LT6370 [ADI]

Precision Instrumentation Amplifier with Level Shift and Output Clamping;
LT6370
型号: LT6370
厂家: ADI    ADI
描述:

Precision Instrumentation Amplifier with Level Shift and Output Clamping

文件: 总28页 (文件大小:2664K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT6372-1  
Precision Instrumentation Amplifier with  
Level Shift and Output Clamping  
FEATURES  
DESCRIPTION  
The LT®6372-1 is a gain programmable, high precision  
instrumentation amplifier that delivers industry leading  
DC precision. This high precision enables smaller sig-  
nals to be sensed and eases calibration requirements,  
particularly over temperature. The LT6372-1 incorporates  
features into the LT6370 which further improve accuracy  
and simplify interfacing to an ADC.  
n
Single Gain Set Resistor: G = 1 to >1000  
Excellent DC Precision  
n
n
Input Offset Voltage: 60μV Max  
n
Input Offset Voltage Drift: 0.6μV/°C Max  
n
Low Gain Error: 0.01% Max (G = 1)  
n
Low Gain Drift: 35ppm/°C Max (G > 1)  
High DC CMRR: 86dB Min (G = 1)  
n
n
n
n
n
n
Integrated Output Clamps  
The LT6372-1 uses a proprietary high performance bipo-  
lar process which enables industry leading accuracy cou-  
pled with exceptional long-term stability. The LT6372-1  
is laser trimmed for very low input offset voltage (60µV)  
and high CMRR (86dB, G = 1). Proprietary on-chip test  
capability allows the gain drift (35ppm/°C) to be guaran-  
teed with automated testing.  
Integrated Output Level Shift  
Input Bias Current: 800pA Max  
3.1MHz –3dB Bandwidth (G = 1)  
Low Noise:  
n
0.1Hz to 10Hz Noise: 0.2μV  
P-P  
n
1kHz Voltage Noise: 7nV/√Hz  
n
n
n
n
Integrated Input RFI Filter  
Wide Supply Range 4.75V to 35V  
The LT6372-1’s difference amplifier uses a split reference  
configuration which simplifies level shifting the amplifier’s  
output to the center of the ADC’s input range. Output  
clamp pins are also provided to limit the voltage which can  
be applied to an ADC’s input. EMI filtering is integrated on  
the LT6372-1’s inputs to maintain accuracy in the pres-  
ence of harsh RF interference.  
Temperature Ranges: –40°C to 85°C and –40°C to 125°C  
MS16E and 20-Lead 3mm × 4mm QFN Packages  
APPLICATIONS  
n
Bridge Amplifier  
n
The LT6372-1 is available in a compact MS16E or a 20-pin  
3mm x 4mm QFN. The LT6372-1 is fully specified over the  
Data Acquisition  
n
Thermocouple Amplifier  
n
–40°C to 85°C and –40°C to 125°C temperature ranges.  
Strain Gauge Amplifier  
All registered trademarks and trademarks are the property of their respective owners.  
n
Medical Instrumentation  
n
Transducer Interfaces  
n
Differential to Single-Ended Conversion  
LT6372–1 Driving LTC2367–16 with  
Level Shift and Output Clamping  
TYPICAL APPLICATION  
+15V  
LTC6655-5  
V
ꢀ ꢁ ꢂ00  
REF  
V
V
OUT  
IN  
ꢀꢁꢁꢂꢀ  
ꢀꢁꢂꢁꢃ  
ꢀꢁꢀꢂꢂ  
ꢀꢁꢀꢂꢃ  
ꢀꢁꢀ0ꢂ  
0
ꢀꢁꢂꢃꢁꢂ  
ꢀꢁꢂꢃꢄeꢅ  
ꢀꢁꢂꢃꢄꢃve  
ꢀeveꢁ ꢂꢃꢄꢅꢆeꢇ  
+
ꢀꢁ ꢂRꢃꢄꢅꢆ  
2.5V  
VDD  
10V  
REF2  
REF  
350Ω  
350Ω  
350Ω  
91Ω  
R
G
CLHI  
CLLO  
LT6372-1  
REF1  
243Ω  
LTC2367-16  
GND  
10nF  
COG  
ꢀꢁꢂꢃꢁꢂ  
ꢀꢁꢂꢃꢄeꢅ  
ꢀeꢁꢂꢃꢄve  
+
V
IN  
350Ω  
0
–15V  
GAIN OF 100 BRIDGE AMPLIFIER  
ꢀꢁ  
6372-1 TA01a  
ꢀꢁ00 ꢀꢁꢂ ꢀꢁ0 ꢀꢁꢂ  
0
ꢀꢁ ꢀ0 ꢀꢁ ꢀ00  
ꢀꢁꢂꢃ  
ꢀꢁ  
ꢀꢁꢂꢃꢄ ꢅꢆ0ꢄꢇ  
Rev. 0  
1
Document Feedback  
For more information www.analog.com  
LT6372-1  
ABSOLUTE MAXIMUM RATINGS  
(Note 1)  
+
Total Supply Voltage (V to V ).................................36V Output Short-Circuit Duration.............Thermally Limited  
Input Voltage (+IN, –IN, +R , +R , –R , –R , Output Current.......................................................80mA  
G,S  
G,F  
G,S  
G,F  
+
REF1, REF2, CLHI, CLLO)... (V – 0.3V) to (V + 0.3V) Operating and Specified Temperature Range  
Differential Input Voltage  
I-Grade.................................................–40°C to 85°C  
H-Grade ............................................. –40°C to 125°C  
(+IN to –IN)......................................................... 36V  
(REF1 to REF2) ................................................... 15V Maximum Junction Temperature .......................... 150°C  
Input Current (+R , +R , –R , –R )............. 2mA Storage Temperature Range .................. –65°C to 150°C  
G,S  
G,F  
G,S  
G,F  
Input Current (+IN, –IN, CLLO) ............................ 10mA Lead Temperature (Soldering, 10 sec)...................300°C  
Input Current (REF1, REF2, CLHI) .......................–10mA  
PIN CONFIGURATION  
ꢔꢌꢋ ꢕꢐꢉꢈ  
ꢄ0 ꢒꢚ ꢒꢛ ꢒꢗ  
TOP VIEW  
ꢑꢐꢆ  
ꢖꢐꢑ  
ꢑꢐꢆ  
ꢑꢐꢆ  
ꢟꢐꢑ  
ꢑꢐꢆ  
ꢒꢜ ꢑꢐꢆ  
1
2
3
4
5
6
7
8
–R  
–R  
16 +R  
15 +R  
ꢀꢁꢂ  
ꢀꢁꢃ  
NIC  
ꢀꢁꢂ  
ꢀꢁꢃ  
Rꢉꢠꢄ  
ꢒꢃ  
ꢒꢝ  
14 NIC  
ꢄꢒ  
–IN  
+IN  
13 REF2  
ꢗꢘ  
12  
V
ꢒꢞ ꢌꢡꢔꢋꢡꢔ  
ꢒꢄ Rꢉꢠꢒ  
ꢒꢒ ꢑꢐꢆ  
NIC  
11 OUTPUT  
10 REF1  
CLLO  
V
9
CLHI  
MSE PACKAGE  
16-LEAD PLASTIC MSOP  
ꢚ ꢒ0  
θ
ꢆꢇ  
ꢈ ꢉꢊꢋꢌꢍꢎ  
ꢏꢐꢑꢒꢃꢏꢓ ꢑꢇꢓ ꢔꢑꢕꢖ ꢗꢘꢙ ꢚꢛꢃꢜ ꢂꢝꢒꢇꢜ ꢒR  
ꢞꢏ ꢌꢒꢖꢖꢏꢌꢜꢏꢓ ꢜꢒ ꢟ ꢕꢖ ꢇꢓꢓꢕꢜꢕꢒꢖ ꢜꢒ ꢑꢕꢖ ꢗꢠ  
UDC PACKAGE  
20-LEAD (3mm x 4mm) PLASTIC QFN  
θ
ꢂ ꢃꢄꢅꢆꢇꢈ  
ꢀꢁ  
ꢉꢊꢋꢌꢍꢉꢎ ꢋꢁꢎ ꢏꢋꢐꢑ ꢄꢒꢓ ꢐꢍ ꢆꢌꢑꢑꢉꢆꢔꢉꢎ  
ꢔꢌ ꢕ ꢏꢋꢐꢑ ꢗꢓ ꢏꢋꢆꢘ ꢆꢌꢑꢑꢉꢆꢔꢐꢌꢑ ꢌꢋꢔꢐꢌꢑꢁꢙꢓ  
ORDER INFORMATION  
TUBE  
TAPE AND REEL  
PART MARKING*  
63721  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
–40°C to 85°C  
LT6372IMSE-1#PBF  
LT6372HMSE-1#PBF  
LT6372IUDC-1#PBF  
LT6372HUDC-1#PBF  
LT6372IMSE-1#TRPBF  
LT6372HMSE-1#TRPBF  
LT6372IUDC-1#TRPBF  
LT6372HUDC-1#TRPBF  
16-Lead Plastic MSOP  
63721  
16-Lead Plastic MSOP  
–40°C to 125°C  
–40°C to 85°C  
LHHV  
20-Lead (3mm x 4mm) Plastic QFN  
20-Lead (3mm x 4mm) Plastic QFN  
LHHV  
–40°C to 125°C  
Contact the factory for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Tape and reel specifications. Some packages are available in 500 unit reels through designated sales channels with #TRMPBF suffix.  
Rev. 0  
2
For more information www.analog.com  
LT6372-1  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the specified  
temperature range, otherwise specifications are at TA = 25°C. VS = ±15V, VCM = VREF1 = VREF2 = 0V, VCLLO = V, VCLHI = V+, RL = 2kΩ.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
G
Gain Range  
G = (1 + 24.2k/R ) (Note 2)  
1
1000  
V/V  
G
Gain Error (Notes 3, 4)  
G = 1  
–0.004  
–0.02  
–0.02  
–0.05  
0.01  
0.015  
0.12  
0.42  
0.12  
0.42  
0.12  
0.5  
%
%
%
%
%
%
%
%
l
l
l
l
G = 1  
G = 10  
G = 10  
G = 100  
G = 100  
G = 1000  
G = 1000  
l
l
Gain vs Temperature (Notes 3, 4)  
Gain Nonlinearity (Notes 3, 7)  
G = 1 (Note 5)  
G > 1(Note 6)  
0.2  
20  
0.5  
35  
ppm/°C  
ppm/°C  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
=
=
=
=
10V, G = 1  
1
3
20  
50  
3
40  
50  
ppm  
ppm  
ppm  
ppm  
10V, G = 10  
10V, G = 100  
10V, G = 1000  
V
V
V
V
=
=
=
=
10V, G = 1, R = 600Ω  
4
6
70  
250  
ppm  
ppm  
ppm  
ppm  
OUT  
OUT  
OUT  
OUT  
L
10V, G = 10, R = 600Ω  
L
10V, G = 100, R = 600Ω  
L
10V, G = 1000, R = 600Ω  
L
V
, Total Input Referred Offset Voltage, V = V + V /G  
OST OST OSI OSO  
V
Input Offset Voltage  
(Note 8)  
10  
70  
60  
μV  
μV  
OSI  
l
175  
V
V
Output Offset Voltage (Note 8)  
275  
500  
μV  
μV  
OSO  
l
l
l
l
l
/T  
Input Offset Voltage Drift (Notes 5, 8)  
0.6  
μV/°C  
μV  
OSI  
Input Offset Voltage Hysteresis (Note 9) T = –40°C to 125°C  
3
A
V
/T  
Output Offset Voltage Drift (Notes 5, 8)  
4
μV/°C  
μV  
OSO  
Output Offset Voltage Hysteresis (Note 9) T = –40°C to 125°C  
10  
A
I
I
Input Bias Current  
0.1  
0.8  
1.5  
3
nA  
nA  
nA  
B
l
l
T = –40°C to 85°C  
A
A
T =40°Cto 125°C  
Input Offset Current  
0.2  
1.4  
4
nA  
nA  
OS  
l
Input Noise Voltage (Note 10)  
0.1Hz to 10Hz, G = 1  
0.1Hz to 10Hz, G = 1000  
2
0.2  
μV  
μV  
P-P  
P-P  
2
2
Total RTI Noise =  
e
+ (e /G) (Note 10)  
ni no  
e
e
Input Noise Voltage Density  
Output Noise Voltage Density  
Input Noise Current  
f = 1kHz  
7
nV/√Hz  
nV/√Hz  
ni  
f = 1kHz  
65  
no  
0.1Hz to 10Hz  
f = 1kHz  
10  
pA  
P-P  
i
n
Input Noise Current Density  
Input Resistance  
200  
225  
fA/√Hz  
R
V
IN  
= –12.6V to 13V  
GΩ  
IN  
IN  
C
Differential  
Common Mode  
f = 100kHz  
f = 100kHz  
0.9  
15.9  
+
pF  
pF  
V
Input Voltage Range  
Guaranteed by CMRR  
V + 1.8/V – 1.4  
V
V
CM  
+
l
V + 2.4  
V – 2  
Rev. 0  
3
For more information www.analog.com  
