EVAL-SSM2356Z [ADI]

2 × 2W Filterless Class-D Stereo Audio Amplifier; 2 × 2W无滤波器D类立体声音频放大器
EVAL-SSM2356Z
型号: EVAL-SSM2356Z
厂家: ADI    ADI
描述:

2 × 2W Filterless Class-D Stereo Audio Amplifier
2 × 2W无滤波器D类立体声音频放大器

音频放大器
文件: 总16页 (文件大小:634K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
2 × 2W Filterless Class-D  
Stereo Audio Amplifier  
SSM2356  
The SSM2356 features a high efficiency, low noise modulation  
scheme that requires no external LC output filters. The modulation  
continues to provide high efficiency even at low output power.  
It operates with 92% efficiency at 1.4 W into 8 Ω or 85% efficiency  
at 2.0 W into 4 Ω from a 5.0 V supply and has an SNR of >103 dB.  
FEATURES  
Filterless stereo Class-D amplifier with Σ-Δ modulation  
No sync necessary when using multiple Class-D amplifiers  
from Analog Devices, Inc.  
2 × 2W into 4 Ω load and 2x1.4 W into 8 Ω load at 5.0 V  
supply with <1% total harmonic distortion (THD + N)  
92% efficiency at 5.0 V, 1.4 W into 8 Ω speaker  
>103 dB signal-to-noise ratio (SNR)  
Single-supply operation from 2.5 V to 5.5 V  
20 nA shutdown current; left/right channel control  
Short-circuit and thermal protection  
Spread-spectrum pulse density modulation is used to provide  
lower EMI-radiated emissions compared with other Class-D  
architectures. The SSM2356 includes an optional modulation  
select pin (ultralow EMI emission mode) that significantly  
reduces the radiated emissions at the Class-D outputs, particularly  
above 100 MHz.  
Available in a 16-ball, 1.66 mm × 1.66 mm WLCSP  
Pop-and-click suppression  
Built-in resistors that reduce board component count  
User-selectable 6 dB or 18 dB gain setting  
User-selectable ultralow EMI emission mode  
The SSM2356 has a micropower shutdown mode with a typical  
shutdown current of 20 nA. Shutdown is enabled by applying  
a logic low to the  
and  
pins. The device also  
SDNR  
SDNL  
includes pop-and-click suppression circuitry that minimizes  
voltage glitches at the output during turn-on and turn-off,  
reducing audible noise on activation and deactivation.  
APPLICATIONS  
Mobile phones  
MP3 players  
Portable gaming  
Portable electronics  
The fully differential input of the SSM2356 provides excellent  
rejection of common-mode noise on the input. Input coupling  
capacitors can be omitted if the dc input common-mode voltage  
is approximately VDD/2. The preset gain of SSM2356 can be  
selected between 6 dB and 18 dB with no external components  
and no change to the input impedance. Gain can be further  
reduced to a user-defined setting by inserting series external  
resistors at the inputs.  
GENERAL DESCRIPTION  
The SSM2356 is a fully integrated, high efficiency, stereo Class-D  
audio amplifier. It is designed to maximize performance for  
mobile phone applications. The application circuit requires  
a minimum of external components and operates from a single  
2.5 V to 5.5 V supply. It is capable of delivering 2 × 2W of contin-  
uous output power with <1% THD + N driving a 4 Ω load from a  
5.0 V supply.  
The SSM2356 is specified over the commercial temperature range  
(−40°C to +85°C). It has built-in thermal shutdown and output  
short-circuit protection. It is available in a 16-ball, 1.66 mm ×  
1.66 mm wafer level chip scale package (WLCSP).  
FUNCTIONAL BLOCK DIAGRAM  
VBATT  
2.5V TO 5.5V  
10µF  
0.1µF  
VDD  
VDD  
SSM2356  
1
1
22nF  
22nF  
80k  
OUTR+  
RIGHT IN+  
RIGHT IN–  
GAIN  
CONTROL  
FET  
DRIVER  
MODULATOR  
INR+  
OUTR–  
(Σ-Δ)  
INR–  
80kΩ  
EMISSION  
CTRL  
BIAS  
BIAS  
SHUTDOWN–R  
SHUTDOWN–L  
EDGE  
INTERNAL  
OSCILLATOR  
EDGE  
SDNR  
SDNL  
CONTROL  
1
1
22nF  
22nF  
80kΩ  
80kΩ  
OUTL+  
OUTL–  
LEFT IN+  
LEFT IN–  
GAIN  
CONTROL  
FET  
DRIVER  
MODULATOR  
(Σ-Δ)  
INL+  
INL–  
GAIN  
GND  
GND  
GAIN  
INPUT CAPS ARE OPTIONAL IF INPUT DC COMMON-MODE  
VOLTAGE IS APPROXIMATELY V /2.  
GAIN = 6dB OR 18dB  
1
DD  
Figure 1.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2009 Analog Devices, Inc. All rights reserved.  
 
