DAC8420ESZ [ADI]

Quad 12-Bit Serial Voltage Output DAC;
DAC8420ESZ
型号: DAC8420ESZ
厂家: ADI    ADI
描述:

Quad 12-Bit Serial Voltage Output DAC

信息通信管理 光电二极管 转换器
文件: 总24页 (文件大小:538K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Quad 12-Bit Serial Voltage Output DAC  
Data Sheet  
DAC8420  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
VREFHI  
5
VDD  
1
Guaranteed monotonic over temperature  
Excellent matching between DACs  
Unipolar or bipolar operation  
Buffered voltage outputs  
High speed serial digital interface  
Reset-to-zero scale or midscale  
Wide supply range, +5 V only to 15 V  
Low power consumption (35 mW maximum)  
Available in 16-Lead PDIP, SOIC, and CERDIP packages  
DAC8420  
10  
SDI  
REG  
A
DAC A  
7
6
3
2
VOUTA  
VOUTB  
VOUTC  
VOUTD  
12  
12  
11  
CS  
REG  
B
CLK  
DAC B  
DAC C  
DAC D  
SHIFT  
REGISTER  
13  
14  
NC  
LD  
REG  
C
APPLICATIONS  
4
Software controlled calibration  
Servo controls  
Process control and automation  
ATE  
DECODE  
REG  
D
2
9
16  
CLSEL CLR  
8
15  
4
GND  
VREFLO  
VSS  
Figure 1.  
GENERAL DESCRIPTION  
The DAC8420 is a quad, 12-bit voltage-output DAC with serial  
digital interface in a 16-lead package. Utilizing BiCMOS tech-  
nology, this monolithic device features unusually high circuit  
density and low power consumption. The simple, easy-to-use  
serial digital input and fully buffered analog voltage outputs  
require no external components to achieve a specified per-  
formance.  
CLR  
forces all four DAC  
The user-programmable reset control  
outputs to either zero scale or midscale, asynchronously overriding  
the current DAC register values. The output voltage range,  
determined by the inputs VREFHI and VREFLO, is set by the  
user for positive or negative unipolar or bipolar signal swings  
within the supplies, allowing considerable design flexibility.  
The DAC8420 is available in 16-lead PDIP, SOIC, and CERDIP  
packages. Operation is specified with supplies ranging from +5 V  
only to 15 V, with references of +2.5 V to 10 V, respectively.  
Power dissipation when operating from 15 V supplies is less than  
255 mW (maximum) and only 35 mW (maximum) with a +5 V  
supply.  
The 3-wire serial digital input is easily interfaced to micro-  
processors running at 10 MHz with minimal additional  
circuitry. Each DAC is addressed individually by a 16-bit serial  
word consisting of a 12-bit data word and an address header.  
Rev. C  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2003–2016 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
DAC8420* PRODUCT PAGE QUICK LINKS  
Last Content Update: 02/23/2017  
COMPARABLE PARTS  
View a parametric search of comparable parts.  
DISCUSSIONS  
View all DAC8420 EngineerZone Discussions.  
DOCUMENTATION  
Data Sheet  
SAMPLE AND BUY  
Visit the product page to see pricing options.  
DAC8420: Quad 12-Bit Serial Voltage Output DAC Data  
Sheet  
TECHNICAL SUPPORT  
Submit a technical question or find your regional support  
number.  
REFERENCE MATERIALS  
Solutions Bulletins & Brochures  
DOCUMENT FEEDBACK  
Digital to Analog Converters ICs Solutions Bulletin  
Submit feedback for this data sheet.  
DESIGN RESOURCES  
DAC8420 Material Declaration  
PCN-PDN Information  
Quality And Reliability  
Symbols and Footprints  
This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not  
trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.  
