EVAL-ADXRS290Z-M2 [ADI]

Ultralow Noise, Dual-Axis MEMS Gyroscope;
EVAL-ADXRS290Z-M2
型号: EVAL-ADXRS290Z-M2
厂家: ADI    ADI
描述:

Ultralow Noise, Dual-Axis MEMS Gyroscope

文件: 总19页 (文件大小:527K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Ultralow Noise,  
Dual-Axis MEMS Gyroscope  
Data Sheet  
ADXRS290  
FEATURES  
GENERAL DESCRIPTION  
MEMS pitch and roll rate gyroscope  
Ultralow noise: 0.004°/s/√Hz  
High vibration rejection over a wide frequency range  
Power saving standby mode  
80 µA current consumption in standby mode  
Fast startup time from standby mode: <100 ms  
Low delay of <0.5 ms for a 30 Hz input at the widest  
bandwidth setting  
Serial peripheral interface (SPI) digital output  
Programmable high-pass and low-pass filters  
2000 g powered acceleration survivability  
2.7 V to 5.0 V operation  
The ADXRS290 is a high performance MEMS pitch and roll  
(dual-axis in-plane) angular rate sensor (gyroscope) designed  
for use in stabilization applications.  
The ADXRS290 provides an output full-scale range of 100°/s with  
a sensitivity of 200 LSB/°/s. Its resonating disk sensor structure  
enables angular rate measurement about the axes normal to the  
sides of the package around an in-plane axis. Angular rate data  
is formatted as 16-bit twos complement and is accessible through  
a SPI digital interface. The ADXRS290 exhibits a low noise floor  
of 0.004°/s/Hz and features programmable high-pass and low-  
pass filters.  
The ADXRS290 is available in a 4.5 mm × 5.8 mm × 1.2 mm,  
18-terminal cavity laminate package.  
−25°C to +85°C operation  
4.5 mm × 5.8 mm × 1.2 mm cavity laminate package  
APPLICATIONS  
Optical image stabilization  
Platform stabilization  
Wearable products  
FUNCTIONAL BLOCK DIAGRAM  
SYNC/ASEL PDMY PDMX AST  
V
CP  
V
V
S
DD I/O  
REG  
POWER  
MANAGEMENT  
GND  
DEMOD  
ADC  
PITCH  
ROLL  
FILTERS  
DIGITAL  
CONTROL LOGIC  
DEMOD  
ADC  
MOSI  
MISO  
SCLK  
CS  
SERIAL  
INPUT/OUTPUT  
ADXRS290  
MECHANICAL  
SENSOR  
PITCH  
ROLL  
PLL  
DRIVE  
VELOCITY  
Figure 1.  
Rev. A  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2014 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
ADXRS290  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Mechanical Considerations for Mounting.............................. 13  
Serial Communications ................................................................. 14  
Register Map ................................................................................... 16  
Register Descriptions..................................................................... 17  
Analog Devices Identifier.......................................................... 17  
MEMS Identifier......................................................................... 17  
Device Identifier......................................................................... 17  
Silicon Revision Number .......................................................... 17  
Serial Number (SNx) ................................................................. 17  
Rate Output Data ....................................................................... 17  
Temperature Data....................................................................... 17  
Power Control............................................................................. 17  
Band-Pass Filter.......................................................................... 17  
Data Ready .................................................................................. 17  
Recommended Soldering Profile ................................................. 18  
PCB Footprint Pattern............................................................... 18  
Outline Dimensions....................................................................... 19  
Ordering Guide .......................................................................... 19  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 4  
Rate Sensitive Axes....................................................................... 4  
Package Information.................................................................... 4  
ESD Caution.................................................................................. 4  
Pin Configuration and Function Descriptions............................. 5  
Typical Performance Characteristics ............................................. 6  
Theory of Operation ...................................................................... 10  
Applications Information .............................................................. 11  
Application Circuit..................................................................... 11  
Power Supply Decoupling ......................................................... 11  
Power Sequencing ...................................................................... 11  
Setting Bandwidth...................................................................... 11  
Analog Evaluation Mode........................................................... 12  
REVISION HISTORY  
12/14—Rev.0 to Rev. A  
Changes to Title ................................................................................ 1  
Changes to Features Section and General Description Section....... 1  
10/14—Revision 0: Initial Version  
Rev. A | Page 2 of 19  
 
