HMC1099PM5E [ADI]

HMC1099PM5E;
HMC1099PM5E
型号: HMC1099PM5E
厂家: ADI    ADI
描述:

HMC1099PM5E

高功率电源 射频 微波
文件: 总18页 (文件大小:330K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
10 W (40 dBm), 0.01 GHz to 1.1 GHz,  
GaN Power Amplifier  
Data Sheet  
HMC1099PM5E  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
High small signal gain: 20 dB typical  
POUT: 41.5 dBm typical at PIN = 27 dBm  
High PAE: 60% typical at PIN = 27 dBm  
Instantaneous bandwidth: 0.01 GHz to 1.1 GHz across all  
frequencies  
Supply voltage: VDD = 28 V at a quiescent current of 100 mA  
Internal prematching  
1
2
3
4
5
6
7
8
GND  
NIC  
NIC  
24 GND  
23 NIC  
22 NIC  
HMC1099PM5E  
RFOUT/V  
RFOUT/V  
NIC  
21  
20  
19  
18  
RFIN/V  
DD  
DD  
GG  
RFIN/V  
GG  
NIC  
NIC  
NIC  
Simple and compact external tuning for optimal  
performance  
17 GND  
GND  
PACKAGE  
BASE  
5 mm × 5 mm, 32-lead LFCSP  
APPLICATIONS  
NIC = NO INTERNAL CONNECTION. THESE PINS  
ARE NOT CONNECTED INTERNALLY.  
Extended battery operation for public mobile radios  
Power amplifier stage for wireless infrastructures  
Test and measurement equipment  
Figure 1.  
Commercial and military radars  
General-purpose transmitter amplification  
GENERAL DESCRIPTION  
The HMC1099PM5E is a gallium nitride (GaN), broadband  
power amplifier that delivers 10 W (40 dBm) with up to 60%  
power added efficiency (PAE) across an instantaneous  
bandwidth of 0.01 GHz to 1.1 GHz, at an input power (PIN) of  
27 dBm. The gain flatness is between 0.5 dB to 2 dB typical at  
small signal levels.  
The HMC1099PM5E is ideal for pulsed or continuous wave  
(CW) applications, such as wireless infrastructure, radars,  
public mobile radios, and general-purpose amplification.  
The HMC1099PM5E amplifier is externally tuned using low  
cost, surface-mount components and is available in a compact  
LFCSP.  
Multifunction pin names may be referenced by their relevant  
function only.  
Rev. B  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2018 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
HMC1099PM5E  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
ESD Caution...................................................................................5  
Pin Configuration and Function Descriptions..............................6  
Interface Schematics .....................................................................6  
Typical Performance Characteristics ..............................................7  
Theory of Operation ...................................................................... 15  
Applications Information.............................................................. 16  
Evaluation PCB........................................................................... 17  
Outline Dimensions....................................................................... 18  
Ordering Guide .......................................................................... 18  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Specifications............................................................... 3  
Total Quiescent Current by VDD ................................................. 4  
Absolute Maximum Ratings............................................................ 5  
Thermal Resistance ...................................................................... 5  
REVISION HISTORY  
9/2018—Rev. A to Rev. B  
Change to Storage Temperature Range Parameter, Table 5 ........ 5  
8/2018—Rev. 0 to Rev. A  
Changes to Figure 34...................................................................... 11  
Changes to Figure 35 and Figure 36............................................. 12  
8/2018—Revision 0: Initial Version  
Rev. B | Page 2 of 18  
 