SSM2356  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Applications Information.............................................................. 13  
Overview ..................................................................................... 13  
Gain Selection............................................................................. 13  
Pop-and-Click Suppression ...................................................... 13  
EMI Noise.................................................................................... 13  
Output Modulation Description .............................................. 14  
Layout .......................................................................................... 14  
Input Capacitor Selection.......................................................... 14  
Proper Power Supply Decoupling............................................ 14  
Outline Dimensions....................................................................... 15  
Ordering Guide .......................................................................... 15  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 4  
Thermal Resistance ...................................................................... 4  
ESD Caution.................................................................................. 4  
Pin Configuration and Function Descriptions............................. 5  
Typical Performance Characteristics ............................................. 6  
Typical Application Circuits.......................................................... 12  
REVISION HISTORY  
5/09—Revision 0: Initial Version  
Rev. 0 | Page 2 of 16  
 
SSM2356  
SPECIFICATIONS  
VDD = 5.0 V, TA = 25oC, RL = 8 Ω +33 μH, EDGE = GND, Gain = 6 dB, unless otherwise noted.  
Table 1.  
Parameter  
Symbol Conditions  
PO RL = 8 Ω, THD = 1%, f = 1 kHz, 20 kHz BW, VDD = 5.0V  
Min Typ  
Max  
Unit  
DEVICE CHARACTERISTICS  
Output Power/Channel  
1.42  
0.75  
1.8  
0.94  
2.0  
1.3  
2.51  
1.7  
92  
W
W
W
W
W
W
W
W
%
RL = 8 Ω, THD = 1%, f = 1 kHz, 20 kHz BW, VDD = 3.6V  
RL = 8 Ω, THD = 10%, f = 1 kHz, 20 kHz BW, VDD = 5.0V  
RL = 8 Ω, THD = 10%, f = 1 kHz, 20 kHz BW, VDD = 3.6V  
RL = 4 Ω, THD = 1%, f = 1 kHz, 20 kHz BW, VDD = 5.0V  
RL = 4 Ω, THD = 1%, f = 1 kHz, 20 kHz BW, VDD = 3.6V  
RL = 4 Ω, THD = 10%, f = 1 kHz, 20 kHz BW, VDD = 5.0 V  
RL = 4 Ω, THD = 10%, f = 1 kHz, 20 kHz BW, VDD = 3.6V  
PO = 1.4 W, 8 Ω, VDD = 5.0 V, EDGE = GND  
(normal, low EMI mode)  
Efficiency  
η
PO = 1.4 W, 8 Ω, VDD = 5.0 V, EDGE = VDD  
90  
%
(ultralow EMI mode)  
Total Harmonic Distortion + Noise  
THD + N PO = 1 W into 8 Ω, f = 1 kHz, VDD = 5.0V  
PO = 0.5 W into 8 Ω, f = 1 kHz, VDD = 3.6 V  
0.004  
0.004  
%
%
Input Common-Mode Voltage Range VCM  
1.0  
55  
VDD − 1  
V
Common-Mode Rejection Ratio  
Channel Separation  
Average Switching Frequency  
Differential Output Offset Voltage  
POWER SUPPLY  
CMRRGSM VCM = 2.5 V 100 mV at 217 Hz, output referred  
XTALK  
fSW  
dB  
dB  
kHz  
mV  
PO = 100 mW, f = 1 kHz  
78  
300  
2.0  
VOOS  
Gain = 6 dB  
Supply Voltage Range  
VDD  
Guaranteed from PSRR test  
2.5  
5.5  
V
Power Supply Rejection Ratio  
PSRR  
(DC)  
V
DD = 2.5 V to 5.0 V, dc input floating  
70  
85  
dB  
PSRRGSM VRIPPLE = 100 mV at 217 Hz, inputs ac GND, CIN = 0.1 μF  
60  
dB  
Supply Current (stereo)  
ISY  
VIN = 0 V, no load, VDD = 5.0 V  
VIN = 0 V, no load, VDD = 3.6 V  
VIN = 0 V, no load, VDD = 2.5 V  
5.75  
4.9  
4.7  
5.5  
5.1  
4.5  
20  
mA  
mA  
mA  
mA  
mA  
mA  
nA  
VIN = 0 V, load = 8 + 33 μH, VDD = 5.0 V  
VIN = 0 V, load = 8 + 33 μH, VDD = 3.6 V  
VIN = 0 V, load = 8 + 33 μH, VDD = 2.5 V  
SDNR = SDNL= GND  
Shutdown Current  
ISD  
GAIN CONTROL  
Closed-Loop Gain  
Gain  
Gain  
ZIN  
GAIN = VDD  
GAIN = GND  
SDNR = SDNL = VDD; GAIN = GND or VDD  
18  
6
80  
dB  
dB  
kΩ  
Input Impedance  
SHUTDOWN CONTROL  
Input Voltage High  
Input Voltage Low  
Turn-On Time  
VIH  
VIL  
tWU  
tSD  
1.35  
0.35  
7
V
V
ms  
μs  
kΩ  
SDNR/SDNL rising edge from GND to VDD  
SDNR/SDNL falling edge from VDD to GND  
SDNR/SDNL = GND  
Turn-Off Time  
5
Output Impedance  
ZOUT  
>100  
NOISE PERFORMANCE  
Output Voltage Noise  
en  
VDD = 3.6 V, f = 20 Hz to 20 kHz, inputs are ac grounded,  
Gain = 6 dB, A-weighted  
PO = 1.4 W, RL = 8 Ω  
29  
μVrms  
dB  
Signal-to-Noise Ratio  
SNR  
100  
1 Note that, although the SSM2356 has good audio quality above 2 W per channel, continuous output power beyond 2 W per channel must be avoided due to device  
packaging limitations.  
Rev. 0 | Page 3 of 16  
 
