AD7989-1 [ADI]

PulSAR ADCs in MSOP/LFCSP;
AD7989-1
型号: AD7989-1
厂家: ADI    ADI
描述:

PulSAR ADCs in MSOP/LFCSP

文件: 总24页 (文件大小:595K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
18-Bit, 100 kSPS/500 kSPS  
PulSAR ADCs in MSOP/LFCSP  
Data Sheet  
AD7989-1/AD7989-5  
FEATURES  
GENERAL DESCRIPTION  
Low power dissipation  
AD7989-1  
The AD7989-1/AD7989-5 are 18-bit, successive approximation,  
analog-to-digital converters (ADCs) that operate from a single  
power supply, VDD. The AD7989-1/AD7989-5 contain a low  
power, high speed, 18-bit sampling ADC and a versatile serial  
interface port. On the CNV rising edge, the AD7989-1/AD7989-5  
sample the voltage difference between the IN+ and IN− pins.  
The voltages on these pins typically swing in opposite phases  
between 0 V and VREF. The reference voltage, VREF, is applied  
externally and can be set independent of the supply voltage,  
VDD. Its power scales linearly with throughput.  
400 μW at 100 kSPS typical (VDD only)  
700 μW at 100 kSPS typical (total)  
AD7989-5  
2 mW at 500 kSPS typical (VDD only)  
3.5 mW at 500 kSPS typical (total)  
18-bit resolution with no missing codes  
Throughput  
AD7989-1  
100 kSPS  
AD7989-5  
500 kSPS  
INL: 1 LSB typical, 2 LSB maximum  
SNR: 98 dB at 1 kHz, VREF = 5 V typical  
SINAD: 97 dB at 1 kHz typical  
THD: −120 dB at 10 kHz typical  
Dynamic range: 99 dB at VREF = 5 V typical  
True differential analog input voltage range: VREF  
0 V to VREF with VREF between 2.4 V and 5.1 V  
No pipeline delay  
The AD7989-1/AD7989-5 are serial peripheral interface (SPI)-  
CS  
compatible, which features the ability, using the SDI/ input,  
to daisy-chain several ADCs on a single 3-wire bus. The  
AD7989-1/AD7989-5 are compatible with 1.8 V, 2.5 V, 3 V, and  
5 V logic, using the separate VIO supply.  
The AD7989-1/AD7989-5 are available in a 10-lead MSOP or a  
10-lead LFCSP with operation specified from −40°C to +85°C.  
Table 1. MSOP and LFCSP 14-/16-/18-Bit PulSAR® ADCs  
Bits 100 kSPS  
250 kSPS  
AD76912  
400 kSPS to 500 kSPS  
AD76902  
≥1000 kSPS  
AD79822  
181  
AD7989-12  
AD7989-52  
AD76882  
AD76932  
AD79162  
AD76862  
AD79842  
AD79152  
Single-supply 2.5 V operation with 1.8 V, 2.5 V, 3 V, and 5 V  
logic interface  
Proprietary serial interface SPI-/QSPI™-/MICROWIRE™-/  
DSP-compatible1  
Ability to daisy-chain multiple ADCs  
10-lead MSOP and 3 mm × 3 mm 10-Lead LFCSP  
161  
AD7684  
AD76872  
163  
143  
AD7680  
AD7683  
AD7988-12  
AD7940  
AD76852  
AD7694  
AD79802  
AD79832  
AD7988-52  
AD79422  
AD79462  
APPLICATIONS  
Battery-powered equipment  
Data acquisition systems  
Medical instruments  
1 True differential.  
2 Pin for pin compatible.  
3 Pseudo differential.  
Seismic data acquisition systems  
TYPICAL APPLICATIONS CIRCUIT  
2.5V TO 5V 2.5V  
VIO  
1.8V TO 5.5V  
REF VDD  
SDI/CS  
AD7989-1/  
AD7989-5  
IN+  
3- OR 4-WIRE  
INTERFACE  
(SPI, CS,  
SCK  
SDO  
CNV  
±10V, ±5V, ..  
IN–  
DAISY CHAIN)  
GND  
ADA4941-1  
Figure 1.  
1 Protected by U.S. Patent 6,703,961.  
Rev. B  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2014–2017 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
AD7989-1/AD7989-5  
Data Sheet  
TABLE OF CONTENTS  
Features.....................................................................................1  
Analog Inputs......................................................................15  
Driver Amplifier Choice......................................................15  
Single-Ended to Differential Driver.....................................16  
Voltage Reference Input.......................................................16  
Power Supply.......................................................................16  
Digital Interface...................................................................16  
CS Mode, 3-Wire.................................................................17  
CS Mode, 4-Wire.................................................................18  
Chain Mode.........................................................................19  
Applications Information........................................................20  
Interfacing to Blackfin® DSP................................................20  
Layout..................................................................................20  
Evaluating AD7989-1/AD7989-5 Performance.......................21  
Outline Dimensions ................................................................22  
Ordering Guide ...................................................................23  
Applications...............................................................................1  
General Description ..................................................................1  
Typical Applications Circuit ......................................................1  
Revision History........................................................................2  
Specifications.............................................................................3  
Timing Specifications ............................................................5  
Absolute Maximum Ratings......................................................7  
ESD Caution..........................................................................7  
Pin Configurations and Function Descriptions.........................8  
Typical Performance Characteristics.........................................9  
Terminology ............................................................................12  
Theory of Operation................................................................13  
Circuit Information .............................................................13  
Converter Operation............................................................13  
Typical Connection Diagram...............................................14  
REVISION HISTORY  
1/2017—Rev. A to Rev. B  
Change to Single-Ended to Differential Driver Section Title...16  
Changes to Figure 32...............................................................17  
Changes to Figure 34...............................................................18  
Changes to Ordering Guide.....................................................23  
Change to Table 1 ......................................................................1  
Changed VIO = 2.3 V to 5.5 V to VIO = 1.71 V to 5.5 V...........3  
Changes to Table 2.....................................................................3  
Changed VIO = 2.3 V to 5.5 V to VIO = 1.71 V to 5.5 V...........4  
Deleted VIO Range Parameter, Table 3......................................4  
Changes to Table 4.....................................................................5  
Added Table 5; Renumbered Sequentially .................................6  
Changes to Figure 9...................................................................9  
Change to Terminology Section ..............................................12  
Changes to Figure 26...............................................................14  
Changes to Table 9...................................................................15  
7/2014—Rev. 0 to Rev. A  
Changes to Features Section......................................................1  
Changes to Table 1.....................................................................1  
Changes to Table 8...................................................................15  
1/2014—Revision0: Initial Version  
Rev. B | Page 2 of 24  
Data Sheet  
AD7989-1/AD7989-5  
SPECIFICATIONS  
VDD = 2.5 V, VIO = 1.71 V to 5.5 V, VREF = 5 V, TA = −40°C to +85°C, unless otherwise noted.  
Table 2.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
RESOLUTION  
18  
Bits  
ANALOG INPUT  
Voltage Range  
IN+ − IN−  
−VREF  
+VREF  
V
Absolute Input Voltage  
Common-Mode Input Range  
Analog Input Common Mode Rejection  
Ratio (CMRR)  
IN+ and IN−  
IN+ and IN−  
fIN = 450 kHz  
−0.1  
VREF × 0.475  
VREF + 0.1  
VREF × 0.525  
V
V
dB  
VREF × 0.5  
67  
Leakage Current at 25°C  
Input Impedance  
Acquisition phase  
200  
nA  
See the Analog Inputs section  
ACCURACY  
No Missing Codes  
18  
Bits  
Differential Nonlinearity Error (DNL)  
Integral Nonlinearity Error (INL)  
Transition Noise  
−0.85  
−2  
0.5  
1
1.05  
+0.004  
1
100  
0.5  
90  
+1.5  
+2  
LSB  
LSB  
VREF = 5 V  
LSB1  
% of FS  
ppm/°C  
μV  
ppm/°C  
dB  
2
Gain Error, TMIN to TMAX  
−0.023  
+0.023  
+700  
Gain Error Temperature Drift  
2
Zero Error, TMIN to TMAX  
Zero Temperature Drift  
Power Supply Rejection Ratio (PSRR)  
THROUGHPUT  
AD7989-1 Conversion Rate  
AD7989-5 Conversion Rate  
Transient Response  
VDD = 2.5 V 5%  
Full-scale step  
0
0
100  
500  
400  
kSPS  
kSPS  
ns  
AC ACCURACY  
Dynamic Range  
VREF = 5 V  
VREF = 2.5 V  
fO = 1 kSPS  
fIN = 1 kHz, VREF = 5 V  
fIN = 1 kHz, VREF = 2.5 V  
fIN = 10 kHz  
fIN = 10 kHz  
fIN = 1 kHz, VREF = 5 V  
97  
99  
93  
dB3  
dB3  
dB3  
dB3  
dB3  
dB3  
dB3  
dB3  
Oversampled Dynamic Range4  
Signal-to-Noise Ratio (SNR)  
126  
98  
92.5  
−115  
−120  
97  
95.5  
Spurious-Free Dynamic Range (SFDR)  
Total Harmonic Distortion5 (THD)  
Signal-to-Noise-and-Distortion Ratio (SINAD)  
1 LSB means least significant bit. With the 5 V input range, 1 LSB is 38.15 μV.  
2 See the Terminology section. These specifications include full temperature range variation but not the error contribution from the external reference.  
3 All specifications expressed in decibels are referred to a full-scale input range (FSR) and tested with an input signal at 0.5 dB below full scale, unless otherwise specified.  
4 Dynamic range is obtained by oversampling the ADC running at a throughput, fS, of 500 kSPS followed by postdigital filtering with an output word rate of fO.  
5 Tested fully in production at fIN = 1 kHz.  
Rev. B | Page 3 of 24  
 