Data Sheet  
HMC1099PM5E  
SPECIFICATIONS  
ELECTRICAL SPECIFICATIONS  
TA = 25°C, VDD = 28 V, quiescent current (IDDQ) = 100 mA, and frequency range = 0.01 GHz to 0.4 GHz unless otherwise noted.  
Table 1.  
Parameter  
FREQUENCY RANGE  
GAIN  
Symbol Min Typ Max Unit Test Conditions/Comments  
0.01  
0.4  
GHz  
Small Signal Gain  
Gain Flatness  
RETURN LOSS  
Input  
18  
20  
2
dB  
dB  
12  
15  
dB  
dB  
Output  
POWER  
Output Power  
POUT  
PAE  
40  
41  
55  
60  
50  
8
dBm Input power (PIN) = 25 dBm  
dBm PIN = 27 dBm  
Power Added Efficiency  
%
%
PIN = 25 dBm  
PIN = 27 dBm  
OUTPUT THIRD-ORDER INTERCEPT OIP3  
NOISE FIGURE  
dBm POUT per tone = 30 dBm  
dB  
V
SUPPLY VOLTAGE  
VDD  
IDDQ  
24  
28  
100  
30  
QUIESCENT CURRENT  
mA  
Adjust the gate bias control voltage (VGG) from −5 V to 0 V to  
achieve IDDQ = 100 mA, VGG = −2.9 V typical to achieve IDDQ = 100 mA  
TA = 25°C, VDD = 28 V, IDDQ = 100 mA, and frequency range = 0.4 GHz to 0.8 GHz unless otherwise noted.  
Table 2.  
Parameter  
FREQUENCY RANGE  
GAIN  
Symbol  
Min Typ  
Max Unit Test Conditions/Comments  
0.4  
0.8  
GHz  
Small Signal Gain  
Gain Flatness  
RETURN LOSS  
Input  
16.5 18  
0.5  
dB  
dB  
8
13  
dB  
dB  
Output  
POWER  
Output Power  
POUT  
PAE  
39  
41  
45  
50  
47.5  
5
dBm PIN = 25 dBm  
dBm PIN = 27 dBm  
Power Added Efficiency  
%
%
PIN = 25 dBm  
PIN = 27 dBm  
OUTPUT THIRD-ORDER INTERCEPT  
NOISE FIGURE  
OIP3  
dBm POUT per tone = 30 dBm  
dB  
V
SUPPLY VOLTAGE  
VDD  
IDDQ  
24  
28  
30  
QUIESCENT CURRENT  
100  
mA  
Adjust VGG from −5 V to 0 V to achieve IDDQ = 100 mA,  
VGG = −2.9 V typical to achieve IDDQ = 100 mA  
Rev. B | Page 3 of 18  
 
 
 
HMC1099PM5E  
Data Sheet  
TA = 25°C, VDD = 28 V, IDDQ = 100 mA, and frequency range = 0.8 GHz to 1.1 GHz unless otherwise noted.  
Table 3.  
Parameter  
FREQUENCY RANGE  
GAIN  
Symbol  
Min Typ  
Max Unit Test Conditions/Comments  
0.8  
1.1  
GHz  
Small Signal Gain  
Gain Flatness  
RETURN LOSS  
Input  
16.5 18  
1
dB  
dB  
12  
15  
dB  
dB  
Output  
POWER  
Output Power  
POUT  
PAE  
40  
41.5  
55  
60  
45  
5
dBm PIN = 25 dBm  
dBm PIN = 27 dBm  
Power Added Efficiency  
%
%
PIN = 25 dBm  
PIN = 27 dBm  
OUTPUT THIRD-ORDER INTERCEPT  
NOISE FIGURE  
OIP3  
dBm POUT per tone = 30 dBm  
dB  
V
SUPPLY VOLTAGE  
VDD  
IDDQ  
24  
28  
30  
QUIESCENT CURRENT  
100  
mA  
Adjust VGG from −5 V to 0 V to achieve IDDQ = 100 mA,  
GG = −2.9 V typical to achieve IDDQ = 100 mA  
V
TOTAL QUIESCENT CURRENT BY VDD  
Table 4.  
Parameter  
Symbol  
Min Typ Max Unit Test Conditions/Comments  
Adjust VGG between −5 V and 0 V to achieve IDDQ = 100 mA typical  
VDD = 24 V  
QUIESCENT CURRENT  
IDDQ  
100  
100  
100  
100  
mA  
mA  
mA  
mA  
VDD = 26 V  
VDD = 28 V  
VDD = 30 V  
Rev. B | Page 4 of 18  
 