 
Data Sheet  
ADXRS290  
SPECIFICATIONS  
Specified conditions at TA = 25°C. VS = VDD I/O = 3 V, angular rate = 0°/sec, bandwidth = dc to 480 Hz, CS = CREG = CI/O = CCP = 1 µF, digital  
mode, temperature sensor = off, unless otherwise noted. All minimum and maximum specifications are guaranteed. Typical specifications  
are not tested or guaranteed.  
Table 1.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max Unit  
MEASUREMENT RANGE  
Output Full-Scale Range  
Resolution  
Gyroscope Data Update Rate  
LINEARITY  
Each axis  
±100  
16  
4250  
°/s  
Bits  
Hz  
Nonlinearity  
Cross Axis Sensitivity  
SENSITIVITY  
±0.5  
±2.0  
% FS  
%
Sensitivity  
200  
±±  
±1  
LSB/°/s  
%
%
Initial Sensitivity Tolerance1  
Change Due to Temperature  
OFFSET  
TA = 25°C  
TA = −20°C to +60°C  
−12  
+12  
Offset Error  
TA = −20°C to +60°C  
±9  
°/s  
NOISE PERFORMANCE  
Rate Noise Density  
FREQUENCY RESPONSE  
−± dB Frequency2  
Low-Pass Filter  
TA = 25°C at 10 Hz  
0.004  
°/s/√Hz  
Programmable (see the Setting Bandwidth section)  
20  
480  
Hz  
High-Pass Filter  
Delay  
DC output setting available  
±0 Hz input, low-pass filter (LPF) = 480 Hz  
0.011  
11.± Hz  
ms  
<0.5  
POWER SUPPLY  
Operating Voltage Range (VS, VDD I/O  
)
2.7  
5.0  
V
Supply Current  
Measurement mode  
Standby mode  
Power off to standby mode  
Standby to measurement mode (to within ±1°/s of final value)  
7.8  
80  
<5  
<100  
mA  
µA  
ms  
ms  
Start-Up Time (Standby)  
Start-Up Time (Measurement Mode)  
TEMPERATURE SENSOR  
Resolution  
12  
Bits  
Sensitivity  
0.1  
°C/LSB  
OPERATING TEMPERATURE RANGE  
Operating Temperature Range  
–25  
+85  
°C  
1 Initial sensitivity tolerance minimum and maximum specifications are guaranteed by characterization and are not tested in production.  
2 Guaranteed by design and are not tested in production.  
Rev. A | Page ± of 19  
ADXRS290  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
PACKAGE INFORMATION  
The information in Figure 2 and Table 3 provide details about  
the package branding for the ADXRS290. For a complete listing  
of product availability, see the Ordering Guide section.  
Parameter  
Rating  
Acceleration (Any Axis, Unpowered, 0.5 ms)  
Acceleration (Any Axis, Powered, 0.5 ms)  
VS, VDD I/O  
All Other Pins  
Output Short-Circuit Duration (Any Pin to  
Common)  
2000 g  
2000 g  
2.7 V to 5.25 V  
2.7 V to 5.25 V  
Indefinite  
Table 3. Package Branding Information  
Branding Key  
Field Description  
XR290  
#yyyy  
Part identifier for ADXRS290  
Date code  
Operating Temperature Range  
Storage Temperature Range  
–40°C to +105°C  
–40°C to +105°C  
Pin 1 and factory lot code identifiers  
XXXXXX  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
ESD CAUTION  
RATE SENSITIVE AXES  
The ADXRS290 is an x-axis and y-axis rate sensing device that  
is also called a roll and pitch rate sensing device. It produces a  
positive output voltage for clockwise rotation about the x-axis  
and y-axis, as shown in Figure 2.  
X
Y
Figure 2. Axes of Sensitivity  
Rev. A | Page 4 of 19  
 
 
 
 
 
 
Data Sheet  
ADXRS290  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
5
4
3
2
1
PDMY  
6
7
8
9
18  
17  
16  
15  
V
V
S
CS  
MISO  
MOSI  
REG  
ADXRS290  
TOP VIEW  
(TERMINAL SIDE DOWN)  
Not to Scale  
GND  
GND  
10  
11  
12  
13  
14  
Figure 3. Pin Configuration (Top View)  
Table 4. Pin Function Descriptions  
Description  
Pin No.  
Mnemonic  
VREG  
VDD I/O  
AST  
SENS  
PDMX  
PDMY  
CS  
Digital Mode  
Regulator Output. Connect a 1 µF capacitor to this pin.  
Digital Interface Supply Voltage.  
This pin is internally pulled to ground.  
This pin is internally pulled to ground.  
This pin is internally pulled to ground.  
This pin is internally pulled to ground.  
Chip Select. Active low.  
Analog Evaluation Mode  
1
2
±
4
5
6
7
Regulator Output. Connect a 1 µF capacitor to this pin.  
Digital Interface Supply Voltage.  
Self Test.  
Sensitivity Select.  
Pulse-Density Modulation (PDM) XOUT  
PDM YOUT  
.
.
Chip Select. Active low.  
Serial Data Out.  
8
9
10  
11  
MISO (SDO)  
MOSI (SDI)  
SCLK  
Serial Data Out.  
Serial Data In.  
Serial Communications Clock.  
Data Ready Out (SYNC). Connect this pin to ground if  
it is not used.  
Serial Data In.  
Serial Communications Clock.  
Analog Enable (ASEL).  
SYNC/ASEL  
12  
CP  
Charge Pump Output. Connect a 1 µF capacitor (rated Charge Pump Output. Connect a 1 µF capacitor (rated  
for 50 V) to this pin.  
for 50 V) to this pin.  
1±, 15, 16 GND  
Ground. Connect to ground.  
Analog Supply Voltage.  
Regulator Output. Connect a 1 µF capacitor to this pin.  
Analog Supply Voltage.  
Ground. Connect to ground.  
Analog Supply Voltage.  
Regulator Output. Connect a 1 µF capacitor to this pin.  
Analog Supply Voltage.  
14  
17  
18  
VS  
VREG  
VS  
Rev. A | Page 5 of 19  
 