DAC8420  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
CS  
and CLK........................................... 13  
Correct Operation of  
CLR  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics............................................................. 3  
Absolute Maximum Ratings............................................................ 6  
Thermal Resistance ...................................................................... 6  
ESD Caution.................................................................................. 6  
Pin Configurations and Function Descriptions ........................... 8  
Typical Performance Characteristics ............................................. 9  
Theory of Operation ...................................................................... 13  
Introduction ................................................................................ 13  
Digital Interface Operation....................................................... 13  
Using  
and CLSEL............................................................... 13  
Programming the Analog Outputs .......................................... 13  
VREFHI Input Requirements................................................... 15  
Power-Up Sequence ................................................................... 15  
Applications..................................................................................... 16  
Power Supply Bypassing and Grounding................................ 16  
Analog Outputs .......................................................................... 16  
Reference Configuration ........................................................... 17  
Isolated Digital Interface ........................................................... 18  
Dual Window Comparator ....................................................... 19  
MC68HC11 Microcontroller Interfacing................................ 19  
DAC8420 to M68HC11 Interface Assembly Program.......... 20  
Outline Dimensions....................................................................... 21  
Ordering Guide .......................................................................... 22  
REVISION HISTORY  
9/2016—Rev. B to Rev. C  
Updated Outline Dimensions....................................................... 22  
Changes to Ordering Guide .......................................................... 22  
5/2007—Rev. A to Rev. B  
Updated Format..................................................................Universal  
Changes to Endnote 3 ...................................................................... 4  
Changes to Table 3............................................................................ 6  
Changes to Table 4............................................................................ 2  
Updated Outline Dimensions....................................................... 22  
Changes to Ordering Guide .......................................................... 23  
9/2003—Rev. 0 to Rev. A  
Changes to General Description .................................................... 1  
Deleted Wafer Test Limits table...................................................... 4  
Deleted Dice Characteristics........................................................... 4  
Updated Ordering Guide................................................................. 4  
Added Power-Up Sequence section ............................................. 12  
Updated Outline Dimensions....................................................... 17  
Rev. C | Page 2 of 23  
 
Data Sheet  
DAC8420  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS1  
At VDD = +5.0 V 5%, VSS = 0 V, V VREFHI = +2.5 V, VVREFLD = 0 V, and V SS = −5.0 V 5%, VVREFLO = −2.5 V, 40°C ≤ TA ≤ +85°C unless  
otherwise noted.2  
Table 1.  
Parameter  
Symbol Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
STATIC ACCURACY  
Integral Linearity E Grade  
Integral Linearity E Grade  
Integral Linearity F Grade  
Integral Linearity F Grade  
Differential Linearity  
Zero-Scale Error  
Full-Scale Error  
Zero-Scale Error  
Full-Scale Error  
Zero-Scale Temperature Coefficient  
Full-Scale Temperature Coefficient  
MATCHING PERFORMANCE  
Linearity Matching  
INL  
INL  
INL  
INL  
DNL  
ZSE  
FSE  
ZSE  
FSE  
TCZSE  
TCFSE  
±±  
±ꢀ  
±ꢁ  
±1  
±1  
±3  
±2  
±4  
±1  
±4  
±4  
±8  
±8  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
VSS = 0 V3  
VSS = 0 V3  
Monotonic over temperature  
RL = 2 kΩ, VSS = −5 V  
RL = 2 kΩ, VSS = −5 V  
RL = 2 kΩ, VSS = 0 V3  
RL = 2 kΩ, VSS = 0 V3  
RL = 2 kΩ, VSS = −5 V4  
RL = 2 kΩ, VSS = −5 V4  
±±  
LSB  
ppm/°C  
ppm/°C  
±10  
±10  
±1  
LSB  
REFERENCE  
Positive Reference Input Range5  
Negative Reference Input Range5  
Negative Reference Input Range  
Reference High Input Current  
Reference Low Input Current  
AMPLIFIER CHARACTERISTICS  
Output Current  
VVREFHI  
VVREFLO  
VVREFLO  
IVREFHI  
VVREFLO + 2.5  
VSS  
0
−0.75  
−1.0  
VDD − 2.5  
VVREFHI − 2.5  
VVREFHI − 2.5  
V
V
V
mA  
mA  
VSS = 0 V5  
Code 0x000, Code 0x555  
Code 0x000, Code 0x555, VSS = −5 V  
±0.25 +0.75  
−0.6  
IVREFLO  
IOUT  
tS  
SR  
VSS = −5 V  
To 0.01%6  
10% to 90%6  
−1.25  
2.4  
+1.25  
mA  
μs  
V/μs  
Settling Time  
Slew Rate  
8
1.5  
LOGIC CHARACTERISTICS  
Logic Input High Voltage  
Logic Input Low Voltage  
Logic Input Current  
Input Capacitance4  
VINH  
VINL  
IIN  
V
V
μA  
pF  
0.8  
10  
CIN  
13  
LOGIC TIMING CHARACTERISTICS4, 7  
Data Setup Time  
Data Hold  
Clock Pulse Width High  
Clock Pulse Width Low  
Select Time  
Deselect Delay  
Load Disable Time  
Load Delay  
Load Pulse Width  
tDS  
tDH  
tCH  
tCL  
tCSS  
tCSH  
tLD1  
tLD2  
tLDW  
tCLRW  
25  
55  
90  
120  
90  
5
130  
35  
80  
150  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Clear Pulse Width  
Rev. C | Page 3 of 23  
 
 
 