LT6372-1  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the specified  
temperature range, otherwise specifications are at TA = 25°C. VS = ±15V, VCM = VREF1 = VREF2 = 0V, VCLLO = V, VCLHI = V+, RL = 2kΩ.  
SYMBOL PARAMETER  
CMRR Common Mode Rejection Ratio  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DC to 60Hz, 1k Source Imbalance,  
V
= –12.6V to 13V  
CM  
G = 1  
86  
80  
100  
120  
140  
150  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
l
l
l
l
G = 1  
G = 10  
G = 10  
G = 100  
G = 100  
G = 1000  
G = 1000  
106  
100  
120  
115  
128  
120  
AC Common Mode Rejection Ratio  
f = 20kHz, QFN20 Package  
G = 1  
74  
98  
102  
105  
dB  
dB  
dB  
dB  
G = 10  
G = 100  
G = 1000  
f = 20kHz, MS16E Package  
G = 1  
69  
92  
110  
110  
dB  
dB  
dB  
dB  
G = 10  
G = 100  
G = 1000  
PSRR  
Power Supply Rejection Ratio  
V = 2.375V to 17.5V  
S
G = 1  
116  
110  
128  
120  
122  
118  
122  
118  
130  
140  
140  
140  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
l
l
l
G = 1  
G = 10  
G = 10  
G = 100  
G = 100  
G = 1000  
G = 1000  
l
l
V
Supply Voltage  
Supply Current  
Guaranteed by PSRR  
4.75  
35  
V
S
I
S
V = 15V  
2.75  
2.65  
2.85  
3
3.1  
mA  
mA  
mA  
S
l
l
T = –40°C to 85°C  
A
T = –40°C to 125°C  
A
V = 2.375V  
2.7  
2.85  
2.95  
mA  
mA  
mA  
S
l
l
T = –40°C to 85°C  
A
T = –40°C to 125°C  
A
V
Output Voltage Swing  
V = 15V, R = 10kΩ  
–14.5 –14.9/14  
–14.3  
13.7  
13.6  
V
V
OUT  
S
L
l
l
l
V = 2.375V, R = 10kΩ  
–2  
–1.8  
–2.3/1.6  
1.5  
1.3  
V
V
S
L
I
Output Short Circuit Current  
–3dB Bandwidth  
35  
30  
55  
mA  
mA  
OUT  
BW  
G = 1  
3.1  
1.15  
184  
19  
MHz  
MHz  
kHz  
G = 10  
G = 100  
G = 1000  
kHz  
SR  
Slew Rate  
G = 1, V  
=
10V  
11  
V/μs  
OUT  
t
Settling Time  
20V Output Step to 0.0015%  
S
G = 1  
5.8  
9.8  
16  
μs  
μs  
μs  
μs  
G = 10  
G = 100  
G = 1000  
100  
Rev. 0  
4
For more information www.analog.com  
LT6372-1  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the specified  
temperature range, otherwise specifications are at TA = 25°C. VS = ±15V, VCM = VREF1 = VREF2 = 0V, VCLLO = V, VCLHI = V+, RL = 2kΩ.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
30  
MAX  
UNITS  
R
REF Input Resistance  
REF Input Current  
REF1 or REF2, Untested REF pin floating  
kΩ  
REFIN  
REFIN  
I
V
+IN  
= V = V  
= V = 0V, REF1 or REF2  
REF2  
–20  
–30  
–14  
–7  
3
μA  
μA  
–IN  
REF1  
l
l
+
V
A
REF Voltage Range  
REF Gain to Output  
REF Gain Error  
REF1 or REF2  
V
V
V
REF  
V
REF1  
V
REF1  
= 0V to 5V, V  
= 0V to 5V, V  
= 0V  
0.5  
50  
V/V  
VREF  
REF2  
= 0V  
–175  
–200  
175  
200  
ppm  
ppm  
REF2  
l
l
l
l
l
CLLO Input Current  
V
V
= 0V  
= 5V  
1
1
μA  
μA  
V
CLLO  
CLHI Input Current  
CLHI  
+
CLLO Input Operating Voltage Range  
CLHI Input Operating Voltage Range  
Outside this range CLLO is disabled  
Outside this range CLHI is disabled  
V + 3  
V – 2  
+
V + 2  
V – 2.5  
V
CLLO Clamp Voltage (V  
– V  
)
–0.57  
–0.74  
–0.45  
0.45  
V
V
OUT  
CLLO  
l
l
CLHI Clamp Voltage (V  
– V  
)
0.55  
0.755  
V
V
OUT  
CLHI  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 8: For more information on how offsets relate to the amplifiers, see  
section “Input and Output Offset Voltage” in the Applications section.  
Note 9: Hysteresis in output voltage is created by mechanical stress  
that differs depending on whether the IC was previously at a higher or  
lower temperature. Output voltage is always measured at 25°C, but  
the IC is cycled to the hot or cold temperature limit before successive  
measurements. Hysteresis is roughly proportional to the square of the  
temperature change. For instruments that are stored at well controlled  
temperatures (within 20 or 30 degrees of operational temperature),  
hysteresis is usually not a significant error source. Typical hysteresis is the  
worst case of 25°C to cold to 25°C or 25°C to hot to 25°C, preconditioned  
by one thermal cycle.  
Note 2: Gains higher than 1000 are possible but the resulting low R values  
G
can make PCB and package lead resistance a significant error source.  
Note 3: Gain tests are performed with –IN at mid-supply and +IN driven.  
Note 4: When the gain is greater than 1 the gain error and gain drift  
specifications do not include the effect of external gain set resistor R .  
G
Note 5: This specification is guaranteed by design.  
Note 6: This specification is guaranteed with high-speed automated testing.  
Note 7: This parameter is measured in a high speed automatic tester that  
does not measure the thermal effects with longer time constants. The  
magnitude of these thermal effects are dependent on the package used,  
PCB layout, heat sinking and air flow conditions.  
Note 10: Referred to the input.  
Rev. 0  
5
For more information www.analog.com  
LT6372-1  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, VS = ±15V, VCM = VREF1 = VREF2 = 0V, VCLLO = V, VCLHI = V+, RL = 2k, unless otherwise noted.  
Distribution of Input Offset  
Voltage, MS16E Package  
Distribution of Input Offset  
Distribution of Input Offset  
Voltage Drift, MS16E Package  
Voltage Drift, MS16E Package  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀ0 ꢁꢂꢃꢄꢅ  
ꢀ ꢁꢂ0ꢃꢄ ꢅꢆ ꢇꢈꢃꢄ  
ꢀ ꢁꢂ0ꢃꢄ ꢅꢆ ꢇꢈꢉꢃꢄ  
ꢀ0 ꢁꢂꢃꢄꢅ  
ꢀ0 ꢁꢂꢃꢄꢅ  
0
0
0
ꢀꢁ0 ꢀꢁ0 ꢀꢁ0 ꢀꢁ0 ꢀꢁ0  
0
ꢀ0 ꢀ0 ꢀ0 ꢀ0 ꢀ0  
ꢀ0.ꢀ0.ꢀ0.ꢀ0.ꢀ0.ꢁ 0.0 0.ꢀ 0.ꢀ 0.ꢀ 0.ꢀ 0.ꢀ  
ꢀ0.ꢀ0.ꢀ0.ꢀ0.ꢀ0.ꢁ 0.0 0.ꢀ 0.ꢀ 0.ꢀ 0.ꢀ 0.ꢀ  
ꢀꢁꢂꢃꢄ ꢅꢆꢆꢇꢈꢄ ꢉꢅꢌꢈ ꢍꢎꢉꢏ  
ꢀꢁꢂꢃꢄ ꢅꢆꢆꢇꢈꢄ ꢉꢅꢌꢈ ꢍRꢀꢆꢄ ꢎꢏꢉꢐꢑꢒꢓ  
ꢀꢁꢂꢃꢄ ꢅꢆꢆꢇꢈꢄ ꢉꢅꢌꢈ ꢍRꢀꢆꢄ ꢎꢏꢉꢐꢑꢒꢓ  
ꢀꢁꢂꢃꢄꢅ ꢆ0ꢅ  
ꢀꢁꢂꢃꢄꢅ ꢆ0ꢃ  
ꢀꢁꢂꢃꢄꢅ ꢆ0ꢁ  
Distribution of Input Offset  
Voltage, QFN Package  
Distribution of Input Offset  
Voltage Drift, QFN Package  
Distribution of Input Offset  
Voltage Drift, QFN Package  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀ0 ꢁꢂꢃꢄꢅ  
ꢀ ꢁꢂ0ꢃꢄ ꢅꢆ ꢇꢈꢉꢃꢄ  
ꢀ ꢁꢂ0ꢃꢄ ꢅꢆ ꢇꢈꢃꢄ  
ꢀ0 ꢁꢂꢃꢄꢅ  
ꢀ0 ꢁꢂꢃꢄꢅ  
0
0
0
ꢀꢁ0 ꢀꢁ0 ꢀꢁ0 ꢀꢁ0 ꢀꢁ0  
0
ꢀ0 ꢀ0 ꢀ0 ꢀ0 ꢀ0  
ꢀ0.ꢀ0.ꢀ0.ꢀ0.ꢀ0.ꢁ 0.0 0.ꢀ 0.ꢀ 0.ꢀ 0.ꢀ 0.ꢀ  
ꢀ0.ꢀ0.ꢀ0.ꢀ0.ꢀ0.ꢁ 0.0 0.ꢀ 0.ꢀ 0.ꢀ 0.ꢀ 0.ꢀ  
ꢀꢁꢂꢃꢄ ꢅꢆꢆꢇꢈꢄ ꢉꢅꢌꢈ ꢍꢎꢉꢏ  
ꢀꢁꢂꢃꢄ ꢅꢆꢆꢇꢈꢄ ꢉꢅꢌꢈ ꢍRꢀꢆꢄ ꢎꢏꢉꢐꢑꢒꢓ  
ꢀꢁꢂꢃꢄ ꢅꢆꢆꢇꢈꢄ ꢉꢅꢌꢈ ꢍRꢀꢆꢄ ꢎꢏꢉꢐꢑꢒꢓ  
ꢀꢁꢂꢃꢄꢅ ꢆ0ꢇ  
ꢀꢁꢂꢃꢄꢅ ꢆ0ꢀ  
ꢀꢁꢂꢃꢄꢅ ꢆ0ꢇ  
Distribution of Output Offset  
Voltage, MS16E Package  
Distribution of Output Offset  
Voltage Drift, MS16E Package  
Distribution Output Offset Voltage  
Drift, MS16E Package  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀ0 ꢁꢂꢃꢄꢅ  
ꢀ ꢁꢂ0ꢃꢄ ꢅꢆ ꢇꢈꢃꢄ  
ꢀ ꢁꢂ0ꢃꢄ ꢅꢆ ꢇꢈꢉꢃꢄ  
ꢀ0 ꢁꢂꢃꢄꢅ  
ꢀ0 ꢁꢂꢃꢄꢅ  
0
0
0
ꢀꢁꢂ0 ꢀꢁꢂ0 ꢀꢁꢂ0 ꢀꢁ0  
0
ꢀ0 ꢀꢁ0 ꢀꢁ0 ꢀꢁ0  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ  
0
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ  
0
ꢀꢁꢂꢃꢁꢂ ꢀꢄꢄꢅꢆꢂ ꢇꢀꢊꢆ ꢋꢌꢇꢍ  
ꢀꢁꢂꢃꢁꢂ ꢀꢄꢄꢅꢆꢂ ꢇꢀꢊꢆ ꢋRꢌꢄꢂ ꢍꢎꢇꢏꢐꢑꢒ  
ꢀꢁꢂꢃꢁꢂ ꢀꢄꢄꢅꢆꢂ ꢇꢀꢊꢆ ꢋRꢌꢄꢂ ꢍꢎꢇꢏꢐꢑꢒ  
ꢀꢁꢂꢃꢄꢅ ꢆ0ꢂ  
ꢀꢁꢂꢃꢄꢅ ꢆ0ꢇ  
ꢀꢁꢂꢃꢄꢅ ꢆ0ꢇ  
Rev. 0  
6
For more information www.analog.com  
LT6372-1  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, VS = ±15V, VCM = VREF1 = VREF2 = 0V, VCLLO = V, VCLHI = V+, RL = 2k, unless otherwise noted.  
Distribution of Output Offset  
Voltage Drift, QFN Package  
Distribution of Output Offset  
Voltage Drift, QFN Package  
Distribution of Output Offset  
Voltage, QFN Package  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀ ꢁꢂ0ꢃꢄ ꢅꢆ ꢇꢈꢉꢃꢄ  
ꢀ0 ꢁꢂꢃꢄꢅ  
ꢀ ꢁꢂ0ꢃꢄ ꢅꢆ ꢇꢈꢃꢄ  
ꢀ0 ꢁꢂꢃꢄꢅ  
ꢀ0 ꢁꢂꢃꢄꢅ  
0
0
0
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ  
0
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ  
0
ꢀꢁꢂ0 ꢀꢁꢂ0 ꢀꢁ0 ꢀꢁ0  
0
ꢀ0 ꢀ0 ꢀꢁ0 ꢀꢁ0  
ꢀꢁꢂꢃꢁꢂ ꢀꢄꢄꢅꢆꢂ ꢇꢀꢊꢆ ꢋRꢌꢄꢂ ꢍꢎꢇꢏꢐꢑꢒ  
ꢀꢁꢂꢃꢁꢂ ꢀꢄꢄꢅꢆꢂ ꢇꢀꢊꢆ ꢋRꢌꢄꢂ ꢍꢎꢇꢏꢐꢑꢒ  
ꢀꢁꢂꢃꢁꢂ ꢀꢄꢄꢅꢆꢂ ꢇꢀꢊꢆ ꢋꢌꢇꢍ  
ꢀꢁꢂꢃꢄꢅ ꢆꢅꢅ  
ꢀꢁꢂꢃꢄꢅ ꢆꢅꢃ  
ꢀꢁꢂꢃꢄꢅ ꢆꢅ0  
Distribution of REF Divider Gain  
Error  
Distribution of Gain Error  
Distribution of Gain Error  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀ ꢁ ꢂ000  
Rꢀꢁꢂ ꢃ 0ꢄ  
ꢀ ꢁ ꢂ  
ꢀ ꢁꢂꢃꢄ  
Rꢀꢁꢂ ꢃ 0ꢄ ꢅꢆ ꢇꢄ  
ꢀ ꢁꢂꢃꢄ  
ꢀꢁ0 ꢂꢃꢄꢅꢆ  
ꢀ ꢁꢂꢃꢄ  
ꢀꢁ0 ꢂꢃꢄꢅꢆ  
ꢀꢁ0 ꢂꢃꢄꢅꢆ  
0
0
0
ꢀꢁ00  
ꢀꢁꢂ0  
0
ꢀꢁ0  
ꢀ00  
ꢀꢁ00 ꢀꢁ0ꢀꢁ0 ꢀꢁ0 ꢀꢁ0  
0
ꢀ0 ꢀ0 ꢀ0 ꢀ0 ꢀ00  
ꢀꢁ00ꢀꢁ0 ꢀꢁ0 ꢀꢁ0 ꢀꢁ0 ꢀꢁ0 ꢀꢁ0 ꢀꢁ0 ꢀꢁ0 ꢀꢁ0  
0
ꢀꢁꢂꢃ ꢄRRꢅR ꢆꢇꢇꢈꢉ  
ꢀꢁꢂꢃ ꢄRRꢅR ꢆꢇꢇꢈꢉ  
ꢀꢁꢂꢃ ꢄRRꢅR ꢆꢇꢇꢈꢉ  
ꢀꢁꢂꢃꢄꢅ ꢆꢅꢇ  
ꢀꢁꢂꢃꢄꢅ ꢆꢅꢇ  
ꢀꢁꢂꢃꢄꢅ ꢆꢅꢁ  
REF Divider Gain Drift  
REF Gain Drift  
Gain Drift (G = 1)  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
Rꢀꢁꢂ ꢃ 0ꢄ  
Rꢀꢁꢂ ꢃ ꢄꢅ0  
ꢀ0 ꢁꢂꢃꢄꢅ  
Rꢀꢁꢂ ꢃ Rꢀꢁꢄ  
ꢀ ꢁꢂꢃꢄꢅ  
ꢀ ꢁ ꢂ  
