LT6376HDF#TRPBF [Linear]

LT6376 - ±230V Common Mode Voltage G = 10 Difference Amplifier; Package: DFN; Pins: 14; Temperature Range: -40°C to 125°C;
LT6376HDF#TRPBF
型号: LT6376HDF#TRPBF
厂家: Linear    Linear
描述:

LT6376 - ±230V Common Mode Voltage G = 10 Difference Amplifier; Package: DFN; Pins: 14; Temperature Range: -40°C to 125°C

放大器 光电二极管
文件: 总30页 (文件大小:2998K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT6376  
230V Common Mode  
Voltage G = 10 Difference Amplifier  
FEATURES  
DESCRIPTION  
The LT®6376 is a gain of 10 difference amplifier which  
combines excellent DC precision, a very high input  
common mode range and a wide supply voltage range.  
It includes a precision op amp and a highly-matched  
thin film resistor network. It features excellent CMRR,  
extremely low gain error and extremely low gain drift.  
n
230V Common Mode Voltage Range  
n
105nV/√Hz Input Referred Noise (Resistor  
Divider = 3.1)  
90dB Minimum CMRR  
n
n
0.0075% (75ppm) Maximum Gain Error  
n
1ppm/°C Maximum Gain Error Drift  
n
2ppm Maximum Gain Nonlinearity  
Comparing the LT6376 to existing difference amplifiers  
with high common mode voltage range, the gain of 10  
and selectable resistor divider ratios of the LT6376 offer  
superior system performance by allowing the user to  
achieve low input referred noise with maximum preci-  
sion and speed.  
The op amp at the core of the LT6376 has Over-The-Top®  
protected inputs which allow for robust operation in envi-  
ronments with unpredictable voltage conditions. See the  
Applications Information section for more details.  
n
Wide Supply Voltage Range: 3.3V to 50V  
n
Rail-to-Rail Output  
350µA Supply Current  
n
n
Selectable Internal Resistor Divider Ratio  
200µV Maximum Input Offset Voltage  
n
n
300kHz –3dB Bandwidth (Resistor Divider = 3.1)  
160kHz –3dB Bandwidth (Resistor Divider = 10.3)  
–40°C to 125°C Specified Temperature Range  
Low Power Shutdown: 20μA (DFN Package Only)  
Space-Saving MSOP and DFN Packages  
n
n
n
n
The LT6376 is specified over the –40°C to 125°C tem-  
perature range and is available in space-saving MSOP16  
and DFN14 packages.  
APPLICATIONS  
n
High Side or Low Side Current Sensing  
n
Bidirectional Wide Common Mode Range Current Sensing  
All registered trademarks and trademarks are the property of their respective owners.  
n
High Voltage to Low Voltage Level Translation  
n
Precision Difference Amplifier  
n
Replacement for Isolation Circuits  
TYPICAL APPLICATION  
Precision Wide Voltage Range, Bidirectional Current Monitor  
Typical Distribution of CMRR  
25V  
ꢀꢁꢂ  
ꢀꢁꢁ  
ꢀꢁ  
6ꢀ  
ꢀꢁ  
ꢀꢁ  
+
V
63ꢀ ꢁꢂꢃꢄꢅ  
ꢀꢁꢂꢃ ꢄꢅꢂ ꢁꢆꢇꢈ  
DF14(12)  
ꢀꢁ  
ꢁꢂꢃ  
–REFA  
±9k  
–REFB  
38k  
–REFC  
23.75k  
ꢁꢂ3ꢃ  
ꢀꢁꢂ ꢃ ꢄꢅꢆ3  
760k  
+
V
= –230V TO 230V  
SOURCE  
76k  
–IN  
+IN  
+
R
OUT  
REF  
SENSE  
R
±Ω  
C
V
OUT  
= ±±0ꢀV/ꢀA  
±Ω  
76k  
LOAD  
760k  
±9k  
+REFA  
38k  
23.75k  
+REFC  
ꢀꢁꢂ ꢀ3ꢁ ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁ ꢀꢁ 3ꢀ ꢀꢁ  
+REFB  
SHDN  
V
ꢀꢁꢂꢂ ꢃꢄꢅꢆꢅ ꢇ ꢈꢈꢉꢊ  
6376 TA0±a  
6376 ꢀꢁꢂꢃꢄ  
–25V  
6376f  
1
For more information www.linear.com/LT6376  
LT6376  
ABSOLUTE MAXIMUM RATINGS  
(Note 1)  
Output Short-Circuit Duration (Note 3) Thermally Limited  
Temperature Range (Notes 4, 5)  
LT6376I ...............................................–40°C to 85°C  
LT6376H............................................ –40°C to 125°C  
Storage Temperature Range .................. –65°C to 150°C  
MSOP Lead Temperature (Soldering, 10 sec)........300°C  
Supply Voltages  
(V to V )..............................................................60V  
+IN, –IN, (Note 2)  
Each Input......................................................... 240V  
Differential........................................................ 480V  
+REFA, –REFA, +REFB, –REFB, +REFC, –REFC,  
+
+
REF, SHDN (Note 2) ................ (V + 0.3V) to (V –0.3V)  
Output Current (Continuous) (Note 6)....................50mA  
PIN CONFIGURATION  
ꢐꢎꢕ ꢍꢄꢇꢖ  
TOP VIEW  
ꢃꢄꢅ  
ꢀꢁ ꢌꢄꢅ  
1
3
+IN  
16 –IN  
+REFA  
14 –REFA  
12 –REFB  
ꢃꢆꢇꢈꢉ  
ꢃꢆꢇꢈꢊ  
ꢃꢆꢇꢈꢋ  
ꢆꢇꢈ  
3
6
7
ꢀꢑ ꢌꢆꢇꢈꢉ  
ꢀꢀ ꢌꢆꢇꢈꢊ  
5
6
7
8
+REFB  
+REFC  
REF  
ꢀꢂ ꢍ  
11 –REFC  
+
ꢀꢒ ꢌꢆꢇꢈꢋ  
10  
9
V
V
OUT  
MS PACKAGE  
SHDN  
ꢎꢏꢐ  
VARIATION: MS16 (12)  
16-LEAD PLASTIC MSOP  
T
= 150°C, qJA = 130°C/W  
JMAX  
ꢗꢈ ꢕꢉꢋꢘꢉꢙꢇ  
ꢀꢁꢚꢀꢑꢛꢜꢝꢇꢉꢗ ꢚꢁꢞꢞ × ꢁꢞꢞꢛ ꢕꢝꢉꢟꢐꢄꢋ ꢗꢈꢅ  
T
= 150°C, qJA = 43°C/W, qJC = 4°C/W  
JMAX  
EXPOSED PAD (PIN 15) IS V , MUST BE SOLDERED TO PCB  
http://www.linear.com/product/LT6376#orderinfo  
ORDER INFORMATION  
TUBE  
TAPE AND REEL  
PART MARKING*  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
–40°C to 85°C  
LT6376IDF#PBF  
LT6376HDF#PBF  
LT6376IMS#PBF  
LT6376HMS#PBF  
LT6376IDF#TRPBF  
LT6376HDF#TRPBF  
LT6376IMS#TRPBF  
LT6376HMS#TRPBF  
6376  
6376  
6376  
6376  
14-Lead (4mm × 4mm) Plastic DFN  
14-Lead (4mm × 4mm) Plastic DFN  
16-Lead Plastic MSOP  
–40°C to 125°C  
–40°C to 85°C  
16-Lead Plastic MSOP  
–40°C to 125°C  
*The temperature grade is identified by a label on the shipping container.  
Consult ADI Marketing for parts specified with wider operating temperature ranges. Parts ending with PBF are RoHS and WEEE compliant.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/. Some packages are available in 500 unit reels through  
designated sales channels with #TRMPBF suffix.  
6376f  
2
For more information www.linear.com/LT6376  
LT6376  
The l denotes the specifications which apply over the full operating  
ELECTRICAL CHARACTERISTICS  
temperature range, –40°C < TA < 85°C for I-grade parts, –40°C < TA < 125°C for H-grade parts, otherwise specifications are at TA = 25°C,  
V+ = 15V, V= –15V, VCM = VOUT = VREF = 0V. VCMOP is the common mode voltage of the internal op amp. For Resistor Divider  
Ratio = 3.1, ±REFA = ± REFC = OPEN, ±REFB = 0V. For Resistor Divider Ratio = 8.3, ±REFA = ±REFC = 0V, ±REFB = OPEN. For Resistor  
Divider Ratio = 10.3, ±REFA = ±REFB = ±REFC = 0V.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
10  
MAX  
UNITS  
G
Gain  
V
V
=
=
10V  
10V  
V/V  
OUT  
OUT  
∆G  
Gain Error,  
MS16 Package  
0.002  
0.0075  
0.0085  
%
%
l
∆G  
Gain Error,  
V
V
V
=
=
=
10V  
10V  
10V  
0.002  
0.2  
1
0.0085  
0.0095  
%
%
OUT  
OUT  
l
l
DF14 Package  
∆G/∆T  
GNL  
Gain Drift vs Temperature  
(Note 6)  
1
ppm/°C  
Gain Nonlinearity  
2
3
ppm  
ppm  
OUT  
l
+
V
Input Offset Voltage  
V < V  
< V –1.75V  
CMOP  
OS  
Resistor Divider Ratio = 3.1  
Resistor Divider Ratio = 3.1  
Resistor Divider Ratio = 8.3  
Resistor Divider Ratio = 8.3  
Resistor Divider Ratio = 10.3  
Resistor Divider Ratio = 10.3  
50  
200  
600  
µV  
µV  
µV  
µV  
µV  
µV  
l
l
l
120  
160  
500  
1600  
600  
2000  
+
∆V /∆T  
OS  
Input Offset Voltage Drift  
(Note 6)  
V < V  
< V –1.75V  
CMOP  
l
l
Resistor Divider Ratio = 3.1  
Resistor Divider Ratio = 10.3  
1.5  
5
4
12  
µV/°C  
µV/°C  
R
Input Impedance (Note 8)  
Common Mode  
IN  
l
l
l
l
Resistor Divider Ratio = 3.1  
Resistor Divider Ratio = 8.3  
Resistor Divider Ratio = 10.3  
Differential  
47  
36  
56  
43  
65  
50  
kΩ  
kΩ  
kΩ  
kΩ  
35  
42  
49  
128  
152  
176  
CMRR  
CMRR  
Common Mode Rejection Ratio,  
MS16 Package  
Resistor Divider Ratio = 3.1, V  
=
=
28V  
28V  
90  
88  
98  
98  
98  
95  
95  
95  
96  
96  
dB  
dB  
CM  
l
l
l
l
l
l
l
Resistor Divider Ratio = 8.3, V  
90  
88  
dB  
dB  
CM  
Resistor Divider Ratio = 10.3, V  
=
28V  
90  
88  
dB  
dB  
CM  
Common Mode Rejection Ratio,  
DF14 Package  
Resistor Divider Ratio = 3.1, V  
=
=
28V  
28V  
88  
86  
dB  
dB  
CM  
CM  
Resistor Divider Ratio = 8.3, V  
88  
86  
dB  
dB  
Resistor Divider Ratio = 10.3, V  
Resistor Divider Ratio = 10.3, V  
=
=
=
28V  
88  
86  
dB  
dB  
CM  
150V,  
230V,  
90  
86  
dB  
dB  
CM  
V = 25V, T = –40°C to 125°C  
S
A
Resistor Divider Ratio = 10.3, V  
90  
89  
dB  
dB  
CM  
l
l
V = 25V, T = –40°C to 85°C  
S
A
V
Input Voltage Range (Note 7)  
–230  
230  
V
CM  
PSRR  
Power Supply Rejection Ratio  
(Input Referred)  
V = 1.65V to 25V, V = V  
= Mid-Supply  
OUT  
S
CM  
l
l
l
Resistor Divider Ratio = 3.1  
Resistor Divider Ratio = 8.3  
105  
98  
96  
120  
110  
107  
dB  
dB  
dB  
Resistor Divider Ratio = 10.3  
e
Input Referred Noise Voltage  
Density  
f = 1kHz  
Resistor Divider Ratio = 3.1  
Resistor Divider Ratio = 10.3  
ni  
105  
245  
nV/√Hz  
nV/√Hz  
6376f  
3
For more information www.linear.com/LT6376  
LT6376  
The l denotes the specifications which apply over the full operating  
ELECTRICAL CHARACTERISTICS  
temperature range, –40°C < TA < 85°C for I-grade parts, –40°C < TA < 125°C for H-grade parts, otherwise specifications are at TA = 25°C,  
V+ = 15V, V= –15V, VCM = VOUT = VREF = 0V. VCMOP is the common mode voltage of the internal op amp. For Resistor Divider  
Ratio = 3.1, ±REFA = ± REFC = OPEN, ±REFB = 0V. For Resistor Divider Ratio = 8.3, ±REFA = ±REFC = 0V, ±REFB = OPEN. For Resistor  
Divider Ratio = 10.3, ±REFA = ±REFB = ±REFC = 0V.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Input Referred Noise Voltage  
f = 0.1Hz to 10Hz  
Resistor Divider Ratio = 3.1  
Resistor Divider Ratio = 10.3  
4
10  
µV  
µV  
P-P  
P-P  
l
l
V
V
Output Voltage Swing Low  
No Load  
SINK  
5
50  
mV  
mV  
OL  
OH  
(Referred to V )  
I
= 5mA  
280  
500  
l
l
Output Voltage Swing High  
No Load  
SOURCE  
5
400  
20  
750  
mV  
mV  
+
(Referred to V )  
I
= 5mA  
+
l
l
I
Short-Circuit Output Current  
50Ω to V  
50Ω to V  
10  
10  
28  
30  
mA  
mA  
SC  
l
SR  
Slew Rate  
∆V  
=
5V  
2.2  
4.1  
V/µs  
OUT  
BW  
Small Signal –3dB Bandwidth  
Resistor Divider Ratio = 3.1  
Resistor Divider Ratio = 8.3  
Resistor Divider Ratio = 10.3  
300  
190  
160  
kHz  
kHz  
kHz  
t
Settling Time  
Resistor Divider Ratio = 3.1  
S
0.01%, ∆V  
= 10V  
41  
26  
15  
µs  
µs  
µs  
OUT  
OUT  
0.1%, ∆V  
= 10V  