AD7989-1/AD7989-5  
Data Sheet  
VDD = 2.5 V, VIO = 1.71 V to 5.5 V, VREF = 5 V, TA = −40°C to +85°C, unless otherwise noted.  
Table 3.  
Parameter  
Test Conditions/Comments  
VREF = 5 V  
Min  
Typ  
Max  
Unit  
REFERENCE  
Voltage Range  
Load Current  
SAMPLING DYNAMICS  
−3 dB Input Bandwidth  
Aperture Delay  
DIGITAL INPUTS  
Logic Levels  
2.4  
5.1  
V
μA  
250  
10  
2
MHz  
ns  
VDD = 2.5 V  
VIL  
VIO > 3 V  
VIO ≤ 3 V  
VIO > 3 V  
VIO ≤ 3 V  
–0.3  
–0.3  
0.7 × VIO  
0.9 × VIO  
−1  
+0.3 × VIO  
+0.1 × VIO  
VIO + 0.3  
VIO + 0.3  
+1  
V
V
V
V
μA  
μA  
VIH  
IIL  
IIH  
−1  
+1  
DIGITAL OUTPUTS  
Data Format  
Pipeline Delay  
Serial, 18 bits, twos complement  
Conversion results available immediately  
after completed conversion  
VOL  
VOH  
ISINK = +500 μA  
ISOURCE = −500 μA  
0.4  
V
V
VIO − 0.3  
POWER SUPPLIES  
VDD  
VIO  
2.375  
1.71  
2.5  
2.625  
5.5  
V
V
Standby Current1, 2  
AD7989-1 Power Dissipation  
Total  
VDD and VIO = 2.5 V, 25°C  
VDD = 2.625 V, VREF = 5 V, VIO = 3 V  
10 kSPS throughput  
0.35  
μA  
70  
86  
860  
μW  
μW  
μW  
μW  
μW  
100 kSPS throughput  
700  
400  
170  
130  
VDD Only  
REF Only  
VIO Only  
AD7989-5 Power Dissipation  
Total  
VDD = 2.625 V, VREF = 5 V, VIO = 3 V  
500 kSPS throughput  
3.5  
2
4.3  
mW  
mW  
VDD Only  
REF Only  
VIO Only  
Energy per Conversion  
TEMPERATURE RANGE  
Specified Performance  
0.85  
0.65  
7.0  
mW  
mW  
nJ/sample  
TMIN to TMAX  
−40  
+85  
°C  
1 With all digital inputs forced to VIO or ground as required.  
2 During acquisition phase.  
Rev. B | Page 4 of 24  
Data Sheet  
AD7989-1/AD7989-5  
TIMING SPECIFICATIONS  
VDD = 2.37 V to 2.63 V, VIO = 2.3 V to 5.5 V, TA = −40°C to +85°C, unless otherwise noted.1  
Table 4.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
THROUGHPUT RATE  
AD7989-1  
AD7989-5  
100  
500  
kSPS  
kSPS  
CONVERSION AND ACQUISITION TIMES  
Conversion Time: CNV Rising Edge to Data Available  
AD7989-1  
AD7989-5  
Acquisition Time  
AD7989-1  
AD7989-5  
tCONV  
tACQ  
tCYC  
9500  
1600  
ns  
ns  
500  
400  
ns  
ns  
Time Between Conversions  
AD7989-1  
10  
2
μs  
ꢀs  
ns  
AD7989-5  
CNV PULSE WIDTH (CS MODE)  
tCNVH  
tSCK  
500  
SCK  
SCK Period (CS Mode)  
VIO Above 4.5 V  
VIO Above 3 V  
VIO Above 2.7 V  
VIO Above 2.3 V  
10.5  
12  
13  
ns  
ns  
ns  
ns  
15  
SCK Period (Chain Mode)  
tSCK  
VIO Above 4.5 V  
VIO Above 3 V  
VIO Above 2.7 V  
VIO Above 2.3 V  
SCK Low Time  
SCK High Time  
SCK Falling Edge to Data Remains Valid  
SCK Falling Edge to Data Valid Delay  
VIO Above 4.5 V  
11.5  
13  
14  
16  
4.5  
4.5  
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tSCKL  
tSCKH  
tHSDO  
tDSDO  
9.5  
11  
12  
14  
ns  
ns  
ns  
ns  
VIO Above 3 V  
VIO Above 2.7 V  
VIO Above 2.3 V  
CS MODE  
CNV or SDI Low to SDO D17 MSB Valid  
VIO Above 3 V  
VIO Above 2.3V  
CNV or SDI High or Last SCK Falling Edge to SDO High Impedance (CS Mode)  
SDI Valid Setup Time from CNV Rising Edge (CS Mode)  
SDI Valid Hold Time from CNV Rising Edge (CS Mode)  
tEN  
10  
15  
20  
ns  
ns  
ns  
ns  
ns  
tDIS  
tSSDICNV  
tHSDICNV  
5
2
CHAIN MODE  
SCK Valid Setup Time from CNV Rising Edge  
SCK Valid Hold Time from CNV Rising Edge  
SDI Valid Setup Time from SCK Falling Edge  
SDI Valid Hold Time from SCK Falling Edge  
tSSCKCNV  
tHSCKCNV  
tSSDISCK  
tHSDISCK  
5
5
2
3
ns  
ns  
ns  
ns  
1 See Figure 2 and Figure 3 for load conditions.  
Rev. B | Page 5 of 24  
 
