EVAL-SSM2335Z [ADI]

Filterless, High Efficiency, Mono 3 W Class-D Audio Amplifier; 无滤波器,高效率,单声道3瓦D类音频放大器
EVAL-SSM2335Z
型号: EVAL-SSM2335Z
厂家: ADI    ADI
描述:

Filterless, High Efficiency, Mono 3 W Class-D Audio Amplifier
无滤波器,高效率,单声道3瓦D类音频放大器

音频放大器
文件: 总16页 (文件大小:584K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Filterless, High Efficiency,  
Mono 3 W Class-D Audio Amplifier  
SSM2335  
The SSM2335 features a high efficiency, low noise modulation  
scheme that requires no external LC output filters. The modu-  
lation continues to provide high efficiency even at low output  
power. It operates with 93% efficiency at 1.4 W into 8 Ω or 85%  
efficiency at 3 W into 3 Ω from a 5.0 V supply and has an SNR  
of >96 dB. Spread-spectrum pulse density modulation is used  
to provide lower EMI-radiated emissions compared with other  
Class-D architectures.  
FEATURES  
Filterless Class-D amplifier with Σ-Δ modulation  
No sync necessary when using multiple Class-D amplifiers  
from Analog Devices, Inc.  
3 W into 3 Ω load and 1.4 W into 8 Ω load at 5.0 V supply  
with <1% total harmonic distortion (THD + N)  
93% efficiency at 5.0 V, 1.4 W into 8 Ω speaker  
>96 dB signal-to-noise ratio (SNR)  
Single-supply operation from 2.5 V to 5.5 V  
20 nA ultralow shutdown current  
Short-circuit and thermal protection  
Available in 9-ball, 1.5 mm × 1.5 mm WLCSP  
Pop-and-click suppression  
Built-in resistors reduce board component count  
Default fixed 18 dB or user-adjustable gain setting  
The SSM2335 has a micropower shutdown mode with a typical  
shutdown current of 20 nA. Shutdown is enabled by applying  
SD  
a logic low to the  
pin.  
The device also includes pop-and-click suppression circuitry.  
This suppression circuitry minimizes voltage glitches at the  
output during turn-on and turn-off, reducing audible noise  
on activation and deactivation.  
APPLICATIONS  
Mobile phones  
MP3 players  
Portable gaming  
Portable electronics  
Educational toys  
The fully differential input of the SSM2335 provides excellent  
rejection of common-mode noise on the input. Input coupling  
capacitors can be omitted if the input dc common-mode voltage  
is approximately VDD/2.  
The default gain of the SSM2335 is 18 dB, but users can reduce the  
gain by using a pair of external resistors (see the Gain section).  
GENERAL DESCRIPTION  
The SSM2335 is specified over the industrial temperature range  
of −40°C to +85°C. It has built-in thermal shutdown and output  
short-circuit protection. It is available in a 9-ball, 1.5 mm ×  
1.5 mm wafer level chip scale package (WLCSP).  
The SSM2335 is a fully integrated, high efficiency, Class-D audio  
amplifier. It is designed to maximize performance for mobile  
phone applications. The application circuit requires a minimum  
of external components and operates from a single 2.5 V to 5.5 V  
supply. It is capable of delivering 3 W of continuous output power  
with <1% THD + N driving a 3 Ω load from a 5.0 V supply.  
FUNCTIONAL BLOCK DIAGRAM  
0.1µF  
10µF  
VBATT  
2.5V TO 5.5V  
VDD  
SSM2335  
160k  
47nF*  
20kΩ  
20kΩ  
IN+  
IN–  
OUT–  
OUT+  
AUDIO IN+  
AUDIO IN–  
MODULATOR  
FET  
DRIVER  
(Σ-Δ)  
47nF*  
160kΩ  
SD  
INTERNAL  
OSCILLATOR  
POP-AND-CLICK  
SUPPRESSION  
BIAS  
SHUTDOWN  
GND  
*INPUT CAPACITORS ARE OPTIONAL IF INPUT DC COMMON-MODE  
VOLTAGE IS APPROXIMATELY V /2.  
DD  
Figure 1.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2008 Analog Devices, Inc. All rights reserved.  
 