DAC8420  
Data Sheet  
Parameter  
Symbol Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
SUPPLY CHARACTERISTICS  
Power Supply Sensitivity  
Positive Supply Current  
Negative Supply Current  
Power Dissipation  
PSRR  
IDD  
ISS  
0.002  
4
−3  
20  
0.01  
7
%/%  
mA  
mA  
−6  
PDISS  
VSS = 0 V  
35  
mW  
1 Typical values indicate performance measured at 25°C.  
2 All supplies can be varied ±5% and operation is guaranteed. Device is tested with VDD = 4.75 V.  
3 For single-supply operation (VVREFLO = 0 V, VSS = 0 V), due to internal offset errors INL and DNL are measured beginning at Code 0x005.  
4 Guaranteed, but not tested.  
5 Operation is guaranteed over this reference range, but linearity is neither tested nor guaranteed.  
6 VOUT swing between +2.5 V and −2.5 V with VDD = 5.0 V.  
7 All input control signals are specified with tr = tf = 5 ns (10% to 90% of 5 V) and timed from a voltage level of 1.6 V.  
Rev. C | Page 4 of 23  
Data Sheet  
DAC8420  
At VDD = +15.0 V 5%, VSS = −15.0 V 5%, VVREFHI = +10.0 V, VVREFLO = −10.0 V, 40°C ≤ TA ≤ +85°C unless otherwise noted.1, 2  
Table 2.  