ADXRS290  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
N > 240 for all typical performance characteristics plots, unless otherwise noted.  
70  
60  
50  
40  
30  
20  
10  
0
40  
35  
30  
25  
20  
15  
10  
5
0
–500 –400 –300 –200 –100  
0
100 200 300 400 500  
–500 –400 –300 –200 –100  
0
100 200 300 400 500  
X-AXIS OFFSET (LSB)  
Y-AXIS OFFSET (LSB)  
Figure 4. X-Axis Offset at 25°C  
Figure 7. Y-Axis Offset at 25°C  
400  
300  
1500  
1000  
500  
200  
100  
0
0
–100  
–200  
–300  
–400  
–500  
–1000  
–1500  
–50  
–25  
0
25  
50  
75  
100  
–50  
–25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 5. X-Axis Offset vs. Temperature (N = 16)  
Figure 8. Y-Axis Offset vs. Temperature (N = 16)  
22  
20  
20  
18  
16  
14  
12  
10  
8
18  
16  
14  
12  
10  
8
6
6
4
4
2
2
0
0
X-AXIS SENSITIVITY (LSB/°/s)  
Y-AXIS SENSITIVITY (LSB/°/s)  
Figure 6. X-Axis Sensitivity at 25°C  
Figure 9. Y-Axis Sensitivity at 25°C  
Rev. A | Page 6 of 19  
 
Data Sheet  
ADXRS290  
220  
215  
210  
205  
200  
195  
190  
185  
180  
220  
215  
210  
205  
200  
195  
190  
185  
180  
–50  
–25  
0
25  
50  
75  
100  
–50  
–25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 10. X-Axis Sensitivity vs. Temperature (N = 16)  
Figure 13. Y-Axis Sensitivity vs. Temperature (N = 16)  
250  
200  
150  
100  
50  
0.20  
0.10  
0.09  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
0.15  
0.10  
0.05  
0
0
–50  
–100  
–150  
–200  
–250  
–0.05  
–0.10  
–0.15  
–0.20  
X OUTPUT (AVERAGE)  
Y OUTPUT (AVERAGE)  
X OUTPUT (RMS)  
ADXRS290  
REFERENCE  
Y OUTPUT (RMS)  
1
10  
0
10  
20  
30  
40  
50  
60  
70  
80  
FREQUENCY (kHz)  
TIME (ms)  
Figure 11. Rate Output Saturation Behavior  
Figure 14. Response to 10 g Sine Vibration Along the Z-Axis (Out-of-Plane),  
HPF = Off and LPF = 480 Hz  
0.1  
2.0  
60  
50  
40  
30  
20  
10  
0
X-AXIS  
Y-AXIS  
X-AXIS  
Y-AXIS  
INPUT REFERENCE  
1.5  
1.0  
0.01  
0.5  
0.001  
0.0001  
0
–0.5  
–1.0  
–1.5  
–2.0  
–10  
0.00001  
–20  
0.20  
0.1  
1
10  
100  
1k  
10k  
0
0.05  
0.10  
TIME (Seconds)  
0.15  
FREQUENCY (Hz)  
Figure 12. Response to 50 g, 10 ms Half-Sine Shock Along the Z-Axis  
Figure 15. Typical Noise Spectral Density  
(Out-of-Plane), HPF = Off and LPF = 480 Hz  
Rev. A | Page 7 of 19  
ADXRS290  
Data Sheet  
200  
150  
100  
50  
0
–5  
X-AXIS  
Y-AXIS  
–10  
–15  
–20  
–25  
–30  
–35  
0
–50  
–100  
–150  
–200  
LPF = 80Hz  
LPF = 160Hz  
LPF = 320Hz  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
0
10  
20  
30  
40  
50  
TIME (ms)  
INPUT FREQUENCY (Hz)  
Figure 16. Start-Up Time (Standby to Measurement Mode)  
Figure 19. Low-Pass Filter Phase Delay  
1200  
0.5  
0.4  
1000  
800  
600  
400  
200  
0
0.3  
0.2  
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–200  
–400  
–600  
–50  
–25  
0
25  
50  
75  
100  
–125  
–75  
–25  
25  
75  
125  
AMBIENT TEMPERATURE (°C)  
ANGULAR RATE (°/s)  
Figure 17. Temperature Sensor Output vs. Ambient Temperature (N = 16)  
Figure 20. Rate Output Nonlinearity (N = 15)  
3.0  
50  
LPF = 80Hz  
LPF = 160Hz  
45  
40  
35  
30  
25  
20  
15  
10  
5
2.5  
2.0  
1.5  
1.0  
0.5  
0
LPF = 320Hz  
0
0
10  
20  
30  
40  
50  
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
INPUT FREQUENCY (Hz)  
STANDBY MODE CURRENT (µA)  
Figure 18. Low-Pass Filter Group Delay  
Figure 21. Standby Mode Current Consumption  
Rev. A | Page 8 of 19  
 
