 MHz) or the cutoff frequency of the input  
filter, if one is used.  
Figure 32. Equivalent Analog Input Circuit  
N is the noise gain of the amplifier (for example, 1 in buffer  
configuration).  
eN is the equivalent input noise voltage of the op amp, in  
The analog input structure allows the sampling of the true  
differential signal between IN+ and IN−. By using these  
differential inputs, signals common to both inputs are rejected.  
nV/√Hz.  
During the acquisition phase, the impedance of the analog  
inputs (IN+ and IN−) can be modeled as a parallel combination of  
Capacitor CPIN and the network formed by the series connection of  
For ac applications, the driver should have a THD  
performance commensurate with the AD7988-1/AD7988-5.  
For multichannel multiplexed applications, the driver ampli-  
fier and the AD7988-1/AD7988-5 analog input circuit must  
settle for a full-scale step onto the capacitor array at a  
16-bit level (0.0015%, 15 ppm). In the amplifier data sheet,  
settling at 0.1% to 0.01% is more commonly specified. This  
may differ significantly from the settling time at a 16-bit  
level and should be verified prior to driver selection.  
RIN and CIN. CPIN is primarily the pin capacitance. RIN is typically  
400 Ω and is a lumped component made up of serial resistors  
and the on resistance of the switches. CIN is typically 30 pF and  
is mainly the ADC sampling capacitor. During the conversion  
phase, when the switches are opened, the input impedance is  
limited to CPIN. RIN and CIN make a one-pole, low-pass filter that  
reduces undesirable aliasing effects and limits the noise.  
Table 9. Recommended Driver Amplifiers1  
When the source impedance of the driving circuit is low, the  
AD7988-1/AD7988-5 can be driven directly. Large source  
impedances significantly affect the ac performance, especially  
THD. The dc performances are less sensitive to the input  
impedance. The maximum source impedance depends on the  
amount of THD that can be tolerated. The THD degrades as a  
function of the source impedance and the maximum input  
frequency.  
Amplifier  
Typical Application  
ADA4805-1  
ADA4807-1  
ADA4627-1  
ADA4522-1  
ADA4500-2  
Low noise, small size, and low power  
Very low noise and high frequency  
Precision, low noise, and low input bias  
Precision, zero-drift, and EMI enhanced  
Precision, RRIO, and zero input crossover  
distortion  
1 For the latest recommended drivers, see the product recommendations  
listed on the product webpage.  
Rev. G | Page 17 of 24  
 
 
 
AD7988-1/AD7988-5  
Data Sheet  
The AD7988-1/AD7988-5 powers down automatically at the end  
of each conversion phase.  
VOLTAGE REFERENCE INPUT  
The AD7988-1/AD7988-5 voltage reference input, REF, has a  
dynamic input impedance and must therefore be driven by a  
low impedance source with efficient decoupling between the  
REF and GND pins, as explained in the Layout section.  
DIGITAL INTERFACE  
Although the AD7988-1/AD7988-5 have a reduced number of  
pins, it offers flexibility in its serial interface modes.  
When REF is driven by a very low impedance source, for example,  
a reference buffer using the AD8031 or the ADA4805-1, a  
ceramic chip capacitor is appropriate for optimum  
performance.  
CS  
The AD7988-1/AD7988-5, when in  
mode, is compatible with  
SPI, QSPI™, and digital hosts. This interface can use either a 3-wire  
or 4-wire interface. A 3-wire interface using the CNV, SCK, and  
SDO signals minimizes wiring connections and is useful, for  
instance, in isolated applications. A 4-wire interface using the  
SDI, CNV, SCK, and SDO signals allows CNV, which initiates  
the conversions, to be independent of the readback timing  
(SDI). This is useful in low jitter sampling or simultaneous  
sampling applications.  
If an unbuffered reference voltage is used, the decoupling value  
depends on the reference used. For example, a 22 µF (X5R,  
1206 size) ceramic chip capacitor is appropriate for optimum  
performance using a low temperature drift ADR435 reference.  
If desired, a reference-decoupling capacitor value as small as  
2.2 µF can be used with a minimal impact on performance,  
especially DNL.  
The AD7988-1/AD7988-5, when in chain mode, provides a  
daisy-chain feature using the SDI input for cascading multiple  
ADCs on a single data line, similar to a shift register.  
Regardless, there is no need for an additional lower value ceramic  
decoupling capacitor (for example, 100 nF) between the REF  
and GND pins.  
The mode in which the part operates depends on the SDI level  
CS  
when the CNV rising edge occurs.  
mode is selected if SDI is  
high, and chain mode is selected if SDI is low. The SDI hold  
time is such that when SDI and CNV are connected together,  
the chain mode is selected.  
POWER SUPPLY  
The AD7988-1/AD7988-5 use two power supply pins: a core  
supply, VDD, and a digital input/output interface supply, VIO.  
VIO allows direct interface with any logic between 1.8 V and  
5.0 V. To reduce the number of supplies needed, VIO and VDD  
can be tied together. The AD7988-1/AD7988-5 are independent  
of power supply sequencing between VIO and VDD. Additionally,  
it is very insensitive to power supply variations over a wide  
frequency range, as shown in Figure 33.  
The user must time out the maximum conversion time prior to  
readback.  
80  
75  
70  
65  
60  
55  
1
10  
100  
1k  
FREQUENCY (kHz)  
Figure 33. PSRR vs. Frequency  
Rev. G | Page 18 of 24  
 