Parameter  
Symbol Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
STATIC ACCURACY  
Integral Linearity E Grade  
Integral Linearity F Grade  
Differential Linearity  
Zero-Scale Error  
Full-Scale Error  
Zero-Scale Temperature Coefficient  
Full-Scale Temperature Coefficient TCFSE  
MATCHING PERFORMANCE  
Linearity Matching  
INL  
INL  
DNL  
ZSE  
FSE  
TCZSE  
±±  
±ꢀ  
±±  
±ꢀ  
±1  
±1  
±2  
±2  
LSB  
LSB  
LSB  
LSB  
LSB  
ppm/°C  
ppm/°C  
Monotonic over temperature  
RL = 2 kΩ  
RL = 2 kΩ  
RL = 2 kΩ3  
±4  
±4  
RL = 2 kΩ3  
±1  
LSB  
REFERENCE  
Positive Reference Input Range4  
Negative Reference Input Range4  
Reference High Input Current  
Reference Low Input Current  
AMPLIFIER CHARACTERISTICS  
Output Current  
VVREFHI  
VVREFLO  
IVREFHI  
VVREFLO + 2.5  
−10  
−2.0  
VDD − 2.5  
VVREFHI − 2.5  
+2.0  
V
V
mA  
mA  
Code 0x000, Code 0x555  
Code 0x000, Code 0x555  
±1.0  
−2.0  
IVREFLO  
−3.5  
IOUT  
tS  
SR  
−5  
+5  
mA  
μs  
V/μs  
Settling Time  
Slew Rate  
To 0.01%5  
10% to 90%5  
13  
2
DYNAMIC PERFORMANCE  
Analog Crosstalk3  
Digital Feedthrough3  
Large Signal Bandwidth  
Glitch Impulse  
>64  
>72  
90  
dB  
dB  
kHz  
μV-s  
3 dB, VVREFHI = 5 V + 10 V p-p, VVREFLO = −10 V3  
Code Transition = 0x7FF to 0x8003  
6
LOGIC CHARACTERISTICS  
Logic Input High Voltage  
Logic Input Low Voltage  
Logic Input Current  
Input Capacitance3  
VINH  
VINL  
IIN  
2.4  
V
V
μA  
pF  
0.8  
10  
CIN  
13  
LOGIC TIMING CHARACTERISTICS3, 6  
Data Setup Time  
Data Hold  
Clock Pulse Width High  
Clock Pulse Width Low  
Select Time  
Deselect Delay  
Load Disable Time  
Load Delay  
Load Pulse Width  
tDS  
tDH  
tCH  
tCL  
tCSS  
tCSH  
tLD1  
tLD2  
tLDW  
tCLRW  
25  
20  
30  
50  
55  
15  
40  
15  
45  
70  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Clear Pulse Width  
SUPPLY CHARACTERISTICS  
Power Supply Sensitivity  
Positive Supply Current  
Negative Supply Current  
Power Dissipation  
PSRR  
IDD  
ISS  
0.002 0.01  
%/%  
mA  
mA  
6
9
−8  
−5  
PDISS  
255  
mW  
1 Typical values indicate performance measured at 25°C.  
2 All supplies can be varied ±5% and operation is guaranteed.  
3 Guaranteed, but not tested.  
4 Operation is guaranteed over this reference range, but linearity is neither tested nor guaranteed.  
5 VOUT swing between +10 V and −10 V.  
6 All input control signals are specified with tr = tf = 5 ns (10% to 90% of 5 V) and timed from a voltage level of 1.6 V.  
Rev. C | Page 5 of 23  
DAC8420  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
THERMAL RESISTANCE  
Table 3.  
Table 4.  
Parameter  
Rating  
Package Type  
16-Lead PDIP (N)  
16-Lead CERDIP (Q)  
16-Lead SOIC (RW)  
θJA  
701  
821  
862  
θJC  
Unit  
°C/W  
°C/W  
°C/W  
VDD to GND  
VSS to GND  
VSS to VDD  
VSS to VVREFLO  
VVREFHI to VVREFLO  
VVREFHI to VDD  
IVREFHI, IVREFLO  
−0.3 V, +18.0 V  
+0.3 V, −18.0 V  
−0.3 V, +36.0 V  
−0.3 V, VSS − 2.0 V  
+2.0 V, VDD − VSS  
+2.0 V, +33.0 V  
10 mA  
27  
9
22  
1 θJA is specified for worst case mounting conditions, that is, θJA is specified for  
device in socket.  
2 θJA is specified for device on board.  
ESD CAUTION  
Digital Input Voltage to GND  
Output Short-Circuit Duration  
Operating Temperature Range  
EP, FP, ES, FS, EQ, FQ  
Dice Junction Temperature  
Storage Temperature Range  
Power Dissipation  
Lead Temperature  
Soldering  
−0.3 V, VDD + 0.3 V  
Indefinite  
–40°C to +85°C  
150°C  
–65°C to +150°C  
1000 mW  
JEDEC Industry Standard  
J-STD-020  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Rev. C | Page 6 of 23  
 
 
 
Data Sheet  
DAC8420  
DATA LOAD SEQUENCE  
tCSH  
CS  
tCSS  
SDI  
A1  
A0  
X
X
D11  
D10  
D9  
D8  
D4  
D3  
D2  
D1  
D0  
CLK  
LD  
tLD1  
tLD2  
tDS  
tDH  
DATA LOAD TIMING  
CLEAR TIMING  
CLSEL  
SDI  
tCLRW  
CLR  
CLK  
CS  
tCH  
tCL  
tS  
tCSH  
V
OUT  
tLD2  
tLDW  
±1LSB  
LD  
tS  
VOUTx  
±1LSB  
Figure 2. Timing Diagram  
5kΩ  
10kΩ  
+15V  
1N4001  
1
16  
+
10µF  
0.1µF  
NC  
NC  
15  
14  
2
3
4
5
6
7
8
10kΩ  
–10V  
1N4001  
13 NC  
DUT  
10µF  
0.1µF  
0.1µF  
+
+
12  
11  
10  
9
5kΩ  
NC  
NC  
10kΩ  
+10V  
1N4001  
10µF  
10kΩ  
10kΩ  
–15V  
1N4001  
NC = NO CONNECT  
10µF  
0.1µF  
+
Figure 3. Burn-In Diagram  
Rev. C | Page 7 of 23  
 
DAC8420  
Data Sheet  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
VDD  
VOUTD  
VOUTC  
VREFLO  
VREFHI  
VOUTB  
VOUTA  
VSS  
1
2
3
4
5
6
7
8
16 CLSEL  
15 CLR  
14 LD  
VDD  
VOUTD  
VOUTC  
VREFLO  
VREFHI  
VOUTB  
VOUTA  
VSS  
1
2
3
4
5
6
7
8
16 CLSEL  
15 CLR  
14 LD  
DAC8420  
TOP VIEW  
DAC8420  
13 NC  
13 NC  
TOP VIEW  
(Not to Scale)  
12 CS  
(Not to Scale)  
12 CS  
11 CLK  
10 SDI  
11 CLK  
10 SDI  
9
GND  
9
GND  
NC = NO CONNECT  
NC = NO CONNECT  
Figure 4. PDIP and CERDIP  
Figure 5. SOIC  
Table 5. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
4
VDD  
VREFLO  
Positive Power Supply, 5 V to 15 V.  