Data Sheet  
ADXRS290  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
0
6.5 6.6 6.7 6.8 6.9 7.0 7.1 7.2 7.3 7.4 7.5  
MEASUREMENT MODE CURRENT (mA)  
Figure 22. Measurement Mode Current Consumption  
Rev. A | Page 9 of 19  
ADXRS290  
Data Sheet  
THEORY OF OPERATION  
The ADXRS290 is designed to sense x-axis and y-axis (roll and  
pitch) angular rate. The ADXRS290 operates on the principle of  
a vibratory rate gyroscope. Figure 23 presents a simplified  
illustration of one of four, coupled polysilicon sensing structures.  
Each sensing structure contains a resonating disk that is  
electrostatically driven to resonance, which produces the  
necessary rotating velocity element needed to generate a  
Coriolis torque when experiencing angular rate.  
When the sensing structure is exposed to an angular rate, the  
resulting Coriolis torque drives each of the disks into a tilting  
motion, which is sensed by plates under the disk. The disk and  
plate form a capacitive pickoff structure that senses angular rate.  
The resulting signal is fed to a series of gain and demodulation  
stages that produce the electrical rate signal output. The sensor  
design rejects linear and angular acceleration because external  
g-forces appear as common-mode signals that are removed by  
the fully differential architecture of the ADXRS290.  
The resonator requires 31 V (typical) for operation. Because  
only 5 V is typically available in most applications, a switching  
regulator is included on-chip. An external 1 µF capacitor rated  
for 50 V is required for proper operation of the charge pump  
circuit.  
X-AXIS  
Ω
X
Ω
Y
After demodulation and analog-to-digital conversion, the rate  
signal is filtered using a single-pole band-pass filter. The high-  
pass and low-pass poles of this filter are programmable via the  
digital interface.  
Y-AXIS  
Figure 23. Simplified Gyroscope Sensing Structure  
Rev. A | Page 10 of 19  
 
 
Data Sheet  
ADXRS290  
APPLICATIONS INFORMATION  
APPLICATION CIRCUIT  
POWER SEQUENCING  
The interface voltage level is set with the interface supply voltage  
DD I/O, which must be present to ensure that the ADXRS290  
The ADXRS290 application circuit is shown in Figure 24. The  
primary communications port is the 4-wire SPI interface. For  
this device, external pull-up/pull-down resistors are not required  
for the SPI interface, and these pins can be connected directly to  
the system microcontroller. Four capacitors are required for  
proper operation of the device. For optimum device performance,  
separate the capacitors placed on the VS, VDD I/O, VREG, and CP pins.  
V
does not create a conflict on the communications bus. For single-  
supply operation, VDD I/O can be the same as the main supply (VS).  
Conversely, in a dual-supply application, VDD I/O can differ from  
VS to accommodate the desired interface voltage. When VS is  
applied, the device enters standby state, where power consumption  
is minimized, and the device waits for VDD I/O to be applied and  
for a command to enter measurement mode. Measurement mode  
is activated by setting Bit B1 in Register 0x10 (POWER_CTL).  
Clear this bit to return the device to a standby state.  
2.7V TO  
5.25V  
C
S
1µF  
In standby mode, the current consumption is reduced to 80 µA  
(typical). In standby mode, only single-address SPI transactions  
are performed, which includes reading from or writing to a single  
register, but does not include writing to or reading from several  
registers in one command. In standby mode, the gyroscope does  
not respond to rate outputs. Transition time to measurement mode  
where offsets settle to within 1°/s of the final value is <100 ms.  
V
V
S
REG  
1
2
3
4
5
14  
13  
12  
11  
10  
2.7V TO  
5.25V  
V
GND  
CP  
DD I/O  
AST  
ADXRS290  
TOP VIEW  
(TERMINAL SIDE DOWN)  
Not to Scale  
C
C
I/O  
REG  
1µF  
1µF  
C
1µF  
50V  
CP  
SETTING BANDWIDTH  
SENS  
PDMX  
SYNC/ASEL  
SCLK  
The ADXRS290 includes an internal configurable band-pass filter.  
Both the high-pass and low-pass poles of the filter are adjustable, as  
shown in Table 5 and Table 6. The filter frequency response is  
shown in Figure 25 and Figure 26. The group delay of the  
wideband filter option is less than 0.5 ms (see Figure 18 for filter  
delay). At power-up, the default condition for the filters is dc for  
the high-pass filter and 480 Hz for the low-pass filter.  
SPI BUS  
Table 5. Low-Pass Filter Pole Locations  
Figure 24. Recommended Application Circuit  
Bit 2 Filter  
Bit 1 Filter  
Bit 0 Filter  
Frequency (Hz)  
POWER SUPPLY DECOUPLING  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
480 (Default)  
In many applications, bypass capacitors at VS, VREG, and VDD I/O  
(as shown in Figure 24) placed close to the ADXRS290 supply  
pins adequately decouple the gyroscope from noise on the power  
supply. However, in applications where noise is present at the  
internal clock frequency, or any harmonic thereof, additional  
care in power supply bypassing is required because this noise  
may cause errors in angular rate measurement. If additional  
decoupling is necessary, a 10 Ω resistor or ferrite bead in series  
with VS and an additional larger bypass capacitor (2.2 µF or  
greater) at VS may be helpful.  
±20  
160  
80  
56.6  
40  
28.±  
20  
Table 6. High-Pass Filter Pole Locations  
Bit 7  
Filter  
Bit 6  
Filter  
Bit 5  
Filter  
Bit 4  
Filter  
Frequency  
(Hz)  
Ensure that the connection from the ADXRS290 ground to  
the power supply ground be low impedance because noise  
transmitted through ground has an effect similar to noise  
transmitted through VS.  
0
0
0
0
All pass  
(default)  
0
0
0
0
0
0
0
1
1
1
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
0.011  
0.022  
0.044  
0.087  
0.175  
0.±50  
0.700  
1.400  
2.800  
11.±0  
Rev. A | Page 11 of 19  
 