 
Data Sheet  
HMC1099PM5E  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 5.  
Parameter1  
Rating  
32 V  
−8 V to 0 V  
33 dBm  
6:1  
Thermal performance is directly linked to printed circuit board  
(PCB) design and operating environment. Careful attention to  
PCB thermal design is required.  
Supply Voltage (VDD)  
Gate Bias Voltage (VGG)  
Radio Frequency Input Power (RFIN)  
Voltage Standing Wave Ratio (VSWR)2  
Channel Temperature  
Peak Reflow Temperature Moisture  
Sensitivity Level 3 (MSL3)3  
θJC is the junction to case thermal resistance.  
Table 6. Thermal Resistance  
Package Type  
CG-32-21  
225°C  
260°C  
θJC  
Unit  
6.6  
°C/W  
Continuous Power Dissipation, PDISS (TA = 85°C,  
Derate 151.5 mW/°C Above 85°C)  
Storage Temperature Range  
Operating Temperature Range  
Electrostatic Discharge (ESD) Sensitivity  
Human Body Model  
21.21 W  
1 Thermal resistance (θJC) was determined by simulation under the following  
conditions: the heat transfer is due solely to thermal conduction from the  
channel, through the ground paddle, to the PCB, and the ground paddle is  
held constant at the operating temperature of 85°C.  
−65°C to +150°C  
−40°C to +85°C  
ESD CAUTION  
Class 1B,  
passed 500 V  
1 When referring to a single function of a multifunction pin in the parameters,  
only the portion of the pin name that is relevant to the absolute maximum  
rating is listed. For full pin names of multifunction pins, refer to the Pin  
Configuration and Function Descriptions section.  
2 Restricted by maximum power dissipation.  
3 See the Ordering Guide for additional information.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Rev. B | Page 5 of 18  
 
 
 
HMC1099PM5E  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
1
2
3
4
5
6
7
8
GND  
24  
GND  
NIC  
NIC  
23 NIC  
22 NIC  
21  
HMC1099PM5E  
RFOUT/V  
RFIN/V  
DD  
DD  
GG  
TOP VIEW  
20 RFOUT/V  
RFIN/V  
GG  
(Not to Scale)  
NIC  
NIC  
GND  
19  
18  
17  
NIC  
NIC  
GND  
NOTES  
1. EXPOSED PAD. THE EXPOSED PAD MUST  
BE CONNECTED TO RF AND DC GROUND.  
2. NO INTERNAL CONNECTION. THESE PINS  
ARE NOT CONNECTED INTERNALLY. HOWEVER,  
ALL DATA WAS MEASURED WITH THESE PINS  
CONNECTED TO RF AND DC GROUND EXTERNALLY.  
Figure 2. Pin Configuration  
Table 7. Pin Function Descriptions  
Pin No.  
Mnemonic Description  
1, 8, 9, 16, 17, 24, 25, 32  
GND  
Ground. These pins must be connected to RF and dc ground. See Figure 3 for the GND interface  
schematic.  
2, 3, 6, 7, 10 to 15, 18,  
19, 22, 23, 26 to 31  
NIC  
No Internal Connection. These pins are not connected internally. However, all data was measured  
with these pins connected to RF and dc ground externally.  
4, 5  
RFIN/VGG  
RF Input/Gate Bias Control Voltage. This pin is a multifunction pin. The RFIN/VGG pin is dc-coupled  
with internal prematching and requires external matching to 50 Ω, as shown in Figure 49. See Figure 4  
for the RFIN/VGG interface schematic.  
20, 21  
RFOUT/VDD RF Output/Supply Voltage. This pin is a multifunction pin. The RFOUT/VDD pin is dc-coupled and requires  
external matching to 50 Ω, as shown in Figure 49. See Figure 4 for the RFOUT/VDD interface schematic.  
EPAD  
Exposed Pad. The exposed pad must be connected to RF and dc ground.  
INTERFACE SCHEMATICS  
RFOUT/V  
DD  
GND  
RFIN/V  
GG  
Figure 3. GND Interface  
Figure 4. RFIN/VGG and RFOUT/VDD Interface  
Rev. B | Page 6 of 18  
 