SSM2335  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Typical Application Circuits ......................................................... 11  
Theory of Operation ...................................................................... 12  
Overview ..................................................................................... 12  
Gain.............................................................................................. 12  
Pop-and-Click Suppression ...................................................... 12  
Output Modulation Description .............................................. 12  
Layout .......................................................................................... 13  
Input Capacitor Selection.......................................................... 13  
Power Supply Decoupling ......................................................... 13  
Outline Dimensions....................................................................... 14  
Ordering Guide .......................................................................... 14  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 4  
Thermal Resistance ...................................................................... 4  
ESD Caution.................................................................................. 4  
Pin Configuration and Function Descriptions............................. 5  
Typical Performance Characteristics ............................................. 6  
REVISION HISTORY  
10/08—Revision 0: Initial Version  
Rev. 0 | Page 2 of 16  
 
SSM2335  
SPECIFICATIONS  
VDD = 5.0 V, TA = 25°C, RL = 8 Ω +33 μH, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Test Conditions/Comments1  
Min  
Typ  
Max  
Unit  
DEVICE CHARACTERISTICS  
Output Power  
PO  
f = 1 kHz, 20 kHz BW  
RL = 8 Ω, THD = 1%, VDD = 5.0 V  
RL = 8 Ω, THD = 1%, VDD = 3.6 V  
RL = 8 Ω, THD = 10%, VDD = 5.0 V  
RL = 8 Ω, THD = 10%, VDD = 3.6 V  
RL = 4 Ω, THD = 1%, VDD = 5.0 V  
RL = 4 Ω, THD = 1%, VDD = 3.6 V  
RL = 4 Ω, THD = 10%, VDD = 5.0 V  
RL = 4 Ω, THD = 10%, VDD = 3.6 V  
RL = 3 Ω, THD = 1%, VDD = 5.0 V  
RL = 3 Ω, THD = 1%, VDD = 3.6 V  
RL = 3 Ω, THD = 10%, VDD = 5.0 V  
RL = 3 Ω, THD = 10%, VDD = 3.6 V  
PO = 1.4 W, 8 Ω, VDD = 5.0 V  
1.48  
0.75  
1.84  
0.94  
2.72  
1.38  
3.402  
1.72  
3.432  
1.72  
4.282  
2.14  
93  
W
W
W
W
W
W
W
W
W
W
W
W
%
Efficiency  
η
Total Harmonic Distortion + Noise  
THD + N  
PO = 1 W into 8 Ω, f = 1 kHz, VDD = 5.0 V  
PO = 0.5 W into 8 Ω, f = 1 kHz, VDD = 3.6 V  
0.01  
0.01  
%
%
Input Common-Mode Voltage Range VCM  
1.0  
VDD − 1.0  
V
Common-Mode Rejection Ratio  
Average Switching Frequency  
Differential Output Offset Voltage  
POWER SUPPLY  
CMRRGSM  
fSW  
VOOS  
VCM = 2.5 V 100 mV at 217 Hz, output referred  
Gain = 18 dB  
60  
300  
2.0  
dB  
kHz  
mV  
Supply Voltage Range  
Power Supply Rejection Ratio  
VDD  
Guaranteed from PSRR test  
2.5  
60  
5.5  
V
dB  
dB  
mA  
mA  
mA  
mA  
mA  
mA  
nA  
PSRRDC  
PSRRGSM  
ISY  
VDD = 2.5 V to 5.0 V, dc input floating  
VRIPPLE = 100 mV at 217 Hz, inputs ac GND, CIN = 0.1 μF  
VIN = 0 V, no load, VDD = 5.0 V  
VIN = 0 V, no load, VDD = 3.6 V  
VIN = 0 V, no load, VDD = 2.5 V  
VIN = 0 V, load = 8 Ω + 33 μH, VDD = 5.0 V  
VIN = 0 V, load = 8 Ω + 33 μH, VDD = 3.6 V  
VIN = 0 V, load = 8 Ω + 33 μH, VDD = 2.5 V  
85  
65  
Supply Current  
3.2  
2.8  
2.4  
3.3  
2.9  
2.4  
20  
Shutdown Current  
ISD  
SD  
= GND  
GAIN CONTROL  
Closed-Loop Gain  
Differential Input Impedance  
Gain  
ZIN  
18  
20  
dB  
kΩ  
SD  
= VDD  
SHUTDOWN CONTROL  
Input Voltage High  
Input Voltage Low  
Turn-On Time  
VIH  
VIL  
tWU  
tSD  
ISY ≥ 1 mA  
ISY ≤ 300 nA  
1.2  
0.5  
7
V
V
ms  
μs  
kΩ  
SD  
SD  
SD  
rising edge from GND to VDD  
falling edge from VDD to GND  
= GND  
Turn-Off Time  
5
Output Impedance  
ZOUT  
>100  
NOISE PERFORMANCE  
Output Voltage Noise  
en  
VDD = 3.6 V, f = 20 Hz to 20 kHz, inputs are  
ac-grounded, gain = 18 dB, A-weighted  
PO = 1.4 W, RL = 8 Ω  
44  
96  
μV rms  
dB  
Signal-to-Noise Ratio  
SNR  
1 Although the SSM2335 has good audio quality above 3 W, continuous output power beyond 3 W must be avoided due to device packaging limitations.  
2 This value represents measured performance; packaging limitations must not be exceeded.  
Rev. 0 | Page 3 of 16  
 