 
 
 
 
 
 
 
ADXRS290  
Data Sheet  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
ANALOG EVALUATION MODE  
An analog output evaluation mode has been incorporated in  
the ADXRS290. In this mode, the output of the ADXRS290  
is formatted as a pulse density modulated data stream at a  
frequency of 144 kHz via the PDMX and PDMY pins. The  
PDMX and PDMY pins high and low voltage levels are ratiometric  
to VDD I/O. This signal can be decoded into an analog baseband  
using a low-pass filter. Higher order filters allow for greater  
attenuation of the 144 kHz switching noise while maintaining  
the integrity of the baseband signal. A recommended application  
circuit with a third-order Sallen-Key filter is shown in Figure 27.  
Figure 28 shows the recommended low-pass filter for  
0.011Hz  
0.022Hz  
0.044Hz  
0.087Hz  
0.175Hz  
0.35Hz  
0.7Hz  
1.4Hz  
2.8Hz  
11.3Hz  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
1k  
demodulating the PDM output in analog mode operation.  
FREQUENCY (Hz)  
2.7V TO  
5.25V  
Figure 25. High-Pass Filter Frequency Response  
1.2  
20Hz  
C
S
28.3Hz  
40Hz  
1µF  
1.0  
0.8  
0.6  
0.4  
0.2  
0
56.6Hz  
80Hz  
160Hz  
320Hz  
480Hz  
V
V
S
REG  
1
2
3
4
5
14  
13  
12  
11  
10  
2.7V TO  
5.25V  
V
GND  
CP  
DD I/O  
AST  
ADXRS290  
TOP VIEW  
(TERMINAL SIDE DOWN)  
Not to Scale  
C
C
I/O  
1µF  
REG  
1µF  
C
1µF  
50V  
CP  
SENS  
PDMX  
SYNC/ASEL  
SCLK  
1
10  
100  
1k  
10k  
FREQUENCY (Hz)  
Figure 26. Low-Pass Filter Frequency Response  
Offset Preservation in the High-Pass Filter  
LOW-PASS FILTER  
One of the functions of the high-pass filter is to remove offset.  
The high-pass filter effectively estimates the offset and subtracts  
it from the output. When the high-pass filter settings are  
changed, the output remains unchanged; the filter preserves its  
estimate of offset. The high-pass filter can be set to the fast  
settling option, allowed to converge to zero offset, and then set  
to any other high-pass filter option while maintaining near zero  
offset. Exiting measurement mode clears the preserved offset.  
Figure 27. Recommended Application Circuit for Analog Mode Operation  
47kΩ  
+5V  
0.1µF  
ANALOG  
BASEBAND  
SIGNAL  
PDMX 24kΩ  
30.1kΩ  
30.1kΩ  
OR  
PDMY  
0.01µF  
0.01µF  
5100pF  
0.1µF  
–5V  
Figure 28. Recommended Low-Pass Filter for Demodulating the PDM Output  
in Analog Mode Operation  
In analog mode, the band-pass filter is disabled and the device  
cannot be placed in standby mode. SPI communication to the  
ADXRS290 is available but not required. Sensitivity in this  
mode is 5 mV/°/s.  
Rev. A | Page 12 of 19  
 
 
 
 
 
Data Sheet  
ADXRS290  
BAD PLACEMENT  
MECHANICAL CONSIDERATIONS FOR MOUNTING  
GOOD  
PLACEMENT  
Mount the ADXRS290 on the printed circuit board (PCB) in a  
location close to a hard mounting point of the PCB to the case.  
Mounting the ADXRS290 at an unsupported PCB location, as  
shown in Figure 29, may result in large, apparent measurement  
errors due to undamped PCB vibration. Locating the ADXRS290  
near a hard mounting point ensures that any PCB vibration at  
the device is above the resonant frequencies of the MEMS elements  
and, therefore, effectively invisible to the device. In applications  
where the gyroscope may be subjected to large shock events or  
excessive vibration, consider the use of damping materials (such  
as Polyurethane) at the mounting locations to dampen the  
vibration. A thicker PCB can also help to reduce the effect of  
system resonance on the performance of the ADXRS290.  
MOUNTING POINTS  
Figure 29. Two Examples of Incorrectly Mounted Gyroscopes  
Rev. A | Page 1± of 19  
 