 
 
 
Data Sheet  
HMC1099PM5E  
TYPICAL PERFORMANCE CHARACTERISTICS  
25  
25  
23  
21  
19  
17  
15  
13  
11  
9
+85°C  
+25°C  
–40°C  
20  
15  
10  
INPUT RETURN LOSS  
OUTPUT RETURN LOSS  
GAIN  
05  
0
–5  
–10  
–15  
–20  
7
5
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.2  
1.2  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 5. Response vs. Frequency, Broadband Gain and Return Loss  
Figure 8. Gain vs. Frequency at Various Temperatures  
25  
25  
23  
21  
19  
17  
15  
13  
11  
9
30V  
23  
21  
19  
17  
15  
13  
11  
9
28V  
26V  
24V  
50mA  
100mA  
150mA  
200mA  
250mA  
7
7
5
5
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
0
0.2  
0.4  
0.6  
0.8  
1.0  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 6. Gain vs. Frequency at Various Supply Voltages  
Figure 9. Gain vs. Frequency at Various Quiescent Currents  
0
–5  
0
+85°C  
+25°C  
–40°C  
30V  
28V  
26V  
24V  
–5  
–10  
–15  
–20  
–25  
–10  
–15  
–20  
–25  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
0
0.2  
0.4  
0.6  
0.8  
1.0  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 7. Input Return Loss vs. Frequency at Various Temperatures  
Figure 10. Input Return Loss vs. Frequency at Various Supply Voltages  
Rev. B | Page 7 of 18  
 