 
 
 
SSM2335  
ABSOLUTE MAXIMUM RATINGS  
Absolute maximum ratings apply at 25°C, unless otherwise noted.  
THERMAL RESISTANCE  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
Table 2.  
Parameter  
Rating  
Supply Voltage  
Input Voltage  
6 V  
VDD  
VDD  
3 W  
Table 3. Thermal Resistance  
Package Type  
PCB θJA  
1S0P 162 39  
2S0P 76 21  
θJB  
Unit  
°C/W  
°C/W  
Common-Mode Input Voltage  
Continuous Output Power  
Storage Temperature Range  
Operating Temperature Range  
Junction Temperature Range  
Lead Temperature (Soldering, 60 sec)  
ESD Susceptibility  
9-Ball, 1.5 mm × 1.5 mm WLCSP  
−65°C to +150°C  
−40°C to +85°C  
−65°C to +165°C  
300°C  
ESD CAUTION  
2.5 kV  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. 0 | Page 4 of 16  
 
SSM2335  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
BALL A1  
CORNER  
1
2
3
A
B
C
SSM2335  
TOP VIEW  
BALL SIDE DOWN  
(Not to Scale)  
Figure 2. Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1A  
1B  
IN+  
VDD  
Noninverting Input.  
Power Supply.  
1C  
IN−  
Inverting Input.  
2A  
GND  
Ground.  
2B  
2C  
PVDD  
SD  
Power Supply.  
Shutdown Input. Active low digital input.  
Inverting Output.  
Ground.  
3A  
3B  
OUT−  
GND  
3C  
OUT+  
Noninverting Output.  
Rev. 0 | Page 5 of 16  
 