 
SSM2356  
ABSOLUTE MAXIMUM RATINGS  
Absolute maximum ratings apply at 25°C, unless otherwise noted.  
THERMAL RESISTANCE  
θJA (junction to air) is specified for the worst-case conditions,  
that is, a device soldered in a circuit board for surface-mount  
packages. θJA and θJB (junction to board) are determined  
according to JESD51-9 on a 4-layer printed circuit board (PCB)  
with natural convection cooling.  
Table 2.  
Parameter  
Rating  
Supply Voltage  
Input Voltage  
6 V  
VDD  
VDD  
4 kV  
−65°C to +150°C  
−40°C to +85°C  
−65°C to +165°C  
300°C  
Common-Mode Input Voltage  
ESD Susceptibility  
Storage Temperature Range  
Operating Temperature Range  
Junction Temperature Range  
Table 3. Thermal Resistance  
Package Type  
θJA  
θJB  
Unit  
16-ball, 1.66 mm × 1.66 mm WLCSP  
66  
19  
°C/W  
Lead Temperature Range  
(Soldering, 60 sec)  
ESD CAUTION  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. 0 | Page 4 of 16  
 
SSM2356  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
BALL A1  
INDICATOR  
1
2
3
4
OUTL+ VDD VDD OUTR+  
OUTL– GND GND OUTR–  
SDNL EDGE GAIN SDNR  
INL+ INL– INR– INR+  
A
B
C
D
TOP VIEW  
(BALL SIDE DOWN)  
Not to Scale  
Figure 2. Pin Configuration (Top Side View)  
Table 4. Pin Function Descriptions  
Bump  
Mnemonic  
Description  
A1  
OUTL+  
Noninverting Output for Left Channel.  
Inverting Output for Left Channel.  
B1  
OUTL−  
C1  
SDNL  
Shutdown, Left Channel. Active low digital input.  
D1  
D2  
C4  
C3  
D3  
D4  
B2  
B4  
INL+  
INL−  
Noninverting Input for Left Channel.  
Inverting Input for Left Channel.  
Shutdown, Right Channel. Active low digital input.  
Gain select between 6 dB and 18 dB.  
Inverting Input for Right Channel.  
Noninverting Input for Right Channel.  
Ground.  
SDNR  
GAIN  
INR−  
INR+  
GND  
OUTR−  
Inverting Output for Right Channel.  
A4  
B3  
A2  
A3  
C2  
OUTR+  
GND  
Noninverting Output for Right Channel.  
Ground.  
VDD  
Power Supply.  
VDD  
Power Supply.  
EDGE  
Edge Control (Low Emission Mode); active high digital input.  
Rev. 0 | Page 5 of 16  
 