0.01%, ∆V = 10V, ∆V  
= 0V  
= 0V  
CM  
DIFF  
Resistor Divider Ratio = 10.3  
0.01%, ∆V = 10V  
26  
16  
5
µs  
µs  
µs  
OUT  
OUT  
0.1%, ∆V  
= 10V  
0.01%, ∆V = 10V, ∆V  
CM  
DIFF  
V
Supply Voltage  
3
3.3  
50  
50  
V
V
S
l
t
Turn-On Time  
16  
µs  
V
ON  
l
l
l
V
SHDN Input Logic Low  
(Referred to V )  
–2.5  
IL  
+
V
SHDN Input Logic High  
(Referred to V )  
–1.2  
V
IH  
+
I
I
SHDN Pin Current  
–10  
350  
–15  
µA  
SHDN  
+
+
Supply Current  
Active, V  
Active, V  
≥ V –1.2V  
400  
600  
25  
µA  
µA  
µA  
µA  
S
SHDN  
SHDN  
Shutdown, V  
Shutdown, V  
l
l
≥ V –1.2V  
+
+
≤ V –2.5V  
≤ V –2.5V  
20  
SHDN  
SHDN  
70  
6376f  
4
For more information www.linear.com/LT6376  
LT6376  
The l denotes the specifications which apply over the full operating  
ELECTRICAL CHARACTERISTICS  
temperature range, –40°C < TA < 85°C for I-grade parts, –40°C < TA < 125°C for H-grade parts, otherwise specifications are at TA = 25°C,  
V+ = 5V, V= 0V, VCM = VOUT = VREF = Mid-Supply. VCMOP is the common mode voltage of the internal op amp. For Resistor  
Divider Ratio = 3.1, ±REFA = ±REFC = OPEN, ±REFB = Mid-Supply. For Resistor Divider Ratio = 8.3, ±REFA = ±REFC = Mid-Supply,  
±REFB = OPEN. For Resistor Divider Ratio = 10.3, ±REFA = ±REFB = ±REFC = Mid-Supply.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
10  
MAX  
UNITS  
G
Gain  
V
OUT  
V
OUT  
= 1V to 4V  
= 1V to 4V  
V/V  
∆G  
Gain Error,  
MS16 Package  
0.002  
0.01  
0.012  
%
%
l
∆G  
Gain Error,  
V
OUT  
V
OUT  
V
OUT  
= 1V to 4V  
= 1V to 4V  
0.002  
0.2  
1
0.012  
0.013  
%
%
l
l
DF14 Package  
∆G/∆T  
Gain Drift vs Temperature  
(Note 6)  
1
ppm/°C  
GNL  
Gain Nonlinearity  
= 1V to 4V  
ppm  
+
V
Input Offset Voltage  
0 < V  
< V –1.75V  
OS  
CMOP  
Resistor Divider Ratio = 3.1  
Resistor Divider Ratio = 3.1  
Resistor Divider Ratio = 8.3  
Resistor Divider Ratio = 8.3  
Resistor Divider Ratio = 10.3  
Resistor Divider Ratio = 10.3  
50  
200  
600  
µV  
µV  
µV  
µV  
µV  
µV  
l
l
l
120  
160  
500  
1600  
600  
2000  
+
∆V /∆T  
OS  
Input Offset Voltage Drift  
(Note 6)  
0 < V  
< V –1.75V  
CMOP  
l
l
Resistor Divider Ratio = 3.1  
Resistor Divider Ratio = 10.3  
1.5  
5
4
12  
µV/°C  
µV/°C  
R
Input Impedance (Note 8)  
Common Mode  
IN  
l
l
l
l
Resistor Divider Ratio = 3.1  
Resistor Divider Ratio = 8.3  
Resistor Divider Ratio = 10.3  
Differential  
47  
36  
56  
43  
65  
50  
kΩ  
kΩ  
kΩ  
kΩ  
35  
42  
49  
128  
152  
176  
CMRR  
CMRR  
PSRR  
Common Mode Rejection Ratio,  
MS16 Package  
Resistor Divider Ratio = 3.1  
CM  
90  
87  
97  
97  
97  
94  
94  
94  
dB  
dB  
l
l
l
l
l
l
V
= –5.25V to +4.825V  
Resistor Divider Ratio = 8.3  
= –18.25V to +8.725V  
90  
87  
dB  
dB  
V
CM  
Resistor Divider Ratio = 10.3  
= –23.25V to +10.225V  
90  
87  
dB  
dB  
V
CM  
Common Mode Rejection Ratio,  
DF14 Package  
Resistor Divider Ratio = 3.1  
= –5.25V to +4.825V  
86  
85  
dB  
dB  
V
CM  
Resistor Divider Ratio = 8.3  
= –18.25V to +8.725V  
86  
85  
dB  
dB  
V
CM  
Resistor Divider Ratio = 10.3  
= –23.25V to +10.225V  
86  
85  
dB  
dB  
V
CM  
Power Supply Rejection Ratio  
(Input Referred)  
V = 1.65V to 25V, V = V  
= Mid-Supply  
OUT  
S
CM  
l
l
l
Resistor Divider Ratio = 3.1  
Resistor Divider Ratio = 8.3  
Resistor Divider Ratio = 10.3  
105  
98  
96  
120  
110  
107  
dB  
dB  
dB  
e
ni  
Input Referred Noise Voltage  
Density  
f = 1kHz  
Resistor Divider Ratio = 3.1  
105  
245  
nV/√Hz  
nV/√Hz  
Resistor Divider Ratio = 10.3  
Input Referred Noise Voltage  
f = 0.1Hz to 10Hz  
Resistor Divider Ratio = 3.1  
Resistor Divider Ratio = 10.3  
4
10  
µV  
µV  
P-P  
P-P  
l
l
V
V
Output Voltage Swing Low  
No Load  
SINK  
5
50  
mV  
mV  
OL  
OH  
(Referred to V )  
I
= 5mA  
280  
500  
l
l
Output Voltage Swing High  
No Load  
= 5mA  
5
400  
20  
750  
mV  
mV  
+
(Referred to V )  
I
SOURCE  
6376f  
5
For more information www.linear.com/LT6376  
LT6376  
The l denotes the specifications which apply over the full operating  
ELECTRICAL CHARACTERISTICS  
temperature range, –40°C < TA < 85°C for I-grade parts, –40°C < TA < 125°C for H-grade parts, otherwise specifications are at TA = 25°C,  
V+ = 5V, V= 0V, VCM = VOUT = VREF = Mid-Supply. VCMOP is the common mode voltage of the internal op amp. For Resistor  
Divider Ratio = 3.1, ±REFA = ±REFC = OPEN, ±REFB = Mid-Supply. For Resistor Divider Ratio = 8.3, ±REFA = ±REFC = Mid-Supply,  
±REFB = OPEN. For Resistor Divider Ratio = 10.3, ±REFA = ±REFB = ±REFC = Mid-Supply.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
l
l
I
Short-Circuit Output Current  
50Ω to V  
10  
10  
27  
25  
mA  
mA  
SC  
50Ω to V  
l
SR  
Slew Rate  
∆V  
OUT  
= 3V  
1.9  
3
V/µs  
BW  
Small Signal –3dB Bandwidth  
Resistor Divider Ratio = 3.1  
Resistor Divider Ratio = 8.3  
Resistor Divider Ratio = 10.3  
300  
190  
160  
kHz  
kHz  
kHz  
t
S
Settling Time  
Resistor Divider Ratio = 3.1  
0.01%, ∆V  
= 2V  
34  
20  
10  
µs  
µs  
µs  
OUT  
OUT  
0.1%, ∆V  
= 2V  
0.01%, ∆V = 2V, ∆V  
= 0V  
= 0V  
CM  
DIFF  
Resistor Divider Ratio = 10.3  
0.01%, ∆V = 2V  
40  
16  
5
µs  
µs  
µs  
OUT  
OUT  
0.1%, ∆V  
= 2V  
0.01%, ∆V = 2V, ∆V  
CM  
DIFF  
V
Supply Voltage  
3
3.3  
50  
50  
V
V
S
l
t
Turn-On Time  
22  
µs  
V
ON  
l
l
l
V
SHDN Input Logic Low  
(Referred to V )  
–2.5  
IL  
+
V
SHDN Input Logic High  
(Referred to V )  
–1.2  
V
IH  
+
I
I
SHDN Pin Current  
–10  
330  
–15  
µA  
SHDN  
+
+
Supply Current  
Active, V  
Active, V  
≥ V –1.2V  
370  
525  
20  
µA  
µA  
µA  
µA  
S
SHDN  
SHDN  
Shutdown, V  
Shutdown, V  
l
l
≥ V –1.2V  
+
+
≤ V –2.5V  
≤ V –2.5V  
15  
SHDN  
SHDN  
40  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 5: The LT6376I is guaranteed to meet specified performance from  
–40°C to 85°C. The LT6376H is guaranteed to meet specified performance  
from –40°C to 125°C.  
Note 6: This parameter is not 100% tested.  
Note 2: See Common Mode Voltage Range in the Applications Information  
section of this data sheet for other considerations when taking +IN/–IN  
pins to 240V. All other pins should not be taken more than 0.3V beyond  
the supply rails.  
Note 3: A heat sink may be required to keep the junction temperature  
below absolute maximum. This depends on the power supply, input  
voltages and the output current.  
Note 7: Input voltage range is guaranteed by the CMRR test at V = 25V  
S
and all REF pins at ground (Resistor Divider Ratio = 10.3). For the other  
voltages, this parameter is guaranteed by design and through correlation  
with the 25V test. See Common Mode Voltage Range in the Applications  
Information section to determine the valid input voltage range under  
various operating conditions.  
Note 8: Input impedance is tested by a combination of direct measurement  
Note 4: The LT6376I is guaranteed functional over the operating  
temperature range of –40°C to 85°C. The LT6376H is guaranteed  
functional over the operating temperature range of –40°C to 125°C.  
and correlation to the CMRR and gain error tests.  
6376f  
6
For more information www.linear.com/LT6376  
LT6376  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, VS = ±15V, unless otherwise noted.  
Typical Distribution of CMRR  
Typical Distribution of CMRR  
Typical Distribution of CMRR  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢁꢂꢃ  
ꢁꢂ3ꢃ  
63ꢀ ꢁꢂꢃꢄꢅ  
ꢀꢁꢂꢃ ꢄꢅꢂ ꢁꢆꢇꢈ  
ꢀꢁꢁ ꢂꢃꢄꢅꢆ  
ꢀꢁꢁ ꢂꢃꢄꢅꢆ  
ꢀꢁ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢀꢁ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢀꢁꢂꢃ ꢄꢅꢂ ꢁꢆꢇꢈ  
ꢀꢁꢂꢃ ꢄꢅꢂ ꢁꢆꢇꢈ  
ꢀꢁ  
ꢀꢁꢂ ꢃ ꢄꢅꢆ3  
ꢀꢁꢁ DF14(12)  
ꢀꢁꢁ MS16(12)  
ꢀꢁꢁ DF14(12)  
ꢀꢁꢂ ꢃ 3ꢄꢅ  
ꢀꢁꢂ ꢃ 3ꢄꢅ  
ꢀꢁ  
6ꢀ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
6ꢀ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
6ꢀ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ ꢀ3ꢁ ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁ ꢀꢁ 3ꢀ ꢀꢁ  
ꢀꢁꢂ ꢀ3ꢁ ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁ ꢀꢁ 3ꢀ ꢀꢁ  
ꢀꢁꢂ ꢀ3ꢁ ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁ ꢀꢁ 3ꢀ ꢀꢁ  
ꢀꢁꢂꢂ ꢃꢄꢅꢆꢅ ꢇ ꢈꢈꢉꢊ  
ꢀꢁꢂꢂ ꢃꢄꢅꢆꢅ ꢇ ꢈꢈꢉꢊ  
ꢀꢁꢂꢂ ꢃꢄꢅꢆꢅ ꢇ ꢈꢈꢉꢊ  
6376 ꢀꢁꢂ  
6376 ꢀꢁꢂ  
6376 ꢀꢁ3  
Typical Distribution of Gain Error  
Typical Distribution of Gain Error  
Typical Distribution of Gain Error  
ꢀꢁꢁ  
3ꢀꢁ  
3ꢀꢀ  
ꢀꢁꢂ  
ꢀꢁꢁ  
ꢀꢁꢂ  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁꢁ  
ꢀ7ꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢁ  
7ꢀ  
ꢀꢁꢁ  
ꢀ7ꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢁ  
7ꢀ  
ꢀ3ꢁ7 ꢂꢃꢄꢅꢆ  
ꢀꢁꢂꢃ ꢀꢂꢄꢁ ꢁꢄꢅꢆ  
66ꢀ ꢁꢂꢃꢄꢅ  
ꢀꢁꢂꢃ ꢄꢅꢂ ꢁꢆꢇꢈ  
6ꢀꢁ ꢂꢃꢄꢅꢆ  
ꢀꢁꢂꢃ ꢄꢅꢂ ꢁꢆꢇꢈ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢀꢁꢂ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢀꢁꢂ  
ꢀꢁꢂ  
BOTH PACKAGES  
MS16(12)  
DF14(12)  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀ7ꢁ ꢀꢁꢂ ꢀ3ꢁ ꢀꢁꢂ ꢀꢁ  
3ꢀ  
ꢀꢁ  
7ꢀ  
ꢀ7ꢁ ꢀꢁꢂ ꢀ3ꢁ ꢀꢁꢂ ꢀꢁ  
3ꢀ  
ꢀꢁ  
7ꢀ  
ꢀ7ꢁ ꢀꢁꢂ ꢀ3ꢁ ꢀꢁꢂ ꢀꢁ  
3ꢀ  
ꢀꢁ  
7ꢀ  
ꢀꢁꢂꢃ ꢄꢅꢅꢆꢅ ꢇꢈꢈꢉꢊ  
ꢀꢁꢂꢃ ꢄꢅꢅꢆꢅ ꢇꢈꢈꢉꢊ  
ꢀꢁꢂꢃ ꢄꢅꢅꢆꢅ ꢇꢈꢈꢉꢊ  
6376 ꢀꢁꢂ  
6376 ꢀꢁꢂ  
6376 ꢀꢁ6  
Typical Distribution of Gain  
Nonlinearity  
Typical Distribution of Input  
Offset Voltage  
Typical Distribution of Input  
Offset Voltage  
ꢀꢁꢂ  
ꢀꢀꢁ  
ꢀꢁꢁ  
ꢀ7ꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢁ  
7ꢀ  
ꢀꢁꢂ  
ꢀꢀꢁ  
ꢀꢁꢁ  
ꢀ7ꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢁ  
7ꢀ  
ꢀꢁꢁ  
ꢀ7ꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢁ  
7ꢀ  
ꢀꢁꢂꢃ ꢄꢅꢆꢇꢈ  
ꢀꢁꢂꢃ ꢀꢂꢄꢁ ꢁꢄꢅꢆ  
ꢀꢁꢂꢃ ꢄꢅꢆꢇꢈ  
ꢀꢁꢂ ꢃ 3ꢄꢅ  
ꢀꢁꢂ ꢃ ꢄꢅ3  
ꢀꢁꢂ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢀꢁꢂꢃ ꢀꢂꢄꢁ ꢁꢄꢅꢆ  
BOTH PACKAGES  
BOTH PACKAGES  
ꢀ3ꢁ3 ꢂꢃꢄꢅꢆ  
ꢀꢁꢂꢃ ꢀꢂꢄꢁ ꢁꢄꢅꢆ  
BOTH PACKAGES  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂꢂ ꢀꢁꢂꢃ ꢀꢁꢂꢂ ꢀꢁꢂ  
ꢀꢁ ꢀꢁꢁ ꢀꢁꢂ ꢀꢁꢁ  
ꢀꢁꢂꢂ ꢀ37ꢁ ꢀꢁꢂꢃ ꢀꢁꢂꢃ  
ꢀꢁꢂ ꢀꢁꢂ 37ꢀ ꢀꢁꢁ  
ꢀꢁꢂ ꢀꢁꢂ ꢀꢁ6 ꢀꢁꢂ  
ꢀꢁꢂ ꢀꢁꢂ ꢀꢁ6 ꢀꢁꢂ  
ꢀꢁꢁꢂꢃꢄ ꢅꢀꢈꢃ ꢉꢊꢅꢋ  
ꢀꢁꢁꢂꢃꢄ ꢅꢀꢈꢃ ꢉꢊꢅꢋ  
ꢀꢁꢂꢃ ꢃꢄꢃꢅꢂꢃꢆꢁꢇꢂꢈꢉ ꢊꢋꢋꢌꢍ  
6376 ꢀꢁꢂ  
6376 ꢀꢁꢂ  
6376 ꢀꢁ7  