ꢀꢁ ꢂꢃꢄꢅꢆ  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
0
0
0
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁ0 ꢀꢁꢂ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ ꢀ00 ꢀꢁꢂ  
ꢀꢁ0 ꢀꢁꢂ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ ꢀ00 ꢀꢁꢂ  
ꢀꢁ0 ꢀꢁꢂ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ ꢀ00 ꢀꢁꢂ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁꢂꢃꢄꢅ ꢆꢅꢀ  
ꢀꢁꢂꢃꢄꢅ ꢆꢅꢂ  
ꢀꢁꢂꢃꢄꢅ ꢆꢅꢇ  
Rev. 0  
7
For more information www.analog.com  
LT6372-1  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, VS = ±15V, VCM = VREF1 = VREF2 = 0V, VCLLO = V, VCLHI = V+, RL = 2k, unless otherwise noted.  
Lead Free Reflow Profile Due to  
Gain Drift (G = 1000)  
IR Reflow  
Gain Nonlinearity (G = 1)  
ꢀ000  
ꢀꢁ00  
ꢀ000  
ꢀꢁ00  
ꢀ000  
ꢀ00  
00  
0
ꢀ ꢁ ꢂ000  
ꢀꢁ ꢂꢃꢄꢅꢆ  
ꢀ ꢁꢂ0  
ꢀꢁꢂ  
0
R
00  
0
0
0
0
0
R
0
0
ꢀꢁ00  
ꢀꢁ000  
ꢀꢁꢂ00  
ꢀꢁ000  
0
R
R
R
= 600Ω  
ꢀ ꢁꢂ  
ꢀ ꢁ0ꢂ  
0
0
ꢀꢁ0 ꢀꢁꢂ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ ꢀ00 ꢀꢁꢂ  
0
0
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁꢂꢃꢁꢂ ꢄꢀꢇꢈ ꢉꢊꢄꢋꢌꢍꢄꢎ  
0
ꢀꢁꢂꢃꢄꢅ ꢆꢅꢇ  
ꢀꢁꢂꢃꢄꢅ ꢆꢃꢅ  
Gain Nonlinearity (G = 100)  
Gain Nonlinearity (G = 10)  
Gain Nonlinearity (G = 1000)  
ꢀ ꢁꢂ0  
ꢀꢁꢂ  
ꢀ ꢁꢂ0  
ꢀ ꢁꢂ0  
ꢀꢁꢂ  
ꢀꢁꢂ  
R
R
R
= 600Ω  
R
R
R
= 600Ω  
ꢀ ꢁꢂ  
ꢀ ꢁ0ꢂ  
R
R
R
= 600Ω  
ꢀ ꢁꢂ  
ꢀ ꢁꢂ  
ꢀ ꢁ0ꢂ  
ꢀ ꢁ0ꢂ  
ꢀꢁꢂꢃꢁꢂ ꢄꢀꢇꢈ ꢉꢊꢄꢋꢌꢍꢄꢎ  
ꢀꢁꢂꢃꢁꢂ ꢄꢀꢇꢈ ꢉꢊꢄꢋꢌꢍꢄꢎ  
ꢀꢁꢂꢃꢁꢂ ꢄꢀꢇꢈ ꢉꢊꢄꢋꢌꢍꢄꢎ  
ꢀꢁꢂꢃꢄꢅ ꢆꢃꢃ  
ꢀꢁꢂꢃꢄꢅ ꢆꢃꢁ  
ꢀꢁꢂꢃꢄꢅ ꢆꢃꢇ  
CMRR vs Frequency, RTI  
QFN Package  
CMRR vs Frequency, RTI  
MS16E Package  
Positive Power Supply Rejection  
Ratio vs Frequency, RTI  
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁ0  
ꢀ00  
ꢀ0  
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁ0  
ꢀ00  
ꢀ0  
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁ0  
ꢀ00  
ꢀ0  
ꢀꢁꢂꢃꢄ ꢅꢆꢇꢈꢆꢉe  
ꢀꢁꢂ ꢃꢄꢅꢆꢄꢇe  
ꢀ ꢁꢂꢃ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢀ ꢁꢂꢃꢄ  
ꢀ ꢁꢂꢃꢄ  
ꢀꢁꢂꢃꢄꢅꢃꢆꢇ  
ꢀꢁꢂꢁꢃꢄꢅ  
ꢀꢁꢂꢃꢄꢅꢃꢆꢇ  
ꢀꢁꢂꢁꢃꢄꢅ  
ꢀ0  
ꢀ ꢁ ꢂ  
ꢀ ꢁ ꢂ  
ꢀ ꢁ ꢂ  
ꢀ ꢁ ꢂ0  
ꢀ ꢁ ꢂ00  
ꢀ ꢁ ꢂ000  
ꢀ ꢁ ꢂ0  
ꢀ ꢁ ꢂ00  
ꢀ ꢁ ꢂ000  
ꢀ0  
ꢀ0  
ꢀ ꢁ ꢂ0  
ꢀ ꢁ ꢂ00  
ꢀ ꢁ ꢂ000  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ00  
ꢀꢁ  
ꢀRꢁꢂꢃꢁꢄꢅꢆ ꢇꢈꢉꢊ  
ꢀ0ꢁ  
ꢀ00ꢁ  
ꢀ0  
ꢀ00  
ꢀꢁ  
ꢀRꢁꢂꢃꢁꢄꢅꢆ ꢇꢈꢉꢊ  
ꢀ0ꢁ  
ꢀ00ꢁ  
0.ꢀ  
ꢀ0 ꢀ00 ꢀꢁ ꢀ0ꢁ ꢀ00ꢁ ꢀꢁ  
ꢀRꢁꢂꢃꢁꢄꢅꢆ ꢇꢈꢉꢊ  
ꢀꢁꢂꢃꢄꢅ ꢆꢃꢇ  
ꢀꢁꢂꢃꢄꢅ ꢆꢃꢀ  
ꢀꢁꢂꢃꢄꢅ ꢆꢃꢂ  
Rev. 0  
8
For more information www.analog.com  
LT6372-1  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, VS = ±15V, VCM = VREF1 = VREF2 = 0V, VCLLO = V, VCLHI = V+, RL = 2k, unless otherwise noted.  
Current Noise Density vs  
Frequency  
Negative Power Supply Rejection  
Ratio vs Frequency  
Input-Referred Voltage Noise  
Density vs Frequency  
ꢀ000  
ꢀ00  
ꢀ0  
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁ0  
ꢀ00  
ꢀ0  
ꢀ00  
ꢀꢁꢂꢃꢄꢃꢁꢅꢆꢇ ꢈꢉꢀRꢅꢆ R  
ꢀꢁꢂꢁꢃꢄꢅꢆ ꢇꢈꢉRꢄꢅ R  
ꢀ ꢁꢂꢃ  
ꢀꢁꢂ  
ꢀ ꢁꢂꢃ  
ꢀꢁRꢂꢃR  
ꢀ00  
ꢀꢁꢂ  
ꢀ ꢁꢂꢃ  
ꢀꢁRꢂꢃR  
ꢀꢁꢂ  
ꢀ ꢁꢂꢃ  
ꢀꢁRꢂꢃR  
ꢀ0  
ꢀ0  
ꢀ ꢁ ꢂ  
ꢀꢁ ꢂꢃꢄꢃꢅ  
ꢀ ꢁ ꢂ0  
ꢀ ꢁ ꢂ00  
ꢀ ꢁ ꢂ000  
ꢀ0  
ꢀ ꢁ ꢂ000  
0
00 000  
ꢀ0  
0.ꢀ  
ꢀ0  
ꢀ00  
ꢀꢁ  
ꢀ0ꢁ ꢀ00ꢁ  
ꢀ0  
ꢀ00  
ꢀꢁ  
ꢀ0ꢁ  
ꢀ00ꢁ  
ꢀꢁ  
0.ꢀ  
ꢀ0  
ꢀ00  
ꢀꢁ  
ꢀ0ꢁ ꢀ00ꢁ  
ꢀRꢁꢂꢃꢁꢄꢅꢆ ꢇꢈꢉꢊ  
ꢀRꢁꢂꢃꢁꢄꢅꢆ ꢇꢈꢉꢊ  
ꢀRꢁꢂꢃꢁꢄꢅꢆ ꢇꢈꢉꢊ  
ꢀꢁꢂꢃꢄꢅ ꢆꢁ0  
ꢀꢁꢂꢃꢄꢅ ꢆꢃꢇ  
ꢀꢁꢂꢃꢄꢅ ꢆꢁꢅ  
ꢀꢁꢂꢃꢄꢅ ꢆꢁꢇ  
ꢀꢁꢂꢃꢄꢅ ꢆꢃꢇ  
0.1Hz to 10Hz Voltage Noise,  
G = 100, RTI  
0.1Hz to 10Hz Voltage Noise,  
G = 1, RTI  
0.1Hz to 10Hz Voltage Noise,  
G = 10, RTI  
ꢀ ꢁ ꢂ00  
ꢁꢂꢃ  
ꢀ ꢁ ꢂ0  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢀ ꢁꢂꢃꢄ  
ꢀ ꢁꢂꢃꢄ  
ꢀ ꢁꢂꢃꢄ  
ꢀ ꢁ ꢂ  
ꢀꢁꢂꢃ ꢄꢅꢆꢇꢈꢁꢉꢊ  
ꢀꢁꢂꢃ ꢄꢅꢆꢇꢈꢁꢉꢊ  
ꢀꢁꢂꢃ ꢄꢅꢆꢇꢈꢁꢉꢊ  
ꢀꢁꢂꢃꢄꢅ ꢆꢁꢁ  
ꢀꢁꢂꢃꢄꢅ ꢆꢁꢃ  
0.1Hz to 10Hz Noise Current,  
Balanced Source R  
0.1Hz to 10Hz Voltage Noise,  
G = 1000, RTI  
0.1Hz to 10Hz Noise Current,  
Unbalanced Source R  
ꢀꢁꢂꢁꢃꢄꢅꢆ ꢇꢈꢉRꢄꢅ R  
ꢁꢂꢃ  
ꢀꢁꢂꢃꢄꢃꢁꢅꢆꢇ ꢈꢉꢀRꢅꢆ R  
ꢁꢂꢃ  
ꢀ ꢁꢂꢃꢄ  
ꢀ ꢁꢂꢃ  
ꢀ ꢁꢂꢃꢄ  
ꢀ ꢁꢂꢃꢄ  
ꢀ ꢁ ꢂ000  
ꢀꢁꢂꢃ ꢄꢅꢆꢇꢈꢁꢉꢊ  
ꢀꢁꢂꢃ ꢄꢅꢆꢇꢈꢁꢉꢊ  
ꢀꢁꢂꢃ ꢄꢅꢆꢇꢈꢁꢉꢊ  
ꢀꢁꢂꢃꢄꢅ ꢆꢁꢇ  
ꢀꢁꢂꢃꢄꢅ ꢆꢁꢀ  
Rev. 0  
9
For more information www.analog.com  
LT6372-1  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, VS = ±15V, VCM = VREF1 = VREF2 = 0V, VCLLO = V, VCLHI = V+, RL = 2k, unless otherwise noted.  
Input Bias Current vs Common  
Mode Voltage  
REF Pin Current vs Input  
Common Mode Voltage  
Input Bias and Offset Current vs  
Temperature  
ꢀ00  
ꢀ00  
ꢀ.0  
0.ꢀ  
ꢀ.0  
0.ꢀ  
0.ꢀ  
0.ꢀ  
0
ꢀ00  
0.ꢀ  
0.ꢀ  
ꢀ00  
0.ꢀ  
0.ꢀ  
0
0.0  
0.0  
ꢀ0.ꢁ  
ꢀ0.ꢁ  
ꢀ0.ꢁ  
ꢀ0.ꢁ  
ꢀꢁ.0  
ꢀ0.ꢁ  
ꢀ0.ꢁ  
ꢀ0.ꢁ  
ꢀ0.ꢁ  
ꢀꢁ.0  
ꢀꢁ00  
ꢀꢁ00  
ꢀꢁ00  
ꢀꢁ00  
ꢀꢁꢂ ꢃꢁꢄꢅ ꢆꢇRRꢈꢂꢉ  
ꢀꢁꢂ ꢃꢁꢄꢅ ꢆꢇRRꢈꢂꢉ  
ꢀꢁꢁꢂꢃꢄ ꢅꢆRRꢃꢇꢄ  
ꢀꢁꢂ ꢃꢁꢄꢅ ꢆꢇRRꢈꢂꢉ  
ꢀꢁꢂ ꢃꢁꢄꢅ ꢆꢇRRꢈꢂꢉ  
ꢀꢁꢁꢂꢃꢄ ꢅꢆRRꢃꢇꢄ  
ꢀꢁꢂ  
ꢀꢁ0  
ꢀꢁ  
0
ꢀ0  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁ0  
ꢀꢁ  
0
ꢀ0  
ꢀꢁ  
ꢀꢁ0 ꢀꢁꢂ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ ꢀ00 ꢀꢁꢂ  
ꢀꢁꢂꢂꢁꢃꢄꢂꢁꢅꢆ ꢇꢃꢈꢉꢊ ꢋꢁꢎꢆ ꢏꢋꢐ  
ꢀꢁꢂꢃꢄ ꢅꢆꢇꢇꢆꢁꢈꢇꢆꢉꢊ ꢋꢆꢎꢊ ꢏꢋꢐ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁꢂꢃꢄꢅ ꢆꢁꢂ  
ꢀꢁꢂꢃꢄꢅ ꢆꢁꢇ  
ꢀꢁꢂꢃꢄꢅ ꢆꢁꢇ  
Output Voltage Swing vs Load  
Resistance  
Output Voltage Swing vs Load  
Resistance  
Supply Current vs Supply Voltage  
ꢀ.0  
ꢀ.ꢁ  
ꢀ.0  
ꢀ.ꢁ  
ꢀ.0  
0.ꢀ  
0
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢀ  
ꢀ0  
ꢀꢁ  
ꢀꢁ  
0
ꢀꢁ0  
ꢀꢁꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
0
0
0
ꢀ0 ꢀꢁ ꢀ0 ꢀꢁ ꢀ0 ꢀꢁ ꢀ0  
0.ꢀ  
ꢀ0  
ꢀ00  
0.ꢀ  
ꢀ0  
ꢀ00  
ꢀꢁꢂꢂꢉꢊ ꢋꢅꢌ  
RESISTIVE LOAD (kΩ)  
RESISTIVE LOAD (kΩ)  
ꢀꢁꢂꢃꢄꢅ ꢆꢇ0  
ꢀꢁꢂꢃꢄꢅ ꢆꢇꢅ  
ꢀꢁꢂꢃꢄꢅ ꢆꢇꢃ  
Output Short Circuit Current vs  
Temperature  
Undistorted Output Swing vs  
Frequency  
Slew Rate vs Temperature  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
0
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢀ  
ꢀ0  
ꢀ ꢁ ꢂ  
0
ꢁꢂꢃ  
ꢀ ꢁꢂꢃꢄ  
ꢀꢁꢂ ꢀ ꢁꢂ0ꢃꢄ  
R
Rꢀꢁꢀꢂꢃ  
ꢀꢁꢂꢂꢃꢄꢅ  
.
.
R
0
ꢀꢁ0 ꢀꢁꢂ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ ꢀ00 ꢀꢁꢂ  
ꢀ00  
ꢀꢁ  
ꢀ0ꢁ  
ꢀ00ꢁ  
ꢀꢁ  
ꢀ0ꢁ  
ꢀꢁ0 ꢀꢁꢂ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ ꢀ00 ꢀꢁꢂ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀRꢁꢂꢃꢁꢄꢅꢆ ꢇꢈꢉꢊ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁꢂꢃꢄꢅ ꢆꢇꢁ  
ꢀꢁꢂꢃꢄꢅ ꢆꢇꢇ  
ꢀꢁꢂꢃꢄꢅ ꢆꢇꢈ  
Rev. 0  
10  
For more information www.analog.com  
LT6372-1  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, VS = ±15V, VCM = VREF1 = VREF2 = 0V, VCLLO = V, VCLHI = V+, RL = 2k, unless otherwise noted.  
Large Signal Transient Response Large Signal Transient Response Large Signal Transient Response  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢁ  
ꢀꢁꢂꢃꢄꢁ  
ꢀꢁꢂꢃꢄꢅ ꢆꢇꢂ  
ꢀꢁꢂꢃꢄꢅ ꢆꢇꢈ  
ꢀꢁꢂꢃꢄꢅ ꢆꢇꢀ  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀ0ꢁꢂꢃꢄꢅꢆ  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀ ꢁ ꢂ0  
ꢀ ꢁ ꢂ00  
ꢀ ꢁ ꢂ  
ꢁꢂꢃ  
ꢀ ꢁꢂꢃ  
ꢀ ꢁꢂꢃ  
ꢀ ꢁꢂꢃꢄ  
ꢀ ꢁ00ꢂꢃ  
ꢀ ꢁꢂꢃꢄ  
ꢀ ꢁꢂꢃꢄ  
ꢀ ꢁ00ꢂꢃ  
ꢀ ꢁ00ꢂꢃ  
Large Signal Transient Response  
Small Signal Transient Response  
Small Signal Transient Response  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢅꢂ  
ꢀꢁꢂꢃꢄꢁ  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢅꢂ  
ꢀꢁꢂꢃꢄꢅ ꢆꢇꢈ  
ꢀꢁꢂꢃꢄꢅ ꢆꢇ0  
ꢀꢁꢂꢃꢄꢅ ꢆꢇꢅ  
ꢀ00ꢁꢂꢃꢄꢅꢆ  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀ ꢁ ꢂ000  
ꢀ ꢁ ꢂ  
ꢀ ꢁ ꢂ0  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢀ ꢁꢂꢃꢄ  
ꢀ ꢁ00ꢂꢃ  
ꢀ ꢁꢂꢃꢄ  
ꢀ ꢁ00ꢂꢃ  
ꢀ ꢁꢂꢃꢄ  
ꢀ ꢁ00ꢂꢃ  
Small Signal Transient Response  
Small Signal Transient Response  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢅꢂ  
ꢀꢁꢂꢃꢄꢅꢂ  
ꢀꢁꢂꢃꢄꢅ ꢆꢇꢁ  
ꢀꢁꢂꢃꢄꢅ ꢆꢇꢃ  
ꢀ00ꢁꢂꢃꢄꢅꢆ  
ꢀ0ꢁꢂꢃꢄꢅꢆ  
ꢀ ꢁ ꢂ000  
ꢀ ꢁ ꢂ00  
ꢀ ꢁꢂꢃ  
ꢀ ꢁꢂꢃ  
ꢀ ꢁꢂꢃꢄ  
ꢀ ꢁ00ꢂꢃ  
ꢀ ꢁꢂꢃꢄ  
ꢀ ꢁ00ꢂꢃ  
Rev. 0  
11  
For more information www.analog.com  
LT6372-1  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, VS = ±15V, VCM = VREF1 = VREF2 = 0V, VCLLO = V, VCLHI = V+, RL = 2k, unless otherwise noted.  
Clamp Transient Response  
(Clamped Output)  
Gain vs Frequency  
ꢀ0  
ꢀ0  
ꢃꢄꢀ  
ꢂ ꢇꢄꢈꢉ  
ꢀ0  
ꢀꢁꢂ  
0ꢀ  
ꢀꢁꢂꢃꢄꢁ  
ꢀ0  
ꢀ0  
ꢀꢁ  
0ꢀ  
ꢀ00ꢁꢂꢃꢄꢅꢂ  
ꢀ0  
ꢁꢂꢃ  
ꢀ ꢁ ꢂ0  
0
ꢀꢁꢂꢃꢄꢅ ꢆꢇꢇ  
0
00  
000  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢁꢂꢃ ꢄ ꢅ.ꢆꢀ  
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁꢂꢃ ꢄ 0ꢀ  
ꢀ 0ꢁ  
ꢀ ꢁ.ꢂꢃ  
Rꢀꢁꢂ  
Rꢀꢁꢂ  
ꢀ00  
ꢀꢁ  
ꢀ0ꢁ  
ꢀ00ꢁ  
ꢀꢁ  
ꢀ0ꢁ  
ꢀRꢁꢂꢃꢁꢄꢅꢆ ꢇꢈꢉꢊ  
ꢀꢁꢂꢃꢄꢅ ꢆꢇꢈ  
LT6372–1 Supply Current While  
Clamping  
Clamp Voltage vs Temperature  
ꢀ00  
ꢀꢁꢁꢂ  
ꢁꢂꢃ  
ꢀ 0ꢁ  
ꢀꢁꢂ  
ꢀ00  
ꢀ00  
ꢀ ꢁ  
ꢀꢁꢂꢃ  
ꢀ00  
ꢀꢁꢂꢃꢄꢅꢆ ꢇꢈꢉꢇ  
0
ꢀꢁ00  
ꢀꢁ00  
ꢀꢁ00  
ꢀꢁ00  
ꢀꢁꢂꢃꢄꢅꢆ ꢁꢇꢈ  
ꢁꢂꢃ  
ꢄ ꢀ  
ꢅꢆꢇꢈ  
ꢄ ꢉ.ꢊꢀ  
Rꢁꢂꢃ  
0
ꢄ ꢀ  
ꢄ 0ꢀ  
= 10kΩ  
ꢀ ꢁ ꢂ0  
Rꢁꢂꢃ  
ꢅꢆꢆꢇ  
R
ꢀꢁ  
ꢀꢁ0 ꢀꢁꢂ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ ꢀ00 ꢀꢁꢂ  