SSM2356  
TYPICAL PERFORMANCE CHARACTERISTICS  
100  
100  
10  
R
= 8+ 33µH  
R = 4+ 15µH  
L
GAIN = 18dB  
L
V
= 3.6V  
DD  
GAIN = 6dB  
V
= 2.5V  
V
= 2.5V  
DD  
DD  
10  
1
1
V
= 3.6V  
DD  
0.1  
0.1  
V
= 5V  
DD  
0.01  
0.001  
0.01  
0.001  
V
= 5V  
DD  
0.0001  
0.001  
0.01  
0.1  
1
10  
0.0001  
0.001  
0.01  
0.1  
1
10  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
Figure 3. THD + N vs. Output Power into 8 Ω, AV = 6 dB  
Figure 6. THD + N vs. Output Power into 4 Ω, AV = 18 dB  
100  
10  
100  
10  
R
= 8+ 33µH  
V
= 5V  
L
DD  
GAIN = 6dB  
= 8+ 33µH  
V
= 3.6V  
DD  
GAIN = 18dB  
R
L
V
= 2.5V  
DD  
1
1
1W  
0.1  
0.25W  
0.1  
0.01  
0.001  
0.0001  
V
= 5V  
DD  
0.01  
0.001  
0.5W  
0.0001  
0.001  
0.01  
0.1  
1
10  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
OUTPUT POWER (W)  
Figure 4. THD + N vs. Output Power into 8 Ω, AV = 18 dB  
Figure 7. THD + N vs. Frequency, VDD = 5 V, RL = 8 Ω, AV = 6 dB  
100  
100  
R
= 4+ 15µH  
V
= 5V  
L
DD  
GAIN = 18dB  
= 8+ 33µH  
GAIN = 6dB  
R
L
V
= 2.5V  
DD  
10  
10  
1
1
V
= 3.6V  
1W  
DD  
0.1  
0.1  
0.01  
0.001  
0.01  
0.001  
0.25W  
0.5W  
V
= 5V  
DD  
0.0001  
0.001  
0.01  
0.1  
1
10  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
OUTPUT POWER (W)  
Figure 5. THD + N vs. Output Power into 4 Ω, AV = 6 dB  
Figure 8. THD + N vs. Frequency, VDD = 5 V, RL = 8 Ω, AV = 18 dB  
Rev. 0 | Page 6 of 16  
 