Reference Input. Lower DAC ladder reference voltage input, equal to zero-scale output. Allowable  
range is VSS to (VVREFHI − 2.5 V).  
5
VREFHI  
Reference Input. Upper DAC ladder reference voltage input. Allowable range is (VDD − 2.5 V) to  
(VVREFLO + 2.5 V).  
7, 6, 3, 2  
8
9
10  
VOUTA through VOUTD  
Buffered DAC Analog Voltage Outputs.  
Negative Power Supply, 0 V to −15 V.  
Power Supply, Digital Ground.  
Serial Data Input. Data presented to this pin is loaded into the internal serial-parallel shift register,  
which shifts data in, beginning with DAC Address Bit A1. This input is ignored when CS is high. SDI  
is CMOS/TTL compatible. The format of the 16-bit serial word is shown in Table 8.  
VSS  
GND  
SDI  
11  
12  
CLK  
CS  
System Serial Data Clock Input, TTL/CMOS Levels. Data presented to the input SDI is shifted into  
the internal serial-parallel input register on the rising edge of clock. This input is logically OR’ed  
with CS.  
Control Input, Device Chip Select, Active Low. This input is logically OR’ed with the clock and  
disables the serial data register input when high. When low, data input clocking is enabled (see  
Table 6). CS is CMOS/TTL compatible.  
13  
14  
NC  
LD  
No Connect = Don’t Care.  
Control Input, Asynchronous DAC Register Load Control, Active Low. The data currently contained  
in the serial input shift register is shifted out to the DAC data registers on the falling edge of LD,  
independent of CS. Input data must remain stable while LD is low. LD is CMOS/TTL compatible.  
15  
16  
CLR  
Control Input, Asynchronous Clear, Active Low. Sets internal data Register A through Register D to  
zero or midscale, depending on current state of CLSEL. The data in the serial input shift register is  
unaffected by this control. CLR is CMOS/TTL compatible.  
CLSEL  
Control Input, Determines action of CLR. If high, a clear command sets the internal DAC Register A  
through Register D to midscale (0x800). If low, the registers are set to zero (0x000). CLSEL is CMOS/  
TTL compatible.  
Table 6. Control Function Logic Table  
CLK1  
CS1  
LD  
CLR  
CLSEL  
Serial Input Shift Register  
DAC Register A to DAC Register D  
NC2  
NC2  
NC2  
Low  
High  
High  
NC2  
High  
High  
High  
Low  
NC ()2  
NC2  
High  
High  
High  
High  
High  
Low  
Low  
High  
High  
High  
High  
High  
High  
Low  
High /Low  
NC2  
NC2  
NC2  
NC2  
NC2  
No change  
No change  
No change  
Shifts register one bit  
Shifts register one bit  
No change  
Loads midscale value (0x800)  
Loads zero-scale value (0x000)  
Latches value  
No change  
No change  
Loads the serial data-word3  
Transparent4  
Low  
High  
No change  
No change  
High  
No change  
1
CS  
CLK and are interchangeable.  
2 NC = Don’t Care.  
3
CS  
CS  
Returning high while CLK is high avoids an additional false clock of serial input data. CLK and are interchangeable.  
4
LD  
Do not clock in serial data while  
is low.  