SSM2335  
TYPICAL PERFORMANCE CHARACTERISTICS  
100  
100  
10  
R = 8, 33µH  
R
= 8, 33µH  
L
L
V
= 2.5V  
DD  
GAIN = 18dB  
GAIN = 18dB  
fIN = 1kHz  
V
= 5V  
DD  
10  
V
= 3.6V  
DD  
1
1
0.5W  
1W  
0.1  
0.1  
V
= 5V  
DD  
0.01  
0.001  
0.01  
0.001  
0.25W  
0.0001  
0.001  
0.01  
0.1  
1
10  
10  
100  
1k  
10k  
100k  
OUTPUT POWER (W)  
FREQUENCY (Hz)  
Figure 3. THD + N vs. Output Power into 8 Ω + 33 μH, Gain = 18 dB  
Figure 6. THD + N vs. Frequency, VDD = 5 V, RL = 8 Ω + 33 μH, Gain = 18 dB  
100  
100  
R = 4, 33µH  
GAIN = 18dB  
fIN = 1kHz  
R
= 4, 33µH  
L
L
V
= 2.5V  
DD  
GAIN = 18dB  
= 5V  
V
DD  
10  
1
10  
1
V
= 3.6V  
DD  
0.1  
0.1  
2W  
0.5W  
1W  
0.01  
0.001  
0.01  
0.001  
V
= 5V  
DD  
0.0001  
0.001  
0.01  
0.1  
1
10  
10  
100  
1k  
10k  
100k  
OUTPUT POWER (W)  
FREQUENCY (Hz)  
Figure 7. THD + N vs. Frequency, VDD = 5 V, RL = 4 Ω + 33 μH, Gain = 18 dB  
Figure 4. THD + N vs. Output Power into 4 Ω + 33 μH, Gain = 18 dB  
100  
100  
R
= 3, 33µH  
R
= 3, 33µH  
L
L
V
= 2.5V  
DD  
GAIN = 18dB  
fIN = 1kHz  
GAIN = 18dB  
V
= 5V  
DD  
10  
1
10  
1
V
= 3.6V  
DD  
3W  
0.1  
0.1  
1.5W  
V
= 5V  
0.01  
0.001  
DD  
0.01  
0.001  
0.75W  
0.0001  
0.001  
0.01  
0.1  
1
10  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
OUTPUT POWER (W)  
Figure 5. THD + N vs. Output Power into 3 Ω + 33 μH, Gain = 18 dB  
Figure 8. THD + N vs. Frequency, VDD = 5 V, RL = 3 Ω + 33 μH, Gain = 18 dB  
Rev. 0 | Page 6 of 16  
 