HMC1099PM5E  
Data Sheet  
0
0
–5  
+85°C  
+25°C  
–40°C  
–5  
–10  
–10  
–15  
–20  
–25  
–15  
50mA  
–20  
100mA  
150mA  
200mA  
250mA  
–25  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 11. Input Return Loss vs. Frequency at Various Quiescent Currents  
Figure 14. Output Return Loss vs. Frequency at Various Temperatures  
0
0
50mA  
30V  
28V  
26V  
100mA  
150mA  
200mA  
250mA  
24V  
–5  
–10  
–15  
–20  
–25  
–5  
–10  
–15  
–20  
–25  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 12. Output Return Loss vs. Frequency at Various Supply Voltages  
Figure 15. Output Return Loss vs. Frequency at Various Quiescent Currents  
44  
42  
40  
38  
36  
34  
44  
30V  
28V  
26V  
24V  
42  
40  
38  
36  
34  
32  
30  
32  
30  
+85°C  
+25°C  
–40°C  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 13. Output Power vs. Frequency at Various Temperatures,  
IN = 25 dBm  
Figure 16. Output Power vs. Frequency at Various Supply Voltages,  
IN = 25 dBm  
P
P
Rev. B | Page 8 of 18  
Data Sheet  
HMC1099PM5E  
44  
42  
40  
38  
36  
34  
44  
42  
40  
38  
36  
34  
32  
30  
50mA  
100mA  
150mA  
200mA  
250mA  
+85°C  
+25°C  
–40°C  
32  
30  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 17. Output Power vs. Frequency at Various Quiescent Currents,  
PIN = 25 dBm  
Figure 20. Output Power vs. Frequency at Various Temperatures,  
PIN = 27 dBm  
44  
42  
40  
38  
36  
44  
42  
40  
38  
36  
34  
34  
50mA  
30V  
100mA  
28V  
26V  
24V  
32  
30  
32  
30  
150mA  
200mA  
250mA  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 18. Output Power vs. Frequency at Various Supply Voltages,  
PIN = 27 dBm  
Figure 21. Output Power vs. Frequency at Various Quiescent Currents,  
PIN = 27 dBm  
80  
70  
60  
50  
40  
30  
80  
70  
60  
50  
40  
30  
20  
20  
+85°C  
+85°C  
10  
10  
+25°C  
+25°C  
–40°C  
–40°C  
0
0
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 19. PAE vs. Frequency at Various Temperatures, PIN = 25 dBm  
Figure 22. PAE vs. Frequency at Various Temperatures,  
IN = 27 dBm  
P
Rev. B | Page 9 of 18  
HMC1099PM5E  
Data Sheet  
48  
44  
40  
36  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
32  
15dBm  
17dBm  
28  
19dBm  
21dBm  
23dBm  
25dBm  
27dBm  
30dBm  
15dBm  
17dBm  
19dBm  
21dBm  
23dBm  
25dBm  
27dBm  
30dBm  
24  
20  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.2  
1.2  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 23. Output Power vs. Frequency at Various Input Powers  
Figure 26. PAE vs. Frequency at Various Input Powers  
1200  
60  
55  
50  
45  
40  
35  
30  
15dBm  
17dBm  
19dBm  
21dBm  
23dBm  
25dBm  
27dBm  
30dBm  
+85°C  
+25°C  
–40°C  
1000  
800  
600  
400  
200  
0
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
0
0.2  
0.4  
0.6  
0.8  
1.0  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 24. Supply Current (IDD) vs. Frequency at Various Input Powers  
Figure 27. OIP3 vs. Frequency at Various Temperatures,  
POUT per Tone = 30 dBm  
60  
60  
55  
50  
45  
40  
35  
30  
30V  
28V  
26V  
55  
24V  
50  
45  
40  
35  
30  
50mA  
100mA  
150mA  
200mA  
250mA  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
0
0.2  
0.4  
0.6  
0.8  
1.0  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 25. OIP3 vs. Frequency at Various Supply Voltages,  
OUT per Tone = 30 dBm  
Figure 28. OIP3 vs. Frequency at Various Quiescent Currents,  
OUT per Tone = 30 dBm  
P
P
Rev. B | Page 10 of 18  
Data Sheet  
HMC1099PM5E  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
60  
55  
50  
45  
40  
35  
0.02GHz  
0.1GHz  
0.4GHz  
1.0GHz  
1.1GHz  
20dBm  
22dBm  
24dBm  
26dBm  
28dBm  
30dBm  
32dBm  
30  
25  
20  
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
30  
32  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
P
PER TONE (dBm)  
FREQUENCY (GHz)  
OUT  
Figure 29. OIP3 vs. Frequency at Various POUT per Tone  
Figure 32. IMD3 vs. POUT per Tone,  
VDD = 24 V  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
0.02GHz  
0.1GHz  
0.4GHz  
1.0GHz  
1.1GHz  
0.02GHz  
0.1GHz  
0.4GHz  
1.0GHz  
1.1GHz  
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
30  
32  
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
30  
32  
P
PER TONE (dBm)  
P
PER TONE (dBm)  
OUT  
OUT  
Figure 30. Output Third-Order Intermodulation (IMD3) vs. POUT per Tone,  
DD = 26 V  
Figure 33. IMD3 vs. POUT per Tone,  
VDD = 28 V  
V
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
900  
0.02GHz  
0.1GHz  
0.4GHz  
1.0GHz  
1.1GHz  
P
OUT  
GAIN  
800  
700  
600  
500  
400  
300  
200  
100  
0
PAE  
I
DD  
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
30  
32  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30  
INPUT POWER (dBm)  
P
PER TONE (dBm)  
OUT  
Figure 31. IMD3 vs. POUT per Tone,  
VDD = 30 V  
Figure 34. Output Power, Gain, PAE, and IDD vs. Input Power at 0.02 GHz  
Rev. B | Page 11 of 18  
HMC1099PM5E  
Data Sheet  
70  
840  
720  
600  
480  
360  
240  
120  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
800  
700  
600  
500  
400  
300  
200  
100  
0
P
OUT  
OUTPUT POWER  
GAIN  
GAIN  
60  
50  
40  
30  
20  
10  
0
PAE  
PAE  
I
DD  
I
DD  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30  
INPUT POWER (dBm)  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30  
INPUT POWER (dBm)  
Figure 38. Output Power, Gain, PAE, and IDD vs. Input Power at 0.4 GHz  
Figure 35. Output Power, Gain, PAE, and IDD vs. Input Power at 0.1 GHz  
35  
30  
25  
20  
15  
10  
80  
70  
60  
50  
40  
30  
20  
10  
0
600  
525  
450  
375  
300  
225  
150  
75  
P
OUT  
GAIN  
PAE  
I
DD  
5
0
+85°C  
+25°C  
–40°C  
0
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30  
INPUT POWER (dBm)  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
FREQUENCY (GHz)  
Figure 36. Output Power, Gain, PAE, and IDD vs. Input Power at 1.1 GHz  
Figure 39. Second Harmonic vs. Frequency at Various Temperatures,  
PIN = 15 dBm  
35  
35  
30  
25  
20  
15  
10  
30V  
28V  
26V  
24V  
30  
25  
20  
15  
10  
5
50mA  
100mA  
150mA  
200mA  
250mA  
5
0
0
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 37. Second Harmonic vs. Frequency at Various Supply Voltages,  
PIN = 15 dBm  
Figure 40. Second Harmonic vs. Frequency at Various Quiescent Currents,  
PIN = 15 dBm  
Rev. B | Page 12 of 18  
Data Sheet  
HMC1099PM5E  
35  
30  
25  
20  
15  
10  
5
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
+85°C  
+25°C  
–40°C  
15dBm  
17dBm  
19dBm  
21dBm  
23dBm  
25dBm  
27dBm  
30dBm  
0
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 41. Second Harmonic vs. Frequency at Various Input Powers  
Figure 44. Reverse Isolation vs. Frequency at Various Temperatures  
12  
10  
8
24  
20  
16  
12  
8
6
4
2
4
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
0
0
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
0
20  
40  
60  
80  
100  
FREQUENCY (GHz)  
FREQUENCY (MHz)  
Figure 42. Noise Figure vs. Frequency at Various Temperatures  
Figure 45. Noise Figure vs. Frequency at Various Temperatures,  
Low Frequency  
12  
12  
10  
8
30V  
28V  
26V  
10  
24V  
8
6
4
2
0
6
4
50mA  
100mA  
150mA  
200mA  
250mA  
2
0
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 43. Noise Figure vs. Frequency at Various Supply Voltages  
Figure 46. Noise Figure vs. Frequency at Various Quiescent Currents  
Rev. B | Page 13 of 18  
HMC1099PM5E  
Data Sheet  
24  
22  
20  
300  
250  
200  
150  
100  
50  
0.01GHz  
18  
0.1GHz  
0.4GHz  
16  
0.8GHz  
1.1GHz  
14  
MAXIMUM P  
AT 85°C  
DISS  
12  
10  
8
6
4
0
2
–50  
–3.5  
0
–3.4  
–3.3  
–3.2  
–3.1  
(V)  
–3.0  
–2.9  
–2.8  
–2.7  
0
5
10  
15  
20  
25  
30  
V
INPUT POWER (dBm)  
GG  
Figure 48. IDD vs. VGG at VDD = 28 V, Representative of a Typical Device  
Figure 47. Power Dissipation vs. Input Power at Various Frequencies,  
TA = 85°C  
Rev. B | Page 14 of 18  
Data Sheet  
HMC1099PM5E  
THEORY OF OPERATION  
The HMC1099PM5E is a 10 W (40 dBm), gallium nitride (GaN),  
power amplifier that consists of a single gain stage that  
effectively operates like a single field effect transistor (FET). The  
device is internally prematched so that a simple, external  
matching network optimizes the performance across the entire  
operating frequency range. The recommended dc bias  
conditions put the device in Class AB operation, resulting in  
high output power (41.5 dBm typical at PIN = 27 dBm) at  
improved levels of power efficiency (60% typical at PIN = 27 dBm).  
Rev. B | Page 15 of 18  
 