Rev. C | Page 8 of 23  
 
 
 
Data Sheet  
DAC8420  
TYPICAL PERFORMANCE CHARACTERISTICS  
0.3  
0.4  
0.3  
0.2  
0.1  
0
T
= +25°C  
A
T
= +25°C  
A
V
V
V
= +5V  
= 0V  
DD  
SS  
V
V
V
= +15V  
= –15V  
DD  
SS  
0.2  
0.1  
= 0V  
VREFLO  
= –10V  
VREFLO  
0
–0.1  
–0.2  
–0.3  
–0.1  
–0.2  
–0.3  
–0.4  
–6  
–4  
–2  
0
2
4
6
8
10  
12  
14  
1.5  
2.0  
2.5  
3.0  
3.5  
V
(V)  
V
(V)  
VREFHI  
VREFHI  
Figure 6. DNL vs. VVREFHI (±±5 V)  
Figure 9. INL vs. VVREFHI (+5 V)  
0.7  
0.5  
0.10  
0.05  
0
x + 3σ  
T
= +25°C  
= +5V  
A
V
V
V
DD  
V
V
V
V
= +15V  
= –15V  
DD  
SS  
= 0V  
SS  
VREFLO  
= 0V  
= +10V  
VREFHI  
0.3  
= –10V  
VREFLO  
–0.05  
–0.10  
–0.15  
x
0.1  
–0.1  
–0.20  
–0.25  
–0.3  
–0.5  
x – 3σ  
0
200  
400  
600  
800  
1000  
–0.30  
1.5  
2.0  
2.5  
3.0  
3.5  
t
= HOURS OF OPERATION AT 125°C  
CURVES NOT NORMALIZED  
V
(V)  
VREFHI  
Figure 7. DNL vs. VVREFHI (+5 V)  
Figure ±0. Full-Scale Error vs. Time Accelerated by Burn-In  
1.2  
0.3  
0.2  
x + 3σ  
1.0  
0.8  
0.6  
0.4  
V
V
V
V
= +15V  
= –15V  
DD  
SS  
= +10V  
= –10V  
0.1  
VREFHI  
VREFLO  
x
0
–0.1  
–0.2  
–0.3  
T
= +25°C  
A
V
V
V
= +15V  
= –15V  
DD  
SS  
0.2  
0
= –10V  
VREFLO  
x – 3σ  
0
200  
t
400  
600  
800  
1000  
–6  
–4  
–2  
0
2
4
6
8
10  
12  
14  
= HOURS OF OPERATION AT 125°C  
CURVES NOT NORMALIZED  
V
(V)  
VREFHI  
Figure 8. INL vs. VREFHI (±±5 V)  
Figure ±±. Zero-Scale Error vs. Time Accelerated by Burn-In  
Rev. C | Page 9 of 23  
 
DAC8420  
Data Sheet  
1.5  
1.0  
0.5  
0
0.2  
T
= +25°C  
A
V
V
V
V
= +15V  
= –15V  
DD  
SS  
V
V
V
V
= +5V  
= 0V  
DD  
SS  
0.1  
= +10V  
= –10V  
VREFHI  
= +2.5V  
= 0V  
VREFHI  
VREFLO  
0
–0.1  
–0.2  
VREFLO  
DAC C  
DAC D  
DAC A  
–0.5  
–0.3  
–0.4  
–0.5  
–0.6  
–1.0  
–1.5  
DAC B  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
DIGITAL INPUT CODE  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
Figure ±2. Full-Scale Error vs. Temperature  
Figure ±5. Channel-to-Channel Matching  
1.2  
13  
12  
T
= +25°C  
= +15V  
V
V
V
V
= +15V  
= –15V  
= +10V  
A
DD  
SS  
V
V
V
DD  
1.0  
= –15V  
SS  
VREFLO  
VREFHI  
11  
10  
9
= –10V  
= –10V  
VREFLO  
0.8  
0.6  
0.4  
DAC B  
DAC C  
DAC D  
DAC A  
8
7
0.2  
0
6
–0.2  
–0.4  
5
4
–7  
–5  
–3  
–1  
0
1
3
5
7
9
11  
13  
–75  
–50  
–25  
0
25  
50  
C)  
75  
100  
125  
V
(V)  
TEMPERATURE (  
°
VREFHI  
Figure ±3. Zero-Scale Error vs. Temperature  
Figure ±6. IDD vs. VVREFHI, All DACs High  
0.9  
0.7  
0.8  
T
= +25°C  
= +15V  
T
= +25°C, –55°C, 125°C  
= +15V  
A
A
0.7  
0.6  
V
V
V
V
V
V
V
V
DD  
DD  
= –15V  
= –15V  
SS  
SS  
= +10V  
= –10V  
= +10V  
= –10V  
0.5  
VREFHI  
VREFHI  
0.5  
0.4  
VREFLO  
VREFLO  
0.3  
0.3  
0.1  
0.2  
0.1  
–0.1  
–0.3  
–0.5  
–0.7  
–0.9  
0
–0.1  
–0.2  
–0.3  
–0.4  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
DIGITAL INPUT CODE  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
DIGITAL INPUT CODE  
Figure ±4. Channel-to-Channel Matching  
Figure ±7. INL vs. Code  
Rev. C | Page 10 of 23  
Data Sheet  
DAC8420  
1.5  
31.25mV  
LD  
T
= +25°C  
A
1.0  
0.5  
V
V
V
V
= +15V  
= –15V  
DD  
SS  
= +10V  
= –10V  
VREFHI  
VREFLO  
0
T
= +25°C  
4.88mV  
A
V
V
V
V
= +15V  
= –15V  
1 LSB  
0mV  
DD  
SS  
–0.5  
–1.0  
= +10V  