 
 
 
Data Sheet  
AD7988-1/AD7988-5  
When CNV goes low, the MSB is output onto SDO. The remaining  
data bits are then clocked by subsequent SCK falling edges. The  
data is valid on both SCK edges. Although the rising edge can  
be used to capture the data, a digital host using the SCK falling  
edge allows a faster reading rate, provided that it has an acceptable  
hold time. After the 16th SCK falling edge or when CNV goes  
high, whichever is earlier, SDO returns to high impedance.  
CS MODE, 3-WIRE  
This mode is typically used when a single AD7988-1or AD7988-5  
is connected to an SPI-compatible digital host. The connection  
diagram is shown in Figure 34, and the corresponding timing is  
given in Figure 35.  
With SDI tied to VIO, a rising edge on CNV initiates a conver-  
CS  
sion, selects the  
mode, and forces SDO to high impedance.  
When the conversion is complete, the AD7988-1/AD7988-5  
enter the acquisition phase and powers down.  
CONVERT  
DIGITAL HOST  
DATA IN  
CNV  
VIO  
AD7988-1/  
AD7988-5  
SDI  
SDO  
SCK  
CLK  
CS  
Figure 34. 3-Wire Mode Connection Diagram  
SDI = 1  
tCYC  
tCNVH  
CNV  
tCONV  
tACQ  
ACQUISITION  
CONVERSION  
ACQUISITION  
tSCK  
tSCKL  
1
2
3
14  
15  
16  
SCK  
SDO  
tHSDO  
tSCKH  
tDIS  
tEN  
tDSDO  
D15  
D14  
D13  
D1  
D0  
CS  
Figure 35. 3-Wire Mode Serial Interface Timing (SDI High)  
Rev. G | Page 19 of 24  
 
 
 
AD7988-1/AD7988-5  
Data Sheet  
When the conversion is complete, the AD7988-1/AD7988-5  
CS MODE 4-WIRE  
enter the acquisition phase and powers down. Each ADC result  
can be read by bringing its SDI input low, which consequently  
outputs the MSB onto SDO. The remaining data bits are then  
clocked by subsequent SCK falling edges. The data is valid on  
both SCK edges. Although the rising edge can be used to capture  
the data, a digital host using the SCK falling edge allows a faster  
reading rate, provided that it has an acceptable hold time. After  
the 16th SCK falling edge or when SDI goes high, whichever is  
earlier, SDO returns to high impedance and another AD7988-1  
or AD7988-5 can be read.  
This mode is typically used when multiple AD7988-1/AD7988-5  
devices are connected to an SPI-compatible digital host.  
A connection diagram example using the AD7988-1/AD7988-5  
devices are shown in Figure 36, and the corresponding timing is  
given in Figure 37.  
With SDI high, a rising edge on CNV initiates a conversion,  
CS  
selects the  
mode, and forces SDO to high impedance. In this  
mode, CNV must be held high during the conversion phase and  
the subsequent data readback (if SDI and CNV are low, SDO is  
driven low). Prior to the minimum conversion time, SDI can be  
used to select other SPI devices, such as analog multiplexers,  
but SDI must be returned high before the minimum conversion  
time elapses and then held high for the maximum conversion time.  
CS2  
CS1  
CONVERT  
CNV  
CNV  
DIGITAL HOST  
AD7988-1/  
AD7988-5  
AD7988-1/  
AD7988-5  
SDI  
SDO  
SDI  
SDO  
SCK  
SCK  
DATA IN  
CLK  
CS  
Figure 36. 4-Wire Mode Connection Diagram  
tCYC  
CNV  
tCONV  
tACQ  
ACQUISITION  
tSSDICNV  
CONVERSION  
ACQUISITION  
SDI (CS1)  
tHSDICNV  
SDI (CS2)  
SCK  
tSCK  
tSCKL  
1
2
3
14  
15  
16  
17  
18  
30  
31  
32  
tHSDO  
tSCKH  
tEN  
tDIS  
tDSDO  
SDO  
D15  
D14  
D13  
D1  
D0  
D15  
D14  
D1  
D0  
CS  
Figure 37. 4-Wire Mode Serial Interface Timing  
Rev. G | Page 20 of 24  
 