SSM2335  
100  
10  
100  
10  
R
= 8, 33µH  
R
= 8, 33µH  
L
L
GAIN = 18dB  
GAIN = 18dB  
V
= 3.6V  
V
= 2.5V  
DD  
DD  
1
1
0.1  
0.1  
0.25W  
0.5W  
0.125W  
0.0625W  
0.01  
0.001  
0.01  
0.125W  
100k  
0.25W  
100k  
0.001  
10  
100  
1k  
10k  
10  
100  
1k  
10k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 9. THD + N vs. Frequency, VDD = 3.6 V, RL = 8 Ω + 33 μH, Gain = 18 dB  
Figure 12. THD + N vs. Frequency, VDD = 2.5 V, RL = 8 Ω + 33 μH, Gain = 18 dB  
100  
100  
R
= 4, 33µH  
R
= 4, 33µH  
L
L
GAIN = 18dB  
GAIN = 18dB  
V
= 3.6V  
V
= 2.5V  
DD  
DD  
10  
1
10  
1
0.1  
0.1  
0.5W  
1W  
0.5W  
0.125W  
0.25W  
0.01  
0.001  
0.01  
0.25W  
0.001  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
FREQUENCY (Hz)  
Figure 10. THD + N vs. Frequency, VDD = 3.6 V, RL = 4 Ω + 33 μH, Gain = 18 dB  
Figure 13. THD + N vs. Frequency, VDD = 2.5 V, RL = 4 Ω + 33 μH, Gain = 18 dB  
100  
100  
R
= 3, 33µH  
R
= 3, 33µH  
L
L
GAIN = 18dB  
GAIN = 18dB  
V
= 2.5V  
V
= 3.6V  
DD  
DD  
10  
1
10  
1
1.5W  
0.75W  
0.1  
0.1  
0.375W  
0.188W  
0.75W  
0.01  
0.001  
0.01  
0.375W  
0.001  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
Figure 11. THD + N vs. Frequency, VDD = 3.6 V, RL = 3 Ω + 33 μH, Gain = 18 dB  
Figure 14. THD + N vs. Frequency, VDD = 2.5 V, RL = 3 Ω + 33 μH, Gain = 18 dB  
Rev. 0 | Page 7 of 16  
SSM2335  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
3.8  
3.6  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
R
= 3, 33µH  
L
GAIN = 18dB  
f = 1kHz  
R
= 4, 33µH  
L
R
= 8, 33µH  
L
10%  
R
= 3, 33µH  
L
1%  
NO LOAD  
2.2  
2.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
Figure 18. Maximum Output Power vs. Supply Voltage, RL = 3 Ω + 33 μH,  
Gain = 18 dB  
Figure 15. Supply Current vs. Supply Voltage  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
100  
V
= 2.5V  
R
= 8, 33µH  
DD  
L
GAIN = 18dB  
f = 1kHz  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= 5V  
DD  
V
= 3.6V  
DD  
10%  
1%  
R
= 8, 33µH  
L
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
SUPPLY VOLTAGE (V)  
OUTPUT POWER (W)  
Figure 16. Maximum Output Power vs. Supply Voltage, RL = 8 Ω + 33 μH,  
Gain = 18 dB  
Figure 19. Efficiency vs. Output Power into 8 Ω + 33 μH  
4.0  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
R
= 4, 33µH  
L
GAIN = 18dB  
f = 1kHz  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= 5V  
DD  
V
= 3.6V  
DD  
V
= 2.5V  
DD  
10%  
1%  
R
= 4, 33µH  
L
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
0
0.4  
0.8  
1.2  
1.6  
2.0  
2.4  
2.8  
3.2  
3.6  
SUPPLY VOLTAGE (V)  
OUTPUT POWER (W)  
Figure 17. Maximum Output Power vs. Supply Voltage, RL = 4 Ω + 33 μH,  
Gain = 18 dB  
Figure 20. Efficiency vs. Output Power into 4 Ω + 33 μH  
Rev. 0 | Page 8 of 16  
SSM2335  
0.18  
0.16  
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0
R
V
= 8, 33µH  
R
V
= 4, 33µH  
L
L
= 5V  
= 3.6V  
DD  
DD  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
0
0.3  
0.6  
0.9  
1.2  
1.5  
1.8  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
Figure 21. Power Dissipation vs. Output Power into 8 Ω + 33 μH, VDD = 5 V  
Figure 24. Power Dissipation vs. Output Power into 4 Ω + 33 μH, VDD = 3.6 V  
450  
0.30  
R
= 8, 33µH  
R
= 4, 33µH  
L
L
V = 5.0V  
DD  
V
= 5V  
DD  
400  
350  
300  
250  
200  
150  
100  
50  
0.25  
0.20  
0.15  
0.10  
0.05  
0
V
= 3.6V  
DD  
V
= 2.5V  
DD  
0
0
0.2  
0.4  
0.6  
0.8  
1.0 1.2  
1.4  
1.6  
1.8  
2.0  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
Figure 22. Power Dissipation vs. Output Power into 4 Ω + 33 μH, VDD = 5 V  
Figure 25. Supply Current vs. Output Power into 8 Ω + 33 μH  
800  
700  
600  
500  
400  
300  
200  
100  
0
0.08  
R
= 4, 33µH  
R
= 8, 33µH  
= 3.6V  
L
L
V
DD  
V
= 5.0V  
DD  
0.06  
0.04  
0.02  
0
V
= 3.6V  
DD  
V
= 2.5V  
DD  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
Figure 23. Power Dissipation vs. Output Power into 8 Ω + 33 μH, VDD = 3.6 V  
Figure 26. Supply Current vs. Output Power into 4 Ω + 33 μH  
Rev. 0 | Page 9 of 16  
SSM2335  
6
5
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
SD INPUT  
OUTPUT  
4
3
2
1
0
–1  
–2  
–100  
10  
100  
1k  
10k  
100k  
–2  
0
2
4
6
8
10  
12  
14  
16  
18  
TIME (ms)  
FREQUENCY (Hz)  
Figure 27. Power Supply Rejection Ratio (PSRR) vs. Frequency  
Figure 29. Turn-On Response  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
7
6
OUTPUT  
5
4
3
2
1
0
SD INPUT  
–1  
–2  
–100  
10  
100  
1k  
10k  
100k  
–90  
–70  
–50  
–30  
–10  
10  
30  
50  
70  
90  
FREQUENCY (Hz)  
TIME (µs)  
Figure 28. Common-Mode Rejection Ratio (CMRR) vs. Frequency  
Figure 30. Turn-Off Response  
Rev. 0 | Page 10 of 16  
SSM2335  
TYPICAL APPLICATION CIRCUITS  
EXTERNAL GAIN SETTINGS = 160k/(20k+ R  
)
EXT  
0.1µF  
10µF  
VBATT  
2.5V TO 5.5V  
VDD  
SSM2335  
160kΩ  
47nF*  
47nF*  
R
R
20kΩ  
EXT  
IN+  
OUT–  
OUT+  
AUDIO IN+  
AUDIO IN–  
MODULATOR  
FET  
DRIVER  
20kΩ  
(Σ-Δ)  
EXT  
IN–  
160kΩ  
SD  
INTERNAL  
OSCILLATOR  
POP-AND-CLICK  
SUPPRESSION  
BIAS  
SHUTDOWN  
GND  
*INPUT CAPACITORS ARE OPTIONAL IF INPUT DC COMMON-MODE  
VOLTAGE IS APPROXIMATELY V /2.  
DD  
Figure 31. Differential Input Configuration, User-Adjustable Gain  
EXTERNAL GAIN SETTINGS = 160k/(20k+ R  
)
EXT  
0.1µF  
10µF  
VBATT  
2.5V TO 5.5V  
VDD  
SSM2335  
160kΩ  
47nF  
R
R
20kΩ  
20kΩ  
EXT  
IN+  
IN–  
OUT–  
OUT+  
AUDIO IN+  
MODULATOR  
FET  
DRIVER  
(Σ-Δ)  
EXT  
47nF  
160kΩ  
SD  
INTERNAL  
OSCILLATOR  
POP-AND-CLICK  
SUPPRESSION  
BIAS  
SHUTDOWN  
GND  
Figure 32. Single-Ended Input Configuration, User-Adjustable Gain  
Rev. 0 | Page 11 of 16  
 