HMC1099PM5E  
Data Sheet  
APPLICATIONS INFORMATION  
The supply voltage is applied through the RFOUT/VDD pin, and  
the gate bias voltage is applied through the RFIN/VGG pin. For  
operation of a single application circuit across the entire  
frequency range, it is recommended to use the external matching  
components specified in the typical application circuit (L1, C1, L3,  
and C8) shown in Figure 49. If operation is only required across  
a narrower frequency range, performance may be optimized  
additionally through the implementation of alternate matching  
networks. Capacitive bypassing of VDD and VGG is recommended.  
The recommended power-down bias sequence follows:  
1. Turn off the RF signal.  
2. Set VGG to −8 V to pinch off the drain current.  
3. Set VDD t o 0 V.  
4. Set VGG t o 0 V.  
All measurements for this device were taken using the typical  
application circuit, configured as shown in the typical application  
circuit (see Figure 49). The bias conditions shown in the  
electrical specifications table (see Table 1 to Table 3) are the  
recommended operating points to optimize the overall  
performance. Unless otherwise noted, the data shown was taken  
using the recommended bias conditions. Operation of the  
HMC1099PM5E under other bias conditions may provide  
performance that differs from what is shown in the Typical  
Performance Characteristics section.  
The recommended power-up bias sequence follows:  
1. Connect the power supply ground to the circuit ground.  
2. Set VGG to −8 V to pinch off the drain current.  
3. Set VDD to 28 V to pinch off the drain current.  
4. Adjust VGG between −3 V and −2.5 V until a quiescent  
current of IDDQ = 100 mA is obtained.  
5. Apply the RF signal.  
The evaluation PCB provides the HMC1099PM5E in its typical  
application circuit, allowing easy operation using standard dc  
power supplies and 50 Ω RF test equipment.  
V
DD  
V
GG  
C6  
10µF  
C9  
10µF  
C7  
10µF  
C10  
10µF  
32 31 30 29 28 27 26 25  
24  
23  
22  
21  
20  
19  
18  
17  
1
2
3
4
5
6
7
8
C4  
C5  
2200pF  
2200pF  
HMC1099PM5E  
R1  
L2  
0.9µH  
C2  
68.1  
C3  
2200pF  
2200pF  
RFIN  
RFOUT  
L3  
5.6nH  
L1  
5.4nH  
C8  
3.3pF  
C1  
3.3pF  
9
10 11 12 13 14 15 16  
Figure 49. Typical Application Circuit  
Rev. B | Page 16 of 18  
 