ꢀꢁ ꢀ0.ꢁꢀ0.ꢁ0ꢀ0.ꢁꢂ  
0
0.ꢀꢁ 0.ꢀ0 0.ꢀꢁ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁꢂꢃꢄ ꢅꢆꢉꢊ ꢋꢅꢌ  
ꢀꢁꢂꢃꢄꢅ ꢆꢇꢂ  
ꢀꢁꢂꢃꢄꢅ ꢆꢇꢀ  
Rev. 0  
12  
For more information www.analog.com  
LT6372-1  
PIN FUNCTIONS (MS16E/QFN20)  
–R (Pin 1/Pin 19): For use with an external gain setting  
REF1 (Pin 10/Pin 12): Reference for the output voltage.  
REF1 can be tied to REF2 and used as a reference for the  
output. REF1 can also be used with REF2 to form a voltage  
divider and level shift the output.  
resGis,Ftor. This connection should be routed to the gain set-  
ting resistor separately from –R in order to minimize  
G,S  
gain errors.  
–R (Pin 2/Pin 20): For use with an external gain set-  
OUTPUT (Pin 11/Pin 13): Output voltage referenced to  
G,S  
ting resistor. This connection should be routed to the gain  
the REF pins.  
setting resistor separately from –R in order to minimize  
V+ (Pin 12/Pin 14): Positive Power Supply. A bypass  
capacitor should be used between supply pins and ground.  
G,F  
gain errors.  
–IN (Pin 4/Pin 2): Negative Input Terminal. This input is  
high impedance.  
REF2 (Pin 13/Pin 15): Reference for the output voltage.  
REF2 can be tied to REF1 and used as a reference for the  
output. REF2 can also be used with REF1 to form a voltage  
divider and level shift the output.  
+IN (Pin 5/Pin 5): Positive Input Terminal. This input is  
high impedance.  
CLLO (Pin 7/Pin 8): Low Side Clamp Input. The voltage  
applied to the CLLO pin defines the lower voltage limit  
of the output. Typically, the output clamps 500mV below  
the voltage applied to the CLLO pin. Do not float CCLO.  
+R (Pin 15/Pin 17): For use with an external gain set-  
G,S  
ting resistor. This connection should be routed to the gain  
setting resistor separately from +R in order to minimize  
G,F  
gain errors.  
V (Pin 8/Pin 7): Negative Power Supply. A bypass capac-  
+R (Pin 16/Pin 18): For use with an external gain set-  
G,F  
itor should be used between supply pins and ground.  
ting resistor. This connection should be routed to the gain  
setting resistor separately from +R in order to minimize  
G,S  
CLHI (Pin 9/Pin 10): High Side Clamp Input. The voltage  
applied to the CLHI pin defines the upper voltage limit of  
the output. Typically, the output clamps 500mV above the  
voltage applied to the CLHI pin. Do not float CLHI.  
gain errors.  
NIC (Pins 3, 6, 14/Pins 1, 3, 4, 6, 11, 16): No Internal  
Connection.  
DNC (QFN Pin 9): Do Not Connect. This pin should float.  
Rev. 0  
13  
For more information www.analog.com  
LT6372-1  
SIMPLIFIED BLOCK DIAGRAM  
+
V
R1  
12.1k  
I1  
D2  
C1  
D1  
+
200Ω  
V
–IN  
EMI  
Q1  
FILTER  
+
R5  
10k  
R6  
10k  
D11  
D13  
D3  
D4  
I3  
OUTPUT  
A1  
I2  
VB  
V
–R  
–R  
G,F  
V
G,S  
D9  
D14  
+
V
V
CLHI  
D13  
D15  
+R  
+R  
+
G,S  
D18  
G,F  
A3  
+
V
V
V
CLLO  
REF2  
V
R2  
D17  
I4  
12.1k  
R9  
20k  
D6  
C2  
D5  
D8  
200Ω  
D19  
D10  
+IN  
EMI  
FILTER  
Q2  
+
R7  
10k  
R8  
20k  
D7  
I6  
REF1  
I5  
A2  
VB  
V
V
D16  
+
PREAMP STAGE  
DIFFERENCE AMPLIFIER STAGE  
V
V
6372-1 BD  
Rev. 0  
14  
For more information www.analog.com  
LT6372-1  
THEORY OF OPERATION  
The LT6372-1 is an improved version of the classic three op voltages on REF1 and REF2. This split reference resistor  
amp instrumentation amplifier topology that incorporates configuration allows the output voltage to be easily level  
features to improve accuracy and simplify interfacing to shifted to the center of an ADCs input range without exter-  
ADCs. Laser trimming and proprietary monolithic construc- nal components. The offset voltage of the difference ampli-  
tion allow for tight matching and extremely low drift of fier is trimmed to minimize output offset voltage drift, thus  
circuit parameters over the specified temperature range. assuring a high level of performance, even in low gains.  
Refer to the Simplified Block Diagram to aid in understand- Resistors R5 to R9 are trimmed to maximize CMRR and  
ing the following circuit description. The collector currents minimize gain error. The resulting gain equation is:  
in Q1 and Q2 as well as I1 and I4 are trimmed to minimize  
24.2k  
G = 1+  
input offset voltage drift, thus assuring a high level of per-  
formance. R1 and R2 are trimmed to an absolute value of  
12.1k to assure that the gain can be set accurately (0.12%  
R
G
Solving for the gain set resistor gives:  
24.2k  
at G = 100) with only one external resistor, R . The value of  
G
R determines the transconductance of the preamp stage.  
G
R =  
G
As RG is reduced to increase the programmed gain, the  
transconductance of the input preamp stage also increases  
to that of the input transistors Q1 and Q2. This causes the  
open-loop gain to increase when the programmed gain is  
increased, reducing the input related errors and noise. The  
input voltage noise at high gains is determined only by Q1  
and Q2. At lower gains the noise of the difference amplifier  
and preamp gain setting resistors may increase the noise.  
The gain bandwidth product is determined by C1, C2 and  
the preamp transconductance, which increases with pro-  
grammed gain. Therefore, the bandwidth is self-adjusting  
and does not drop directly proportional to gain.  
G – 1  
Table 1 shows appropriate 1% resistor values for a variety of gains.  
Table 1. LT6372-1 Gain and RG Lookup.  
Resulting Gains for Various 1% Standard Resistor Values  
Gain  
1
Standard 1% Resistor Value (Ω)  
1.996  
5.007  
10.06  
20.06  
50.69  
100.6  
201  
24.3k  
6.04k  
2.67k  
1.27k  
487  
The input transistors Q1 and Q2 offer excellent matching,  
drift and noise performance, which is due to using a pro-  
prietary high performance process, as well as low input  
bias current due to the high beta of these input devices.  
The input bias current is further reduced by trimming I3  
and I6. The collector currents in Q1 and Q2 are held con-  
stant due to the feedback through the Q1-A1-R1 loop and  
Q2-A2-R2 loop. The action of the amplifier loops impresses  
the differential input voltage across the external gain set  
243  
121  
497.9  
996.9  
48.7  
24.3  
Convenient Integer Gains Using Various Standard 1% Resistor Values  
Integer Gain  
Standard 1% Resistor Value (Ω)  
1
3
12.1k  
1.21k  
1.1k  
200  
121  
110  
100  
20  
21  
resistor R . Since the current that flows through R also  
G
G
23  
122  
flows through R1 and R2, the ratios provide a gained-up  
differential voltage,  
201  
R1+ R2  
221  
G = 1+  
R
243  
G
1211 (Note 2)  
to the difference amplifier A3. The difference amplifier  
removes the common mode voltage and provides a sin-  
gle-ended output voltage referenced to the average of the  
Additionally, The LT6372-1 has two integrated output  
voltage clamps which can be used to limit the voltage  
Rev. 0  
15  
For more information www.analog.com  
LT6372-1  
APPLICATIONS INFORMATION  
applied to an ADCs input. Typically, CLHI is tied to the  
ADC’s reference and CLLO is tied to the ADC’s ground  
connection.  
This however often fails to identify limitations associated  
with internal swing limits. Referring to the Simplified  
Block Diagram, the output swing of pre-amplifiers A1  
and A2 as well as the common-mode input range of the  
difference amplifier A3 impose limitations on the valid  
operating range. Figure 1 shows the operating region  
where a valid output is produced for various configura-  
tions. Further valid input and output range plots can be  
generated using the Diamond Plot Tool.  
Valid Input and Output Range  
Instrumentation amplifiers traditionally specify a valid  
input common mode range and an output swing range.  
ꢀꢁ  
ꢀ0  
ꢀꢉꢍꢌ  
ꢌ ꢓꢇ  
0
ꢀ ꢁ ꢂ  
ꢂꢅꢃ  
ꢁ 0ꢃ  
Rꢆꢇꢈ  
Rꢆꢇꢂ  
ꢉꢊꢋꢌ  
ꢉꢊꢊꢍ  
ꢁ 0ꢃ  
ꢁ ꢂꢅꢃ  
ꢁ ꢎꢂꢅꢃ  
ꢄꢅꢆꢇꢈꢉ  
ꢐꢑꢃ  
Rꢎꢊꢉꢏꢇ  
ꢀꢁ  
ꢔꢕ  
ꢌ ꢓꢇ  
ꢀꢁ0  
ꢄꢅꢆꢇꢈꢉ ꢊ0ꢉꢋ  
ꢁꢉꢍꢌ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ0  
ꢀꢁ  
0
ꢀ0  
ꢀꢁ  
ꢀꢁꢂꢃꢁꢂ ꢄꢀꢇꢈ ꢉꢄꢊ  
ꢀꢁꢂꢃꢄꢅ ꢆ0ꢅꢇ  
ꢀꢁ  
ꢀ0  
+15V  
V /2  
D
+
ꢀ ꢁ ꢂ00  
+
ꢁ ꢂꢅꢃ  
V
Rꢆꢇꢈ  
Rꢆꢇꢂ  
ꢉꢊꢋꢌ  
ꢉꢊꢊꢍ  
ꢁ 0ꢃ  
ꢁ 0ꢃ  
0
R
G
LT6372-1  
OUT  
ꢁ ꢂꢅꢃ  
243Ω  
REF1,2  
ꢁ ꢎꢂꢅꢃ  
ꢀꢁ  
ꢀꢁ0  
ꢀꢁꢂ  
+
V
CM  
V /2  
D
V
6371-2 F01c  