AD7989-1/AD7989-5  
Data Sheet  
1
VDD = 2.37 V to 2.63 V, VIO = 1.71 V to 2.3 V, 40°C to +85°C, unless otherwise stated.  
Table 5.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
THROUGHPUT RATE  
AD7989-1  
AD7989-5  
100  
500  
kSPS  
kSPS  
CONVERSION AND ACQUISTION TIMES  
Conversion Time: CNV Rising Edge to Data Available  
tCONV  
AD7989-1  
AD7989-5  
9500  
1500  
ns  
ns  
Acquisition Time  
AD7989-1  
AD7989-5  
tACQ  
500  
400  
ns  
ns  
Time Between Conversions  
AD7989-1  
AD7989-5  
tCYC  
10  
2
μs  
μs  
ns  
CNV PULSE WIDTH (CS MODE)  
tCNVH  
500  
SCK  
SCK Period (CS Mode)  
tSCK  
22  
23  
6
6
3
ns  
ns  
ns  
ns  
ns  
ns  
SCK Period (Chain Mode)  
SCK Low Time  
SCK High Time  
SCK Falling Edge to Data Remains Valid  
SCK Falling Edge to Data Valid Delay  
CS MODE  
tSCK  
tSCKL  
tSCKH  
tHSDO  
tDSDO  
14  
18  
21  
CNV or SDI Low to SDO D17 MSB Valid  
CNV or SDI High or Last SCK Falling Edge to SDO High Impedance  
SDI Valid Setup Time from CNV Rising Edge  
SDI Valid Hold Time from CNV Rising Edge  
CHAIN MODE  
tEN  
tDIS  
tSSDICNV  
tHSDICNV  
40  
20  
ns  
ns  
ns  
ns  
5
10  
SCK Valid Setup Time from CNV Rising Edge  
SCK Valid Hold Time from CNV Rising Edge  
SDI Valid Setup Time from SCK Falling Edge  
SDI Valid Hold Time from SCK Falling Edge  
tSSCKCNV  
tHSCKCNV  
tSSDISCK  
tHSDISCK  
5
5
2
3
ns  
ns  
ns  
ns  
1 See Figure 2 and Figure 3 for load conditions.  
1
Y% VIO  
500µA  
I
OL  
1
X% VIO  
tDELAY  
tDELAY  
2
2
V
V
V
IH  
IH  
1.4V  
TO SDO  
2
2
V
IL  
IL  
C
L
20pF  
1
2
FOR VIO 3.0V, X = 90 AND Y = 10; FOR VIO > 3.0V, X = 70 AND Y = 30.  
MINIMUM V AND MAXIMUM V USED. SEE DIGITAL INPUTS  
500µA  
I
IH  
IL  
OH  
SPECIFICATIONS IN TABLE 3.  
Figure 2. Load Circuit for Digital Interface Timing  
Figure 3. Voltage Levels for Timing  
Rev. B | Page 6 of 24  
 
 
Data Sheet  
AD7989-1/AD7989-5  
ABSOLUTE MAXIMUM RATINGS  
Table 6.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Parameter  
Rating  
Analog Inputs  
IN+, IN− to GND1  
−0.3 V to VREF + 0.3 V or 130 ꢀA  
Supply Voltage  
REF, VIO to GND  
VDD to GND  
VDD to VIO  
−0.3 V to +6.0 V  
−0.3 V to +3.0 V  
+3 V to −6 V  
Digital Inputs to GND  
Digital Output to GND  
Storage Teꢀperature Range  
Junction Teꢀperature  
θJA Therꢀal Iꢀpedance  
10-Lead MSOP  
−0.3 V to VIO + 0.3 V  
−0.3 V to VIO + 0.3 V  
−65°C to +150°C  
150°C  
ESD CAUTION  
200°C/W  
48.7°C/W  
10-Lead LFCSP  
θJC Therꢀal Iꢀpedance  
10-Lead MSOP  
44°C/W  
10-Lead LFCSP  
2.96°C/W  
Reflow Soldering  
JEDEC Standard (J-STD-020)  
1 See the Analog Inputs section for an explanation of IN+ and IN−.  
Rev. B | Page 7 of 24  
 
 
AD7989-1/AD7989-5  
Data Sheet  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
REF  
VDD  
IN+  
1
2
3
4
5
10 VIO  
AD7989-1/  
AD7989-5  
TOP VIEW  
(Not to Scale)  
9
8
7
6
SDI/CS  
SCK  
SDO  
CNV  
IN–  
REF  
VDD  
IN+  
1
2
3
4
5
10 VIO  
GND  
AD7989-1/  
AD7989-5  
TOP VIEW  
(Not to Scale)  
9
8
7
6
SDI/CS  
SCK  
SDO  
CNV  
NOTES  
1. EXPOSED PAD. FOR THE LFCSP, THE  
EXPOSED PAD CAN BE CONNECTED TO GND.  
THIS CONNECTION IS NOT REQUIRED TO  
MEET THE ELECTRICAL PERFORMANCES.  
IN–  
GND  
Figure 4. 10-Lead MSOP Pin Configuration  
Figure 5. 10-Lead LFCSP Pin Configuration  
Table 7. Pin Function Descriptions  
Pin No. Mnemonic Type1 Description  
1
REF  
AI  
Reference Input Voltage. The REF range is 2.4 V to 5.1 V. This pin is referred to the GND pin and must be  
decoupled closely to the GND pin with a 10 μF capacitor.  
2
3
4
5
6
VDD  
IN+  
IN−  
GND  
CNV  
P
Power Supply.  
AI  
AI  
P
Differential Positive Analog Input.  
Differential Negative Analog Input.  
Power Supply Ground.  
Conversion Input. This input has multiple functions. On its leading edge, it initiates the conversions and  
selects the interface mode of the device: chain mode or chip select (CS) mode. In CS mode, the SDO pin is  
enabled when CNV is low. In chain mode, the data is read when CNV is high.  
DI  
7
8
9
SDO  
SCK  
SDI/CS  
DO  
DI  
DI  
Serial Data Output. The conversion result is output on this pin. It is synchronized to SCK.  
Serial Data Clock Input. When the device is selected, the conversion result is shifted out by this clock.  
Serial Data Input/Chip Select. This input has multiple functions. It selects the interface mode of the ADC as  
follows:  
Chain mode is selected if this pin is low during the CNV rising edge. In this mode, SDI/CS is a data input  
that daisy-chains the conversion results of two or more ADCs onto a single SDO line. The digital data level  
on SDI/CS is the output on SDO with a delay of 16 SCK cycles.  
CS mode is selected if SDI/CS is high during the CNV rising edge. In this mode, either SDI/CS or CNV can  
enable the serial output signals when low.  
10  
VIO  
P
Input/Output Interface Digital Power. This pin is nominally at the same supply as the host interface (1.8 V,  
2.5 V, 3 V, or 5 V).  
EPAD  
Exposed Pad. For the LFCSP, the exposed pad can be connected to GND. This connection is not required to  
meet the electrical performances.  
1AI means analog input, DI means digital input, DO means digital output, and P means power.  
Rev. B | Page 8 of 24  
 