= –10V  
VREFHI  
VREFLO  
–18.75mV  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
DIGITAL INPUT CODE  
–9.8µs  
10µs/DIV  
90.2µs  
tSETT  
13µs  
Figure ±8. IVREFHI vs. Code  
Figure 2±. Positive Settling Time (±±5 V)  
–2.50µV  
LD  
43.75mV  
CLR  
T
= +25°C  
= +5V  
T
= +25°C  
A
A
V
V
V
V
V
V
V
V
= +15V  
= –15V  
DD  
DD  
SS  
= –5V  
SS  
= +2.5V  
= –2.5V  
= +10V  
= –10V  
VREFHI  
VREFHI  
1.22mV  
1 LSB  
0mV  
VREFLO  
VREFLO  
0mV  
1 LSB  
–4.88mV  
–10.25mV  
–6.25mV  
–9.8µs  
–4.9µs  
5µs/DIV  
45.1µs  
10µs/DIV  
90.2µs  
tSETT  
8µs  
tSETT  
13µs  
Figure ±9. Positive Settling Time (±5 V)  
Figure 22. Negative Settling Time (±±5 V)  
6.5mV  
CLR  
5V  
T
= +25°C  
A
V
V
V
V
= +5V  
= –5V  
DD  
SS  
T
= +25°C  
A
V
V
V
V
= +5V  
= –5V  
= +2.5V  
= –2.5V  
DD  
SS  
VREFHI  
VREFLO  
= +2.5V  
= –2.5V  
VREFHI  
VREFLO  
+1V/DIV  
0
0mV  
1 LSB  
1.22mV  
–5V  
–47.6µs  
3.5mV  
–4.9µs  
20µs/DIV  
152.4µs  
5µs/DIV  
45.1µs  
V
µs  
V
µs  
SR  
= 1.65  
SR  
= 1.17  
RISE  
FALL  
tSETT  
8µs  
Figure 20. Negative Settling Time (±5 V)  
Figure 23. Slew Rate (±5 V)  
Rev. C | Page 11 of 23  
DAC8420  
Data Sheet  
25V  
LD  
6
I
DD  
4
2
CLR  
V
V
V
V
= +15V  
= –15V  
DD  
SS  
+5V/DIV  
0
= +10V  
= –10V  
VREFHI  
0
VREFLO  
ALL DACS HIGH (FULL SCALE)  
T
= +25°C  
A
V
V
V
V
= +15V  
= –15V  
DD  
SS  
–2  
–4  
–6  
= +10V  
= –10V  
VREFHI  
VREFLO  
I
SS  
–25V  
–33.6µs  
–75  
0
75  
150  
20µs/DIV  
166.4µs  
V
µs  
V
µs  
SR  
RISE  
= 1.9  
SR = 2.02  
FALL  
TEMPERATURE (°C)  
Figure 24. Slew Rate (±±5 V)  
Figure 27. Power Supply Current vs. Temperature  
VOUTA THROUGH VOUTD  
T
= +25°C  
A
V
V
V
V
= +15V  
= –15V  
DD  
SS  
10  
0
= +10V  
= –10V  
VREFHI  
VREFLO  
–10  
–20  
–30  
DATA = 0x800  
T
= +25°C  
A
V
V
V
V
= +15V  
= –15V  
DD  
SS  
= 0 ±100mV  
VREFHI  
= –10V  
VREFLO  
ALL BITS HIGH 200mV p-p  
5V/DIV  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
Figure 25. Small-Signal Response  
Figure 28. DAC Output Current vs. VOUTx  
100  
10  
8
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
6
4
T
= +25°C  
A
T = +25°C  
A
DATA = 0x000  
V
V
V
V
= +15V  
= –15V  
DD  
SS  
V
V
V
V
= +15V ±1V  
= –15V  
DD  
2
SS  
= +10V  
= –10V  
VREFHI  
= +10V  
= –10V  
VREFHI  
VREFLO  
VREFLO  
DATA = 0xFFF OR 0x000  
0
10  
10  
100  
1k  
10k  
100k  
1M  
100  
1k 10k  
FREQUENCY (Hz)  
LOAD RESISTANCE (Ω)  
Figure 26. PSRR vs. Frequency  
Figure 29. Output Swing vs. Load Resistance  
Rev. C | Page 12 of 23  
Data Sheet  
DAC8420  
THEORY OF OPERATION  
INTRODUCTION  
USING CLR AND CLSEL  
The DAC8420 is a quad, voltage-output 12-bit DAC with a serial  
digital input capable of operating from a single 5 V supply. The  
straightforward serial interface can be connected directly to  
most popular microprocessors and microcontrollers, and can  
accept data at a 10 MHz clock rate when operating from 15 V  
supplies. A unique voltage reference structure ensures maximum  
utilization of the DAC output resolution by allowing the user to  
set the zero-scale and full-scale output levels within the supply  
rails. The analog voltage outputs are fully buffered, and are  
capable of driving a 2 kΩ load. Output glitch impulse during  
major code transitions is a very low 64 nV-s (typ).  