6376f  
7
For more information www.linear.com/LT6376  
LT6376  
TA = 25°C, VS = ±15V, unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
Typical Distribution of Input  
Offset Voltage  
Typical Distribution of PSRR  
(Input Referred)  
Typical Distribution of PSRR  
(Input Referred)  
ꢀꢁꢂ  
3ꢀꢀ  
ꢀ7ꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
3ꢀꢀ  
ꢀꢁꢂꢃ ꢄꢅꢆꢇꢈ  
ꢀꢀꢁ ꢀꢁꢂꢃ ꢀꢂꢄꢁ ꢁꢄꢅꢆ  
ꢀꢁꢂ ꢃ ꢄꢅꢆ3  
ꢁꢂꢃ6ꢄ ꢅꢆ ꢇ6ꢄ  
ꢁꢂꢃ6ꢄ ꢅꢆ ꢇ6ꢄ  
ꢀ7ꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁꢂ ꢃ 3ꢄꢅ  
ꢀꢁꢂ ꢃ ꢄꢅ3  
BOTH PACKAGES  
ꢀꢁꢁ  
ꢀꢁꢂꢃ ꢄꢅꢆꢇꢈ  
ꢀꢁꢂꢃ ꢀꢂꢄꢁ ꢁꢄꢅꢆ  
BOTH PACKAGES  
ꢀꢁꢂꢃ ꢄꢅꢆꢇꢈ  
ꢀꢁꢂꢃ ꢀꢂꢄꢁ ꢁꢄꢅꢆ  
BOTH PACKAGES  
ꢀ7ꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢁ  
7ꢀ  
ꢀꢁ  
6ꢀ  
6ꢀ  
ꢀꢁ  
3ꢀ  
3ꢀ  
ꢀ6ꢁꢁ ꢀꢁꢂꢃ ꢀ3ꢁꢁ ꢀꢁꢂꢃ  
ꢀꢁꢂ 3ꢀꢀ ꢀꢁꢂ 6ꢀꢀ  
ꢀꢁ ꢀꢁ ꢀ3 ꢀꢁ ꢀꢁ  
3
ꢀꢁꢂ ꢀꢁ ꢀ6 ꢀꢁ ꢀꢁ  
6
ꢀꢁ  
ꢀꢁꢁꢂꢃꢄ ꢅꢀꢈꢃ ꢉꢊꢅꢋ  
ꢀꢁꢂꢂ ꢃꢄꢅꢆꢅꢇ  
ꢀꢁꢂꢂ ꢃꢄꢅꢆꢅꢇ  
6376 ꢀꢁꢂ  
6376 ꢀꢁꢁ  
6376 ꢀꢁꢂ  
Typical Distribution of PSRR  
(Input Referred)  
Common Mode Voltage Range vs  
Power Supply Voltage  
CMRR vs Frequency  
3ꢀꢀ  
ꢀ7ꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢁ  
ꢀꢁ  
6ꢀ  
ꢀꢁ  
ꢀꢁ  
3ꢀꢀ  
ꢀꢁꢂ  
ꢀꢁꢁ  
ꢀꢁꢂ  
ꢀꢁꢁ  
ꢀꢁ  
ꢁꢂꢃ6ꢄ ꢅꢆ ꢇ6ꢄ  
ꢀꢁꢂ ꢃ ꢄꢅꢆ3  
ꢀꢁꢂꢃ ꢄꢅꢆꢇꢈ  
ꢀꢁꢂꢃ ꢀꢂꢄꢁ ꢁꢄꢅꢆ  
BOTH PACKAGES  
ꢀꢁꢂ ꢃ 3ꢄꢅ  
ꢀꢁꢂ ꢃ ꢄꢅ3  
ꢀꢁꢂ ꢃ ꢄꢅꢆ  
ꢀꢁꢂ ꢃ 6ꢄ3  
ꢀꢁꢂ ꢃ 7ꢄꢅ  
ꢀꢁꢂ ꢃ ꢄꢅ3  
ꢀꢁꢂ ꢃ ꢄꢅꢆ3  
ꢀꢁꢂꢃꢁ ꢄꢅ  
ꢀꢆꢆ ꢇꢈꢉꢄꢀꢅ  
ꢀꢁꢂ  
ꢀꢁꢂꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢂ  
ꢀꢁꢂꢃ  
ꢀ3ꢁꢁ  
6ꢀ  
ꢀꢁꢂ ꢃ 3ꢄꢅ  
ꢀꢁꢂ ꢃ ꢄꢅ3  
ꢀꢁꢂ ꢃ ꢄꢅꢆ3  
3ꢀ  
ꢀꢁꢂ ꢀꢁꢂ ꢀꢁ ꢀ6 ꢀ3  
3
6
ꢀꢁ ꢀꢁ  
ꢀꢁ  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁꢂ ꢀꢁꢁꢂ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ 3ꢀ 3ꢀ ꢀꢁ ꢀꢁ  
ꢀꢁꢂꢂ ꢃꢄꢅꢆꢅꢇ  
ꢀꢁꢂꢃꢄꢂꢅꢆꢇ ꢈꢉꢊꢋ  
ꢀꢁꢂꢃꢄ ꢅꢆꢀꢀꢌꢃ ꢍ ꢉꢎ  
6376 ꢀꢁ3  
6376 ꢀꢁꢂ  
6376 ꢀꢁꢂ  
Typical Gain Error for Low Supply  
Voltages (Curves Offset for  
Clarity)  
Typical Gain Error for RL = 10kΩ  
(Curves Offset for Clarity)  
Typical Gain Error for RL = 2kΩ  
(Curves Offset for Clarity)  
ꢀ ꢁ = 10kΩ  
ꢀ ꢁꢂꢃ  
ꢁꢂꢃ  
ꢀ ꢁꢂꢃ  
ꢃ ꢄ = 2kΩ  
ꢁꢂꢃ  
ꢃ ꢄ = 1kΩ  
ꢁꢂꢃ  
ꢀ ꢁꢂꢃ  
ꢁꢂꢃ  
ꢀ ꢁꢂꢃ  
ꢀ ꢁꢂꢃ = 1kΩ  
ꢀꢁꢂ ꢀꢁ6 ꢀꢁꢂ ꢀꢁ ꢀꢁ  
ꢀꢁ ꢀ6 ꢀꢁ  
ꢀꢁꢂ ꢀꢁ6 ꢀꢁꢂ ꢀꢁ ꢀꢁ  
ꢀꢁ ꢀ6 ꢀꢁ  
ꢀꢁ ꢀꢁ ꢀ3 ꢀꢁ ꢀꢁ  
3
ꢀꢁꢂꢃꢁꢂ ꢄꢀꢇꢈ ꢉꢄꢊ  
ꢀꢁꢂꢃꢁꢂ ꢄꢀꢇꢈ ꢉꢄꢊ  
ꢀꢁꢂꢃꢁꢂ ꢄꢀꢇꢈ ꢉꢄꢊ  
6376 ꢀꢁ6  
6376 ꢀꢁ7  
6376 ꢀꢁꢂ  
6376f  
8
For more information www.linear.com/LT6376  
LT6376  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, VS = ±15V, unless otherwise noted.  
Gain Nonlinearity  
Gain Nonlinearity  
Gain Error vs Temperature  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢁꢂꢃ  
ꢀꢁꢂ  
ꢁꢂꢃ  
ꢀ ꢁꢂꢃ  
ꢀ ꢁ ꢂꢃ  
ꢁꢂꢃ  
= 100kΩ  
= 1MΩ  
ꢀꢁ ꢂꢃꢄꢅꢆ  
6ꢀ  
6ꢀ  
6
6
ꢀꢁꢂ ꢃ 3ꢄꢅ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀ6ꢁ  
ꢀꢁꢂ  
ꢀꢁꢂꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀ6ꢁ  
ꢀꢁꢂ  
ꢀꢁꢂꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀ6  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀ6  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀ7ꢁ ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁ ꢀꢁ 7ꢀ ꢀꢁꢁ ꢀꢁꢂ ꢀꢁꢂ ꢀ7ꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂꢃꢁꢂ ꢄꢀꢇꢈ ꢉꢄꢊ  
ꢀꢁꢂꢃꢁꢄꢅꢀꢆꢄꢁ ꢇꢈꢉꢊ  
ꢀꢁꢂꢃꢁꢂ ꢄꢀꢇꢈ ꢉꢄꢊ  
6376 ꢀꢁꢂ  
6376 ꢀꢁꢂ  
6376 ꢀꢁꢂ  
Maximum Power Dissipation vs  
Temperature  
CMRR vs Temperature  
Output Voltage vs Load Current  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
3
ꢁꢂꢃ  
ꢀꢁ ꢂꢃꢄꢅꢆ  
ꢀꢁꢂꢃꢄꢂꢅꢆ θ ꢀ ꢁ3ꢂꢃꢄꢅ  
ꢀꢁ  
ꢀꢁꢂ ꢃ 3ꢄꢅ  
3ꢀ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀ3ꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀ3ꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ6ꢃꢂꢄꢅ θ ꢀ ꢁ3ꢂꢃꢄꢅꢆ  
ꢀꢁ  
ꢀ7ꢁ ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁ ꢀꢁ 7ꢀ ꢀꢁꢁ ꢀꢁꢂ ꢀꢁꢂ ꢀ7ꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
3ꢀ  
ꢀ6ꢁ ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁ ꢀꢁ 6ꢀ ꢀꢁ ꢀꢁꢁ ꢀꢁꢂ ꢀꢁꢂ ꢀ6ꢁ  
ꢀꢁꢂꢃꢁꢄꢅꢀꢆꢄꢁ ꢇꢈꢉꢊ  
ꢀꢁꢂꢃꢁꢂ ꢄꢁꢅꢅꢆꢇꢂ ꢈꢉꢊꢋ  
ꢀꢁꢂꢃꢄꢅꢆ ꢆꢄꢁꢇꢄꢈꢀꢆꢉꢈꢄ ꢊꢋꢌꢍ  
6376 ꢀꢁꢁ  
6376 ꢀꢁ3  
6376 ꢀꢁꢂ  
Frequency Response vs  
Capacitive Load  
Input Referred Noise Density vs  
Frequency  
Gain vs Frequency  
ꢀꢁ  
3ꢀ  
ꢀꢁ  
3ꢀ  
ꢀꢁꢁ  
ꢀꢁꢂ  
ꢀꢁꢁ  
3ꢀꢁ  
3ꢀꢀ  
ꢀꢁꢂ  
ꢀꢁꢁ  
ꢀꢁꢂ  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁꢂ ꢃ 3ꢄꢅ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀ3ꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀ6ꢁ  
ꢀ7ꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ ꢃ ꢄꢅꢆ3  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀ3ꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀ6ꢁ  
ꢀꢁꢂ ꢃ 3ꢄꢅ  
ꢀꢁꢂ ꢃ ꢄꢅ3  
ꢀꢁꢂ ꢃ ꢄꢅꢆ  
ꢀꢁꢂ ꢃ 6ꢄ3  
ꢀꢁꢂ ꢃ 7ꢄꢅ  
ꢀꢁꢂ ꢃ ꢄꢅ3  
ꢀꢁꢂ ꢃ ꢄꢅꢆ3  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂ  
3ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ ꢃ 3ꢄꢅ  
ꢀꢁꢀꢀꢂ  
ꢀꢁꢀꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁꢀꢀꢂ  
ꢀꢁꢀꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢁꢂ  
ꢀꢁꢂꢃꢄꢂꢅꢆꢇ ꢈꢉꢊꢋꢌ  
ꢀꢁꢂꢃꢄꢂꢅꢆꢇ ꢈꢉꢊꢋꢌ  
ꢀꢁꢂꢃꢄꢂꢅꢆꢇ ꢈꢉꢊꢋ  
6376 ꢀꢁꢂ  
6376 ꢀꢁ6  
6376 ꢀꢁ7  
6376f  
9
For more information www.linear.com/LT6376  
LT6376  
TA = 25°C, VS = ±15V, unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
0.1Hz to 10Hz Noise  
(Input Referred)  
Positive PSRR vs Frequency  
Negative PSRR vs Frequency  
ꢀꢁ  
ꢀꢁꢂ  
ꢀ3ꢁ  
ꢀꢁꢂ  
ꢀꢀꢁ  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁ  
7ꢀ  
6ꢀ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ ꢃ 3ꢄꢅ  
ꢀꢁꢂ ꢃ 3ꢄꢅ  
ꢀꢀꢁ  
ꢀꢁꢂ ꢃ 3ꢄꢅ  
ꢀꢁꢂ ꢃ ꢄꢅꢆ3  
ꢀꢁꢂ ꢃ ꢄꢅ3  
ꢀꢁꢂ ꢃ ꢄꢅ3  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁ  
7ꢀ  
6ꢀ  
ꢀꢁ  
ꢀꢁ  
3ꢀ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ ꢃ ꢄꢅꢆ3  
ꢀꢁꢂ ꢃ ꢄꢅꢆ3  
6
ꢀꢁ  
ꢀꢁ  
ꢀ6  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁ  
3ꢀ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢁꢂ  
ꢀꢁ  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢁꢂ  
ꢀꢁꢂꢃ ꢄꢅꢆꢇꢈꢉꢁꢊꢋ  
ꢀꢁꢂꢃꢄꢂꢅꢆꢇ ꢈꢉꢊꢋ  
ꢀꢁꢂꢃꢄꢂꢅꢆꢇ ꢈꢉꢊꢋ  
6376 ꢀꢁꢂ  
6376 ꢀꢁꢂ  
6376 ꢀ3ꢁ  
Slew Rate vs Temperature  
Large-Signal Step Response  
Small-Signal Step Response  
7
6
3
ꢀꢁꢂ ꢃ 3ꢄꢅ  
ꢀ ꢁꢂꢂꢂꢃꢄ  
ꢀꢁꢂ ꢃ 3ꢄꢅ  
ꢀꢁꢂꢁꢃꢄ  
ꢀ ꢁꢂꢂꢂꢃꢄ  
= 2kΩ  
ꢀꢁꢂꢂꢃꢄꢅ  
= 2kΩ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
= 10kΩ  
ꢀ ꢁꢂ  
ꢀꢁꢂꢃ ꢄꢅꢆꢇꢈꢉꢁꢊꢋ  
ꢀ7ꢁ ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁ ꢀꢁ 7ꢀ ꢀꢁꢁ ꢀꢁꢂ ꢀꢁꢂ ꢀ7ꢁ  
ꢀꢁꢂꢃ ꢄꢅꢆꢇꢈꢉꢁꢊꢋ  
ꢀꢁꢂꢃꢁꢄꢅꢀꢆꢄꢁ ꢇꢈꢉꢊ  
6376 ꢀ33  
6376 ꢀ3ꢁ  
6376 ꢀ3ꢁ  
Small-Signal Step Response  
vs Capacitive Load  
Large-Signal Step Response  
Small-Signal Step Response  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁꢂ ꢃ ꢄꢅꢆ3  
ꢀꢁꢂ ꢃ 3ꢄꢅ  
ꢀꢁꢂ ꢃ ꢄꢅꢆ3  
ꢀ ꢁꢂꢂꢂꢃꢄ  
ꢀꢁꢂꢃ  
ꢀ6ꢁꢂꢃ  
ꢀ ꢁꢂꢂꢂꢃꢄ  
= 2kΩ  
= 2kΩ  
= 2kΩ  
ꢀꢁꢁꢁꢂꢃ  
6ꢀ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀ6ꢁ  
ꢀꢁꢂ  
ꢀꢁꢂꢂ  
ꢀꢁꢂꢃ ꢄꢅꢆꢇꢈꢉꢁꢊꢋ  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ 3ꢀ 3ꢀ ꢀꢁ  
ꢀꢁꢂꢃ ꢄꢅꢆꢇꢈꢉꢁꢊꢋ  
ꢀꢁꢂꢃ ꢄꢅꢆꢇ  
6376 ꢀ3ꢁ  
6376 ꢀ36  
6376 ꢀ3ꢁ  
6376f  
10  
For more information www.linear.com/LT6376  
LT6376  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, VS = ±15V, unless otherwise noted.  
Small-Signal Step Response  
vs Capacitive Load  
Settling Time  
Settling Time  
ꢀꢁꢂ  
3ꢀꢁ  
3ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀ6  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ ꢃ ꢄꢅꢆ3  
ꢀꢁꢂ ꢃ 3ꢄꢅ  
ꢀꢁꢂ ꢃ 3ꢄꢅ  
ꢀꢁꢁꢂꢁ ꢃꢂꢇꢀ  
ꢀꢁꢂꢃ  
ꢀ6ꢁꢂꢃ  
ꢀꢁꢁꢁꢂꢃ  
= 2kΩ  
ꢀꢁꢂꢃꢁꢂ ꢄꢀꢇꢈ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀ3ꢁꢂ  
ꢀ3ꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁ  
ꢀꢁ  
ꢀ6  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ6  
6ꢀ  
ꢀꢁ  
6
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀ6ꢁ  
ꢀꢁꢂ  
ꢀꢁꢂꢂ  
ꢀꢁꢂꢃꢁꢂ ꢄꢀꢇꢈ  
ꢀꢁꢁꢂꢁ ꢃꢂꢇꢀ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ 3ꢀ 3ꢀ ꢀꢁ  
ꢀꢁꢂꢃ ꢄꢅꢆꢇꢈꢉꢊꢁꢋꢌ  
ꢀꢁꢂꢃ ꢄꢅꢆꢇꢈꢉꢊꢁꢋꢌ  
ꢀꢁꢂꢃ ꢄꢅꢆꢇ  
6376 ꢀ3ꢁ  
6376 ꢀ37  
6376 ꢀ3ꢁ  
Input Common Mode Step  
Response  
Input Offset Voltage vs  
Temperature  
Quiescent Current vs Temperature  
ꢀꢀꢁ  
ꢀꢁꢁ  
ꢀꢁꢂ  
ꢀꢁꢁ  
3ꢀꢁ  
3ꢀꢀ  
ꢀꢁꢂ  
ꢀꢁꢁ  
ꢀꢁꢁ  
3ꢀꢀ  
ꢀꢁꢂ ꢃ 3ꢄꢅ  
ꢀꢁ ꢂꢃꢄꢅꢆ  
ꢀꢁꢂ ꢃ 3ꢄꢅ  
ꢀꢁ ꢂꢃꢄꢅꢆ  
ꢀꢁꢂꢃꢁꢂ  
ꢀꢁꢁ  
ꢀꢁꢂꢃꢄꢁ  
ꢀꢁꢁ  
ꢀꢁꢂꢃꢄ ꢅꢆꢇꢇꢆꢁ ꢇꢆꢈꢉ  
ꢀꢁꢂꢂ  
ꢀꢁꢂꢂ  
ꢀ3ꢁꢁ  
ꢀꢁꢂꢂ  
ꢀꢁꢂꢃꢄꢅꢂ  
ꢀꢁꢂꢃ ꢄꢅꢆꢇꢈꢉꢁꢊꢋ  
ꢀ7ꢁ ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁ ꢀꢁ 7ꢀ ꢀꢁꢁ ꢀꢁꢂ ꢀꢁꢂ ꢀ7ꢁ  
ꢀ6ꢁ ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁ ꢀꢁ 6ꢀ ꢀꢁ ꢀꢁꢁ ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁꢂꢃꢁꢄꢅꢀꢆꢄꢁ ꢇꢈꢉꢊ  
ꢀꢁꢂꢃꢁꢄꢅꢀꢆꢄꢁ ꢇꢈꢉꢊ  
6376 ꢀꢁꢂ  
6376 ꢀꢁꢂ  
6376 ꢀꢁꢂ  
Quiescent Current vs Supply  
Voltage  
Thermal Shutdown Hysteresis  
6ꢀꢀ  
ꢀꢁꢁ  
ꢀꢁꢁ  
3ꢀꢀ  
ꢀꢁꢁ  
ꢀꢁꢁ  
6ꢀꢀ  
ꢀꢁꢁ  
ꢀꢁꢁ  
3ꢀꢀ  
ꢀꢁꢁ  
ꢀꢁꢁ  
ꢀ ꢁꢂꢃꢄꢅ  
ꢀ ꢁꢂꢂꢃꢄ  
ꢀꢁꢂꢁꢃꢄꢅꢂꢆꢇ ꢈꢉꢄꢄꢀ ꢆꢊ ꢋꢌꢍꢎꢇ  
ꢀꢁꢂꢃꢄꢅꢄꢁꢆꢇ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢁ  
ꢀ6ꢁ  
ꢀ6ꢁ  
ꢀ7ꢁ  
ꢀꢁ  
ꢀꢁ  
3ꢀ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂꢃꢁꢄꢅꢀꢆꢄꢁ ꢇꢈꢉꢊ  
ꢀꢁꢂꢂꢉꢊ ꢋꢅꢌ  
6376 ꢀꢁ3  
6376 ꢀꢁꢁ  
6376f  
11  
For more information www.linear.com/LT6376  
LT6376  
TA = 25°C, VS = ±±5V, ꢀunl ee ꢁot l wiel uꢁol d.  
Miuimꢀm Sꢀppny Vnoagl  
TYPICAL PERFORMANCE CHARACTERISTICS  
Qꢀil ecl uo Cꢀꢂꢂl uo ve SHDN  
Vꢁnoagl  
St ꢀodꢁwu Qꢀil ecl uo Cꢀꢂꢂl uo ve  
Sꢀppny Vnoagl  
ꢀꢀꢁ  
ꢀꢁꢁ  
ꢀꢁꢂ  
ꢀꢁꢁ  
3ꢀꢁ  
3ꢀꢀ  
ꢀꢁꢂ  
ꢀꢁꢁ  
ꢀꢁꢂ  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
3ꢀ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢁꢂꢃ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢁꢂꢃ  
ꢁ ꢂꢀ  
SHDN  
ꢀꢁꢂ ꢃ 3ꢄꢅ  
ꢀꢁꢁ  
ꢂ ꢃꢄꢀ  
ꢀꢁ  
ꢀ ꢁꢂꢃꢄꢅ  
ꢀꢁꢂ  
ꢀ ꢁꢂꢃꢄ  
ꢀꢁꢂꢂ  
ꢀꢁꢂꢃ  
ꢀ ꢁꢂꢃꢄꢅ  
ꢀꢁ  
ꢀꢁ  
3
ꢀꢁ  
ꢀꢁ  
3ꢀ  
ꢀꢁ  
ꢀꢁ  
SHDN ꢀꢁꢅꢆ ꢇꢀꢈ  
ꢀꢁꢀꢂꢃ ꢄꢅꢆꢆꢉꢊ ꢋꢈꢌ  
ꢀꢁꢂꢂꢉꢊ ꢋꢅꢌ  
6376 ꢀꢁ6  
6376 ꢀꢁ7  
6376 ꢀꢁꢂ  
6376f  
12  
For more information www.linear.com/LT6376  
LT6376  
PIN FUNCTIONS (DFN/MSOP)  
V (Piu 9/Piu ±0): Positive Supply Pin.  
+
–REFA (Piu ±2/Piu ±4): Reference Pin A. Sets the input  
common mode range and the output noise and offset.  
V (Expꢁel d Pad Piu ±5/Piu 8): Negative Supply Pin.  
–REFB (Piu ±±/Piu ±2): Reference Pin B. Sets the input  
OUT (Piu 8/Piu 9): Output Pin.  
common mode range and the output noise and offset.  
+IN (Piu ±/Piu ±): Noninverting Input Pin. Accepts input  
voltages from 230V to –230V.  
–REFC (Piu ±0/Piu ±±): Reference Pin C. Sets the input  
common mode range and the output noise and offset.  
+REFA (Piu 3/Piu 3): Reference Pin A. Sets the input com-  