Data Sheet  
AD7989-1/AD7989-5  
TYPICAL PERFORMANCE CHARACTERISTICS  
VDD = 2.5 V, VREF = 5.0 V, VIO = 3.3 V.  
2.0  
1.5  
1.0  
2.0  
POSITIVE INL: +0.79 LSB  
NEGATIVE INL: –0.68 LSB  
1.5  
1.0  
0.5  
0.5  
0
0
–0.5  
–1.0  
–0.5  
–1.0  
–1.5  
–2.0  
–1.5  
–2.0  
0
65536  
131072  
CODE  
196608  
262144  
0
65536  
131072  
CODE  
196608  
262144  
Figure 6. INL vs. Code  
Figure 9. DNL vs. Code  
60k  
50k  
40k  
30k  
20k  
10k  
0
50k  
45k  
44806  
43239  
50975  
40k  
35k  
30k  
25k  
20k  
15k  
10k  
5k  
32476  
29064  
20013  
16682  
9064  
7795  
3158  
2793  
4
745  
881  
43  
3FFFA  
145  
7
222  
29  
0
0
0
0
0
0
0
1
7
0
0
0
3FFF0  
3FFF2  
3FFF4  
3FFF6  
3FFF8  
3FFFC  
2
3
5
6
7
8
9
A
B
C
D
CODE IN HEX  
CODE IN HEX  
Figure 7. Histogram of a DC Input at the Code Center  
Figure 10. Histogram of a DC Input at the Code Transition  
0
–20  
0
fS = 500kSPS  
fIN = 1kHz  
SNR = 97.4361dB  
SINAD = 97.3577dB  
THD = –114.42dB  
f
f
= 100kSPS  
= 1kHz  
S
IN  
–20  
–40  
SNR = 97.2634dB  
SINAD = 97.145dB  
THD = –112.7dB  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–160  
–100  
–120  
–140  
–160  
0
50  
100  
150  
200  
250  
0
10  
20  
30  
40  
50  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 8. AD7989-5 Fast Fourier Transform (FFT) Plot  
Figure 11. AD7989-1 FFT Plot  
Rev. B | Page 9 of 24  
 
AD7989-1/AD7989-5  
Data Sheet  
100  
100  
95  
99  
98  
97  
96  
95  
94  
93  
92  
91  
90  
90  
85  
80  
0.1  
1
10  
100  
1k  
–10  
–9  
–8  
–7  
–6  
–5  
–4  
–3  
–2  
–1  
0
FREQUENCY (kHz)  
INPUT LEVEL (dB)  
Figure 15. SINAD vs. Frequency  
Figure 12. SNR vs. Input Level  
–100  
130  
125  
100  
95  
18  
17  
16  
–105  
–110  
SNR, SINAD  
120  
115  
110  
105  
100  
SFDR  
THD  
–115  
–120  
–125  
–130  
90  
ENOB  
85  
80  
15  
14  
2.25  
2.75  
3.25  
3.75  
4.25  
4.75  
5.25  
2.25  
2.75  
3.25  
3.75  
4.25  
4.75  
5.25  
REFERENCE VOLTAGE (V)  
REFERENCE VOLTAGE (V)  
Figure 16. THD and SFDR vs. Reference Voltage  
Figure 13. SNR, SINAD, and ENOB vs. Reference Voltage  
–115  
100  
98  
96  
94  
92  
–117  
–119  
–121  
–123  
90  
–55  
–125  
–35  
–15  
5
25  
45  
65  
85  
105  
125  
–55  
–35  
–15  
5
25  
45  
65  
85  
105  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 14. SNR vs. Temperature  
Figure 17. THD vs. Temperature  
Rev. B | Page 10 of 24  
Data Sheet  
AD7989-1/AD7989-5  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0
I
VDD  
I
VDD  
I
REF  
I
REF  
I
VIO  
I
VIO  
0.1  
0
2.375  
2.425  
2.475  
2.525  
2.575  
2.625  
2.375  
2.425  
2.475  
2.525  
2.575  
2.625  
VDD VOLTAGE (V)  
VDD VOLTAGE (V)  
Figure 18. Operating Currents vs. VDD Voltage (AD7989-5)  
Figure 21. Operating Currents vs. VDD Voltage (AD7989-1)  
–80  
8
7
6
5
4
3
2
1
–85  
–90  
–95  
–100  
–105  
–110  
–115  
–120  
–125  
I
+ I  
VIO  
VDD  
0
–55  
0.1  
1
10  
100  
1k  
–35  
–15  
5
25  
45  
65  
85  
105  
125  
FREQUENCY (kHz)  
TEMPERATURE (°C)  
Figure 19. THD vs. Frequency  
Figure 22. Power-Down Currents vs. Temperature  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.14  
0.12  
0.10  
008  
I
I
VDD  
VDD  
0.06  
I
I
REF  
REF  
0.04  
0.02  
0
I
I
VIO  
VIO  
–55  
–35  
–15  
5
25  
45  
65  
85  
105  
125  
–55  
–35  
–15  
5
25  
45  
65  
85  
105  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 20. Operating Currents vs. Temperature (AD7989-5)  
Figure 23. Operating Currents vs. Temperature (AD7989-1)  
Rev. B | Page 11 of 24  
AD7989-1/AD7989-5  
TERMINOLOGY  
Data Sheet  
Integral Nonlinearity Error (INL)  
Effective Resolution  
Effective resolution is calculated as  
INL refers to the deviation of each individual code from a line  
drawn from negative full scale through positive full scale. The  
point used as negative full scale occurs ½ LSB before the first  
code transition. Positive full scale is defined as a level 1½ LSB  
beyond the last code transition. The deviation is measured from  
the middle of each code to the true straight line (see Figure 25).  
Effective Resolution = log2(2N/RMS Input Noise)  
Total Harmonic Distortion (THD)  
THD is the ratio of the rms sum of the first five harmonic  
components to the rms value of a full-scale input signal and is  
expressed in decibels.  
Differential Nonlinearity Error (DNL)  
Dynamic Range  
In an ideal ADC, code transitions are 1 LSB apart. DNL is the  
maximum deviation from this ideal value. It is often specified in  
terms of resolution for which no missing codes are guaranteed.  
Dynamic range is the ratio of the rms value of the full scale to  
the total rms noise measured with the inputs shorted together.  
The value for dynamic range is expressed in decibels. It is  
measured with a signal at −60 dB so it includes all noise sources  
and DNL artifacts.  
Zero Error  
Zero error is the difference between the ideal midscale voltage,  
that is, 0 V, and the actual voltage producing the midscale  
output code, that is, 0 LSB.  
Signal-to-Noise Ratio (SNR)  
SNR is the ratio of the rms value of the actual input signal to the  
rms sum of all other spectral components below the Nyquist  
frequency, excluding harmonics and dc. The value for SNR is  
expressed in decibels.  
Gain Error  
The first code transition (from 100 … 00 to 100 …01) occurs at  
a level ½ LSB above nominal negative full scale (−4.999981 V  
for the 5 V range). The last transition (from 011 … 10 to  
011 … 11) occurs for an analog voltage 1½ LSB below the  
nominal full scale (+4.999943 V for the 5 V range). The gain  
error is the deviation of the difference between the actual level  
of the last transition and the actual level of the firsttransitionfrom  
the difference between the ideal levels.  
Signal-to-Noise-and-Distortion (SINAD) Ratio  
SINAD is the ratio of the rms value of the actual input signal to  
the rms sum of all other spectral components that are less than  
the Nyquist frequency, including harmonics but excluding dc.  
The value of SINAD is expressed in decibels.  
Aperture Delay  
Spurious-Free Dynamic Range (SFDR)  
Aperture delay is the measure of the acquisition performance  
and is the time between the rising edge of the CNV input and  
when the input signal is held for a conversion.  
SFDR is the difference, in decibels, between the rms amplitude  
of the input signal and the peak spurious signal.  
Effective Number of Bits (ENOB)  
ENOB is a measurement of the resolution with a sine wave  
input. It is related to SINAD as follows:  
Transient Response  
Transient response isthe time required forthe ADC to accurately  
acquire its input after a full-scale step function is applied.  
ENOB = (SINADdB − 1.76)/6.02  
and is expressed in bits.  
Noise Free Code Resolution  
Noise free code resolution is the number of bits beyond which it is  
impossible to distinctly resolve individual codes. It is calculated as  
Noise Free Code Resolution = log2(2N/Peak-to-Peak Noise)  
and is expressed in bits.  
Rev. B | Page 12 of 24  
 