–15V  
ꢀꢁꢂ  
ꢀꢁ0  
ꢀꢁ  
0
ꢀ0  
ꢀꢁ  
ꢀꢁꢂꢃꢁꢂ ꢄꢀꢇꢈ ꢉꢄꢊ  
ꢀꢁꢂꢃꢄꢅ ꢆ0ꢅꢇ  
Figure 1. Input Common Mode Range vs Output Voltage  
Rev. 0  
16  
For more information www.analog.com  
LT6372-1  
APPLICATIONS INFORMATION  
ꢀꢁ  
ꢀ0  
+15V  
V /2  
D
+
ꢀ ꢁ ꢂ00  
+5V  
ꢁꢂꢃ  
ꢀ 0ꢁ  
ꢀ 0ꢁ  
ꢀ ꢁꢂ  
ꢀ 0ꢁ  
+
V
Rꢀꢁꢂ  
Rꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢁꢂ  
CLHI  
R
G
OUT  
LT6372-1  
243Ω  
REF1, 2  
CLLO  
+
0
V
CM  
V /2  
D
V
ꢀꢁ  
ꢀꢁ0  
ꢀꢁꢂ  
6372-1 F01m  
–15V  
ꢀꢁꢂ  
ꢀꢁ0  
ꢀꢁ  
0
ꢀ0  
ꢀꢁ  
ꢀꢁꢂꢃꢁꢂ ꢄꢀꢇꢈ ꢉꢄꢊ  
ꢀꢁꢂꢃꢄ ꢅ0ꢄꢆ  
ꢀꢌꢋ  
ꢋ ꢒꢇ  
ꢀ ꢁ ꢂ  
ꢅꢃ  
ꢁ 0ꢃ  
ꢁ 0ꢃ  
ꢁ ꢅꢃ  
ꢁ ꢎꢅꢃ  
Rꢆꢇꢈ  
Rꢆꢇꢂ  
ꢉꢊꢋꢌ  
ꢉꢊꢊꢍ  
0
ꢄꢅꢆꢇꢈꢉ  
ꢏꢐꢃ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
Rꢍꢊꢉꢎꢇ  
ꢓꢔ  
ꢋ ꢒꢇ  
ꢄꢅꢆꢇꢈꢉ ꢊ0ꢉe  
ꢁꢌꢋ  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ  
0
ꢀꢁꢂꢃꢁꢂ ꢄꢀꢇꢈ ꢉꢄꢊ  
ꢀꢁꢂꢃꢄꢅ ꢆ0ꢅꢇ  
0
+5V  
V /2  
D
+
ꢀ ꢁ ꢂ00  
+
V
ꢅꢃ  
ꢁ 0ꢃ  
ꢁ 0ꢃ  
ꢁ ꢅꢃ  
Rꢆꢇꢈ  
Rꢆꢇꢂ  
ꢉꢊꢋꢌ  
ꢉꢊꢊꢍ  
R
G
LT6372-1  
OUT  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
243Ω  
REF1,2  
+
V
CM  
ꢁ ꢎꢅꢃ  
V /2  
D
V
6372-1 F01g  
–5V  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ  
0
ꢀꢁꢂꢃꢁꢂ ꢄꢀꢇꢈ ꢉꢄꢊ  
ꢀꢁꢂꢃꢄꢅ ꢆ0ꢅꢇ  
Figure 1 (Continued). Input Common Mode Range vs Output Voltage  
Rev. 0  
17  
For more information www.analog.com  
LT6372-1  
APPLICATIONS INFORMATION  
ꢀ.0  
ꢀ.ꢁ  
ꢀ.0  
ꢀ.ꢁ  
ꢀ.0  
ꢀ.ꢁ  
ꢀ.0  
ꢀ.ꢁ  
ꢀ.0  
0.ꢀ  
0
ꢀ ꢁ ꢂ  
ꢁ ꢅꢃ  
ꢁ 0ꢃ  
ꢀꢍꢌ  
ꢌ ꢒꢇ  
ꢁ ꢅꢃ  
ꢁ 0ꢃ  
Rꢇꢈꢉ  
Rꢇꢈꢂ  
Rꢎꢊꢇ  
Rꢎꢊꢉ  
ꢏꢐꢃ  
ꢄꢅꢆꢇꢈꢉ  
ꢓꢔ  
ꢌ ꢒꢇ  
ꢁ ꢅꢃ  
ꢁ 0ꢃ  
ꢊꢋꢌꢍ  
ꢊꢋꢋꢎ  
ꢄꢅꢆꢇꢈꢉ ꢊ0ꢉꢋ  
0
0.ꢀ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀꢁꢂꢃꢁꢂ ꢄꢀꢇꢈ ꢉꢄꢊ  
ꢀꢁꢂꢃꢄꢅ ꢆ0ꢅꢇ  
ꢀ.0  
ꢀ.ꢁ  
ꢀ.0  
ꢀ.ꢁ  
ꢀ.0  
ꢀ.ꢁ  
ꢀ.0  
ꢀ.ꢁ  
ꢀ.0  
0.ꢀ  
0
ꢀ ꢁ ꢂ00  
ꢁ ꢅꢃ  
ꢁ 0ꢃ  
+5V  
V /2  
D
ꢁ ꢅꢃ  
ꢁ 0ꢃ  
Rꢇꢈꢉ  
Rꢇꢈꢂ  
+
+
V
REF2  
REF1  
R
G
LT6372-1  
OUT  
243Ω  
+
V
CM  
V /2  
D
V
ꢊꢋꢋꢎ  
ꢁ ꢅꢃ  
ꢁ 0ꢃ  
ꢊꢋꢌꢍ  
6372-1 F01k  
0
0.ꢀ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀꢁꢂꢃꢁꢂ ꢄꢀꢇꢈ ꢉꢄꢊ  
ꢀꢁꢂꢃꢄꢅ ꢆ0ꢅꢇ  
Figure 1 (Continued). Input Common Mode Range vs Output Voltage  
Rev. 0  
18  
For more information www.analog.com  
LT6372-1  
APPLICATIONS INFORMATION  
Split Reference Pins  
In applications where clamping is not desired, CLLO  
+
should be tied to V and CLHI to V to disable clamping.  
Output Level Shifting with the LT6372-1’s difference ampli-  
fier features split reference pins, REF1 and REF2, which  
allow the output to be easily and accurately level shifted  
without the use of external circuitry. REF1 and REF2 are  
typically tied to an ADC ground and reference respectively.  
In this configuration the amplifier’s output is conveniently  
level shifted to the center of the ADC input range.  
Input and Output Offset Voltage  
The offset voltage of the LT6372-1 has two main compo-  
nents: the input offset voltage due to the input amplifiers  
and the output offset due to the output amplifier. The total  
offset voltage referred to the input (RTI) is found by divid-  
ing the output offset by the programmed gain and adding  
it to the input offset voltage. At high gains the input offset  
voltage dominates, whereas at low gains the output offset  
voltage dominates. The total offset voltage is:  
If REF1 and REF2 are shorted to each other, they can  
function as the reference for the output voltage like a tra-  
ditional instrumentation amplifier.  
Parasitic resistance in series with REF1 and REF2 should  
be minimized to preserve CMRR and gain performance.  
It is also important to note that the drift in any circuitry  
used to drive REF1 or REF2 can results in an additional  
output drift term. Therefore, it may be important to con-  
sider the temperature accuracy of the circuitry used to  
drive the REF pin.  
Total input offset voltage (RTI) = V + V /G  
OSI  
OSO  
Total output offset voltage (RTO) = V • G + V  
OSI  
OSO  
The preceding equations can also be used to calculate  
offset drift in a similar manner.  
Output Offset Trimming  
The LT6372-1 is laser trimmed for low offset voltage  
so that no external offset trimming is required for most  
applications. In the event that the offset voltage needs  
to be adjusted, the circuit in Figure 2 is an example of  
an optional offset adjustment circuit. The op amp buffer  
provides a low impedance signal to the REF pin in order  
to achieve the best CMRR and lowest gain error.  
Gain Setting Resistor Connections  
Each pre-amplifier gives a set of RG connection termi-  
nals which should be routed separately to the gain setting  
resistor. Doing this minimizes the impact which parasitic  
trace and lead resistance has on gain accuracy. When  
routing to the gain setting resistors, large loops should  
be avoided as they can couple noise into the amplifier.  
+
V
5V  
Output Clamps  
+
REF2  
LT6372-1  
REF1  
+
V
OUTPUT  
The CLHI and CLLO clamp pins limit the output voltage  
swing of the LT6372-1. CLHI and CLLO are typically tied  
to the ADC supply/reference and ADC ground respectively.  
In this case the ADC input is protected from being over-  
driven by the LT6372-1 which is likely running off a higher  
supply voltage.  
R1  
+10mV  
100Ω  
V
5mV  
ADJUSTMENT  
RANGE  
LTC2057  
+
10k  
100Ω  
–10mV  
R2  
When the CLLO is tied to 0V, attempts to drive the output  
below 0V will be clamped at –0.45 typically. When CLHI  
is tied to 5V, attempts to drive the output above 5V will  
be clamped at 5.45V typically.  
V
LT6372-1 F02  
Figure 2. Optional Trimming of Output Offset Voltage  
Thermocouple Effects  
CLHI and CLLO are high impedance inputs and do not  
conduct significant current during clamping. Rather, inter-  
nal amplifier nodes are controlled by CLHI and CLLO to  
limit the output voltage.  
In order to achieve accuracy on the microvolt level, ther-  
mocouple effects must be considered. Any connection  
of dissimilar metals forms a thermoelectric junction and  
Rev. 0  
19  
For more information www.analog.com  
LT6372-1  
APPLICATIONS INFORMATION  
generates a small temperature-dependent voltage. Also  
known as the Seebeck Effect, these thermal EMFs can be  
the dominant error source in low-drift circuits.  
ꢖ.0  
ꢊ.ꢔ  
ꢊ.ꢗ  
ꢊ.ꢕ  
ꢊ.ꢊ  
ꢊ.0  
ꢓ.ꢔ  
ꢓ.ꢗ  
ꢓ.ꢕ  
ꢓ.ꢊ  
ꢓ.0  
0.ꢔ  
0.ꢗ  
0.ꢕ  
0.ꢊ  
0
Connectors, switches, relay contacts, sockets, resistors,  
and solder are all candidates for significant thermal EMF  
generation. Even junctions of copper wire from different  
manufacturers can generate thermal EMFs of 200nV/°C,  
which is comparable to the maximum input offset voltage  
drift specification of the LT6372-1. Figure 3 and Figure 4  
illustrate the potential magnitude of these voltages and their  
sensitivity to temperature.  
ꢖꢋ  
ꢊꢋ  
ꢖ0  
ꢕ0  
ꢕꢋ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
In order to minimize thermocouple-induced errors, atten-  
tion must be given to circuit board layout and component  
selection. It is good practice to minimize the number of  
ꢗꢖꢘ0 ꢑ0ꢖ  
Figure 3. Thermal EMF Generated by Two Copper Wires  
From Different Manufacturers  
junctions in the amplifier’s input and R signal paths and  
G
avoid connectors, sockets, switches, and relays whenever  
possible. If such components are required, they should be  
selected for low thermal EMF characteristics. Furthermore,  
the number, type, and layout of junctions should be matched  
for both inputs with respect to thermal gradients on the cir-  
cuit board. Doing so may involve deliberately introducing  
dummy junctions to offset unavoidable junctions.  
100  
SLOPE ≈ 1.5µV/°C  
BELOW 25°C  
50  
64% SN/36% Pb  
60% Cd/40% SN  
0
SLOPE ≈ 160nV/°C  
BELOW 25°C  
Air currents can also lead to thermal gradients and cause  
significant noise in measurement systems. It is important  
to prevent airflow across sensitive circuits. Doing so will  
often reduce thermocouple noise substantially. Placing  
PCB input traces close together, and on an internal PCB  
layer, can help minimize temperature differentials result-  
ing from air currents reacting with the input trace thermal  
surface area.  
–50  
–100  
0
10  
20  
30  
40  
50  
SOLDER-COPPER JUNCTION DIFFERENTIAL TEMPERATURE  
SOURCE: NEW ELECTRONICS 02-06-77  
6370 F04  
Figure 4. Solder-Copper Thermal EMFs  
Rev. 0  
20  