SSM2356  
100  
10  
100  
10  
V
= 5V  
V
= 3.6V  
DD  
GAIN = 6dB  
= 4+ 15µH  
DD  
GAIN = 18dB  
R
R
= 8+ 33µH  
L
L
1
1
0.5W  
2W  
0.1  
0.1  
0.01  
0.001  
0.01  
0.001  
0.5W  
0.125W  
0.25W  
1W  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
Figure 9. THD + N vs. Frequency, VDD = 5 V, RL = 4 Ω, AV = 6 dB  
Figure 12. THD + N vs. Frequency, VDD = 3.6 V, RL = 8 Ω, AV = 18 dB  
100  
100  
V
= 5V  
V
= 3.6V  
DD  
GAIN = 18dB  
= 4+ 15µH  
DD  
GAIN = 6dB  
R
R
= 4+ 15µH  
L
L
10  
10  
1
1
2W  
1W  
0.5W  
0.1  
0.1  
0.25W  
0.01  
0.001  
0.01  
0.001  
1W  
0.5W  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
Figure 10. THD + N vs. Frequency, VDD = 5 V, RL = 8 Ω, AV = 18 dB  
Figure 13. THD + N vs. Frequency, VDD = 3.6 V, RL = 4 Ω, AV = 6 dB  
100  
100  
V
= 3.6V  
V
= 3.6V  
DD  
GAIN = 6dB  
DD  
GAIN = 18dB  
R
= 8+ 33µH  
R
= 4+ 15µH  
L
L
10  
1
10  
1
1W  
0.5W  
0.1  
0.1  
0.25W  
0.125W  
0.01  
0.001  
0.01  
0.001  
0.5W  
0.25W  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
Figure 11. THD + N vs. Frequency, VDD = 3.6 V, RL = 8 Ω, AV = 6 dB  
Figure 14. THD + N vs. Frequency, VDD = 3.6 V, RL = 4 Ω, AV = 18 dB  
Rev. 0 | Page 7 of 16  
SSM2356  
100  
100  
10  
V
= 2.5V  
V
= 2.5V  
DD  
GAIN = 6dB  
DD  
GAIN = 18dB  
R = 4+ 15µH  
L
R
= 8+ 33µH  
L
10  
1
0.5W  
1
0.25W  
0.1  
0.1  
1.25W  
0.0625W  
0.01  
0.001  
0.01  
0.001  
0.25W  
0.125W  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
Figure 15. THD + N vs. Frequency, VDD = 2.5 V, RL = 8 Ω, AV = 6 dB  
Figure 18. THD + N vs. Frequency, VDD = 2.5 V, RL = 4 Ω, AV = 18 dB  
100  
7.0  
V
= 2.5V  
I
FOR BOTH CHANNELS  
DD  
GAIN = 18dB  
SY  
GAIN = 6dB  
R
= 8+ 33µH  
L
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
10  
1
4+ 15µH  
0.25W  
8+ 33µH  
0.1  
0.0625W  
NO LOAD  
0.01  
0.001  
0.125W  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
SUPPLY VOLTAGE (V)  
Figure 16. THD + N vs. Frequency, VDD = 2.5 V, RL = 8 Ω, AV = 18 dB  
Figure 19. Supply Current vs. Supply Voltage, AV = 6 dB  
100  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
V
= 2.5V  
I
FOR BOTH CHANNELS  
DD  
GAIN = 6dB  
= 4+ 15µH  
SY  
GAIN = 18dB  
R
L
10  
1
0.5W  
4+ 15µH  
8+ 33µH  
0.1  
0.25W  
NO LOAD  
0.01  
0.001  
0.125W  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
SUPPLY VOLTAGE (V)  
Figure 17. THD + N vs. Frequency, VDD = 2.5 V, RL = 4 Ω, AV = 6 dB  
Figure 20. Supply Current vs. Supply Voltage, AV = 18 dB  
Rev. 0 | Page 8 of 16  
SSM2356  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
f = 1kHz  
GAIN = 6dB  
f = 1kHz  
GAIN = 18dB  
R
= 8+ 33µH  
R
= 4+ 15µH  
L
L
10%  
10%  
1%  
1%  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
Figure 21. Maximum Output Power vs. Supply Voltage, RL = 8 Ω, AV = 6 dB  
Figure 24. Maximum Output Power vs. Supply Voltage, RL = 4 Ω, AV = 18 dB  
1.8  
100  
V
= 2.5V  
f = 1kHz  
DD  
GAIN = 18dB  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1.6  
R
= 8+ 33µH  
L
V = 5V  
DD  
V
= 3.6V  
DD  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
10%  
1%  
GAIN = 6dB  
R
= 8+ 33µH  
L
P
FOR BOTH CHANNELS  
OUT  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4  
OUTPUT POWER (W)  
SUPPLY VOLTAGE (V)  
Figure 22. Maximum Output Power vs. Supply Voltage, RL = 8 Ω, AV = 18 dB  
Figure 25. Efficiency vs. Output Power into 8 Ω  
3.5  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
f = 1kHz  
GAIN = 6dB  
R
= 4+ 15µH  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
L
V
= 5V  
DD  
V
= 3.6V  
DD  
V
= 2.5V  
DD  
10%  
1%  
GAIN = 6dB  
R
= 4+ 15µH  
L
P
FOR BOTH CHANNELS  
OUT  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
OUTPUT POWER (W)  
SUPPLY VOLTAGE (V)  
Figure 23. Maximum Output Power vs. Supply Voltage, RL = 4 Ω, AV = 6 dB  
Figure 26. Efficiency vs. Output Power into 4 Ω  
Rev. 0 | Page 9 of 16  
SSM2356  
0.8  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
GAIN = 6dB  
= 8+ 33µH  
V
= 5V  
R
DD  
L
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
I
, P FOR BOTH CHANNELS  
SY OUT  
V
= 3.6V  
DD  
V
= 2.5V  
DD  
0
0
1
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
10  
100  
1k  
10k  
100k  
100k  
18  
OUTPUT POWER (W)  
FREQUENCY (Hz)  
Figure 27. Supply Current vs. Output Power into 8 Ω  
Figure 30. CMRR vs. Frequency  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
GAIN = 6dB  
= 4+ 15µH  
V
= 5V  
R
I
DD  
L
, P FOR BOTH CHANNELS  
SY OUT  
V
= 3.6V  
DD  
V
= 2.5V  
DD  
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5  
OUTPUT POWER (W)  
10  
100  
1k  
10k  
FREQUENCY (Hz)  
Figure 28. Supply Current vs. Output Power into 4 Ω  
Figure 31. PSRR vs. Frequency  
0
–20  
6
V
V
= 5V  
= 500mV rms  
= 8+ 33µH  
DD  
OUT  
5
4
R
L
SD INPUT  
–40  
3
–60  
2
OUTPUT  
RIGHT TO LEFT  
1
–80  
0
–100  
–120  
–1  
–2  
LEFT TO RIGHT  
10  
100  
1k  
10k  
100k  
–2  
0
2
4
6
8
10  
12  
14  
16  
FREQUENCY (Hz)  
TIME (ms)  
Figure 29. Crosstalk v. Frequency  
Figure 32. Turn-On Response  
Rev. 0 | Page 10 of 16  
SSM2356  
7
6
5
4
3
OUTPUT  
2
1
0
–1  
–2  
SD INPUT  
–110 –90  
–70  
–50  
–30  
–10  
10  
30  
50  
70  
TIME (µs)  
Figure 33. Turn-Off Response  
Rev. 0 | Page 11 of 16  
SSM2356  
TYPICAL APPLICATION CIRCUITS  
VBATT  
2.5V TO 5.5V  
10µF  
0.1µF  
VDD  
VDD  
SSM2356  
22nF  
22nF  
R
80k  
EXT  
EXT  
OUTR+  
RIGHT AUDIO IN+  
RIGHT AUDIO IN–  
GAIN  
CONTROL  
FET  
DRIVER  
MODULATOR  
INR+  
INR–  
OUTR–  
(Σ-Δ)  
R
80kΩ  
BIAS  
BIAS  
SHUTDOWN–R  
SHUTDOWN–L  
SDNR  
SDNL  
EDGE  
INTERNAL  
OSCILLATOR  
EDGE  
CONTROL  
22nF  
22nF  
R
R
80kΩ  
80kΩ  
EXT  
OUTL+  
OUTL–  
LEFT AUDIO IN+  
LEFT AUDIO IN–  
GAIN  
CONTROL  
FET  
DRIVER  
MODULATOR  
(Σ-Δ)  
INL+  
INL–  
EXT  
GAIN  
GND  
GND  
GAIN  
EXTERNAL GAIN SETTINGS = 160k/(80k+ R  
= 640k/(80k+ R  
) {GAIN = GND}  
) {GAIN = VBATT}  
EXT  
EXT  
Figure 34. Stereo Differential Input Configuration  
VBATT  
2.5V TO 5.5V  
10µF  
0.1µF  
VDD  
VDD  
SSM2356  
22nF  
22nF  
R
R
80k  
EXT  
EXT  
OUTR+  
RIGHT AUDIO IN+  
SHUTDOWN–R  
GAIN  
FET  
MODULATOR  
INR+  
OUTR–  
CONTROL  
DRIVER  
(Σ-Δ)  
INR–  
80kΩ  
BIAS  
BIAS  
SDNR  
EDGE  
INTERNAL  
OSCILLATOR  
EDGE  
CONTROL  
SHUTDOWN–L  
SDNL  
22nF  
22nF  
R
R
80kΩ  
80kΩ  
EXT  
EXT  
OUTL+  
OUTL–  
LEFT AUDIO IN+  
GAIN  
CONTROL  
FET  
DRIVER  
MODULATOR  
(Σ-Δ)  
INL+  
INL–  
GAIN  
GND  
GND  
GAIN  
EXTERNAL GAIN SETTINGS = 160k/(80k+ R  
= 640k/(80k+ R  
) {GAIN = GND}  
) {GAIN = VBATT}  
EXT  
EXT  
Figure 35. Stereo Single-Ended Input Configuration  
Rev. 0 | Page 12 of 16  
 