mon mode range and the output noise and offset.  
REF (Piu 6/Piu 7): Reference Input. Sets the output level  
when the difference between the inputs is zero.  
+REFB (Piu 4/Piu 5): Reference Pin B. Sets the input  
common mode range and the output noise and offset.  
SHDN (Piu 7) DFN Ouny: Shutdown Pin. Amplifier is active  
+
when this pin is tied to V or left floating. Pulling the pin  
+
+REFC (Piu 5/Piu 6): Reference Pin C. Sets the input  
common mode range and the output noise and offset.  
>2.5V below V causes the amplifier to enter a low power  
state.  
–IN (Piu ±4/Piu ±6): Inverting Input Pin. Accepts input  
voltages from 230V to –230V.  
6376f  
13  
For more information www.linear.com/LT6376  
LT6376  
BLOCK DIAGRAM  
ꢀꢆꢇꢈꢉ  
ꢍꢎꢏ  
ꢀꢆꢇꢈꢌ  
ꢀꢆꢇꢈꢕ  
ꢒ3ꢓ7ꢔꢏ  
3ꢐꢏ  
76ꢑꢏ  
76ꢏ  
76ꢏ  
ꢀꢊꢋ  
ꢁꢊꢋ  
ꢃꢄꢅ  
ꢆꢇꢈ  
76ꢑꢏ  
ꢍꢎꢏ  
3ꢐꢏ  
ꢁꢆꢇꢈꢌ  
ꢒ3ꢓ7ꢔꢏ  
ꢁꢆꢇꢈꢕ  
ꢍꢑꢗꢉ  
ꢁꢆꢇꢈꢉ  
SHDN  
6376 ꢌꢖ  
APPLICATIONS INFORMATION  
TRANSFER FUNCTION  
performance of the part. It is recommended to use the  
lowest resistor divider ratio that achieves the required  
input common mode voltage range of the application in  
order to maximize the system SNR, precision and speed.  
The LT6376 is a gain of 10 difference amplifier with the  
transfer function:  
V
OUT  
= 10 • (V – V ) + V  
+IN –IN REF  
Table 1 shows the noise, offset/drift, and –3dB bandwidth  
of the LT6376 in gain of 10 configurations.  
The voltage on the REF pin sets the output voltage when  
the differential input voltage (V = V – V ) is zero.  
This reference is used to shift the output voltage to the COMMON MODE VOLTAGE RANGE  
desired input level of the next stage of the signal chain.  
DIFF  
+IN  
–IN  
The wide common mode voltage range of the LT6376 is  
enabled by both a resistor divider at the input of the op  
amp and by an internal op amp that can withstand high  
input voltages.  
BENEFITS OF SELECTABLE RESISTOR DIVIDER RATIOS  
The LT6376 offers smaller package size, better gain  
accuracy and better noise performance than existing  
high common mode voltage range difference amplifiers.  
Additionally, the LT6376 allows users to maximize sys-  
tem performance by selecting the resistor divider ratio  
(DIV) appropriate to their input common mode voltage  
range. A higher resistor divider ratio (DIV) enables a  
higher common mode voltage range at the input pins,  
but it also increases output noise and output offset/drift  
and decreases the –3dB bandwidth. Therefore, a trade-  
off exists between input range and DC, AC, and drift  
The internal resistor network of the LT6376 divides down  
the input common mode voltage. The resulting voltage  
at the op amp inputs determines the op amp’s operating  
region. In the configuration shown in Figure 1, a resistor  
divider is created at both op amp inputs by the 76k input  
resistor and the resistance from each input to ground,  
which is ~36.19k. The resistance to ground is formed  
by the 38k (REFB resistors) in parallel with the 760k  
(feedback/REF resistor). The result is a divide by 3.1 of  
the input voltage. As shown in Tables 1 to 5, different  
connections to reference pins (i.e. pins +REFA, –REFA,  
6376f  
14  
For more information www.linear.com/LT6376  
LT6376  
APPLICATIONS INFORMATION  
Tabnl ±. LT6376 Pl ꢂfꢁꢂmaucl ao Diffl ꢂl uo Rl eieoꢂ Dividl ꢂ Raoiꢁe  
RESISTOR DIVIDER OPTIONS  
RESISTOR  
INPUT NOISE  
AT ±kHz  
MAXIMUM INPUT  
OFFSET DRIFT  
(µV/°C)  
–3dB  
BANDWIDTH  
(kHz)  
+REFA AND +REFB AND +REFC AND  
DIVIDER DIFFERENTIAL  
MAXIMUM INPUT  
OFFSET (µV)  
–REFA  
–REFB  
–REFC  
23.75k  
OPEN  
GND  
REF RATIO (DIV)  
GAIN  
(uV/√Hz)  
19k  
38k  
760k  
REF  
REF  
REF  
REF  
REF  
REF  
REF  
OPEN  
OPEN  
GND  
OPEN  
GND  
GND  
GND  
GND  
3.1  
4.3  
5.1  
6.3  
7.1  
8.3  
10.3  
10  
10  
10  
10  
10  
10  
10  
105  
130  
145  
170  
185  
210  
245  
200  
250  
300  
380  
420  
500  
600  
4
300  
275  
245  
225  
200  
190  
160  
OPEN  
OPEN  
GND  
5.5  
6.5  
7.5  
8.5  
10  
OPEN  
GND  
GND  
OPEN  
GND  
OPEN  
GND  
GND  
12  
+REFB, –REFB, +REFC, –REFC) result in different resis-  
tor divider ratios (DIV) and different attenuation of the  
LT6376’s input common mode voltage.  
the voltage ranges in this table ensures that the internal  
op amp is operating in its normal (and best) region. The  
figure entitled Common Mode Voltage Range vs Power  
Supply Voltage, in the Typical Performance Characteristics  
section of this data sheet, illustrates the information in  
Table 2 graphically.  
The internal op amp of LT6376 has two operating regions:  
a) If the common mode voltage at the inputs of the inter-  
+
nal op amp (V  
) is between V and V –1.75V, the op  
CMOP  
amp operates in its normal region; b) If VCMOP is between  
V+ –1.75V and V+76V, the op amp continues to operate,  
but in its Over-The-Top region with degraded performance  
(see Over-The-Top operation section of this data sheet for  
more detail).  
Table 3 lists the valid input common mode voltage range  
for an LT6376 that results in the internal op amp operating  
in its Over-The-Top region.  
The reference pins can be connected to ground (as in  
Tables 2 and 3) or to any reference voltage. In order to  
achieve the specified gain accuracy and CMRR perfor-  
mance of the LT6376, this reference must have a very  
low impedance over the entire bandwidth of interest. As  
needed, ensure there are quality high frequency ceramic  
or film capacitors and low frequency electrolytic capaci-  
tors, from the reference to ground.  
Table 2 lists the valid input common mode voltage range  
for an LT6376 with different configurations of the refer-  
ence pins when used with dual power supplies. Using  
ꢀꢉꢊꢋꢌ  
ꢎꢏꢐ  
ꢀꢉꢊꢋꢍ  
3ꢑꢐ  
ꢀꢉꢊꢋꢖ  
ꢓ3ꢔ7ꢕꢐ  
The valid input common mode range changes depending  
on the voltages chosen for reference pins. Table 4 lists the  
valid input common mode voltage range for an LT6376  
when the part is used with a single power supply, and REF  
and the other reference pins are connected to mid-supply.  
If, as shown in Table 5, the REF pin remains connected to  
mid-supply, while the other reference pins are connected  
to ground, the result is a higher positive input range at  
the expense of a more restricted negative input range.  
76ꢒꢐ  
76ꢐ  
ꢀꢄꢅ  
ꢁꢄꢅ  
ꢀꢄꢅ  
ꢁꢄꢅ  
ꢆꢇꢈ  
ꢉꢊꢋ  
ꢆꢇꢈ  
76ꢐ  
76ꢒꢐ  
ꢎꢏꢐ  
ꢁꢉꢊꢋꢌ  
3ꢑꢐ  
ꢓ3ꢔ7ꢕꢐ  
ꢁꢉꢊꢋꢖ  
ꢁꢉꢊꢋꢍ  
SHDN  
6376 ꢋꢒꢎ  
Figꢀꢂl ±. Baeic Cꢁuul coiꢁue fꢁꢂ Dꢀan-Sꢀppny Opl ꢂaoiꢁu  
(Rl eieoꢂ Dividl ꢂ Raoiꢁ = 3.±)  
6376f  
15  
For more information www.linear.com/LT6376  
LT6376  
APPLICATIONS INFORMATION  
Tabnl 2. Cꢁmmꢁu Mꢁdl Vꢁnoagl Opl ꢂaoiug Raugl wiot Dꢀan  
Pꢁwl ꢂ Sꢀppnil e (Nꢁꢂman Rl giꢁu)  
Tabnl 5. Cꢁmmꢁu Mꢁdl Vꢁnoagl Opl ꢂaoiug Raugl wiot a Siugnl  
Pꢁwl ꢂ Sꢀppny, Rl fl ꢂl ucl e oGND (Nꢁꢂman Rl giꢁu)  
INPUT RANGE (REF = GND)  
INPUT RANGE (REF = V /2)  
S
+REFA +REFB +REFC  
AND AND AND  
+REFA +REFB +REFC  
AND AND AND  
V = ±2.5V  
S
V = ±±5V  
S
V = ±25V  
S
V = 5V  
S
V = 30V  
S
V = 50V  
S
–REFA –REFB –REFC DIV HIGH LOW HIGH LOW HIGH LOW  
OPEN GND OPEN 3.1 2.325 –7.75 41.075 –46.5 72.075 –77.5  
OPEN OPEN GND 4.3 3.225 –10.75 56.975 –64.5 99.975 –107.5  
GND OPEN OPEN 5.1 3.825 –12.75 67.575 –76.5 118.575 –127.5  
OPEN GND GND 6.3 4.725 –15.75 83.475 –94.5 146.475 –157.5  
GND GND OPEN 7.1 5.325 –17.75 94.075 –106.5 165.075 –177.5  
GND OPEN GND 8.3 6.225 –20.75 109.975 –124.5 192.975 –207.5  
GND GND GND 10.3 7.725 –25.75 136.475 –154.5 230 –230  
–REFA –REFB –REFC DIV HIGH LOW HIGH LOW HIGH LOW  
OPEN GND OPEN 3.1 9.825 –0.25 86.075 –1.5 147.075 –2.5  
OPEN OPEN GND 4.3 13.725 –0.25 119.975 –1.5 204.975 –2.5  
GND OPEN OPEN 5.1 16.325 –0.25 142.575 –1.5 230  
OPEN GND GND 6.3 20.225 –0.25 176.475 –1.5 230  
GND GND OPEN 7.1 22.825 –0.25 199.075 –1.5 230  
GND OPEN GND 8.3 26.725 –0.25 230 –1.5 230  
GND GND GND 10.3 33.225 –0.25 230 –1.5 230  
–2.5  
–2.5  
–2.5  
–2.5  
–2.5  
Tabnl 3. Cꢁmmꢁu Mꢁdl Vꢁnoagl Opl ꢂaoiug Raugl wiot Dꢀan  
Pꢁwl ꢂ Sꢀppnil e (Ovl ꢂ-Tt l -Tꢁp Rl giꢁu)  
INPUT RANGE (REF = GND)  
The LT6376 will not operate correctly if the common  
mode voltage at its input pins goes below the range speci-  
fied in above tables, but the part will not be damaged as  
long as the lowest common mode voltage at the inputs  
+REFA +REFB +REFC  
AND AND AND  
V = ±2.5V  
S
V = ±±5V  
S
V = ±25V  
S
–REFA –REFB –REFC DIV HIGH LOW HIGH LOW HIGH LOW  
OPEN GND OPEN 3.1 227.85 –7.75 189.1 –46.5 158.1 –77.5  
OPEN OPEN GND 4.3 230 –10.75 230 –64.5 219.3 –107.5  
GND OPEN OPEN 5.1 230 –12.75 230 –76.5 230 –127.5  
OPEN GND GND 6.3 230 –15.75 230 –94.5 230 –157.5  
GND GND OPEN 7.1 230 –17.75 230 –106.5 230 –177.5  
GND OPEN GND 8.3 230 –20.75 230 –124.5 230 –207.5  
GND GND GND 10.3 230 –25.75 230 –154.5 230 –230  
of the internal op amp (V  
) is always greater than  
CMOP  
V –25V. Also, the voltage at LT6376 input pins should  
never be higher than 230V or lower than –230V under  
any circumstances.  
SHUTDOWN  
The LT6376 in the DFN14 package has a shutdown pin  
(SHDN). Under normal operation this pin should be tied  
+
Tabnl 4. Cꢁmmꢁu Mꢁdl Vꢁnoagl Opl ꢂaoiug Raugl wiot a Siugnl  
Pꢁwl ꢂ Sꢀppny, Rl fl ꢂl ucl e oMid-Sꢀppny (Nꢁꢂman Rl giꢁu)  
to V or allowed to float. Driving this pin to at least 2.5V  
+
below V will cause the part to enter a low power state.  
INPUT RANGE (REF = V /2)  
S
The supply current is reduced to less than 25µA and the  
op amp output becomes high impedance.  
+REFA +REFB +REFC  
AND AND AND  
V = 5V  
V = 30V  
V = 50V  
S
S
S
–REFA –REFB –REFC DIV HIGH LOW HIGH LOW HIGH LOW  
OPEN V /2 OPEN 3.1 4.825 –5.25 56.075 –31.5 97.075 –52.5  
S
SUPPLY VOLTAGE  
OPEN OPEN V /2 4.3 5.725 –8.25 71.975 –49.5 124.975 –82.5  
S
The positive supply pin of the LT6376 should be bypassed  
with a small capacitor (typically 0.1µF) as close to the  