 
ADXRS290  
Data Sheet  
SERIAL COMMUNICATIONS  
In digital mode, the ADXRS290 communicates via 4-wire SPI  
and operates as a slave. Ignore data transmitted from the  
ADXRS290 to the master device during writes to the ADXRS290.  
data can be sampled. Unless the ADXRS290 is in standby  
mode, multiple bytes can be written to or read from in a single  
transmission. In standby mode, only single register transactions  
CS  
are supported. Deasserting the  
commands for transmissions with multiple commands. For SPI  
CS  
pin is necessary between  
Wire the ADXRS290 for SPI communication as shown in the  
connection diagram in Figure 30. The maximum SPI clock  
speed is 5 MHz, with 12 pF maximum loading. The timing  
scheme follows clock phase (CPHA) = clock polarity (CPOL) = 1.  
operation greater than 1 MHz, it is necessary to deassert the  
pin to ensure a total delay of 10 µs between the register addressing  
portion of the transmission. The delay is required to allow  
settling of the internal voltage controlled oscillator. For SPI  
operation of 1 MHz or lower, the communication rate is low  
enough to ensure a sufficient delay between register writes.  
ADXRS290  
PROCESSOR  
CS  
SDI  
SS  
MOSI  
MISO  
SCLK  
SDO  
SCLK  
SPI read and write operations are completed in 16 or more  
clock cycles, as shown in Figure 31. Setting the R/W bit to 1  
indicates a read operation and setting it to 0 indicates a write  
operation. For R/W = 0 (write), [D7:D0] data is written to the  
device in the register map based on the [A6:A0] addresses. For  
R/W = 1 (read), [D7:D0] is the data read by the external master  
device based on the [A6:A0] addresses. Examples of SPI write  
and read are shown in Figure 32 and Figure 33.  
Figure 30. 4-Wire SPI Connection  
CS  
is the serial port enable line and is controlled by the SPI  
master. It must go low at the start of transmissions and high at  
the end as shown in Figure 31. SCLK is the serial port clock and  
is supplied by the SPI master. It is stopped high when is high,  
during periods of no transmission. At the rising edge of SCLK,  
CS  
tDELAY  
tSCLK  
tM  
tS  
tQUIET  
CS  
SCLK  
SDI  
R/W  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D7  
D6  
D6  
D5  
D5  
D4  
D4  
D3  
D3  
D2  
D2  
D4  
D1  
D0  
D0  
SDO  
tSETUP  
tHOLD  
tSDO  
Figure 31. SPI Timing Diagram  
Table 7. SPI Timing Specifications (TA = 25°C, VS = VDD I/O = 2.7 V)  
Parameter  
Limit  
Unit  
Description  
fSCLK  
5
MHz max  
ns min  
ns min  
ns min  
ns min  
ns min  
ns max  
ns min  
ns min  
SPI clock frequency  
tSCLK  
200  
200  
1/(SPI clock frequency), mark/space ratio for the SCLK input is 40/60 to 60/40  
CS  
tDELAY  
tQUIET  
tS  
falling edge to SCLK falling edge  
200  
CS  
SCLK rising edge to rising edge  
SCLK low pulse width (space)  
SCLK high pulse width (mark)  
SCLK falling edge to SDO transition  
SDI valid before SCLK rising edge  
SDI valid after SCLK rising edge  
0.4 × tSCLK  
0.4 × tSCLK  
20  
tM  
tSDO  
tSETUP  
tHOLD  
10  
10  
Rev. A | Page 14 of 19  
 
 
 
Data Sheet  
ADXRS290  
T
T
CS  
CS  
1
1
MOSI  
2
MOSI  
2
3
4
MISO  
3
MISO  
SCLK  
SCLK  
4
CH1 5.00V CH2 5.00V  
CH3 5.00V CH4 5.00V  
M4.00µs  
7.400µs  
A
CH1  
1.8V  
CH1 5.00V CH2 5.00V  
CH3 5.00V CH4 5.00V  
M4.00µs  
7.400µs  
A
CH1  
1.8V  
T
T
Figure 32. SPI Write Example: Writing to Register 0x10 (Write 0x02 to Enter  
Measurement Mode)  
Figure 33. SPI Read Example: Reading Register 0x01 (Output = 0x1D)  
Rev. A | Page 15 of 19  
 
 
ADXRS290  
Data Sheet  
REGISTER MAP  
Table 8.  
Register No. (Hex)  
Name  
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3  
ADI_ID[7:0]  
Bit 2 Bit 1  
Bit 0 Reset  
10101101  
00011101  
R/W  
0x00  
ADI_ID  
MEMS_ID  
DEV_ID  
REV_ID  
SN0  
R
0x01  
MEMS_ID[7:0]  
DEV_ID[7:0]  
REV_ID[7:0]  
SN[7:0]  
R
0x02  
10010010  
00001001  
SN[7:0]  
R
0x0±  
R
0x04  
R
0x05  
SN1  
SN[15:8]  
SN[15:8]  
R
0x06  
SN2  
SN[2±:16]  
SN[±1:24]  
X0[7:0]  
SN[2±:16]  
SN[±1:24]  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
00000011  
00000000  
00000000  
00000000  
R
0x07  
SN±  
R
0x08  
DATAX0  
DATAX1  
DATAY0  
DATAY1  
TEMP0  
TEMP1  
Reserved  
Reserved  
POWER_CTL  
Filter  
R
0x09  
X1[15:8]  
R
0x0A  
Y0[7:0]  
R
0x0B  
Y1[15:8]  
R
0x0C  
TEMP[7:0]  
R
0x0D  
0x0E  
0
0
0
0
TEMP[11:8]  
R
Reserved[7:0]  
Reserved[7:0]  
R
0x0F  
R
0x10  
0
0
0
0
0
HPF[±:0]  
0
0
0
0
0
0
0
Measurement TSM  
LPF[2:0]  
Sync[1:0]  
R/W  
R/W  
R/W  
0x11  
0x012  
DATA_READY  
0
Rev. A | Page 16 of 19  
 