Data Sheet  
AD7989-1/AD7989-5  
THEORY OF OPERATION  
IN+  
SWITCHES CONTROL  
SW+  
MSB  
LSB  
LSB  
131,072C 65,536C  
4C  
4C  
2C  
2C  
C
C
C
C
BUSY  
REF  
CONTROL  
LOGIC  
COMP  
GND  
131,072C 65,536C  
MSB  
OUTPUT CODE  
SW–  
CNV  
IN–  
Figure 24. ADC Simplified Schematic  
During the acquisition phase, terminals of the array tied to the  
input of the comparator are connected to GND via Switch SW+  
and Switch SW−. All independent switches are connected to the  
analog inputs. Therefore, the capacitor arrays are used as sampling  
capacitorsand acquire the analog signal on the IN+ input and IN−  
input. When the acquisition phase completesand the CNV input  
goes high, a conversion phase initiates. When the conversion phase  
begins, SW+ and SW− are opened first. The two capacitor arrays  
then disconnectfrom the inputs and connect to the GND input.  
Therefore, the differential voltage between the IN+ and IN− inputs  
captured at the end of the acquisition phase is applied to the  
comparator inputs, causing the comparator to become unbalanced.  
By switching each element of the capacitor array between GND  
a n d R E F, t h e comparator input varies by binary weighted voltage  
steps (VREF/2, VREF/4 ... VREF/262,144). The control logic toggles  
these switches, starting with the MSB, to bring the comparatorback  
into a balanced condition. Afterthe completion of this process, the  
device returns tothe acquisition phase, and the control logic  
generates the ADC output code.  
CIRCUIT INFORMATION  
The AD7989-1/AD7989-5 are high speed, low power, single-  
supply, precise, 18-bit ADCs using a successive approximation  
architecture.  
The AD7989-1 is capable of converting 100,000 samples per second  
(100 kSPS), whereas the AD7989-5 is capable of converting 500,000  
samples per second (500 kSPS), and they power down between  
conversions. When operating at 100 kSPS, the ADC typically  
consumes 700 µW, making the AD7989-1 ideal for battery-  
powered applications.  
The AD7989-1/AD7989-5 provide the user with an on-chip  
track-and-hold amplifier and do not exhibit any pipeline delay  
or latency, making these devices ideal for multiple multiplexed  
channel applications.  
The AD7989-1/AD7989-5 can be interfaced to any 1.8 V to 5 V  
digital logic family. It is available in a 10-lead MSOP or a tiny  
10 lead LFCSP that allows space savingsand flexible configurations.  
CONVERTER OPERATION  
Because the AD7989-1/AD7989-5 have an on-board conversion  
clock, the serial clock, SCK, is not required for the conversion  
process.  
The AD7989-1/AD7989-5 are a successive approximation ADCs  
based on a charge redistribution digital-to-analog converter (DAC).  
Figure 24 shows the simplified schematic of the ADC. The  
capacitive DAC consists of two identical arrays of 18 binary  
weighted capacitors, which are connected to the two comparator  
inputs.  
Rev. B | Page 13 of 24  
 
 
 
AD7989-1/AD7989-5  
Data Sheet  
Transfer Functions  
Table 8. Output Codes and Ideal Input Voltages  
Analog Input  
VREF = 5 V  
Digital Output  
Code (Hex)  
The ideal transfer characteristic for the AD7989-1/AD7989-5 is  
shown in Figure 25 and Table 8.  
Description  
+FSR – 1 LSB  
Midscale + 1 LSB  
Midscale  
Midscale – 1 LSB  
–FSR + 1 LSB  
–FSR  
+4.999962 V  
+38.15 μV  
0 V  
−38.15 μV  
−4.999962 V  
−5 V  
0x1FFFF1  
0x00001  
0x00000  
0x3FFFF  
0x20001  
0x200002  
011...111  
011...110  
011...101  
1 This is also the code for an overranged analog input (VIN+ − VIN− above VREF − VGND).  
2 This is also the code for an underranged analog input (VIN+ − VIN− below VGND).  
TYPICAL CONNECTION DIAGRAM  
100...010  
100...001  
100...000  
Figure 26 shows an example of the recommended connection  
diagram for the AD7989-1/AD7989-5 when multiple supplies  
are available.  
–FSR  
–FSR + 1 LSB  
+FSR – 1 LSB  
+FSR – 1.5 LSB  
ANALOG INPUT  
–FSR + 0.5 LSB  
Figure 25. ADC Ideal Transfer Function  
1
2.5V  
REF  
V+  
V+  
2
100nF  
10µF  
1.8V TO 5.5V  
100nF  
20  
0V TO V  
REF  
REF  
VDD  
VIO  
2.7nF  
SDI/CS  
IN+  
IN–  
V–  
V+  
SCK  
SDO  
CNV  
AD7989-1/  
AD7989-5  
4
3-WIRE INTERFACE  
20Ω  
GND  
V
TO 0V  
REF  
2.7nF  
ADA4807-12, 3  
V–  
4
1
2
SEE THE VOLTAGE REFERENCE INPUT SECTION FOR REFERENCE SELECTION.  
IS USUALLY A 10µF CERAMIC CAPACITOR (X5R).  
C
REF  
SEE THE RECOMMENDED LAYOUT IN FIGURE 39 AND FIGURE 40.  
SEE THE DRIVER AMPLIFIER CHOICE SECTION.  
OPTIONAL FILTER. SEE THE ANALOG INPUTS SECTION.  
3
4
Figure 26. Typical Application Diagram with Multiple Supplies  
Rev. B | Page 14 of 24  
 
 
 