SSM2335  
THEORY OF OPERATION  
OVERVIEW  
OUTPUT MODULATION DESCRIPTION  
The SSM2335 uses three-level, Σ-Δ output modulation. Each  
output can swing from GND to VDD and vice versa. Ideally, when  
no input signal is present, the output differential voltage is 0 V  
because there is no need to generate a pulse. In a real-world  
situation, there are always noise sources present.  
The SSM2335 mono Class-D audio amplifier features a filterless  
modulation scheme that greatly reduces the external component  
count, conserving board space and, thus, reducing systems cost.  
The SSM2335 does not require an output filter but, instead, relies  
on the inherent inductance of the speaker coil and the natural  
filtering of the speaker and human ear to fully recover the audio  
component of the square wave output. Most Class-D amplifiers  
use some variation of pulse-width modulation (PWM), but the  
SSM2335 uses Σ-Δ modulation to determine the switching  
pattern of the output devices, resulting in a number of important  
benefits. Σ-Δ modulators do not produce a sharp peak with many  
harmonics in the AM frequency band, as pulse-width modulators  
often do. Σ-Δ modulation provides the benefits of reducing the  
amplitude of spectral components at high frequencies, that is,  
reducing EMI emission that might otherwise be radiated by  
speakers and long cable traces. The SSM2335 does not require  
external EMI filtering for twisted speaker cable lengths shorter  
than 10 cm. Due to the inherent spread-spectrum nature of Σ-Δ  
modulation, the need for oscillator synchronization is eliminated  
for designs incorporating multiple SSM2335 amplifiers.  
Due to this constant presence of noise, a differential pulse is  
generated, when required, in response to this stimulus. A small  
amount of current flows into the inductive load when the differ-  
ential pulse is generated.  
Most of the time, however, output differential voltage is 0 V, due  
to the Analog Devices patent pending, three-level, Σ-Δ output  
modulation. This feature ensures that the current flowing through  
the inductive load is small.  
When the user wants to send an input signal, an output pulse is  
generated to follow the input voltage. The differential pulse  
density is increased by raising the input signal level. Figure 33  
depicts three-level, Σ-Δ output modulation with and without  
input stimulus.  
OUTPUT = 0V  
+5V  
OUT+  
0V  
The SSM2335 also offers protection circuits for overcurrent and  
temperature protection.  
+5V  
OUT–  
0V  
+5V  
GAIN  
VOUT  
0V  
–5V  
The SSM2335 has a default gain of 18 dB that can be reduced by  
using a pair of external resistors with a value calculated as follows:  
OUTPUT > 0V  
+5V  
OUT+  
OUT–  
VOUT  
0V  
External Gain Settings = 160 kΩ/(20 kΩ + REXT  
)
+5V  
0V  
POP-AND-CLICK SUPPRESSION  
+5V  
Voltage transients at the output of audio amplifiers can occur  
when shutdown is activated or deactivated. Voltage transients  
as low as 10 mV can be heard as an audio pop in the speaker.  
Clicks and pops can also be classified as undesirable audible  
transients generated by the amplifier system and, therefore, as  
not coming from the system input signal. Such transients may  
be generated when the amplifier system changes its operating  
mode. For example, the following may be sources of audible  
transients: system power-up and power-down, mute and unmute,  
input source change, and sample rate change. The SSM2335 has  
a pop-and-click suppression architecture that reduces these out-  
put transients, resulting in noiseless activation and deactivation.  
0V  
OUTPUT < 0V  
+5V  
OUT+  
OUT–  
VOUT  
0V  
+5V  
0V  
0V  
–5V  
Figure 33. Three-Level, Σ-Δ Output Modulation With and Without Input Stimulus  
Rev. 0 | Page 12 of 16  
 