 
 
Data Sheet  
AD7988-1/AD7988-5  
phase and the subsequent data readback. When the conversion  
is complete, the MSB is output onto SDO and the AD7988-1/  
AD7988-5 enter the acquisition phase and power down. The  
remaining data bits stored in the internal shift register are  
clocked by subsequent SCK falling edges. For each ADC, SDI  
feeds the input of the internal shift register and is clocked by the  
SCK falling edge. Each ADC in the chain outputs its data MSB  
first, and 16 × N clocks are required to read back the N ADCs.  
The data is valid on both SCK edges. Although the rising edge  
can be used to capture the data, a digital host using the SCK  
falling edge allows a faster reading rate and, consequently, more  
AD7988-1/ AD7988-5 devices in the chain, provided that the  
digital host has an acceptable hold time. The maximum  
CHAIN MODE  
This mode can be used to daisy-chain multiple AD7988-1/  
AD7988-5 devices on a 3-wire serial interface. This feature is  
useful for reducing component count and wiring connections, for  
example, in isolated multiconverter applications or for systems  
with a limited interfacing capacity. Data readback is analogous  
to clocking a shift register.  
A connection diagram example using the AD7988-1/AD7988-5  
devices is shown in Figure 38, and the corresponding timing is  
given in Figure 39.  
When SDI and CNV are low, SDO is driven low. With SCK low,  
a rising edge on CNV initiates a conversion and selects the chain  
mode. In this mode, CNV is held high during the conversion  
conversion rate may be reduced due to the total readback time.  
CONVERT  
CNV  
CNV  
DIGITAL HOST  
AD7988-1/  
AD7988-5  
AD7988-1/  
AD7988-5  
SDI  
SDO  
SDI  
SDO  
DATA IN  
A
SCK  
B
SCK  
CLK  
Figure 38. Chain Mode Connection Diagram  
SDI = 0  
A
tCYC  
CNV  
tCONV  
tACQ  
CONVERSION  
ACQUISITION  
ACQUISITION  
tSCK  
tSCKL  
tSSCKCNV  
SCK  
1
2
3
A
B
14  
15  
16  
17  
18  
30  
31  
32  
tSSDISCK  
tSCKH  
tHSCKCNV  
tHSDISCK  
tEN  
SDO = SDI  
A
D
15  
D
14  
D
D
13  
13  
D
A
1
D
A
0
B
A
A
tHSDO  
tDSDO  
D
B
15  
D
14  
D
1
D
0
D
15  
D
14  
D 1  
A
D 0  
A
SDO  
B
B
B
A
A
B
Figure 39. Chain Mode Serial Interface Timing  
Rev. G | Page 21 of 24  
 
 
 