 
Data Sheet  
ADXRS290  
REGISTER DESCRIPTIONS  
This section describes the functions of the ADXRS290 registers.  
The ADXRS290 powers up with default register values as shown  
in the reset column of Table 8.  
TEMPERATURE DATA  
Register 0x0C to Register 0x0D: TEMP0 and TEMP1  
(Read Only)  
ANALOG DEVICES IDENTIFIER  
These two bytes hold temperature output data written in twos  
complement. Register 0x0C contains Bits[7:0] and Register  
0x0D contains Bits[11:8] of the 12-bit temperature reading.  
When concurrent temperature and output data points are  
desired, perform a multiple byte read of the TEMP1:TEMP0,  
DATAX1:DATAX0, and DATAY1:DATAY0 registers. The scale  
factor of the temperature reading is 10 LSB/°C, and 0 codes is  
equivalent to 0°C.  
Table 9. Register 0x00, ADI_ID (Read Only)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
1
0
1
0
1
1
0
1
The ADI_ID register holds a fixed code 0xAD.  
MEMS IDENTIFIER  
Table 10. Register 0x01, MEMS_ID (Read Only)  
POWER CONTROL  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Table 13. Register 0x10, POWER_CTL (Read/Write)  
0
0
0
1
1
1
0
1
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1  
Bit 0  
The MEMS_ID register holds a fixed code of 0x1D.  
0
0
0
0
0
0
Measurement TSM  
DEVICE IDENTIFIER  
TSM Bit  
Table 11. Register 0x02, DEV_ID (Read Only)  
The TSM bit controls the temperature sensor. The default value  
of this bit is 0 (temperature sensor off) and setting this bit to 1  
enables the temperature sensor.  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
1
0
0
1
0
0
1
0
The DEV_ID register holds a fixed code of 0x92.  
Measurement Bit  
To set the ADXRS290 to standby mode, set the measurement bit  
to 0. To set the ADXRS290 to measurement mode, set this bit to 1.  
SILICON REVISION NUMBER  
Table 12. Register 0x03, REV_ID (Read Only)  
The ADXRS290 powers up in standby mode with a current  
consumption of 80 µA (typical).  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0
0
0
0
1
0
0
1
BAND-PASS FILTER  
The REV_ID register holds a revision ID code that increments  
with each subsequent silicon revision.  
Table 14. Register 0x11, Filter (Read/Write)  
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3  
Bit 2 Bit 1 Bit 0  
SERIAL NUMBER (SNx)  
HPF[±:0]  
0
LPF[2:0]  
These four bytes (Register 0x04 to Register 0x07) store the  
unique electronic serial number for the part.  
LPF Bits  
The three LPF bits define the low-pass filter pole (see Table 5).  
HPF Bits  
RATE OUTPUT DATA  
Register 0x08 to Register 0x0B: DATAX0, DATAX1,  
DATAY0, and DATAY1 (Read Only)  
The four HPF bits define the high-pass filter pole (see Table 6).  
These four bytes (Register 0x08 to Register 0x0B) hold the rate  
output data for each axis. Register 0x08 and Register 0x09 hold  
the output data for the x-axis, and Register 0x0A and Register 0x0B  
hold the output data for the y-axis. The output data is written in  
twos complement. In each two byte set, DATAx0 is the least  
significant byte, and DATAx1 is the most significant byte, where  
x represents the x-axis or the y-axis. To prevent a change in data  
between reads of the sequential registers, perform a multiple  
byte read of all rate output data registers.  
DATA READY  
Table 15. Register 0x12, DATA_READY (Read/Write)  
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1  
Bit 0  
0
0
0
0
0
0
Sync[1:0]  
Sync Bits  
Set the sync bits to 01 to generate a data ready interrupt at the  
SYNC/ASEL pin when new data becomes available.  
Table 16. SYNC Pin Functions  
Bit 1  
Bit 0  
Description  
X
0
0
1
Read for analog enable  
Data ready out, high until read  
Rev. A | Page 17 of 19  
 
 
 
 
 
 
 
 
 
 
 