 
 
SSM2356  
APPLICATIONS INFORMATION  
System power-up/power-down  
Mute/unmute  
Input source change  
Sample rate change  
OVERVIEW  
The SSM2356 stereo Class-D audio amplifier features a filterless  
modulation scheme that greatly reduces the external component  
count, conserving board space and, thus, reducing systems cost.  
The SSM2356 does not require an output filter but, instead,  
relies on the inherent inductance of the speaker coil and the  
natural filtering of the speaker and human ear to fully recover  
the audio component of the square wave output. Most Class-D  
amplifiers use some variation of pulse-width modulation  
(PWM), but the SSM2356 uses Σ-Δ modulation to determine  
the switching pattern of the output devices, resulting in a number  
of important benefits. Σ-Δ modulators do not produce a sharp  
peak with many harmonics in the AM frequency band, as pulse-  
width modulators often do. Σ-Δ modulation provides the  
benefits of reducing the amplitude of spectral components at  
high frequencies, that is, reducing EMI emission that might  
otherwise be radiated by speakers and long cable traces. Due to  
the inherent spread-spectrum nature of Σ-Δ modulation, the  
need for oscillator synchronization is eliminated for designs  
incorporating multiple SSM2356 amplifiers.  
The SSM2356 has a pop-and-click suppression architecture that  
reduces these output transients, resulting in noiseless activation and  
deactivation.  
EMI NOISE  
The SSM2356 uses a proprietary modulation and spread-  
spectrum technology to minimize EMI emissions from the  
device. For applications having difficulty passing FCC Class B  
emission tests, the SSM2356 includes a modulation select pin  
(ultralow EMI emission mode) that significantly reduces the  
radiated emissions at the Class-D outputs, particularly above  
100 MHz. Figure 36 shows SSM2356 EMI emission tests per-  
formed in a certified FCC Class-B laboratory in normal  
emissions mode (EDGE = GND). Figure 37 shows SSM2356  
EMI emission with EDGE = VDD, placing the device in low  
emissions mode.  
60  
The SSM2356 also integrates overcurrent and temperature  
protection.  
50  
40  
30  
20  
GAIN SELECTION  
The preset gain of SSM2356 can be selected between 6 dB and  
18 dB with no external components and no change to the input  
impedance. A major benefit of fixed input impedance is that  
there is no need to recalculate input corner frequency (Fc)  
when gain is adjusted. The same input coupling components  
can be used for both gain settings.  
[1] HORIZONTAL  
[2] VERTICAL  
10  
0
It is possible to adjust the SSM2356 gain by using external  
resistors at the input. To set a gain lower than 18 dB (or 6 dB  
when GAIN = VDD), refer to Figure 34 for the differential input  
configuration and Figure 35 for the single-ended configuration.  
Calculate the external gain configuration as follows:  
FCC CLASS-B LIMIT  
30  
130 230 330 430 530 630 730 830 930 1000  
FREQUENCY (MHz)  
Figure 36. EMI Emissions from SSM2356, 1-Channel, 12 cm Cable,  
EDGE = GND  
When GAIN = GND  
60  
50  
40  
30  
20  
External Gain Settings = 160 kΩ/(80 kΩ + REXT  
)
)
When GAIN = VDD  
External Gain Settings = 640 kΩ/(80 kΩ + REXT  
POP-AND-CLICK SUPPRESSION  
Voltage transients at the output of audio amplifiers may occur  
when shutdown is activated or deactivated. Voltage transients  
as low as 10 mV can be heard as an audio pop in the speaker.  
Clicks and pops can also be classified as undesirable audible  
transients generated by the amplifier system and, therefore, as  
not coming from the system input signal.  
10  
[1] HORIZONTAL  
[2] VERTICAL  
FCC CLASS-B LIMIT  
0
30  
130 230 330 430 530 630 730 830 930 1000  
FREQUENCY (MHz)  
Such transients may be generated when the amplifier system  
changes its operating mode. For example, the following can be  
sources of audible transients:  
Figure 37. EMI Emissions from SSM2356, 1-Channel, 12 cm Cable,  
EDGE = VDD  
Rev. 0 | Page 13 of 16  
 