For more information www.analog.com  
LT6372-1  
Reducing Board-Related Leakage Effects  
For the lowest leakage, amplifiers can be used to drive the  
guard ring. These buffers must have very low input bias  
current since that will now be a leakage.  
Leakage currents can have a significant impact on system  
accuracy, particularly in high temperature and high voltage  
applications. Quality insulation materials should be used,  
and insulating surfaces should be cleaned to remove fluxes  
and other residues. For humid environments, surface coat-  
ing may be necessary to provide a moisture barrier.  
ꢀꢁꢂꢃꢄꢅ  
ꢋꢉ  
Leakage into the RG pin conducts through the on-chip feed-  
back resistor, creating an error at the output of the pre-  
amplifiers. This error is independent of gain and degrades  
accuracy the most at low gains. This leakage can be mini-  
ꢀꢁꢂꢃꢄꢅ ꢆ0ꢀ  
Figure 6. Guard-Rings Can Be Used to Minimize  
Leakage into the Input Pins  
mized by encircling the R connections with a guard-ring  
G
Input Bias Current Return Path  
operated at a potential very close to that of the R pins.  
G
The low input bias current of the LT6372-1 (800pA max) and  
high input impedance (225GΩ) allow the use of high imped-  
ance sources without introducing additional offset voltage  
errors, even when the full common mode range is required.  
However, a path must be provided for the input bias cur-  
rents of both inputs when a purely differential signal is being  
amplified. Without this path, the inputs will float to either rail  
and exceed the input common mode range of the LT6372-1,  
resulting in a saturated input amplifier. Figure 7 shows three  
examples of an input bias current path. The first example  
is of a purely differential signal source with a 10kΩ input  
current path to ground. Since the impedance of the signal  
source is low, only one resistor is needed. Two matching  
resistors are needed for higher impedance signal sources as  
shown in the second example. Balancing the input imped-  
ance improves both AC and DC common mode rejection  
and DC offset. The need for input resistors is eliminated if a  
center tap is present as shown in the third example.  
NIC pins adjacent to each R pin can be used to simplify  
G
the implementation of this guard-ring. These NIC pins do  
not provide any bias and have no internal connections. In  
some cases, the guard-ring can be connected to the input  
voltage which biases one diode drop below R .  
G
ꢀꢁꢂꢃꢄꢅ  
ꢌꢊ  
ꢀꢁꢂꢃꢄꢅ ꢆ0ꢇ  
Figure 5. Guard-Rings Can Be Used to Minimize  
Leakage into the RG Pins  
Leakage into the input pins reacts with the source resis-  
tance, creating an error directly at the input. This leakage  
can be minimized by encircling the input connections with  
a guard-rings operated at a potential very close to that  
of the input pins. In some cases, the guard-ring can be  
connected to R which biases one diode above the input.  
G
ꢌꢒꢎRꢍꢐꢊꢍꢓꢋꢔ  
ꢊꢕꢖRꢍꢐꢊꢍꢓꢋꢔ  
ꢋꢉꢎ  
R
R
R
ꢑꢉꢃꢄꢅꢆꢇꢀ  
Rꢋꢈꢀꢔꢆ  
ꢉꢊꢋRꢌꢍꢎꢍꢏꢐꢑꢋ  
ꢑꢉꢃꢄꢅꢆꢇꢀ  
Rꢋꢈꢀꢔꢆ  
ꢑꢉꢃꢄꢅꢆꢇꢀ  
Rꢋꢈꢀꢔꢆ  
ꢆ00ꢁ  
ꢆ00ꢁ  
ꢀ0ꢁ  
ꢎꢋꢓꢉꢋRꢇꢉꢗꢐ ꢐRꢍꢘꢒꢖꢋꢙ  
ꢚꢒꢗꢙ ꢎꢏRRꢋꢓꢉ RꢋꢉꢏRꢓ  
ꢃꢄꢅꢆꢇꢀ ꢈ0ꢅ  
Figure 7. Providing an Input Common Mode Current Path  
Rev. 0  
21  
For more information www.analog.com  
LT6372-1  
APPLICATIONS INFORMATION  
Input Protection  
The amplitude and frequency of the interference can have  
an adverse effect on an instrumentation amplifier’s input  
stage by causing any unwanted DC shift in the amplifier’s  
input offset voltage. This well known effect is called RFI  
rectification and is produced when out-of-band interfer-  
ence is coupled (inductively, capacitively or via radiation)  
and rectified by the instrumentation amplifier’s input tran-  
sistors. These transistors act as high frequency signal  
detectors, in the same way diodes were used as RF enve-  
lope detectors in early radio designs. Regardless of the  
type of interference or the method by which it is coupled  
into the circuit, an out-of-band error signal appears in  
series with the instrumentation amplifier’s inputs.  
Additional input protection can be achieved by adding  
external resistors in series with each input. If low value  
resistors are needed, a clamp diode from the positive  
supply to each input will help improve robustness. A  
2N4394 drain/source to gate is a good low leakage diode  
which can be used as shown in Figure 8. Robust input  
resistors should be chosen, such as carbon composite  
or bulk metal foil. Metal film and carbon film should not  
be used because of their poor performance.  
ꢊꢊ  
ꢊꢊ  
ꢏꢒꢑꢓꢏꢌꢔꢕ ꢈꢏR ꢖꢓꢗꢖꢁꢘꢑ  
ꢁꢘꢙ ꢒRꢏꢑꢁꢊꢑꢓꢏꢌ  
ꢋꢇ  
ꢅꢌꢍꢃꢎꢃ  
ꢋꢅ  
ꢅꢌꢍꢃꢎꢃ  
To help minimize this effect, the LT6372-1 has 50MHz on-  
chip RFI filters to help attenuate high frequencies before  
they can interact with its input transistors. These on-chip  
filters are well matched due to their monolithic construc-  
tion, which helps minimize any degradation in AC CMRR.  
To reduce the effect of these out-of-band signals on the  
input offset voltage of the LT6372-1 further, an additional  
external low-pass filter can be used at the inputs. The  
filter should be located very close to the input pins of  
the circuit. An effective filter configuration is illustrated  
in Figure 9, where three capacitors have been added to  
the inputs of the LT6372-1.  
ꢊꢊ  
R
R
ꢓꢌ  
ꢓꢌ  
ꢏꢐꢑ  
ꢕꢑꢂꢃꢄꢅꢆꢇ  
R
Rꢁꢈꢇꢜꢅ  
ꢂꢃꢄꢅꢆꢇ ꢈ0ꢉ  
ꢁꢁ  
Figure 8. Input Protection  
Maintaining AC CMRR  
To achieve optimum AC CMRR, it is important to balance  
the capacitance on the R gain setting pins. Furthermore,  
if the source resistance Gon each input is not equal, add-  
ing an additional resistance to one input to improve input  
source resistance matching will improve AC CMRR.  
The filter limits the input signal according to the following  
relationship:  
1
FilterFreqDIFF  
=
2πR(2CD +CC)  
RFI Reduction/Internal RFI Filter  
1
FilterFreqCM  
=
2πRCC  
In many industrial and data acquisition applications, the  
LT6372-1 will be used to amplify small signals accurately  
in the presence of large common mode voltages or high  
levels of noise. Typically, the sources of these very small  
signals (on the order of microvolts or millivolts) are sen-  
sors that can be a significant distance from the signal  
conditioning circuit. Although these sensors may be con-  
nected to signal conditioning circuitry using shielded or  
unshielded twisted-pair cabling, the cabling may act as  
an antenna, conveying very high frequency interference  
directly into the input stage of the LT6372-1.  
where C ≥10C .  
D
C
C affects the difference signal. C affects the common-  
D
C
mode signal. Any mismatch in R × CC degrades the  
LT6372-1 CMRR. To avoid inadvertently reducing CMRR-  
bandwidth performance, make sure that C is at least one  
C
magnitude smaller than C .The effect of mismatched C s  
is reduced with a larger CD:C ratio.  
C
D
C
Rev. 0  
22  
For more information www.analog.com  
LT6372-1  
APPLICATIONS INFORMATION  
1. Pick R and C to have a low pass pole at least 10x  
D
+
higher than the highest signal of interest (e.g. 500Hz for  
V
C
R
1.54k  
C
10n  
a 50Hz signal) using:  
+
+
IN  
1
FilterFreqDIFF  
=
C
D
100n  
2πR(2CD +CC)  
R
G
LT6372-1  
V
OUT  
1
R
=
1.54k  
2πR(2CD +0.1CD)  
IN  
C
C
1
10n  
V
=
f
≈ 500Hz  
6372-1 F09  
3dB  
4.2πRCD  
EXTERNAL RFI  
FILTER  
2. Select C = C /10.  
C
D
Figure 9. Adding a Simple External RC Filter at the Inputs to  
an Instrumentation Amplifier Is Effective in Further Reducing  
Rectification of High Frequency Out-Of-Band Signals  
If implemented this way, the common-mode pole fre-  
quency is placed about 20x higher than the differential  
pole frequency. Here are the differential and common-  
mode low pass pole frequencies for the values shown in  
Figure 9:  
To avoid any possibility of common mode to differential  
mode signal conversion, match the common mode low-  
pass filter on each input to 1% or better. Here are the steps  
to help determine appropriate values for the filter:  
FilterFreq  
= 500Hz  
DIFF  
FilterFreq = 10kHz  
CM  
Rev. 0  
23  
For more information www.analog.com  
LT6372-1  
APPLICATIONS INFORMATION  