AD7988-1/AD7988-5  
Data Sheet  
APPLICATIONS INFORMATION  
Using at least one ground plane is recommended. It can be  
INTERFACING TO BLACKFIN® DSP  
common or split between the digital and analog section. In the  
latter case, join the planes underneath the AD7988-1/AD7988-5  
devices.  
The AD7988-1/AD7988-5 voltage reference input, REF, has a  
dynamic input impedance. Decouple REF with minimal parasitic  
inductances by placing the reference decoupling ceramic capacitor  
close to, but ideally right up against, the REF and GND pins and  
connecting them with wide, low impedance traces.  
The AD7988-1/AD7988-5 can easily connect to a DSP SPI or  
SPORT. The SPI configuration is straightforward, using the  
standard SPI interface as shown in Figure 40.  
SPI_CLK  
SPI_MISO  
SPI_MOSI  
SCK  
SDO  
CNV  
AD7988-1/  
AD7988-5  
BLACKFIN  
DSP  
Finally, decouple the power supplies of the AD7988-1/AD7988-5,  
VDD and VIO, with ceramic capacitors, typically 100 nF, placed  
close to the AD7988-1/AD7988-5 and connected using short and  
wide traces to provide low impedance paths and to reduce the  
effect of glitches on the power supply lines.  
Figure 40. Typical Connection to Blackfin SPI Interface  
Similarly, the SPORT interface can be used to interface to this  
ADC. The SPORT interface has some benefits in that it can use  
direct memory access (DMA) and provides a lower jitter CNV  
signal generated from a hardware counter.  
An example of a layout following these rules is shown in Figure 42  
and Figure 43.  
Some glue logic may be required between SPORT and the  
AD7988-1/AD7988-5 interface. The evaluation board for the  
AD7988-1/AD7988-5 interfaces directly to the SPORT of the  
Blackfin-based (ADSP-BF527) SDP board. The configuration  
used for the SPORT interface requires the addition of some glue  
logic as shown in Figure 41. The SCK input to the ADC was  
gated off when CNV was high to keep the SCK line static while  
converting the data, thereby ensuring the best integrity of the  
result. This approach uses an AND gate and a NOT gate for the  
SCK path. The other logic gates used on the RSCLK and RFS  
paths are for delay matching purposes and may not be  
necessary where path lengths are short.  
EVALUATING THE PERFORMANCE OF THE  
AD7988-1/AD7988-5  
The evaluation board package for the AD7988-1/AD7988-5  
(EVAL-AD7988-5SDZ) includes a fully assembled and tested  
evaluation board, documentation, and software for controlling the  
board from a PC via the EVAL-SDP-CB1Z.  
AD7988-1/  
AD7988-5  
This is one approach to using the SPORT interface for this ADC;  
there may be other solutions equal to this approach.  
VDRIVE  
DR  
SDO  
SCK  
RSCLK  
TSCLK  
BLACKFIN  
DSP  
AD7988-1/  
AD7988-5  
RFS  
TFS  
Figure 42. Example Layout of the AD7988-1/AD7988-5 (Top Layer)  
CNV  
Figure 41. Evaluation Board Connection to Blackfin Sport Interface  
LAYOUT  
Design the printed circuit board (PCB) that houses the AD7988-1/  
AD7988-5 so that the analog and digital sections are separated  
and confined to certain areas of the board. The pinout of the  
AD7988-1/AD7988-5, with all the analog signals on the left side  
and all the digital signals on the right side, eases this task.  
Avoid running digital lines under the device because these couple  
noise onto the die, unless a ground plane under the AD7988-1/  
AD7988-5 is used as a shield. Fast switching signals, such as  
CNV or clocks, should never run near analog signal paths.  
Avoid crossover of digital and analog signals.  
Figure 43. Example Layout of the AD7988-1/AD7988-5 (Bottom Layer)  
Rev. G | Page 22 of 24  
 
 
 
 
 
 
 
 
Data Sheet  
AD7988-1/AD7988-5  
OUTLINE DIMENSIONS  
3.10  
3.00  
2.90  
10  
1
6
5
5.15  
4.90  
4.65  
3.10  
3.00  
2.90  
PIN 1  
IDENTIFIER  
0.50 BSC  
0.95  
0.85  
0.75  
15° MAX  
1.10 MAX  
0.70  
0.55  
0.40  
0.15  
0.05  
0.23  
0.13  
6°  
0°  
0.30  
0.15  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-BA  
Figure 44.10-Lead Mini Small Outline Package [MSOP]  
(RM-10)  
Dimensions shown in millimeters  
DETAIL A  
(JEDEC 95)  
2.48  
2.38  
2.23  
3.10  
3.00 SQ  
0.50 BSC  
2.90  
10  
6
PIN 1 INDEX  
EXPOSED  
PAD  
1.74  
1.64  
1.49  
AREA  
0.50  
0.40  
0.30  
0.20 MIN  
PIN 1  
INDIC ATOR AREA OPTIONS  
(SEE DETAIL A)  
1
5
BOTTOM VIEW  
TOP VIEW  
SIDE VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.30  
0.25  
0.20  
0.20 REF  
Figure 45. 10-Lead Lead Frame Chip Scale Package [LFCSP]  
3 mm × 3 mm Body and 0.75 mm Package Height  
(CP-10-9)  
Dimensions shown in millimeters  
Rev. G | Page 23 of 24  
 