 
 
SSM2356  
The measurements for Figure 36 and Figure 37 were taken in  
an FCC-certified EMI laboratory with a 1 kHz input signal,  
producing 0.5 W output power into an 8 Ω load from a 5 V  
supply. Cable length was 12 cm, unshielded twisted pair  
speaker cable. Note that reducing the supply voltage greatly  
reduces radiated emissions.  
affecting efficiency. Use large traces for the power supply inputs  
and amplifier outputs to minimize losses due to parasitic trace  
resistance. Proper grounding guidelines help to improve audio  
performance, minimize crosstalk between channels, and prevent  
switching noise from coupling into the audio signal.  
To maintain high output swing and high peak output power, the  
PCB traces that connect the output pins to the load and supply  
pins should be as wide as possible to maintain the minimum  
trace resistances. It is also recommended that a large ground  
plane be used for minimum impedances. In addition, good PCB  
layout isolates critical analog paths from sources of high inter-  
ference. High frequency circuits (analog and digital) should be  
separated from low frequency circuits.  
OUTPUT MODULATION DESCRIPTION  
The SSM2356 uses three-level, Σ-Δ output modulation. Each  
output can swing from GND to VDD and vice versa. Ideally, when  
no input signal is present, the output differential voltage is 0 V  
because there is no need to generate a pulse. In a real-world  
situation, there are always noise sources present.  
Due to this constant presence of noise, a differential pulse is  
generated, when required, in response to this stimulus. A small  
amount of current flows into the inductive load when the differ-  
ential pulse is generated. However, most of the time, output  
differential voltage is 0 V, due to the Analog Devices three-level,  
Σ-Δ output modulation. This feature ensures that the current  
flowing through the inductive load is small.  
Properly designed multilayer PCBs can reduce EMI emission  
and increase immunity to the RF field by a factor of 10 or more,  
compared with double-sided boards. A multilayer board allows  
a complete layer to be used for the ground plane, whereas the  
ground plane side of a double-sided board is often disrupted by  
signal crossover.  
If the system has separate analog and digital ground and power  
planes, the analog ground plane should be directly beneath the  
analog power plane, and, similarly, the digital ground plane should  
be directly beneath the digital power plane. There should be no  
overlap between analog and digital ground planes or between  
analog and digital power planes.  
When the user wants to send an input signal, an output pulse is  
generated to follow input voltage. The differential pulse density  
is increased by raising the input signal level. Figure 38 depicts  
three-level, Σ-Δ output modulation with and without input  
stimulus.  
OUTPUT = 0V  
+5V  
OUT+  
INPUT CAPACITOR SELECTION  
0V  
+5V  
The SSM2356 does not require input coupling capacitors if the  
input signal is biased from 1.0 V to VDD − 1.0 V. Input capacitors  
are required if the input signal is not biased within this recom-  
mended input dc common-mode voltage range, if high-pass  
filtering is needed, or if a single-ended source is used. If high-  
pass filtering is needed at the input, the input capacitor and the  
input resistor of the SSM2356 form a high-pass filter whose  
corner frequency is determined by the following equation:  
OUT–  
0V  
+5V  
VOUT  
0V  
–5V  
OUTPUT > 0V  
+5V  
OUT+  
OUT–  
VOUT  
0V  
+5V  
0V  
+5V  
0V  
fC = 1/(2π × RIN × CIN)  
OUTPUT < 0V  
The input capacitor can significantly affect the performance of  
the circuit. Not using input capacitors degrades both the output  
offset of the amplifier and the dc PSRR performance.  
+5V  
OUT+  
OUT–  
VOUT  
0V  
+5V  
0V  
0V  
PROPER POWER SUPPLY DECOUPLING  
–5V  
To ensure high efficiency, low total harmonic distortion (THD),  
and high PSRR, proper power supply decoupling is necessary.  
Noise transients on the power supply lines are short-duration  
voltage spikes. These spikes can contain frequency components  
that extend into the hundreds of megahertz. The power supply  
input must be decoupled with a good quality, low ESL, low ESR  
capacitor, greater than 4.7 ꢀF. This capacitor bypasses low freq-  
uency noises to the ground plane. For high frequency transient  
noises, use a 0.1 ꢀF capacitor as close as possible to the VDD  
pin of the device. Placing the decoupling capacitor as close as  
possible to the SSM2356 helps to maintain efficient  
Figure 38. Three-Level, Σ-Δ Output Modulation With and  
Without Input Stimulus  
LAYOUT  
As output power continues to increase, care must be taken to  
lay out PCB traces and wires properly among the amplifier,  
load, and power supply. A good practice is to use short, wide  
PCB tracks to decrease voltage drops and minimize inductance.  
Ensure that track widths are at least 200 mil for every inch of  
track length for the lowest dc resistance (DCR), and use 1 oz. or  
2 oz. copper PCB traces to further reduce IR drops and  
inductance. A poor layout increases voltage drops, consequently  
performance.  
Rev. 0 | Page 14 of 16  
 