 
Data Sheet  
AD7989-1/AD7989-5  
Large source impedances significantly affect the ac  
ANALOG INPUTS  
performance, especially THD. The dc performances are less  
sensitive to the input impedance. The maximum source  
impedance depends on the amount of THD that can be  
tolerated. The THD degrades as a function of the source  
impedance and the maximum input frequency.  
Figure 27 shows an equivalent circuit of the input structure of  
the AD7989-1/AD7989-5.  
The two diodes, D1 and D2, provide electrostatic discharge (ESD)  
protection for the IN+ analog input and IN− analog input.  
Ensure the analog input signal does not exceed the reference input  
voltage (REF) by more than 0.3 V. If the analog input signal  
exceeds this level, the diodes become forward-biased and begin  
conducting current. These diodes can handle a forward-biased  
current of 130 mA maximum. However, if the supplies of the input  
buffer (for example, the supplies of the ADA4807-1 in Figure 26)  
are different from those of REF, the analog input signal can  
eventually exceed the supply rails by more than 0.3 V. In such a case  
(for example, an input buffer with a short circuit), the current  
limitation can protect the device.  
DRIVER AMPLIFIER CHOICE  
Although the AD7989-1/AD7989-5 is easy to drive, the driver  
amplifier must meet the following requirements:  
The noise generated by the driver amplifier must be kept  
as low as possible to preserve the SNR and transition noise  
performance of the AD7989-1/AD7989-5. The noise from  
the driver is filtered by the one-pole, low-pass filter of the  
AD7989-1/AD7989-5 analog input circuit made by RIN and  
CIN or by the external filter, if one is used. Because the  
typical noise of the AD7989-1/AD7989-5 is 40 μV rms, the  
SNR degradation due to the amplifier is  
REF  
D1  
D2  
C
IN  
R
IN  
IN+ OR IN–  
GND  
C
PIN  
40  
SNRLOSS 20 log  
π
2
402 f3dB (NeN )2  
Figure 27. Equivalent Analog Input Circuit  
The analog input structure allows the sampling of the true  
differential signal between IN+ and IN−. By using these  
differential inputs, signals common to both inputs are rejected.  
90  
where:  
–3dB is the input bandwidth, in megahertz, of the AD7989-1/  
AD7989-5 (10 MHz) or the cutoff frequency of the input  
filter, if one is used.  
f
N is the noise gain of the amplifier (for example, 1 in buffer  
configuration).  
eN is the equivalent input noise voltage of the op amp in  
85  
80  
75  
70  
nV/√Hz.  
For ac applications, use a driver with a THD performance  
commensurate with the AD7989-1/AD7989-5.  
For multichannel, multiplexed applications, the driver  
amplifier and the AD7989-1/AD7989-5 analog input circuit  
must settle for a full-scale step onto the capacitor array at an  
18-bit level (0.0004%, 4 ppm). In the data sheet of the  
amplifier, settling at 0.1% to 0.01% is more commonly  
specified. This settling can differ significantly from the settling  
time at an 18-bit level and must be verified prior to driver  
selection.  
65  
60  
1
10  
100  
1k  
10k  
FREQUENCY (kHz)  
Figure 28. Analog Input CMRR vs. Frequency  
During the acquisition phase, the impedance of the analog  
inputs (IN+ or IN−) can be modeled as a parallel combination  
of Capacitor CPIN and the network formed by the series connection  
of RIN and CIN. CPIN is primarily the pin capacitance. RIN is typically  
400 Ω and is a lumped component composed of serial resistors  
and the on resistance of the switches. CIN is typically 30 pF and  
is mainly the ADC sampling capacitor.  
1
Table 9. Recommended Driver Amplifiers  
Amplifier Typical Application  
ADA4941-1 Very low noise, low power, single to differential  
ADA4940-1 Very low noise, low power, single to differential  
ADA4807-2 Very low noise and low power  
ADA4627-1 Precision, low noise and low input bias  
ADA4522-2 Precision, zero drift and electromagnetic interference  
(EMI) enhanced  
During the sampling phase when the switches are closed, the input  
impedance is limited to CPIN. RIN and CIN make a one-pole, low-  
pass filter that reduces undesirable aliasing effects and limits noise.  
ADA4500-2 Precision, rail-to-rail input and output (RRIO) and  
zero input crossover distortion  
1 For the latest recommended drivers, see the product recommendations  
listed on the product webpage.  
When the source impedance of the driving circuit is low, the  
AD7989-1/AD7989-5 can be driven directly.  
Rev. B | Page 15 of 24  
 
 
 
AD7989-1/AD7989-5  
Data Sheet  
SINGLE-ENDED TO DIFFERENTIAL DRIVER  
POWER SUPPLY  
For applications using a single-ended analog signal, either  
bipolar or unipolar, the ADA4941-1 single-ended to differential  
driver allows a differential input to the device. The schematic is  
shown in Figure 29.  
The AD7989-1/AD7989-5 use two power supply pins: a core  
supply (VDD) and a digital input/output interface supply (VIO).  
VIO allows direct interface with any logic between 1.8 V and 5.5 V.  
To reduce the number of supplies needed, tie VIO and VDD  
together. The AD7989-1/AD7989-5 are independent of power  
supply sequencing between VIO and VDD. Additionally, they are  
insensitive to power supply variations over a wide frequency  
range, as shown in Figure 3ꢀ.  
R1 and R2 set the attenuation ratio between the input range and  
the ADC voltage range (VREF). R1, R2, and CF are chosen  
depending on the desired input resistance, signal bandwidth,  
antialiasing, and noise contribution. For example, for the 1ꢀ V  
range with a 4 kΩ impedance, R2 = 1 kΩ and R1 = 4 kΩ.  
95  
90  
85  
80  
75  
70  
65  
60  
R3 and R4 set the common mode on the IN− input, and R5 and R6  
set the common mode on the IN+ input of the ADC. Ensure the  
common mode is close to VREF/2. For example, for the 1ꢀ V  
range with a single supply, R3 = 8.45 kΩ, R4 = 11.8 kΩ, R5 =  
1ꢀ.5 kΩ, and R6 = 9.76 kΩ.  
R5  
R6  
R3  
R4  
+5V REF  
+2.5V  
10µF  
+5.2V  
100nF  
100nF  
REF  
20  
20Ω  
OUTN  
OUTP  
REF  
VDD  
IN+  
IN–  
2.7nF  
2.7nF  
AD7989-1/  
AD7989-5  
1
10  
100  
FREQUENCY (kHz)  
1k  
IN  
GND  
Figure 30. PSRR vs. Frequency  
FB  
ADA4941  
–0.2V  
R2  
The AD7989-1/AD7989-5 power down automatically at the end  
of each conversion phase.  
R1  
±10V,  
±5V, ..  
DIGITAL INTERFACE  
C
F
Although the AD7989-1/AD7989-5 have a reduced number of  
pins, they offer flexibility in their serial interface modes.  
Figure 29. Single-Ended to Differential Driver Circuit  
CS  
When in  
mode, the AD7989-1/AD7989-5 are compatible  
VOLTAGE REFERENCE INPUT  
with SPI, queued serial peripheral interface (QSPI), digital hosts,  
and digital signal processors (DSPs). In this mode, the AD7989-1/  
AD7989-5 can use either a 3-wire or 4-wire interface. A 3-wire  
interface using the CNV, SCK, and SDO signals minimizes  
wiring connections, which is useful, for instance, in isolated  
The AD7989-1/AD7989-5 voltage reference input, REF, has a  
dynamic input impedance and must, therefore, be driven by a  
low impedance source with efficient decoupling between the  
REF and GND pins, as explained in the Layout section.  
When REF is driven by a very low impedance source (for example,  
a reference buffer using the AD8ꢀ31 or the ADA48ꢀ7-1), a 1ꢀ μF  
(X5R, ꢀ8ꢀ5 size) ceramic chip capacitor is appropriate for optimum  
performance.  
CS  
applications. A 4-wire interface using the SDI/ , CNV, SCK,  
and SDO signals allows CNV, which initiates the conversions, to be  
independent of the readback timing (SDI). This is useful in low  
jitter sampling or simultaneous sampling applications.  
If using an unbuffered reference voltage, the decoupling value  
depends on the reference used. For instance, a 22 μF (X5R,  
12ꢀ6 size) ceramic chip capacitor is appropriate for optimum  
performance using a low temperature drift ADR435 reference.  
When in chain mode, the AD7989-1/AD7989-5 provide a daisy-  
chain feature using the SDI input for cascading multiple ADCs  
on a single data line, similar to a shift register.  
CS  
The mode in which the device operates depends on the SDI/  
If desired, use a reference decoupling capacitor with values as  
small as 2.2 μF with a minimal impact on performance,  
especially DNL.  
CS  
level when the CNV rising edge occurs. mode is selected if  
CS CS  
SDI/ is high, and chain mode is selected if SDI/ is low. The  
CS  
CS  
SDI/ hold time is such that when SDI/ and CNV are  
connected together, chain mode is always selected. The user  
must timeout the maximum conversion time prior to readback.  
Regardless, there is no need for an additional lower value ceramic  
decoupling capacitor (for example, 1ꢀꢀ nF) between the REF  
and GND pins.  
Rev. B | Page 16 of 24  
 
 
 
 
 