supply pin as possible. When driving heavy loads an addi-  
tional 4.7µF electrolytic capacitor should be added. When  
V /2 OPEN OPEN 5.1 6.325 –10.25 82.575 –61.5 143.575 –102.5  
S
OPEN V /2 V /2 6.3 7.225 –13.25 98.475 –79.5 171.475 –132.5  
S
S
V /2 V /2 OPEN 7.1 7.825 –15.25 109.075 –91.5 190.075 –152.5  
S
S
V /2 OPEN V /2 8.3 8.725 –18.25 124.975 –109.5 217.975 –182.5  
S
S
using split supplies, the same is true for the V supply pin.  
V /2 V /2 V /2 10.3 10.225 –23.25 151.475 –139.5 230 –230  
S
S
S
6376f  
16  
For more information www.linear.com/LT6376  
LT6376  
APPLICATIONS INFORMATION  
ACCURATE CURRENT MEASUREMENTS  
Increasing RSENSE and RC slightly to RSENSE' removes  
the gain error.  
The LT6376 can be used in high side, low side and bi-  
directional wide common mode range current sensing.  
Figure 2 shows the LT6376 sensing current by measur-  
R
SENSE  
' = R  
• 76k/(76k – R ).  
SENSE  
SENSE  
ing the voltage across R  
. The added sense resistors  
SENSE  
NOISE AND FILTERING  
create a CMRR error and a gain error. For R  
greater  
SENSE  
The noise performance of the LT6376 can be optimized  
both by appropriate choice of its internal attenuation set-  
ting and by the addition of a filter to the amplifier output  
(Figure 3). For applications that do not require the full  
bandwidth of the LT6376, the addition of an output filter  
will lower system noise. Table 6 shows the output noise  
for different internal resistor divider ratios and output filter  
bandwidths.  
than 0.5Ω the source resistance mismatch degrades the  
CMRR. Adding a resistor equal in value to RSENSE in series  
with the +IN terminal (R ) eliminates this mismatch.  
C
Using an RSENSE greater than 4.7Ω will cause the gain  
error to exceed the 0.0075% specification of the LT6376.  
This is due to the loading effects of the LT6376.  
V
OUT  
= 10 • I  
• R  
• 76k/(76k + R  
)
LOAD  
SENSE  
SENSE  
ꢄ ꢅꢆꢂ  
ꢀꢇꢈꢒꢎ  
ꢅꢔꢕ  
ꢀꢇꢈꢒꢓ  
3ꢖꢕ  
ꢀꢇꢈꢒꢐ  
ꢗ3ꢘ7ꢆꢕ  
76ꢑꢕ  
ꢄ ꢅꢅꢑꢂ  
ꢃꢊꢋꢇꢐꢈ  
76ꢕ  
76ꢕ  
–IN  
+IN  
ꢊꢋꢌ  
ꢇꢈꢒ  
10 • R  
• I  
ꢃꢈꢉꢃꢈ  
ꢊꢋꢌ  
ꢃꢈꢉꢃꢈ ꢍꢊꢎꢏ  
I
ꢍꢊꢎꢏ  
ꢇꢈꢒ  
76ꢑꢕ  
ꢅꢔꢕ  
3ꢖꢕ  
ꢗ3ꢘ7ꢆꢕ  
ꢁꢇꢈꢒꢐ  
ꢁꢇꢈꢒꢎ  
ꢁꢇꢈꢒꢓ  
SHDN  
ꢄ ꢀꢅꢆꢂ  
ꢄ ꢅꢆꢂ  
ꢍꢊꢎꢏ  
ꢀꢇꢈꢒꢎ  
ꢅꢔꢕ  
ꢀꢇꢈꢒꢓ  
3ꢖꢕ  
ꢀꢇꢈꢒꢐ  
ꢗ3ꢘ7ꢆꢕ  
76ꢑꢕ  
I
ꢍꢊꢎꢏ  
76ꢕ  
–IN  
+IN  
ꢊꢋꢌ  
ꢇꢈꢒ  
10 • ꢇ  
• I  
ꢃꢈꢉꢃꢈ  
ꢊꢋꢌ  
ꢃꢈꢉꢃꢈ ꢍꢊꢎꢏ  
76ꢕ  
ꢇꢈꢒ  
ꢄ ꢀꢅꢅꢑꢂ  
ꢃꢊꢋꢇꢐꢈ  
76ꢑꢕ  
ꢅꢔꢕ  
ꢁꢇꢈꢒꢎ  
3ꢖꢕ  
ꢗ3ꢘ7ꢆꢕ  
ꢁꢇꢈꢒꢐ  
ꢁꢇꢈꢒꢓ  
SHDN  
6376 ꢒꢑꢗ  
ꢄ ꢀꢅꢆꢂ  
Figꢀꢂl 2. Widl Vꢁnoagl Raugl Cꢀꢂꢂl uo Sl ueiug  
6376f  
17  
For more information www.linear.com/LT6376  
LT6376  
APPLICATIONS INFORMATION  
ꢀꢉꢊꢋꢌ  
ꢎꢏꢐ  
ꢀꢉꢊꢋꢍ  
3ꢑꢐ  
ꢀꢉꢊꢋꢖ  
ꢓ3ꢔ7ꢕꢐ  
76ꢒꢐ  
ꢖꢓ  
ꢉꢓ  
76ꢐ  
ꢀꢄꢅ  
ꢁꢄꢅ  
6ꢒꢎꢕ  
ꢆꢇꢈ  
ꢀꢄꢅ  
ꢁꢄꢅ  
ꢉꢎ  
ꢆꢇꢈ  
ꢉꢊꢋ  
76ꢐ  
ꢖꢎ  
ꢉꢊꢋ  
76ꢒꢐ  
ꢎꢏꢐ  
ꢁꢉꢊꢋꢌ  
3ꢑꢐ  
ꢓ3ꢔ7ꢕꢐ  
ꢁꢉꢊꢋꢖ  
ꢁꢉꢊꢋꢍ  
SHDN  
6376 ꢋꢒ3  
Figꢀꢂl 3. Oꢀopꢀo Finol iug wiot 2-Pꢁnl Bool wꢁꢂot Finol ꢂ  
Tabnl 6. Oꢀopꢀo Nꢁiel (VP-P) fꢁꢂ 2-Pꢁnl Bool wꢁꢂot Finol ꢂ fꢁꢂ  
Diffl ꢂl uo Iuol uan Rl eieoꢂ Dividl ꢂ Raoiꢁe  
Tabnl 7. Cꢁmpꢁul uo Vanl e fꢁꢂ Diffl ꢂl uo 2-Pꢁnl Bool wꢁꢂot  
Finol ꢂ Baudwidot e  
Cꢁꢂul ꢂ  
Cꢁꢂul ꢂ Fꢂl qꢀl ucy  
100kHz  
R±  
R2  
C±  
C2  
Fꢂl qꢀl ucy  
No Filter  
100kHz  
10kHz  
3.±  
4.3  
5.±  
6.3  
7.±  
8.3  
±0.3  
11kΩ 11.3kΩ 100pF 200pF  
548µV 606µV 638µV 678µV 707µV 747µV 809µV  
328µV 394µV 434µV 488µV 523µV 572µV 649µV  
107µV 131µV 146µV 168µV 183µV 204µV 239µV  
10kHz  
11kΩ 11.3kΩ  
1nF  
2nF  
20nF  
0.2µF  
1kHz  
11kΩ 11.3kΩ 10nF  
11kΩ 11.3kΩ 0.1µF  
100Hz  
1kHz  
33µV  
12µV  
41µV  
15µV  
46µV  
17µV  
53µV  
19µV  
57µV 64µV  
21µV 24µV  
75µV  
28µV  
100Hz  
15V  
+
–REFA  
19k  
–REFB  
38k  
–REFC  
23.75k  
V
760k  
+
V
= 80V  
SOURCE  
76k  
76k  
–IN  
+
R
OUT  
REF  
SENSE  
V
OUT  
1Ω  
R , 1Ω  
C
+IN  
1A  
760k  
19k  
+REFA  
38k  
23.75k  
+REFC  
LOAD  
+REFB  
SHDN  
V
6376 F04  
–15V  
Figꢀꢂl 4. Cꢀꢂꢂl uo Ml aeꢀꢂl ml uo Appnicaoiꢁu  
6376f  
18  
For more information www.linear.com/LT6376  
LT6376  
APPLICATIONS INFORMATION  
ERROR BUDGET ANALYSIS  
+
of the positive power supply voltage V ), but its perfor-  
mance is degraded. The op amp’s input bias currents  
change from under 2nA to 14µA. The op amp’s input  
offset current rises to 50nA which adds 3.8mV to the  
input offset voltage.  
Figure 4 shows the LT6376 in a current measurement  
application. The error budget for this application is shown  
in Table 8. The resistor divider ratio is set to 6.3 to divide  
the 80V input common mode voltage down to 12.7V at  
the op amp inputs. The 1A current and 1Ω sense resis-  
tor produce an output full-scale (FS) voltage of 10V (in  
the LT6376) and 1V (in all the other listed parts). Table 8  
shows the error sources in parts per million (ppm) of the  
output full-scale voltage across the temperature range of  
25°C to 85°C.  
In addition, when operating in the Over-The-Top region,  
the differential input impedance decreases from 1MΩ in  
normal operation to approximately 3.7kΩ in Over-The-Top  
operation. This resistance appears across the summing  
nodes of the internal op amp and boosts noise and offset  
while decreasing speed. Noise and offset will increase by  
between 66% and 83% depending on the resistor divider  
ratio setting. The bandwidth will be reduced by between  
40% to 45%. For more detail on Over-The-Top operation,  
consult the LT6015 data sheet.  
Different sources of error contribute to the maximum  
accuracy that can be achieved in an application. Gain error,  
offset voltage and common mode rejection error combine  
to set the initial error. Additionally, the gain error and off-  
set voltage drift across the temperature range. The excel-  
lent gain accuracy, low offset voltage, high CMRR, low  
offset voltage drift and low gain error drift of the LT6376  
all combine to enable extremely accurate measurements.  
OUTPUT  
The output of the LT6376 can typically swing to within  
5mV of either rail with no load and is capable of sourcing  
and sinking approximately 25mA. The LT6376 is inter  
-
nally compensated to drive at least 1nF of capacitance  
under any output loading conditions. A 0.22µF capacitor  
in series with a 150Ω resistor between the output and  
ground will compensate the amplifier to drive capaci-  
tive loads greater than 1nF. Additionally, the LT6376 has  
more gain and phase margin as the resistor divider ratio  
is increased.  
Ovl ꢂ-Tt l -Tꢁp OPERATION  
When the input common mode voltage of the internal op  
amp (V  
) in the LT6376 is biased near or above the  
CMOP  
+
V supply, the op amp is operating in the Over-The-Top  
region. The op amp continues to operate with an input  
common mode voltage of up to 76V above V (regardless  
Tabnl 8. Eꢂꢂꢁꢂ Bꢀdgl o Auanyeie  
ERROR, ppm ꢁf OUTPUT FS  
LT6376  
(DIV = 6.3)  
LT6375  
(DIV = 7)  
ERROR SOURCE  
AD629B  
COMPETITOR  
LT6376 LT6375  
AD629B  
COMPETITOR  
Differential Gain (V/V)  
Output FS Voltage (V)  
10  
10  
1
1
1
1
1
1
Accꢀꢂacy, T = 25°C  
A
Initial Gain Error  
0.0075% FS  
3800µV  
0.006% FS  
450µV  
0.03% FS  
500µV  
0.02% FS  
1100µV  
75  
60  
300  
500  
200  
Output Offset Voltage  
380  
450  
1100  
10 • (80V/90dB)  
= 25300µV  
80V/89dB =  
2839µV  
80V/86dB =  
4009µV  
80V/90dB =  
2530µV  
Common Mode  
2530  
2985  
2839  
3349  
4009  
4809  
2530  
3830  
Tꢁoan Accꢀꢂacy Eꢂꢂꢁꢂ  
Tl mpl ꢂaoꢂl Dꢂifo  
Gain  
1ppm/°C ×60°C 1ppm/°C ×60°C 10ppm/°C ×60°C 10ppm/°C ×60°C  
60  
450  
510  
3495  
60  
720  
780  
4129  
600  
600  
600  
900  
Output Offset Voltage 75µV/°C ×60°C 12µV/°C ×60°C 10µV/°C ×60°C  
15µV/°C ×60°C  
Tꢁoan Dꢂifo Eꢂꢂꢁꢂ  
Tꢁoan Eꢂꢂꢁꢂ  
1200  
6009  
1500  
5330  
6376f  
19  
For more information www.linear.com/LT6376  
LT6376  
APPLICATIONS INFORMATION  
DISTORTION  
For a given supply voltage, the worst-case output power  
dissipation POD(MAX) occurs with the output voltage at half  
The LT6376 features excellent distortion performance  
when the internal op amp is operating within the supply  
rails. Operating the LT6376 with input common mode  
voltages that go from normal to Over-The-Top operation  
will significantly degrade the LT6376’s linearity as the op  
amp must transition between two different input stages.  
of either supply voltage. P  
is given by:  
OD(MAX)  
2
P
= (V /2) /R  
OD(MAX)  
S
LOAD  
The power dissipated in the internal resistors (PRESD  
)
depends on the input voltage, the resistor divider ratio  
(DIV), the output voltage and the voltage on REF and the  
other reference pins. The following equations and Figure 5  
POWER DISSIPATION CONSIDERATIONS  
show different components of P  
corresponding to  
RESD  
different groups of LT6376’s internal resistors (assuming  
that LT6376 is used with a dual supply configuration with  
REF and all reference pins at ground).  
Because of the ability of the LT6376 to operate on power  
supplies up to 25V, to withstand very high input voltages  
and to drive heavy loads, there is a need to ensure the die  
junction temperature does not exceed 150°C. The LT6376  
is housed in DF14 (qJA = 43°C/W, qJC = 4°C/W) and MS16  
2
P
P
P
P
P
= (V ) /(76k + 76k/(DIV – 1))  
RESDA  
RESDB  
RESDC  
RESDD  
+IN  
2
= (V – V /DIV) /(76k)  
–IN  
+IN  
2
(
qJA = 130°C/W) packages.  
= (V /DIV) /(76k/(DIV – 1.1))  
+IN  
In general, the die junction temperature (T ) can be esti-  
J
2
= (V /DIV – V ) /(760k)  
+IN  
OUT  
mated from the ambient temperature (TA), and the device  
= P  
+ P  
+ P  
+ P  
power dissipation (P ):  
RESD  
RESDA  
RESDB  
RESDC RESDD  
D
P
RESD  
simplifies to:  
T = T + P • qJA  
J
A
D
PRESD=2(V+IN2((DIV1)/DIVVOUT/(10V+IN))+0.055  
Power is dissipated by the amplifier’s quiescent cur-  
rent, by the output current driving a resistive load and by  
the input current driving the LT6376’s internal resistor  
network.  
2
• V  
)/76k  
OUT  
In general, PRESD increases with higher input voltage,  