 
Data Sheet  
HMC1099PM5E  
sufficient number of via holes to connect the top and bottom  
ground planes. The evaluation circuit board shown in Figure 50  
is available from Analog Devices, Inc., upon request.  
EVALUATION PCB  
Use RF circuit design techniques for the PCB used in the device.  
Provide a 50 Ω impedance for the signal lines and directly  
connect the package ground leads and exposed pad to the  
ground plane, similar to that shown in Figure 50. Use a  
Figure 50. Evaluation PCB  
Table 8. Bill of Materials for Evaluation PCB EV1HMC1099PM5  
Item  
Description  
J1  
DC pin  
J2, J3  
J4  
SMA connectors, 25-146-1000-92  
Preform jumper  
C1, C8  
3.3 pF capacitors, 0603 package  
C2 to C5  
C6, C7, C9, C10  
2200 pF capacitors, 0603 package  
10 µF capacitors, 1210 package  
L1  
5.4 nH inductor, 0906 package  
L2  
0.9 µH inductor, 1008 package  
L3  
5.6 nH inductor, 0402 package  
R1  
68.1 Ω resistor, 0603 package  
U1  
HMC1099PM5E amplifier  
Heat Sink  
PCB  
Used for thermal transfer from the HMC1099PM5E amplifier  
EV1HMC1099PM5 PCB, circuit board material: Rogers 4350 or Arlon 25FR  
Rev. B | Page 17 of 18  
 