ADXRS290  
Data Sheet  
RECOMMENDED SOLDERING PROFILE  
Figure 34 and Table 17 provide details about the recommended soldering profile.  
CRITICAL ZONE  
TO T  
tP  
T
L
P
T
P
RAMP-UP  
T
L
tL  
T
SMAX  
T
SMIN  
tS  
RAMP-DOWN  
PREHEAT  
t25°C TO PEAK  
TIME  
Figure 34. Recommended Soldering Profile  
Table 17. Recommended Soldering Profile1, 2  
Condition  
Pb-Free  
Profile Feature  
Sn63/Pb37  
Average Ramp Rate from Liquid Temperature (TL) to Peak Temperature (TP)  
Preheat  
±°C/sec maximum  
±°C/sec maximum  
Minimum Temperature (TSMIN  
)
100°C  
150°C  
Maximum Temperature (TSMAX  
Time from TSMIN to TSMAX (tS)  
TSMAX to TL Ramp-Up Rate  
Liquid Temperature (TL)  
Time Maintained Above TL (tL)  
Peak Temperature (TP)  
)
150°C  
200°C  
60 seconds to 120 seconds  
±°C/second maximum  
18±°C  
60 seconds to 150 seconds  
240 + 0/−5°C  
60 seconds to 180 seconds  
±°C/second maximum  
217°C  
60 seconds to 150 seconds  
260 + 0/−5°C  
Time of Actual TP − 5°C (tP)  
Ramp-Down Rate  
Time 25°C to Peak Temperature  
10 seconds to ±0 seconds  
6°C/sec maximum  
6 minutes maximum  
20 seconds to 40 seconds  
6°C/sec maximum  
8 minutes maximum  
1 Based on JEDEC Standard J-STD-020D.1.  
2 For best results, the soldering profile should be in accordance with the recommendations of the manufacturer of the solder paste used.  
PCB FOOTPRINT PATTERN  
2.70mm  
0.25mm  
TYP  
4.00mm  
5.66mm  
0.40mm  
TYP  
0.60mm TYP  
4.35mm  
Figure 35. PCB Footprint Pattern and Dimensions  
Rev. A | Page 18 of 19  
 
 
 
 
Data Sheet  
ADXRS290  
OUTLINE DIMENSIONS  
5.90  
5.80  
5.70  
0.35 REF  
PIN 1 LAND  
CORNER  
1.03  
BSC  
5.36 REF  
R 0.15  
REF  
VENT HOLE  
0.095 REF  
PIN 1 LAND  
INDICATOR  
0.70  
BSC  
1
5
0.45 × 0.30  
4.60  
4.50  
4.40  
18  
15  
6
18)  
(PINS 6-9, 15-  
0.35  
REF  
0.65  
BSC  
4.06  
REF  
9
14  
10  
1.28  
REF  
R 0.68  
REF  
BOTTOM VIEW  
TOP VIEW  
1.60 REF  
0.30 × 0.45  
0.65 BSC  
14)  
(PINS 1-5, 10-  
1.30  
1.20  
1.10  
SIDE VIEW  
0.24 REF  
Figure 36. 18-Terminal Chip Array Small Outline No Lead Cavity [LGA_CAV]  
5.80 mm × 4.50 mm Body  
(CE-18-2)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
ADXRS290BCEZ  
ADXRS290BCEZ-RL  
ADXRS290BCEZ-RL7  
EVAL-ADXRS290Z  
EVAL-ADXRS290Z-M  
Temperature Range  
Package Description  
Package Option  
CE-18-2  
CE-18-2  
−25°C to +85°C  
−25°C to +85°C  
−25°C to +85°C  
18-Terminal Chip Array Small Outline No Lead Cavity [LGA_CAV]  
18-Terminal Chip Array Small Outline No Lead Cavity [LGA_CAV]  
18-Terminal Chip Array Small Outline No Lead Cavity [LGA_CAV]  
Breakout Evaluation Board  
Analog Devices Inertial Sensor Evaluation System, which includes a  
socket version of the satellite (ADXRS290-S) board  
CE-18-2  
EVAL-ADXRS290Z-S  
ADXRS290 Satellite, Standalone Socket Version  
EVAL-ADXRS290Z-M2  
Analog Devices Inertial Sensor Evaluation System, which includes a  
soldered version of the satellite (ADXRS290-S2) board  
EVAL-ADXRS290Z-S2  
ADXRS290 Satellite, Standalone Soldered Version  
1 Z = RoHS Compliant Part.  
©2014 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D12636-0-12/14(A)  
Rev. A | Page 19 of 19  
 
 

相关型号:

EVAL-ADXRS290Z-S

Ultralow Noise, Dual-Axis MEMS Gyroscope
ADI

EVAL-ADXRS290Z-S2

Ultralow Noise, Dual-Axis MEMS Gyroscope
ADI

EVAL-ADXRS450Z

HIgh Performance, Digital Output Gyroscope
ADI

EVAL-ADXRS450Z-M

HIgh Performance, Digital Output Gyroscope
ADI

EVAL-ADXRS450Z-S

HIgh Performance, Digital Output Gyroscope
ADI

EVAL-ADXRS453Z

High Performance , Digital Output Gyroscope
ADI

EVAL-ADXRS453Z-M

High Performance , Digital Output Gyroscope
ADI

EVAL-ADXRS453Z-S

High Performance , Digital Output Gyroscope
ADI

EVAL-ADXRS453Z-V

High Performance , Digital Output Gyroscope
ADI

EVAL-ADXRS613Z

【150∑/sec Yaw Rate Gyroscope
ADI

EVAL-ADXRS614Z

【50∑/s Yaw Rate Gyro
ADI

EVAL-ADXRS620Z

±300°/sec Yaw Rate Gyro
ADI