higher resistor divider ratio (DIV), and lower output, REF  
and reference pin voltages.  
+
P = ((V – V ) • I ) + P + P  
D
S
S
S
OD  
RESD  
ꢅ ꢆꢏꢂ  
ꢀꢒꢓꢔꢕ ꢀꢒꢓꢔꢖ ꢀꢒꢓꢔꢛ  
ꢒꢓꢐꢚꢛ  
ꢒꢓꢐꢚꢚ  
76ꢇꢘ  
ꢌꢗꢘ  
3ꢍꢘ  
ꢆ3ꢎ7ꢏꢘ  
ꢒꢓꢐꢚꢖ  
76ꢘ  
ꢀꢃꢄ  
ꢁꢃꢄ  
ꢀꢃꢄ  
ꢅ ꢆ3ꢇꢂ ꢀ ꢂ ꢋꢌꢇ  
ꢈꢉꢊ  
ꢅ ꢆꢆꢍꢎ7ꢏꢂ  
ꢈꢉꢊ  
ꢒꢓꢔ  
ꢈꢉꢊ  
ꢅ ꢌꢆꢎꢏꢂ  
ꢒꢓꢐꢚꢕ  
76ꢘ  
ꢅ ꢆ3ꢇꢂ  
ꢁꢃꢄ  
76ꢇꢘ  
ꢌꢗꢘ  
3ꢍꢘ  
ꢆ3ꢎ7ꢏꢘ  
ꢁꢒꢓꢔꢕ ꢁꢒꢓꢔꢖ ꢁꢒꢓꢔꢛ  
SHDN  
6376 ꢔꢇꢏ  
ꢅ ꢀꢆꢏꢂ  
Figure 5. Power Dissipation Example  
6376f  
20  
For more information www.linear.com/LT6376  
LT6376  
APPLICATIONS INFORMATION  
Example: An LT6376 in a DFN package mounted on a PC  
board has a thermal resistance of 43°C/W. Operating on  
25V supplies and driving a 2.5kΩ load to 12.5V with  
REF offset signal. These configurations allow the LT6376  
to be used as a versatile precision gain block with essen-  
tially no external components besides the supply decou-  
pling. In most cases, only a single positive supply will be  
required. In Table 9, connections are identified as NC (no  
connect), INPUT (refers to both inputs driven, +signal to  
+pins,–signal to –pins), CROSS (refers to inputs cross-  
coupled, +signal to –pins, –signal to +pins), OUT (refers  
to the output fed back to –pins), or REF (refers to con-  
necting the REF pin to +pins). The same configurations  
provide inverting gains by grounding any pins intended  
for the +signal source. The differential input resistance is  
also tabulated as well as the amplification factor of the  
internal gain section involved (noise-gain, which helps to  
estimate the error-budget of the configuration).  
V
= 230V and DIV = 10.3, the total power dissipation  
+IN  
is given by:  
2
2
P = (50 • 0.6mA) + 12.5 /2.5k + 230 /84.17k  
D
2
+ (228.75 – 230/10.3) /76k  
2
+ (230/10.3) /8.26k + (230/10.3  
2
– 12.5) /760k = 1.342W  
Assuming a thermal resistance of 43°C/W, the die tem-  
perature will experience a 57.7°C rise above ambient.  
This implies that the maximum ambient temperature the  
LT6376 should operate under the above conditions is:  
T =150°C – 57.7°C = 92.3°C  
A
Single-ended noninverting gains are also available as  
shown in Table 10, including many that operate as buf-  
fers (loaded only by the op amp input bias). A rich option  
set exists by using the REF pin as an additional variable.  
In Table 10, connections are identified as NC (no con-  
nect), INPUT (driven by the input), OUT (fed back from the  
output), or GROUND (grounded). Table 10 also includes  
tabulations of the internal resistor divider (DIV), noise  
gain (re-amplification), and the input loading presented  
by the circuit.  
Keep in mind that the DFN package has an exposed pad  
which can be used to lower the qJA of the package. The  
more PCB metal connected to the exposed pad, the lower  
the thermal resistance.  
The MSOP package has no exposed pad and a higher  
thermal resistance (qJA = 130°C/W). It should not be used  
in applications which have a high ambient temperature,  
require driving a heavy load, or require an extreme input  
voltage.  
USE AS PRECISION AC GAIN BLOCK  
THERMAL SHUTDOWN  
In AC-coupled applications operating from a single power  
supply, it is useful to set the output voltage near mid-  
supply to maximize dynamic range. The LT6376 readily  
supports this with no additional biasing components by  
For safety, the LT6376 will enter shutdown mode when  
the die temperature rises to approximately 163°C. This  
thermal shutdown has approximately 9°C of hysteresis  
requiring the die temperature to cool 9°C before enabling  
the amplifier again.  
+
connecting specific pins to the V and V potentials and  
AC-coupling the signal paths. Table 11 shows the available  
inverting gains and also tabulates the load resistances  
presented at the input. In Table 11, connections are identi-  
fied as NC (no connect), AC IN (AC-coupled to the input)  
USE AT OTHER PRECISION DC GAINS  
The array of resistors within the LT6376 provides numer-  
ous configurable connections that provide precision gains  
other than the G = 10 differential gain options described  
previously. Note that only the +IN and –IN pins can oper-  
ate outside of the supply window. Since most of these  
alternate configurations involve driving the REFx pins, as  
well as the +IN and –IN pins, the input signals must be less  
than the supply voltages. Fully differential gains are avail-  
able as shown in Table 9, and may be output-shifted with a  
+
OUT (fed back from the output), tied to V , tied to V ,  
or AC GND (AC- grounded). All pins that require an AC  
ground can share a single bypass capacitor. Likewise, all  
pins driven from the source signal may share a coupling  
capacitor as well. The output should also connect to the  
load circuitry using a coupling capacitor to block the mid-  
supply DC voltage.  
6376f  
21  
For more information www.linear.com/LT6376  
LT6376  
APPLICATIONS INFORMATION  
The LT6376 may also be used for single-supply nonin-  
verting AC gains by employing a combination of input  
attenuation and re-amplification. With numerous choices  
of attenuation and re-amplification, several hundred over-  
all gain combinations are possible, ranging from 0.1 to  
73. The combinations are more plentiful than the DC con-  
figurations because there is no constraint on matching  
internal source resistances to minimize offset.  
The high attenuations that only use +IN for the signal  
path can accept waveform peaks that significantly exceed  
the supply range. Table 12 also includes tabulations of  
the resulting AC load resistance presented to the signal  
source. Here again, all pins that require an AC-ground  
connection may share a single bypass capacitor, and all  
AC signal connections may share a coupling capacitor.  
The single-supply AC-coupled noninverting circuit is  
completed by configuring the post-attenuator amplifica-  
tion factor. Table 13 shows the available re-amplification  
factors. Once again, all pins that require an AC-ground  
connection may share a single bypass capacitor, and the  
output should use a coupling capacitor to its load desti-  
nation as well.  
The input attenuator section dedicates some pins to  
establishing a bias point and with the remaining pins,  
provides several choices of input signal division factors as  
shown in Table 12. The bias point varies between 20% and  
49% of the supply voltage depending on the configura-  
tion. Swapping V+ and Vwill bias the circuit closer to V+.  
Table 9. Configurations for Precision Differential Gains  
LT6376 DIFFERENTIAL AND INVERTING PRECISION DC GAINS  
GAIN  
2
±IN  
CROSS  
NC  
±REFA  
NC  
±REFB  
CROSS  
NC  
±REFC  
INPUT  
CROSS  
NC  
REF  
REF  
REF  
REF  
REF  
REF  
REF  
REF  
REF  
REF  
REF  
REF  
REF  
REF  
REF  
REF  
REF  
REF  
REF  
REF  
REF  
DIFF R (k)  
NOISE GAIN  
IN  
24.52  
21.11  
152  
63  
73  
11  
53  
83  
21  
43  
31  
33  
41  
43  
51  
53  
61  
63  
71  
73  
83  
93  
103  
8
INPUT  
NC  
10  
12  
18  
20  
22  
30  
32  
40  
42  
50  
52  
60  
62  
70  
72  
82  
92  
102  
INPUT  
NC  
NC  
NC  
CROSS  
NC  
INPUT  
CROSS  
NC  
29.23  
18.54  
76  
INPUT  
NC  
INPUT  
NC  
INPUT  
NC  
CROSS  
INPUT  
NC  
NC  
INPUT  
NC  
36.19  
50.67  
47.50  
38  
NC  
INPUT  
NC  
NC  
INPUT  
NC  
NC  
INPUT  
NC  
NC  
INPUT  
INPUT  
NC  
NC  
INPUT  
NC  
36.19  
30.40  
29.23  
25.33  
24.52  
21.71  
21.11  
18.54  
16.52  
14.90  
INPUT  
NC  
NC  
INPUT  
INPUT  
INPUT  
INPUT  
NC  
INPUT  
NC  
NC  
INPUT  
NC  
INPUT  
INPUT  
NC  
INPUT  
NC  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
NC  
NC  
INPUT  
INPUT  
INPUT  
6376f  
22  
For more information www.linear.com/LT6376  
LT6376  
APPLICATIONS INFORMATION  
Table 10. Configurations for Precision Noninverting Gains  
LT6376 NONINVERTING PRECISION DC GAINS  
NOISE  
GAIN  
GAIN FEATURE  
+IN  
GROUND  
INPUT  
INPUT  
INPUT  
INPUT  
NC  
+REFA  
NC  
+REFB  
NC  
+REFC  
NC  
REF  
–IN  
–REFA  
NC  
–REFB  
NC  
–REFC  
NC  
DIV  
11  
R (k)  
IN  
1
INPUT  
GROUND  
11  
11  
11  
31  
31  
33  
41  
41  
43  
51  
51  
53  
61  
61  
63  
71  
73  
83  
83  
93  
93  
103  
103  
836  
836  
10  
NC  
NC  
NC  
GROUND GROUND  
INPUT GROUND  
GROUND GROUND  
NC  
NC  
NC  
1.10  
1
11  
30  
31  
32  
40  
41  
42  
50  
51  
52  
60  
61  
62  
70  
72  
82  
83  
92  
93  
102  
103  
BUFFER  
BUFFER  
NC  
NC  
NC  
NC  
NC  
NC  
Hi-Z  
NC  
INPUT  
INPUT  
NC  
NC  
NC  
GROUND  
GROUND  
NC  
NC  
1.03 785.33  
Hi-Z  
1.03 783.75  
NC  
NC  
INPUT  
GROUND  
GROUND  
INPUT  
GROUND  
NC  
NC  
NC  
1
NC  
INPUT  
NC  
NC  
GROUND  
NC  
NC  
INPUT  
INPUT  
NC  
NC  
NC  
GROUND  
GROUND  
NC  
NC  
1.03  
1
779  
BUFFER  
BUFFER  
BUFFER  
NC  
NC  
NC  
NC  
NC  
NC  
Hi-Z  
INPUT  
INPUT  
INPUT  
NC  
NC  
INPUT  
NC  
GROUND GROUND  
NC  
GROUND  
NC  
1.02 778.10  
1.02 775.20  
INPUT  
INPUT  
NC  
NC  
GROUND GROUND GROUND  
NC  
NC  
NC  
INPUT  
GROUND  
GROUND  
INPUT  
GROUND GROUND  
NC  
NC  
1
Hi-Z  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
NC  
INPUT  
NC  
NC  
NC  
NC  
NC  
GROUND GROUND  
1.02 774.62  
1.02 772.67  
NC  
INPUT  
INPUT  
NC  
GROUND GROUND  
GROUND GROUND  
NC  
NC  
NC  
NC  
1
Hi-Z  
INPUT  
INPUT  
NC  
INPUT  
NC  
GROUND GROUND  
NC  
GROUND GROUND  
1.02 772.26  
1.01 770.86  
1.01 770.56  
1.01 769.27  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
GROUND GROUND GROUND GROUND  
NC  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
GROUND  
NC  
GROUND  
NC  
NC  
NC  
GROUND  
GROUND  
GROUND  
INPUT  
INPUT  
NC  
NC  
GROUND GROUND GROUND  
BUFFER  
BUFFER  
BUFFER  
NC  
INPUT  
GROUND  
INPUT  
GROUND GROUND  
1
Hi-Z  
1.01 768.26  
Hi-Z  
1.01 767.45  
Hi-Z  
INPUT  
INPUT  
INPUT  
INPUT  
NC  
NC  
GROUND GROUND GROUND  