 
HMC1099PM5E  
Data Sheet  
OUTLINE DIMENSIONS  
DETAIL A  
(JEDEC 95)  
5.10  
5.00 SQ  
4.90  
0.30  
0.25  
0.20  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR AREA OPTIONS  
(SEE DETAIL A)  
25  
24  
32  
1
0.50  
BSC  
3.20  
3.10 SQ  
3.00  
EXPOSED  
PAD  
17  
16  
8
9
0.45  
0.40  
0.35  
TOP VIEW  
SIDE VIEW  
BOTTOM VIEW  
3.50 REF  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
1.35  
1.25  
1.15  
0.60 REF  
0.40  
0.050 MAX  
0.035 NOM  
SECTION OF THIS DATA SHEET.  
COPLANARITY  
SEATING  
PLANE  
0.08  
0.203 REF  
Figure 51. 32-Lead Lead Frame Chip Scale Package, Premolded Cavity [LFCSP_CAV]  
5 mm × 5 mm Body and 1.25 mm Package Height  
(CG-32-2)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Temperature  
Range  
MSL  
Package  
Option  
Model1, 2  
Rating3  
MSL3  
Description4  
HMC1099PM5E  
−40°C to +85°C  
32-Lead Lead Frame Chip Scale Package, Premolded Cavity [LFCSP_CAV]  
32-Lead Lead Frame Chip Scale Package, Premolded Cavity [LFCSP_CAV]  
Evaluation Board  
CG-32-2  
CG-32-2  
HMC1099PM5ETR −40°C to +85°C  
EV1HMC1099PM5  
MSL3  
1 All models are RoHS compliant.  
2 When ordering the evaluation board only, reference the model number, EV1HMC1099PM5.  
3 See the Absolute Maximum Ratings section for additional information.  
4 The lead finish of the HMC1099PM5E and the HMC1099PM5ETR are nickel palladium gold (NiPdAu).  
©2018 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D16826-0-9/18(B)  
Rev. B | Page 18 of 18  
 
 

相关型号:

HMC1099PM5ETR

HMC1099PM5ETR
ADI

HMC10DRAH

CONN EDGE DUAL FMALE 20POS 0.100
ETC

HMC10DRAH-S734

CONN EDGE DUAL FMALE 20POS 0.100
ETC

HMC10DRAI

CONN EDGE DUAL FMALE 20POS 0.100
ETC

HMC10DRAI-S734

CONN EDGE DUAL FMALE 20POS 0.100
ETC

HMC10DRAN

CONN EDGE DUAL FMALE 20POS 0.100
ETC

HMC10DRAN-S734

CONN EDGE DUAL FMALE 20POS 0.100
ETC

HMC10DRAS

CONN EDGE DUAL FMALE 20POS 0.100
ETC

HMC10DRAS-S734

CONN EDGE DUAL FMALE 20POS 0.100
ETC

HMC10DREF

CONN EDGE DUAL FMALE 20POS 0.100
ETC

HMC10DREF-S13

CONN EDGE DUAL FMALE 20POS 0.100
ETC

HMC10DREF-S734

CONN EDGE DUAL FMALE 20POS 0.100
ETC