 
SSM2356  
OUTLINE DIMENSIONS  
0.660  
0.600  
0.540  
1.700  
1.660 SQ  
1.620  
SEATING  
PLANE  
4
3
2
1
A
BALL A1  
IDENTIFIER  
1.20  
BSC  
B
C
D
0.290  
0.260  
0.230  
0.40  
BSC  
0.07  
0.430  
0.400  
0.370  
TOP VIEW  
(BALL SIDE DOWN)  
BOTTOM VIEW  
(BALL SIDE UP)  
COPLANARITY  
0.230  
0.200  
0.170  
Figure 4. 16-Ball Wafer Level Chip Scale Package [WLCSP]  
(CB-16-4)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
Temperature Range Package Description  
Package Option Branding  
SSM2356CBZ-REEL1  
SSM2356CBZ-REEL71  
EVAL-SSM2356Z1  
−40°C to +85°C  
−40°C to +85°C  
16-Ball Wafer Level Chip Scale Package [WLCSP]  
16-Ball Wafer Level Chip Scale Package [WLCSP]  
Evaluation Board  
CB-16-4  
CB-16-4  
Y1R  
Y1R  
1 Z = RoHS Compliant Part.  
Rev. 0 | Page 15 of 16  
 
 
SSM2356  
NOTES  
©2009 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D08084-0-5/09(0)  
Rev. 0 | Page 16 of 16  
 
 

相关型号:

EVAL-SSM2377Z

Filterless, High Efficiency, Mono 2.5 W Class-D Audio Amplifier Pop-and-click suppression
ADI

EVAL-SSM2518Z

Digital Input Stereo, 2 W, Class-D
ADI

EVAL-SSM2537Z

PDM Digital Input, Mono 2.7 W Class-D Audio Amplifier
ADI

EVAL-SSM2804Z

Audio Subsystem with Class-D Speaker
ADI

EVAL-SSM2932Z

High Efficiency, Ground-Referenced
ADI

EVAL-SSM3302Z

2 ×10 W Filterless Class-D
ADI

EVAL-SSM4321Z

BOARD EVAL FOR SSM4321
ADI

EVAL-SSM4567MINIZ

Digital 2.5 W, 5.1 V, Boost Class-D Audio Amplifier with Output Sensing
ADI

EVAL-SSM4567Z

Digital 2.5 W, 5.1 V, Boost Class-D Audio Amplifier with Output Sensing
ADI

EVAL01-HMC1020LP4E

BOARD EVAL FOR HMC1020
ADI

EVAL01-HMC1030LP5E

BOARD EVAL PWR DETECTOR HMC1030
ADI

EVAL01-HMC197B

BOARD EVALUATION HMC197B
ADI