GROUND GROUND GROUND  
NC  
1
INPUT  
INPUT  
GROUND GROUND GROUND GROUND GROUND  
INPUT GROUND GROUND GROUND GROUND  
1
6376f  
23  
For more information www.linear.com/LT6376  
LT6376  
APPLICATIONS INFORMATION  
Table 11. Configurations for Single-Supply AC-Coupled Inverting Gains  
LT6376 SINGLE-SUPPLY INVERTING AC GAINS  
GAIN  
–10  
–20  
–30  
–32  
–40  
–42  
–50  
–52  
–60  
–62  
–70  
–72  
–82  
–92  
–102  
–IN  
AC IN  
NC  
–REFA  
NC  
–REFB  
NC  
–REFC  
NC  
+IN  
+REFA  
AC GND  
AC GND  
AC GND  
AC GND  
AC GND  
AC GND  
AC GND  
AC GND  
AC GND  
AC GND  
AC GND  
AC GND  
AC GND  
AC GND  
AC GND  
+REFB  
+REFC  
REF  
AC R (k)  
IN  
+
V
V
V
V
76  
38  
25  
24  
19  
18  
15  
15  
13  
12  
11  
11  
9
+
NC  
AC IN  
AC IN  
NC  
NC  
V
V
V
V
+
AC IN  
NC  
NC  
NC  
V
V
V
V
+
NC  
AC IN  
NC  
V
V
V
V
+
NC  
AC IN  
NC  
NC  
V
V
V
V
+
AC IN  
AC IN  
NC  
NC  
AC IN  
NC  
V
V
V
V
+
AC IN  
NC  
NC  
V
V
V
V
+
AC IN  
AC IN  
AC IN  
AC IN  
NC  
AC IN  
NC  
V
V
V
V
+
NC  
AC IN  
NC  
V
V
V
V
+
AC IN  
AC IN  
NC  
AC IN  
NC  
V
V
V
V
+
AC IN  
AC IN  
AC IN  
AC IN  
AC IN  
V
V
V
V
+
AC IN  
AC IN  
AC IN  
AC IN  
V
V
V
V
+
AC IN  
NC  
NC  
V
V
V
V
+
AC IN  
AC IN  
V
V
V
V
8
+
AC IN  
V
V
V
V
7
Table 12. Configurations for Single-Supply AC-Coupled Input Attenuations  
LT6376 SINGLE-SUPPLY AC ATTENUATOR CONFIGURATIONS  
DIV  
1.41  
1.42  
1.43  
1.69  
1.70  
1.72  
1.73  
1.75  
1.78  
1.91  
1.94  
1.94  
1.96  
1.97  
1.98  
2.02  
DC BIAS  
0.33  
0.33  
0.35  
0.24  
0.24  
0.26  
0.33  
0.33  
0.35  
0.33  
0.33  
0.20  
0.20  
0.35  
0.22  
0.38  
+IN  
+REFA  
AC IN  
AC IN  
AC IN  
AC IN  
AC IN  
AC IN  
AC IN  
AC IN  
AC IN  
NC  
+REFB  
+REFC  
REF  
AC IN  
NC  
AC R (k)  
IN  
+
V
V
V
V
AC IN  
AC IN  
AC IN  
36  
36  
35  
31  
31  
30  
44  
44  
44  
48  
49  
30  
30  
48  
30  
30  
+
V
+
+
V
V
+
V
AC IN  
AC IN  
AC IN  
V
AC IN  
NC  
+
V
V
+
+
V
V
V
+
V
V
NC  
AC IN  
NC  
+
V
V
NC  
+
+
V
V
NC  
V
+
V
V
AC IN  
AC IN  
AC IN  
AC IN  
AC IN  
AC IN  
AC IN  
NC  
+
V
NC  
V
+
V
V
AC IN  
AC IN  
AC IN  
NC  
+
V
V
+
+
V
NC  
V
V
+
+
V
V
AC IN  
V
+
AC IN  
AC IN  
V
V
AC IN  
6376f  
24  
For more information www.linear.com/LT6376  
LT6376  
APPLICATIONS INFORMATION  
Table 12. Configurations for Single-Supply AC-Coupled Input Attenuations (continued)  
LT6376 SINGLE-SUPPLY AC ATTENUATOR CONFIGURATIONS  
DIV  
2.04  
2.06  
2.27  
2.30  
2.33  
2.51  
2.55  
2.58  
3.12  
3.19  
3.22  
3.32  
3.40  
3.43  
3.38  
3.50  
3.55  
4.90  
5.10  
5.15  
5.73  
6.20  
6.30  
9.36  
10.20  
10.30  
31  
DC BIAS  
0.38  
0.40  
0.38  
0.38  
0.40  
0.48  
0.48  
0.49  
0.43  
0.43  
0.44  
0.44  
0.44  
0.45  
0.20  
0.20  
0.22  
0.49  
0.49  
0.48  
0.38  
0.38  
0.40  
0.44  
0.44  
0.45  
0.33  
0.24  
0.20  
0.38  
0.33  
0.48  
0.43  
0.44  
0.49  
0.43  
0.49  
+IN  
AC IN  
AC IN  
NC  
+REFA  
AC IN  
AC IN  
AC IN  
AC IN  
AC IN  
AC IN  
AC IN  
AC IN  
+REFB  
+REFC  
REF  
AC R (k)  
IN  
+
V
V
NC  
30  
30  
+
+
V
V
V
+
V
V
AC IN  
33  
+
NC  
V
V
NC  
34  
+
+
NC  
V
V
V
33  
+
+
V
V
V
AC IN  
NC  
31  
+
+
V
V
V
31  
+
+
+
V
V
V
V
31  
+
+
V
V
V
AC IN  
AC IN  
AC IN  
AC IN  
NC  
34  
+
+
V
V
V
35  
+
+
+
V
V
V
V
34  
+
AC IN  
AC IN  
AC IN  
V
AC IN  
AC IN  
AC IN  
AC IN  
AC IN  
AC IN  
AC IN  
AC IN  
AC IN  
V
AC IN  
NC  
35  
+
V
V
36  
+
+
V
V
V
36  
+
V
V
NC  
NC  
NC  
AC IN  
NC  
51  
+
V
V
53  
+
+
V
V
V
53  
+
V
V
V
AC IN  
NC  
45  
+
V
V
V
47  
+
V
V
V
V
47  
+
AC IN  
AC IN  
AC IN  
AC IN  
AC IN  
AC IN  
NC  
NC  
NC  
V
V
AC IN  
NC  
84  
+
V
V
91  
+
+
V
V
V
90  
+
V
AC GND  
AC GND  
AC GND  
V
AC IN  
77  
V
V+  
V+  
NC  
NC  
84  
+
V
V
84  
+
V
NC  
NC  
V
AC IN  
AC IN  
AC IN  
AC IN  
AC IN  
AC IN  
AC IN  
AC IN  
AC IN  
AC IN  
AC IN  
785  
778  
775  
775  
773  
772  
771  
771  
769  
768  
767  
+
43  
V
NC  
NC  
V
+
51  
V
V
NC  
+
53  
NC  
NC  
V
V
+
61  
NC  
V
V
NC  
+
+
63  
V
NC  
V
V
+
+
71  
V
V
V
NC  
+
73  
NC  
V
NC  
NC  
V
+
83  
V
V
V
+
93  
NC  
V
V
V
+
+
103  
V
V
V
V
6376f  
25  
For more information www.linear.com/LT6376  
LT6376  
APPLICATIONS INFORMATION  
Table 13. Configurations for Single-Supply AC-Coupled Re-Amplications  
LT6376 NONINVERTING AC RE-AMPLIFICATIONS  
GAIN  
11  
21  
31  
33  
41  
43  
51  
53  
61  
63  
71  
73  
83  
93  
103  
–IN  
AC GND  
NC  
–REFA  
NC  
–REFB  
NC  
–REFC  
NC  
NC  
AC GND  
AC GND  
NC  
NC  
AC GND  
NC  
NC  
NC  
NC  
AC GND  
NC  
NC  
AC GND  
NC  
NC  
AC GND  
AC GND  
NC  
NC  
AC GND  
NC  
AC GND  
NC  
NC  
AC GND  
AC GND  
AC GND  
AC GND  
NC  
AC GND  
NC  
NC  
AC GND  
NC  
AC GND  
AC GND  
NC  
AC GND  
NC  
AC GND  
AC GND  
AC GND  
AC GND  
AC GND  
AC GND  
AC GND  
AC GND  
AC GND  
AC GND  
NC  
NC  
AC GND  
AC GND  
AC GND  
6376f  
26  
For more information www.linear.com/LT6376  
LT6376  
TYPICAL APPLICATIONS  
40.2dB Audio Gain Stage  
ꢄ 3ꢅ3ꢂ ꢆꢇ ꢈꢉꢂ  
ꢀꢋꢌꢍꢎ  
ꢔꢕꢖ  
ꢀꢋꢌꢍꢓ  
3ꢗꢖ  
ꢀꢋꢌꢍꢘ  
ꢑ3ꢅ7ꢈꢖ  
76ꢉꢖ  
ꢑꢅꢑꢒꢍ  
ꢀꢏꢐ  
76ꢖ  
ꢑꢅꢑꢒꢍ  
ꢏꢐ  
ꢇꢊꢆ  
ꢋꢌꢍ  
ꢇꢊꢆ  
76ꢖ  
ꢁꢏꢐ  
ꢇꢊꢆ  
ꢄ ꢀꢔꢉꢑ  
ꢏꢐ  
76ꢉꢖ  
ꢔꢕꢖ  
ꢁꢋꢌꢍꢎ  
3ꢗꢖ  
ꢑ3ꢅ7ꢈꢖ  
ꢁꢋꢌꢍꢘ  
ꢁꢋꢌꢍꢓ  
SHDN  
ꢑꢅꢑꢒꢍ  
6376 ꢆꢎꢉꢑ  
6376f  
27  
For more information www.linear.com/LT6376  
LT6376  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/product/LT6376#packaging for the most recent package drawings.  
DF Package  
14(12)-Lead Plastic DFN (4mm × 4mm)  
ꢀꢁꢂfꢂꢃꢂꢄꢅꢂ ꢆꢇꢈ ꢉꢊꢋ ꢌ ꢍꢎꢏꢍꢐꢏꢑꢒ63 ꢁꢂꢓ ꢔꢕ  
3.00 REF  
ꢀ.00  
BSC  
0.70 0.05  
4.50 0.05  
ꢀ.70 0.05  
3.ꢀ0 0.05  
3.38 0.05  
PACKAGE OUTLINE  
0.25 0.05  
0.50 BSC  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
3.00 REF  
4.00 0.ꢀ0  
(4 SIDES)  
ꢀ.00  
BSC  
8
ꢀ4  
0.40 0.ꢀ0  
3.38 0.ꢀ0  
ꢀ.70 0.ꢀ0  
PIN ꢀ NOTCH  
0.35 × 45°  
CHAMFER  
PIN ꢀ  
TOP MARK  
(NOTE 6)  
(DFꢀ4)(ꢀ2) DFN ꢀꢀꢀ3 REV 0  
7
R = 0.ꢀꢀ5  
TYP  
0.25 0.05  
0.50 BSC  
0.200 REF  
0.75 0.05  
BOTTOM VIEW—EXPOSED PAD  
0.00 – 0.05  
NOTE:  
ꢀ. PACKAGE OUTLINE DOES NOT CONFORM TO JEDEC MO-229  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.ꢀ5mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN ꢀ LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
6376f  
28  
For more information www.linear.com/LT6376  
LT6376  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/product/LT6376#packaging for the most recent package drawings.  
MS Package  
16 (12)-Lead Plastic MSOP with 4 Pins Removed  
(Reference LTC DWG # 05-08-1847 Rev B)  
1.0  
0.889 ±0.127  
(.035 ±.005)  
(.0394)  
BSC  
5.10  
3.20 – 3.45  
(.201)  
4.039 ±0.102  
(.159 ±.004)  
(NOTE 3)  
(.126 – .136)  
MIN  
0.280 ±0.076  
(.011 ±.003)  
REF  
16 14 121110  
9
0.50  
(.0197)  
BSC  
0.305 ±0.038  
(.0120 ±.0015)  
TYP  
3.00 ±0.102  
(.118 ±.004)  
(NOTE 4)  
4.90 ±0.152  
(.193 ±.006)  
RECOMMENDED SOLDER PAD LAYOUT  
DETAIL “A”  
0.254  
(.010)  
0° – 6° TYP  
1
3 5 6 7 8  
GAUGE PLANE  
1.0  
(.0394)  
BSC  
0.53 ±0.152  
(.021 ±.006)  
0.86  
(.034)  
REF  
1.10  
(.043)  
MAX  
DETAIL “A”  
0.18  
(.007)  
SEATING  
PLANE  
0.17 – 0.27  
(.007 – .011)  
TYP  
0.1016 ±0.0508  
(.004 ±.002)  
MSOP (MS12) 0213 REV B  
0.50  
(.0197)  
BSC  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
6376f  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog  
Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications  
29  
subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
For more information www.linear.com/LT6376  
LT6376  
TYPICAL APPLICATION  
Bidirectional Full Range Current Monitor  
ꢆ ꢏꢂ (OR 2V GREATER THAN ꢂ  
ꢃꢄꢅ  
–REFA  
ꢀꢊꢋꢌꢔ  
3ꢗꢖ  
ꢀꢊꢋꢌꢘ  
ꢒ3ꢑ7ꢏꢖ  
ꢐꢕꢖ  
76ꢇꢖ  
ꢆ ꢇꢂ ꢈꢄ 3ꢂ  
ꢃꢄꢅ  
ꢍꢋꢅꢍꢋ  
76ꢖ  
ꢀꢓꢅ  
ꢁꢓꢅ  
ꢄꢉꢈ  
ꢄꢉꢈ  
ꢆ ꢂ  
+ 102 • (ꢂ  
ꢍꢋꢅꢍꢋ  
ꢍꢋꢅꢍꢋ  
ꢊꢋꢌ  
76ꢖ  
ꢊꢋꢌ  
LOAD  
ꢆ ꢐꢑꢒꢏꢂ  
ꢊꢋꢌ  
76ꢇꢖ  
ꢐꢕꢖ  
+REFA  
3ꢗꢖ  
ꢒ3ꢑ7ꢏꢖ  
ꢁꢊꢋꢌꢘ  
ꢁꢊꢋꢌꢔ  
SHDN  
6376 TA03  
NOTE: OPERATES OVER FULL RANGE OF LOAD VOLTAGE  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT6375  
270V Input Range Difference Amplifier  
250V Input Range Difference Amplifier  
3.3V to 50V Operation, CMRR > 90dB, Input Voltage = 270V, G = 1  
2.7V to 36V Operation, CMRR > 70dB, Input Voltage = 250V, G = 1 AND 10  
3.3V to 50V Operation, CMRR > 90dB, Input Voltage = 160V, G = 1, 3 and 9  
LT1990  
LT1997-3  
Precision, Wide Voltage Range Gain Selectable  
Amplifier  
LT1999-10/  
LT1999-20/  
LT1999-50  
High Voltage, Bidirectional Current Sense Amplifier Input Voltage = –5V to 80V, 750µV V , CMRR 80dB at 100kHz, Gain: 10V/V,  
OS  
20V/V, 50V/V  
LT1991  
LT1996  
LTC6090  
LT6108  
Precision, 100µA Gain Selectable Amplifier  
Precision, 100µA Gain Selectable Amplifier  
140V Operational Amplifier  
2.7V to 36V Operation, 50μV Offset, CMRR > 75B, Input Voltage = 60V  
Micropower, Pin Selectable Up to Gain = 118  
50pA I , 1.6mV V , 9.5V to 140V V , 4.5mA I , RR Output  
B
OS  
S
S
High Side Current Sense Amplifier with Reference  
and Comparator with Shutdown  
2.7V to 60V, 125µV, Resistor Set Gain, 1.25% Threshold Error  
LT1787/  
LT1787HV  
Precision, Bidirectional High Side Current Sense  
Amplifier  
2.7V to 60V Operation, 75μV Offset, 60μA Current Draw  
LTC6101/  
High Voltage High Side Current Sense Amplifier  
Zero Drift High Side Current Sense Amplifier  
Bidirectional, High Side Current Sense  
4V to 60V/5V to 100V Operation, External Resistor Set Gain, SOT23  
LTC6101HV  
LTC6102/  
LTC6102HV  
4V to 60V/5V to 100V Operation, 10μV Offset, 1μs Step Response,  
MSOP8/DFN Packages  
LTC6104  
4V to 60V, Gain Configurable, 8-Pin MSOP Package  
LT6015/LT6016/ Single, Dual, and Quad, Over-The-Top Precision Op 3.2MHz, 0.8V/µs, 50µV V , 3V to 50V V , 0.335mA I , RRIO  
OS  
S
S
LT6017  
Amp  
AD629  
High Common-Mode Voltage Difference Amplifier  
5V to 36V Operation, CMRR > 86dB, Input Voltage = 270V, G = 1  
6376f  
LT 1217 • PRINTED IN USA  
www.linear.com/LT6376  
30  
ANALOG DEVICES, INC. 2017  