AD7988-1/AD7988-5  
Data Sheet  
ORDERING GUIDE  
Integral  
Temperature  
Range  
Ordering  
Quantity  
Package  
Option  
Model1, 2, 3  
Nonlinearity  
1.25 LSB max  
1.25 LSB max  
1.25 LSB max  
1.25 LSB max  
1.25 LSB max  
1.25 LSB max  
1.25 LSB max  
1.25 LSB max  
1.25 LSB max  
1.25 LSB max  
Package Description  
10-Lead MSOP  
10-Lead MSOP  
10-Lead LFCSP  
10-Lead LFCSP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead LFCSP  
10-Lead LFCSP  
10-Lead LFCSP  
10-Lead LFCSP  
Branding  
C7E  
C7E  
C7X  
C7X  
C7Q  
C7Q  
C7Z  
AD7988-1BRMZ  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
Tube, 50  
RM-10  
RM-10  
CP-10-9  
CP-10-9  
RM-10  
AD7988-1BRMZ-RL7  
AD7988-1BCPZ-RL  
AD7988-1BCPZ-RL7  
AD7988-5BRMZ  
AD7988-5BRMZ-RL7  
AD7988-5BCPZ-RL  
AD7988-5BCPZ-RL7  
AD7988-5CCPZ-RL  
AD7988-5CCPZ-RL7  
EVAL-AD7988-5SDZ  
Reel, 1,000  
Reel, 5,000  
Reel, 1,500  
Tube, 50  
Reel, 1,000  
Reel, 5,000  
Reel, 1,500  
Reel, 5,000  
Reel, 1,500  
RM-10  
CP-10-9  
CP-10-9  
CP-10-9  
CP-10-9  
C7Z  
C8P  
C8P  
Evaluation Board with the AD7988-5  
Populated; Use for the Evaluation of both  
the AD7988-1 and the AD7988-5  
EVAL-SDP-CB1Z  
System Demonstration Board; Used as a  
Controller Board for Data Transfer via USB  
Interface to PC  
1 Z = RoHS Compliant Part.  
2 The EVAL-AD7988-5SDZ can be used as a standalone evaluation board or in conjunction with the EVAL-SDZ-CB1Z for evaluation and/or demonstration purposes.  
3 The EVAL-SDP-CB1Z allows a PC to control and communicate with all Analog Devices, Inc., evaluation boards ending in the SD designator.  
©2012–2017 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D10231-0-10/17(G)  
Rev. G | Page 24 of 24  
 

相关型号:

AD7988-5

16-Bit Lower Power
ADI

AD7988-5BCPZ-RL

16-Bit Lower Power
ADI

AD7988-5BCPZ-RL7

16-Bit Lower Power
ADI

AD7988-5BRMZ

16-Bit Lower Power
ADI

AD7988-5BRMZ-RL7

16-Bit Lower Power
ADI

AD7988-5CCPZ-RL

16-Bit Lower Power PulSAR ADCs in MSOP/LFCSP
ADI

AD7988-5CCPZ-RL7

16-Bit Lower Power PulSAR ADCs in MSOP/LFCSP
ADI

AD7989-1

PulSAR ADCs in MSOP/LFCSP
ADI

AD7989-1BCPZ-R2

IC ADC 18BIT 100KSPS SAR 10LFCSP
ADI

AD7989-1BCPZ-RL7

IC ADC 18BIT 100KSPS SAR 10LFCSP
ADI

AD7989-1BRMZ

IC ADC 18BIT 100KSPS SAR 10MSOP
ADI

AD7989-1BRMZ-RL7

PulSAR ADCs in MSOP/LFCSP
ADI