Error Budget Analysis  
intsrumentation amplifiers as shown in Figure 11 requires  
external precison components which decrease accu-  
racy, increase cost and occupy valuable PCB space. The  
error budget in Table 2 shows the total system error of a  
LT6372-1 used as a bridge amplifier.  
The LT6372-1 features a split reference configuration pro-  
viding a convenient and effective way to interface a bipolar  
swing to an ADC input without additional precision com-  
ponents. Performing the same level shift with traditional  
+
5V REF  
+
10V  
10V  
350Ω  
350Ω  
REF2  
LT6372-1  
REF1  
350Ω  
350Ω  
350Ω  
R
R
G
G
LT6370A  
REF  
243Ω  
243Ω  
5V REF  
R1  
350Ω  
350Ω  
350Ω  
+
6372-1 F11  
R2  
6372-1 F10  
LT6370A MONOLITHIC  
INSTRUMENTATION AMPLIFIER  
G = 100, R 0ꢀ1ꢁ, 10ꢂꢂp TC  
PRECISION BRIDGE TRANSDUCER  
LT6370A MONOLITHIC  
PRECISION BRIDGE TRANSDUCER  
INSTRUMENTATION AMPLIFIER  
=
G = 100, R  
= 0ꢀ1ꢁ, 10ꢂꢂp TC  
G
G
Figure 10. Precision Bridge Amplifier Using LT6372-1  
Figure 11. Precision Bridge Amplifier with External Level Shift  
Table 2. Error Budget  
ERROR SOURCE  
ERROR, ppm OF FULL SCALE  
LT6372-1  
CALCULATION  
°
Absolute Accuracy at T = 25 C  
A
2200  
3000  
137.5  
12.25  
250  
Gain Error, %  
Gain Error in % • 10k + 1000  
Input Offset Voltage, µV  
Output Offset Voltage, µV  
Input Offset Current, nA  
CMRR, dB  
V
/20mV  
OSI  
[V /100]/20mV  
OSO  
[(I )(350)/2]/20mV  
OS  
[(CMRR in ppm)(5V)/20mV  
Total Accuracy Error  
Total Drift Error  
5599.75  
Drift to 85°C  
2700  
1800  
120  
Gain Drift, ppm/°C  
(Gain Drift + 10ppm/°C)(60°C)  
Input Offset Voltage Drift, µV/°C  
Output Offset Voltage Drift, µV/°C  
[(V Drift)(60°C)]/20mV  
OSI  
[(V  
Drift)(60°C)]/100/20mV  
OSO  
4620  
Resolution  
Gain Nonlinearity, ppm of Full Scale  
Typ 0.1Hz to 10Hz Voltage Noise, µV  
50  
10  
(0.1Hz to 10Hz Noise)/20mV  
P-P  
Total Resolution Error  
Grand Total Error  
60  
10279.75  
G = 100  
All errors are min/max and referred to input.  
Rev. 0  
24  
For more information www.analog.com  
LT6372-1  
TYPICAL APPLICATIONS  
Differential Output Instrumentation Amplifier  
AC Coupled Instrumentation Amplifier  
+V  
S
ꢀꢄ  
+
+IN  
–IN  
ꢀꢁꢂ  
R
LT6372-1  
REF1,2  
OUTPUT  
G
R
ꢀꢆꢇꢈ  
ꢉꢊꢋꢌꢍꢎ  
Rꢐꢑꢎꢒꢌ  
R1  
500k  
ꢎ0ꢖ  
ꢎ0ꢖ  
C1  
0.3µF  
ꢓꢁꢏꢅ  
ꢃꢁꢂ  
ꢎꢌꢕꢑ  
–V  
S
+
ꢃꢄ  
ꢗꢌ0ꢘꢋ  
1
LTC2057  
f
=
–3dB  
(2π)(R1)(C1)  
= 1.06Hz  
ꢃꢆꢇꢈ  
ꢉꢊꢋꢌꢍꢎ ꢈꢏ0ꢌ  
6372-1 TA03  
Precision Voltage-to-Current Converter  
V
S
+
+IN  
R
X
LT6372-1  
R
G
REF1,2  
V
+
X
–IN  
I
L
–V  
S
LTC2057  
V
R
[(+IN) – (–IN)]G  
X
I
=
=
L
R
X
X
LOAD  
24.2kΩ  
G =  
+ 1  
R
G
6372-1 TA04  
High Side, Bidirectional Current Sense  
I
L
= 2A  
R
SENSE  
0.05Ω  
V
BUS  
V
> –12V  
BUS  
BUS  
V
< 11V  
+V  
S
LOAD  
+
R
!
$
&
%
24.2k  
RG  
G
LT6372-1  
V
OUT =IL •RSENSE • 1+  
#
499Ω  
REF1,2  
"
=2.5V / A  
6372-1 TA05  
–V  
S
Rev. 0  
25  
For more information www.analog.com  
LT6372-1  
PACKAGE DESCRIPTION  
UDC Package  
20-Lead Plastic QFN (3mm × 4mm)  
ꢟReꢩeꢪeꢫꢬe ꢕꢈꢑ ꢊꢌꢎ ꢭ 0ꢂꢮ0ꢯꢮꢁꢤꢅꢖ Rev ꢨꢠ  
0.ꢤ0 ±0.0ꢂ  
ꢀ.ꢂ0 ±0.0ꢂ  
ꢖ.ꢁ0 ±0.0ꢂ  
ꢖ.ꢞꢂ ±0.0ꢂ  
ꢁ.ꢂ0 Rꢃꢄ  
ꢁ.ꢞꢂ ±0.0ꢂ  
ꢒꢋꢑꢓꢋꢎꢃ ꢇꢔꢈꢕꢍꢆꢃ  
0.ꢖꢂ ±0.0ꢂ  
0.ꢂ0 ꢙꢏꢑ  
ꢖ.ꢂ0 Rꢃꢄ  
ꢀ.ꢁ0 ±0.0ꢂ  
ꢅ.ꢂ0 ±0.0ꢂ  
Rꢃꢑꢇꢗꢗꢃꢆꢊꢃꢊ ꢏꢇꢕꢊꢃR ꢒꢋꢊ ꢒꢍꢈꢑꢚ ꢋꢆꢊ ꢊꢍꢗꢃꢆꢏꢍꢇꢆꢏ  
ꢋꢒꢒꢕꢝ ꢏꢇꢕꢊꢃR ꢗꢋꢏꢓ ꢈꢇ ꢋRꢃꢋꢏ ꢈꢚꢋꢈ ꢋRꢃ ꢆꢇꢈ ꢏꢇꢕꢊꢃRꢃꢊ  
ꢒꢍꢆ ꢁ ꢆꢇꢈꢑꢚ  
R ꢥ 0.ꢖ0 ꢇR 0.ꢖꢂ  
× ꢅꢂ° ꢑꢚꢋꢗꢄꢃR  
0.ꢤꢂ ±0.0ꢂ  
ꢁ.ꢂ0 Rꢃꢄ  
ꢁꢡ ꢖ0  
R ꢥ 0.0ꢂ ꢈꢝꢒ  
ꢀ.00 ±0.ꢁ0  
0.ꢅ0 ±0.ꢁ0  
ꢒꢍꢆ ꢁ  
ꢈꢇꢒ ꢗꢋRꢓ  
ꢟꢆꢇꢈꢃ ꢞꢠ  
ꢖ.ꢞꢂ ±0.ꢁ0  
ꢁ.ꢞꢂ ±0.ꢁ0  
ꢅ.00 ±0.ꢁ0  
ꢖ.ꢂ0 Rꢃꢄ  
ꢟꢔꢊꢑꢖ0ꢠ ꢧꢄꢆ ꢁꢁ0ꢞ Rꢃꢢ ꢨ  
0.ꢖ00 Rꢃꢄ  
0.00 ꢦ 0.0ꢂ  
0.ꢖꢂ ±0.0ꢂ  
R ꢥ 0.ꢁꢁꢂ  
ꢈꢝꢒ  
0.ꢂ0 ꢙꢏꢑ  
ꢙꢇꢈꢈꢇꢗ ꢢꢍꢃꢌꢣꢃꢘꢒꢇꢏꢃꢊ ꢒꢋꢊ  
ꢆꢇꢈꢃꢉ  
ꢁ. ꢊRꢋꢌꢍꢆꢎ ꢍꢏ ꢆꢇꢈ ꢋ ꢐꢃꢊꢃꢑ ꢒꢋꢑꢓꢋꢎꢃ ꢇꢔꢈꢕꢍꢆꢃ  
ꢖ. ꢊRꢋꢌꢍꢆꢎ ꢆꢇꢈ ꢈꢇ ꢏꢑꢋꢕꢃ  
ꢀ. ꢋꢕꢕ ꢊꢍꢗꢃꢆꢏꢍꢇꢆꢏ ꢋRꢃ ꢍꢆ ꢗꢍꢕꢕꢍꢗꢃꢈꢃRꢏ  
ꢅ. ꢊꢍꢗꢃꢆꢏꢍꢇꢆꢏ ꢇꢄ ꢃꢘꢒꢇꢏꢃꢊ ꢒꢋꢊ ꢇꢆ ꢙꢇꢈꢈꢇꢗ ꢇꢄ ꢒꢋꢑꢓꢋꢎꢃ ꢊꢇ ꢆꢇꢈ ꢍꢆꢑꢕꢔꢊꢃ  
ꢗꢇꢕꢊ ꢄꢕꢋꢏꢚ. ꢗꢇꢕꢊ ꢄꢕꢋꢏꢚꢛ ꢍꢄ ꢒRꢃꢏꢃꢆꢈꢛ ꢏꢚꢋꢕꢕ ꢆꢇꢈ ꢃꢘꢑꢃꢃꢊ 0.ꢁꢂꢜꢜ ꢇꢆ ꢋꢆꢝ ꢏꢍꢊꢃ  
ꢂ. ꢃꢘꢒꢇꢏꢃꢊ ꢒꢋꢊ ꢏꢚꢋꢕꢕ ꢙꢃ ꢏꢇꢕꢊꢃR ꢒꢕꢋꢈꢃꢊ  
ꢞ. ꢏꢚꢋꢊꢃꢊ ꢋRꢃꢋ ꢍꢏ ꢇꢆꢕꢝ ꢋ RꢃꢄꢃRꢃꢆꢑꢃ ꢄꢇR ꢒꢍꢆ ꢁ ꢕꢇꢑꢋꢈꢍꢇꢆ  
ꢇꢆ ꢈꢚꢃ ꢈꢇꢒ ꢋꢆꢊ ꢙꢇꢈꢈꢇꢗ ꢇꢄ ꢒꢋꢑꢓꢋꢎꢃ  
Rev. 0  
26  
For more information www.analog.com  
LT6372-1  
PACKAGE DESCRIPTION  
MSE Package  
16-Lead Plastic MSOP, Exposed Die Pad  
(Reference LTC DWG # 05-08-1667 Rev F)  
BOTTOM VIEW OF  
EXPOSED PAD OPTION  
2.845 ±0.102  
(.112 ±.004)  
2.845 ±0.102  
(.112 ±.004)  
0.889 ±0.127  
(.035 ±.005)  
1
8
0.35  
REF  
5.10  
(.201)  
MIN  
1.651 ±0.102  
(.065 ±.004)  
1.651 ±0.102  
(.065 ±.004)  
3.20 – 3.45  
(.126 – .136)  
0.12 REF  
DETAIL “B”  
CORNER TAIL IS PART OF  
THE LEADFRAME FEATURE.  
FOR REFERENCE ONLY  
DETAIL “B”  
16  
9
0.305 ±0.038  
0.50  
(.0197)  
BSC  
NO MEASUREMENT PURPOSE  
4.039 ±0.102  
(.159 ±.004)  
(NOTE 3)  
(.0120 ±.0015)  
TYP  
0.280 ±0.076  
(.011 ±.003)  
RECOMMENDED SOLDER PAD LAYOUT  
16151413121110  
9
REF  
DETAIL “A”  
0° – 6° TYP  
0.254  
(.010)  
3.00 ±0.102  
(.118 ±.004)  
(NOTE 4)  
4.90 ±0.152  
(.193 ±.006)  
GAUGE PLANE  
0.53 ±0.152  
(.021 ±.006)  
1 2 3 4 5 6 7 8  
DETAIL “A”  
0.86  
(.034)  
REF  
1.10  
(.043)  
MAX  
0.18  
(.007)  
SEATING  
PLANE  
0.17 – 0.27  
(.007 – .011)  
TYP  
0.1016 ±0.0508  
(.004 ±.002)  
MSOP (MSE16) 0213 REV F  
0.50  
(.0197)  
BSC  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
6. EXPOSED PAD DIMENSION DOES INCLUDE MOLD FLASH. MOLD FLASH ON E-PAD SHALL  
NOT EXCEED 0.254mm (.010") PER SIDE.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog  
Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications  
27  
subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
LT6372-1  
TYPICAL APPLICATION  
Programmable Gain Amplifier  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ  
ꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁꢂꢃꢃꢄ  
ꢀꢁꢁ ꢀꢁꢂ ꢀꢁꢁ  
ꢀ.ꢁꢂ  
Rꢀ  
ꢀꢁ0ꢂ  
Rꢀꢁ  
Rꢀꢁ  
Rꢀꢁ  
ꢀ.ꢀꢁ  
ꢀꢁ  
ꢀꢁ.ꢂ  
ꢀꢀꢁ  
ꢀꢁ  
ꢀꢁ  
0.ꢀꢁꢂ  
Rꢀ  
ꢀ00ꢁ  
Rꢀ  
ꢀ00ꢁ  
Rꢀ  
ꢀ00ꢁ  
Rꢀ  
ꢀ00ꢁ  
ꢀꢁꢂꢃꢀ  
ꢀꢁ  
ꢀꢁꢂ  
Rꢀ  
ꢀꢁ0  
Rꢀ  
ꢀꢁ0  
ꢀRꢁꢂ  
ꢀꢁ0ꢂ  
Rꢀ  
ꢀRꢁꢂ  
ꢀꢁ  
ꢂꢃꢄꢅꢆꢇ  
ꢀꢁ ꢂꢃꢄꢅꢂꢆꢇ  
ꢀꢁ.ꢂ  
ꢀRꢁꢂ  
Rꢀꢁꢂ  
Rꢀ  
Rꢀ  
ꢀꢁ0  
ꢀRꢁꢂ  
ꢀ0ꢁ ꢂꢃꢄꢄ ꢃꢅꢆꢇꢈꢉ  
ꢀꢁꢂ  
Rꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ0  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ0ꢂ  
ꢀꢁ  
ꢀꢁꢂꢃ ꢄeꢅeꢆꢇ  
ꢀꢁꢂꢃꢄꢅ  
Rꢀꢁ  
Rꢀꢁ  
Rꢀꢁ  
ꢀꢁ.ꢂ  
ꢀ.ꢀꢁ  
ꢀꢀꢁ  
ꢀꢁ  
ꢀꢁꢂꢃꢄꢅ ꢆꢇ ꢆ0ꢇ  
ꢀ00ꢁ ꢂꢃꢄ ꢅ00ꢆꢇꢆ  
ꢀꢁ  
ꢀꢁ0ꢂ  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ  
ꢀꢁꢁ ꢀꢁꢂ ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁꢂꢃꢃꢄ  
ꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
0
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
Instrumentation Amplifiers  
AD8429  
LT6372-0.2  
LT6370  
Low Noise Instrumentation Amplifier  
Low Drift Instrumentation Amplifier  
Low Drift Instrumentation Amplifier  
Zero-Drift Instrumentation Amplifier  
Low Noise Instrumentation Amplifier  
Low Power Instrumentation Amplifier  
Instrumentation Amplifier  
V = 36V, I = 6.7mA, V = 50µV, BW = 15MHz, eni = 1nV/√Hz, eno = 45nV/√Hz  
S S OS  
LT6372-1 with Min Gain = 0.2V/V  
V = 30V, I = 2.65mA, V = 25µV, BW = 3.1MHz, eni = 7nV/√Hz, eno = 65nV/√Hz  
S
S
OS  
LTC1100  
AD8421  
AD8221  
LT1167  
V = 18V, I = 2.4mA, V = 10μV, BW = 19kHz, 1.9µV DC to 10Hz  
S S OS P-P  
V = 36V, I = 2mA, V = 25μV, BW = 10MHz, eni = 3nV/√Hz, eno = 60nV/√Hz  
S
S
OS  
V = 36V, I = 900μA, V = 25μV, BW = 825kHz, eni = 8nV/√Hz, eno = 75nV/√Hz  
S
S
OS  
V = 36V, I = 900μA, V = 40μV, BW = 1MHz, eni = 7.5nV/√Hz, eno = 67nV/√Hz  
S
S
OS  
AD620  
Low Power Instrumentation Amplifier  
RRIO Instrumentation Amplifier  
V = 36V, I = 900μA, V = 50μV, BW = 1MHz, eni = 9nV/√Hz, eno = 72nV/√Hz  
S S OS  
LTC6800  
LTC2053  
LT1168  
V = 5.5V, I = 800μA, V = 100μV, BW = 200kHz, 2.5µV DC to 10Hz  
S S OS P-P  
Zero-Drift Instrumentation Amplifier  
Low Power Instrumentation Amplifier  
V = 11V, I = 750μA, V = 10μV, BW = 200kHz, 2.5µV DC to 10Hz  
S S OS P-P  
V = 36V, I = 350μA, V = 40μV, BW = 400kHz, eni = 10nV/√Hz, eno = 165nV/√Hz  
S
S
OS  
Operational Amplifiers  
LTC2057  
40V Zero Drift Op Amp  
V
OS  
= 4μV, Drift = 15nV/°C, I = 200pA, I = 900μA  
B S  
Analog to Digital Converters  
LTC2389-16  
LTC2367-16  
16-Bit SAR ADC  
16-Bit SAR ADC  
2.5Msps, 96dB SNR, 162.5mW  
500Ksps, 94.7dB SNR, 6.8mW  
Rev. 0  
10/20  
www.analog.com  
ANALOG DEVICES, INC. 2020  
28  