相关型号:

LT63H-SERIES

Optoelectronic
ETC

LT63HXX-SERIES

Optoelectronic
ETC

LT6402-12

1.3GHz Low Noise, Low Distortion Differential ADC Driver for 140MHz IF
Linear

LT6402-20

300MHz Low Distortion, Low Noise Differential Amplifier/ ADC Driver (AV = 20dB)
Linear

LT6402-6

1.3GHz Low Noise, Low Distortion Differential ADC Driver for 140MHz IF
Linear

LT6402CUD-12

300MHz Low Distortion, Low Noise Differential Amplifi er/ ADC Driver (AV = 12dB)
Linear

LT6402CUD-12#PBF

LT6402-12 - 300MHz Low Distortion, Low Noise Differential Amplifier/ADC Driver (AV = 12dB); Package: QFN; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT6402CUD-12#TR

暂无描述
Linear

LT6402CUD-12#TRPBF

LT6402-12 - 300MHz Low Distortion, Low Noise Differential Amplifier/ADC Driver (AV = 12dB); Package: QFN; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LT6402CUD-12-PBF

300MHz Low Distortion, Low Noise Differential Amplifi er/ ADC Driver (AV = 12dB)
Linear

LT6402CUD-12-TR

300MHz Low Distortion, Low Noise Differential Amplifi er/ ADC Driver (AV = 12dB)
Linear

LT6402CUD-12-TRPBF

300MHz Low Distortion, Low Noise Differential Amplifi er/ ADC Driver (AV = 12dB)
Linear