Data Sheet  
AD7989-1/AD7989-5  
When the conversion is complete, the AD7989-1/AD7989-5 enter  
the acquisition phase and power down. When CNV goes low, the  
MSB is output onto SDO. The remaining data bits are clocked by  
subsequent SCK falling edges. The data is valid on both SCK edges.  
Although the rising edge can capture the data, a digital host using  
the SCK falling edge allows a faster reading rate, provided that it  
has an acceptable hold time. After the 18th SCK falling edge or  
when CNV goes high (whichever occurs first), SDO returns to  
high impedance.  
CS MODE, 3-WIRE  
This mode is usually used when a single AD7989-1/AD7989-5  
is connected to an SPI-compatible digital host. The connection  
diagram is shown in Figure 31, and the corresponding timing is  
given in Figure 32.  
CS  
With SDI/ tied to VIO, a rising edge on CNV initiates a  
conversion, selects the  
impedance.  
CS  
mode, and forces SDO to high  
CONVERT  
DIGITAL HOST  
CNV  
VIO  
AD7989-1/  
AD7989-5  
SDI/CS  
SDO  
DATA IN  
SCK  
CLK  
CS  
Figure 31. Mode, 3-Wire Connection Diagram (SDI High)  
SDI/CS = 1  
tCYC  
CNV  
tCONV  
tACQ  
ACQUISITION  
CONVERSION  
ACQUISITION  
tSCK  
tSCKL  
SCK  
SDO  
1
2
3
16  
17  
18  
tHSDO  
tSCKH  
tDSDO  
tEN  
tDIS  
D17  
D16  
D15  
D1  
D0  
CS  
Figure 32. Mode, 3-Wire Serial Interface Timing (SDI High)  
Rev. B | Page 17 of 24  
 
 
 
AD7989-1/AD7989-5  
Data Sheet  
CS  
Prior to the minimum conversion time, SDI/ can select other  
CS MODE, 4-WIRE  
CS  
SPI devices, such as analog multiplexers, but SDI/ must be  
This mode is usually used when multiple AD7989-1/AD7989-5  
devices are connected to an SPI-compatible digital host.  
returned high before the minimum conversion time elapses and  
then held high for the maximum possible conversion time.  
A connection diagram example using two AD7989-1/AD7989-5  
devices is shown in Figure 33, and the corresponding timing is  
given in Figure 34.  
When the conversion is complete, the AD7989-1/AD7989-5  
enter the acquisition phase and power down. Each ADC result  
can be read by bringing its SDI/ input low, which consequently  
outputs the MSB onto SDO. The remaining data bits are then  
clocked by subsequent SCK falling edges. The data is valid on  
both SCK edges. Although the rising edge can capture the data,  
a digital host using the SCK falling edge allows a faster reading  
rate, provided it has an acceptable hold time. After the 18th SCK  
CS  
With SDI high, a rising edge on CNV initiates a conversion,  
CS  
selects SDI/ mode, and forces SDO to high impedance. In  
this mode, CNV must be held high during the conversion phase  
CS  
and the subsequent data readback. If SDI/ and CNV are low,  
SDO is driven low.  
CS  
falling edge or when SDI/ goes high (whichever occurs first),  
SDO returns to high impedance and another AD7989-1/AD7989-5  
can be read.  
CS2  
CS1  
CONVERT  
CNV  
CNV  
DIGITAL HOST  
AD7989-1/  
AD7989-5  
AD7989-1/  
AD7989-5  
SDI/CS  
SDO  
SDI/CS  
SDO  
SCK  
SCK  
DATA IN  
CLK  
CS  
Figure 33. Mode, 4-Wire Connection Diagram  
tCYC  
CNV  
tACQ  
tCONV  
ACQUISITION  
tSSDICNV  
CONVERSION  
ACQUISITION  
SDI/CS (CS1)  
tHSDICNV  
SDI/CS (CS2)  
tSCK  
tSCKL  
SCK  
SDO  
1
2
3
16  
17  
18  
19  
20  
34  
35  
36  
tHSDO  
tSCKH  
tDSDO  
tDIS  
tEN  
D17  
D16  
D15  
D1  
D0  
D17  
D16  
D1  
D0  
CS  
Figure 34. Mode, 4-Wire Serial Interface Timing  
Rev. B | Page 18 of 24  
 
 
 
Data Sheet  
AD7989-1/AD7989-5  
In this mode, CNV is held high during the conversion phase  
and the subsequent data readback. When the conversion is  
complete, the MSB is output onto SDO and the AD7989-1/  
AD7989-5 enter the acquisition phase and power down. The  
remaining data bits stored in the internal shift register are  
clocked by subsequent SCK falling edges. For each ADC, SDI  
feeds the input of the internal shift register and is clocked by the  
SCK falling edge. Each ADC in the chain outputs its data MSB  
first, and 18 × N clocks are required to read back the N ADCs.  
The data is valid on both SCK edges. Although the rising edge  
can capture the data, a digital host using the SCK falling edge  
allows a faster reading rate and, consequently, more AD7989-1/  
AD7989-5 devices in the chain, provided that the digital host has  
an acceptable hold time. The maximum conversion rate may be  
reduced due to the total readback time.  
CHAIN MODE  
This mode can daisy-chain multiple AD7989-1/AD7989-5  
devices on a 3-wire serial interface. This feature reduces  
component count and wiring connections, for example, in  
isolated multiconverter applications or for systems with a  
limited interfacing capacity. Data readback is analogous to  
clocking a shift register.  
A connection diagram example using two AD7989-1/AD7989-5  
devices is shown in Figure 35, and the corresponding timing is  
given in Figure 36.  
CS  
When SDI/ and CNV are low, SDO is driven low. With SCK  
low, a rising edge on CNV initiates a conversion, and selects the  
chain mode.  
CONVERT  
CNV  
CNV  
DIGITAL HOST  
DATA IN  
AD7989-1/  
AD7989-5  
AD7989-1/  
AD7989-5  
SDI/CS  
SDO  
SDI/CS  
SDO  
A
SCK  
B
SCK  
CLK  
Figure 35. Chain Mode Connection Diagram  
SDI/CS = 0  
A
tCYC  
CNV  
tACQ  
tCONV  
ACQUISITION  
CONVERSION  
ACQUISITION  
tSCK  
tSCKL  
tSSCKCNV  
SCK  
1
2
3
A
B
16  
17  
18  
19  
20  
34  
35  
36  
tHSCKCNV  
tSSDISCK  
tSCKH  
tHSDISCK  
tEN  
D
D
17  
D
16  
D
D
15  
15  
D
1
1
D
0
SDO = SDI/CS  
A
A
B
A
A
A
B
tHSDO  
tDSDO  
17  
D
16  
D
D
0
D
17  
D
16  
D 1  
A
D 0  
A
SDO  
B
B
B
B
A
A
Figure 36. Chain Mode Serial Interface Timing  
Rev. B | Page 19 of 24  
 