相关型号:

LT6372-0.2

Precision Instrumentation Amplifier with Level Shift and Output Clamping
ADI

LT6372-1

Precision Instrumentation Amplifier with Level Shift and Output Clamping
ADI

LT6372HMSE-1

Precision Instrumentation Amplifier with Level Shift and Output Clamping
ADI

LT6372HUDC-1

Precision Instrumentation Amplifier with Level Shift and Output Clamping
ADI

LT6372IMSE-1

Precision Instrumentation Amplifier with Level Shift and Output Clamping
ADI

LT6372IUDC-1

Precision Instrumentation Amplifier with Level Shift and Output Clamping
ADI

LT6375AHDF#TRPBF

LT6375 - ±270V Common Mode Voltage Difference Amplifier; Package: DFN; Pins: 14; Temperature Range: -40&deg;C to 125&deg;C
Linear

LT6375HDF#TRPBF

LT6375 - ±270V Common Mode Voltage Difference Amplifier; Package: DFN; Pins: 14; Temperature Range: -40&deg;C to 125&deg;C
Linear

LT6376HDF#TRPBF

LT6376 - ±230V Common Mode Voltage G = 10 Difference Amplifier; Package: DFN; Pins: 14; Temperature Range: -40&deg;C to 125&deg;C
Linear

LT63H-SERIES

Optoelectronic
ETC

LT63HXX-SERIES

Optoelectronic
ETC

LT6402-12

1.3GHz Low Noise, Low Distortion Differential ADC Driver for 140MHz IF
Linear