 
 
SSM2335  
LAYOUT  
INPUT CAPACITOR SELECTION  
As output power continues to increase, care must be taken to  
lay out PCB traces and wires properly among the amplifier,  
load, and power supply. A good practice is to use short, wide  
PCB tracks to decrease voltage drops and minimize inductance.  
Ensure that track widths are at least 200 mil for every inch of  
track length for lowest DCR, and use 1 oz or 2 oz of copper PCB  
traces to further reduce IR drops and inductance. A poor layout  
increases voltage drops, consequently affecting efficiency. Use  
large traces for the power supply inputs and amplifier outputs to  
minimize losses due to parasitic trace resistance.  
The SSM2335 does not require input coupling capacitors if the  
input signal is biased from 1.0 V to VDD − 1.0 V. Input capacitors  
are required if the input signal is not biased within this recom-  
mended input dc common-mode voltage range, if high-pass  
filtering is needed, or if a single-ended source is used. If high-  
pass filtering is needed at the input, the input capacitor and the  
input resistor of the SSM2335 form a high-pass filter whose  
corner frequency is determined by the following equation:  
fC = 1/(2π × RIN × CIN)  
The input capacitor can significantly affect the performance of  
the circuit. Not using input capacitors degrades both the output  
offset of the amplifier and the dc PSRR performance.  
Proper grounding guidelines help to improve audio performance,  
minimize crosstalk between channels, and prevent switching  
noise from coupling into the audio signal. To maintain high  
output swing and high peak output power, the PCB traces that  
connect the output pins to the load, as well as the PCB traces to  
the supply pins, should be as wide as possible to maintain the  
minimum trace resistances. It is also recommended that a large  
ground plane be used for minimum impedances.  
POWER SUPPLY DECOUPLING  
To ensure high efficiency, low total harmonic distortion (THD),  
and high PSRR, proper power supply decoupling is necessary.  
Noise transients on the power supply lines are short-duration  
voltage spikes. Although the actual switching frequency can range  
from 10 kHz to 100 kHz, these spikes can contain frequency  
components that extend into the hundreds of megahertz. The  
power supply input needs to be decoupled with a good quality,  
low ESL, low ESR capacitor, with a minimum value of 4.7 μF.  
This capacitor bypasses low frequency noises to the ground  
plane. For high frequency transient noises, use a 0.1 μF capacitor  
as close as possible to the VDD pin of the device. Placing the  
decoupling capacitor as close as possible to the SSM2335 helps  
to maintain efficient performance.  
In addition, good PCB layout isolates critical analog paths from  
sources of high interference. High frequency circuits (analog  
and digital) should be separated from low frequency circuits.  
Properly designed multilayer PCBs can reduce EMI emission  
and increase immunity to the RF field by a factor of 10 or more,  
compared with double-sided boards. A multilayer board allows  
a complete layer to be used for the ground plane, whereas the  
ground plane side of a double-sided board is often disrupted by  
signal crossover.  
If the system has separate analog and digital ground and power  
planes, the analog ground plane should be directly beneath the  
analog power plane, and, similarly, the digital ground plane should  
be directly beneath the digital power plane. There should be no  
overlap between analog and digital ground planes or between  
analog and digital power planes.  
Rev. 0 | Page 13 of 16  
 