 
AD7989-1/AD7989-5  
Data Sheet  
APPLICATIONS INFORMATION  
INTERFACING TO BLACKFIN® DSP  
LAYOUT  
The AD7989-1/AD7989-5 can easily connect to a DSP, SPI, or  
SPORT. The SPI configuration is straightforward using the  
standard SPI interface, as shown in Figure 37.  
The printed circuit board (PCB) that houses the AD7989-1/  
AD7989-5 must be designed so the analog and digital sections  
are separated and confined to certain areas of the PCB. The pinout  
of the AD7989-1/AD7989-5, with its analog signals on the left  
side and its digital signals on the right side, eases this task.  
SPI_CLK  
SPI_MISO  
SPI_MOSI  
SCK  
SDO  
CNV  
AD7989-1/  
AD7989-5  
Avoid running digital lines under the device because these  
couple noise onto the die, unless a ground plane under the  
AD7989-1/AD7989-5 is used as a shield. Do not run fast  
switching signals, such as CNV or clocks, near analog signal  
paths. Avoid crossover of digital and analog signals.  
DSP  
Figure 37. Typical Connection to Blackfin SPI Interface  
Similarly, the SPORT interface can interface to this ADC. The  
SPORT interface has some benefits in that it can use direct  
memory access (DMA) and provides a lower jitter CNV signal  
generated from a hardware counter.  
Using at least one ground plane is recommended. It can be  
common or split between the digital and analog sections. In the  
latter case, join the planes underneath the AD7989-1/AD7989-5  
devices.  
Some glue logic may be required between SPORT and the  
AD7989-1/AD7989-5 interface. The EVAL-AD7989-5SDZ  
evaluation board for the AD7989-1/AD7989-5 interfaces  
directly to the SPORT of the Blackfin-based (ADSP-BF527)  
SDP board. The configuration used for the SPORT interface  
requires the addition of some glue logic as shown in Figure 38.  
The SCK input to the ADC was gated off when CNV was high  
to keep the SCK line static while converting the data, thereby  
ensuring the best integrity of the result. This approach uses an  
AND gate and a NOT gate for the SCK path. The other logic  
gates used on the RSCLK and RFS paths are for delay matching  
purposes and may not be necessary when path lengths are  
short.  
The AD7989-1/AD7989-5 voltage reference input, REF, has a  
dynamic input impedance. Decouple REF with minimal parasitic  
inductances by placing the reference decoupling ceramic capacitor  
close to, but ideally right up against, the REF and GND pins and  
connecting them with wide, low impedance traces.  
Finally, decouple the power supplies of the AD7989-1/AD7989-5,  
VDD and VIO, with ceramic capacitors, typically 100 nF, placed  
close to the AD7989-1/AD7989-5 and connected using short,  
wide traces to provide low impedance paths and to reduce the  
effect of glitches on the power supply lines.  
An example of a layout following these rules is shown in Figure 39  
and Figure 40.  
This is one approach to using the SPORT interface for the  
AD7989-1/AD7989-5 ADC; there can be other solutions similar  
to this approach.  
VDRIVE  
DR  
SDO  
SCK  
RSCLK  
TSCLK  
BLACKFIN  
DSP  
AD7989-1/  
AD7989-5  
RFS  
TFS  
CNV  
Figure 38. The EVAL-AD7989-5SDZ Evaluation Board Connection to Blackfin  
SPORT Interface  
Rev. B | Page 20 of 24  
 
 
 
 
 
Data Sheet  
AD7989-1/AD7989-5  
EVALUATING AD7989-1/AD7989-5 PERFORMANCE  
Other recommended layouts for the AD7989-1/AD7989-5 are  
outlined in UG-340 user guide for the EVAL -AD7989-5SDZ.  
The evaluation board package includes a fully assembled and  
tested evaluation board, the user guide, and software for controlling  
the evaluation board from a PC via the EVAL -SDP-CB1Z.  
AD7989-1/  
AD7989-5  
Figure 40. Recommended Layout of the AD7989-1/AD7989-5 (Bottom Layer)  
Figure 39. Recommended Layout of the AD7989-1/AD7989-5 (Top Layer)  
Rev. B | Page 21 of 24  
 
 
 
AD7989-1/AD7989-5  
OUTLINE DIMENSIONS  
Data Sheet  
3.10  
3.00  
2.90  
10  
1
6
5
5.15  
4.90  
4.65  
3.10  
3.00  
2.90  
PIN 1  
IDENTIFIER  
0.50 BSC  
0.95  
0.85  
0.75  
15° MAX  
1.10 MAX  
0.70  
0.55  
0.40  
0.15  
0.05  
0.23  
0.13  
6°  
0°  
0.30  
0.15  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-BA  
Figure 41. 10-Lead Mini Small Outline Package [MSOP]  
(RM-10)  
Dimensions shown in millimeters  
2.48  
2.38  
2.23  
3.10  
3.00 SQ  
0.50 BSC  
2.90  
10  
6
PIN 1 INDEX  
EXPOSED  
PAD  
1.74  
1.64  
1.49  
AREA  
0.50  
0.40  
0.30  
0.20 MIN  
1
5
BOTTOM VIEW  
TOP VIEW  
PIN 1  
INDICATOR  
(R 0.15)  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.30  
0.25  
0.20  
0.20 REF  
Figure 42. 10-Lead Lead Frame Chip Scale Package [LFCSP]  
3 mm × 3 mm Body, Very Very Thin, Dual Lead (CP-10-9)  
Dimensions shown in millimeters  
Rev. B | Page 22 of 24  
 
Data Sheet  
AD7989-1/AD7989-5  
ORDERING GUIDE  
Temperature  
Range  
Package  
Option  
Ordering  
Quantity  
Model1, 2, 3  
Package Description  
Branding  
C76  
C76  
C80  
C80  
AD7989-1BRMZ  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
10-Lead MSOP, Tube  
RM-10  
RM-10  
CP-10-9  
CP-10-9  
RM-10  
RM-10  
CP-10-9  
CP-10-9  
50  
AD7989-1BRMZ-RL7  
AD7989-1BCPZ-RL7  
AD7989-1BCPZ-R2  
AD7989-5BRMZ  
AD7989-5BRMZ-RL7  
AD7989-5BCPZ-RL7  
AD7989-5BCPZ-R2  
EVAL-AD7989-5SDZ  
10-Lead MSOP, 7Tape and Reel  
10-Lead LFCSP, 7Tape and Reel  
10-Lead LFCSP  
1,000  
1,500  
250  
10-Lead MSOP, Tube  
C7N  
C7N  
C7Y  
50  
10-Lead MSOP, 7Tape and Reel  
10-Lead LFCSP, 7Tape and Reel  
10-Lead LFCSP  
1,000  
1,500  
250  
C7Y  
Evaluation Board with AD7989-5 Populated; Use  
for Evaluation of Both AD7989-1 and AD7989-5  
EVAL-SDP-CB1Z  
System Demonstration Board, Used as a  
Controller Board for Data Transfer via USB  
Interface to PC  
1 Z = RoHS Compliant Part.  
2 The EVAL-AD7989-5SDZ board can be used as a standalone evaluation board or in conjunction with the EVAL-SDP-CB1Z for evaluation/demonstration purposes.  
3 The EVAL-SDP-CB1Z board allows a PC to control and communicate with all Analog Devices, Inc., evaluation boards ending in the SD designator.  
Rev. B | Page 23 of 24  
AD7989-1/AD7989-5  
NOTES  
Data Sheet  
©2014–2017 Analog Devices, Inc. All rights reserved. Trademarksand  
registered trademarks are the property of their respective owners.  
D10232-0-1/17(B)  
Rev. B | Page 24 of 24  

相关型号:

AD7989-1BCPZ-R2

IC ADC 18BIT 100KSPS SAR 10LFCSP
ADI

AD7989-1BCPZ-RL7

IC ADC 18BIT 100KSPS SAR 10LFCSP
ADI

AD7989-1BRMZ

IC ADC 18BIT 100KSPS SAR 10MSOP
ADI

AD7989-1BRMZ-RL7

PulSAR ADCs in MSOP/LFCSP
ADI

AD7989-1_17

PulSAR ADCs in MSOP/LFCSP
ADI

AD7989-5

PulSAR ADCs in MSOP/LFCSP
ADI

AD7989-5BCPZ-R2

IC ADC 18BIT 500KSPS SAR 10LFCSP
ADI

AD7989-5BCPZ-RL7

IC ADC 18BIT 500KSPS SAR 10LFCSP
ADI

AD7989-5BRMZ

PulSAR ADCs in MSOP/LFCSP
ADI

AD7989-5BRMZ-RL7

IC ADC 18BIT 500KSPS SAR 10MSOP
ADI

AD7991

4-Channel, 12-/10-/8-Bit ADC with I2CCompatible Interface in 8-Lead SOT23
ADI

AD7991BRJZ-0

4-Channel, 12-/10-/8-Bit ADC with I2CCompatible Interface in 8-Lead SOT23
ADI