SSM2335  
OUTLINE DIMENSIONS  
0.655  
0.600  
0.545  
1.490  
1.460 SQ  
1.430  
A1 BALL  
CORNER  
SEATING  
PLANE  
3
2
1
A
B
C
0.350  
0.320  
0.290  
0.50  
BALL PITCH  
BOTTOM VIEW  
(BALL SIDE UP)  
TOP VIEW  
(BALL SIDE DOWN)  
0.385  
0.360  
0.335  
0.270  
0.240  
0.210  
Figure 34. 9-Ball Wafer Level Chip Scale Package [WLCSP]  
(CB-9-2)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
SSM2335CBZ-R21  
SSM2335CBZ-REEL1  
SSM2335CBZ-REEL71  
EVAL-SSM2335Z1  
Temperature Range  
Package Description  
Package Option  
CB-9-2  
CB-9-2  
Branding  
Y1L  
Y1L  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
9-Ball Wafer Level Chip Scale Package [WLCSP]  
9-Ball Wafer Level Chip Scale Package [WLCSP]  
9-Ball Wafer Level Chip Scale Package [WLCSP]  
Evaluation Board  
CB-9-2  
Y1L  
1 Z = RoHS Compliant Part.  
Rev. 0 | Page 14 of 16  
 
 
 
SSM2335  
NOTES  
Rev. 0 | Page 15 of 16  
SSM2335  
NOTES  
©2008 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D07551-0-10/08(0)  
Rev. 0 | Page 16 of 16  
 
 
 

相关型号:

EVAL-SSM2356Z

2 × 2W Filterless Class-D Stereo Audio Amplifier
ADI

EVAL-SSM2377Z

Filterless, High Efficiency, Mono 2.5 W Class-D Audio Amplifier Pop-and-click suppression
ADI

EVAL-SSM2518Z

Digital Input Stereo, 2 W, Class-D
ADI

EVAL-SSM2537Z

PDM Digital Input, Mono 2.7 W Class-D Audio Amplifier
ADI

EVAL-SSM2804Z

Audio Subsystem with Class-D Speaker
ADI

EVAL-SSM2932Z

High Efficiency, Ground-Referenced
ADI

EVAL-SSM3302Z

2 ×10 W Filterless Class-D
ADI

EVAL-SSM4321Z

BOARD EVAL FOR SSM4321
ADI

EVAL-SSM4567MINIZ

Digital 2.5 W, 5.1 V, Boost Class-D Audio Amplifier with Output Sensing
ADI

EVAL-SSM4567Z

Digital 2.5 W, 5.1 V, Boost Class-D Audio Amplifier with Output Sensing
ADI

EVAL01-HMC1020LP4E

BOARD EVAL FOR HMC1020
ADI

EVAL01-HMC1030LP5E

BOARD EVAL PWR DETECTOR HMC1030
ADI