CLR  
The clear ( ) control allows the user to perform an asyn-  
CLR  
chronous reset function. Asserting  
loads all four DAC  
data-word registers, forcing the DAC outputs to either zero  
scale (0x000) or midscale (0x800), depending on the state of  
CLSEL as shown in Table 6. The clear function is asynchronous  
CS  
CLR  
and totally independent of . When  
returns high, the  
LD  
DAC outputs remain latched at the reset value until  
is  
strobed, reloading the individual DAC data-word registers  
with either the data held in the serial input register prior to the  
reset or with new data loaded through the serial interface.  
Table 7. DAC Address Word Decode Table  
DIGITAL INTERFACE OPERATION  
A1  
A0  
DAC Addressed  
CS  
The serial input of the DAC8420, consisting of , SDI, and  
LD  
,
0
0
DAC A  
is easily interfaced to a wide variety of microprocessor serial ports.  
CS  
0
1
DAC B  
While  
is low, the data presented to the input SDI is shifted  
1
0
DAC C  
into the internal serial-to-parallel shift register on the rising  
edge of the clock, with the address MSB first, data LSB last, as  
shown in Table 6 and in the timing diagram (Figure 2). The  
data format, shown in Table 8, is two bits of DAC address and  
two don’t care fill bits, followed by the 12-bit DAC data-word.  
Once all 16 bits of the serial data-word have been input, the  
1
1
DAC D  
PROGRAMMING THE ANALOG OUTPUTS  
The unique differential reference structure of the DAC8420  
allows the user to tailor the output voltage range precisely to  
the needs of the application. Instead of spending DAC resolu-  
tion on an unused region near the positive or negative rail, the  
DAC8420 allows the user to determine both the upper and  
lower limits of the analog output voltage range. Thus, as shown  
in Table 9 and Figure 30, the outputs of DAC A through DAC D  
range between VREFHI and VREFLO, within the limits specified  
in the Specifications section. Note also that VREFHI must be  
greater than VREFLO.  
LD  
load control  
is strobed and the word is parallel-shifted out  
onto the internal data bus. The two address bits are decoded  
and used to route the 12-bit data-word to the appropriate DAC  
data register (see the Applications section).  
CORRECT OPERATION OF CS AND CLK  
CS  
In Table 6, the control pins CLK and  
require some attention  
during a data load cycle. Since these two inputs are fed to the  
V
DD  
same logical OR gate, the operation is in fact identical. The user  
must take care to operate them accordingly to avoid clocking in  
false data bits. In the timing diagram, CLK must be halted high  
2.5V MIN  
V
VREFHI  
0xFFF  
CS  
or  
must be brought high during the last high portion of the  
CLK following the rising edge that latched in the last data bit.  
CS  
1 LSB  
Otherwise, an additional rising edge is generated by  
rising  
2.5V MIN  
CS  
while CLK is low, causing  
to act as the clock and allowing a  
false data bit into the serial input register. The same issue must  
also be considered in the beginning of the data load sequence.  
0x000  
–10V MIN  
V
VREFLO  
0V MIN  
V
SS  
Figure 30. Output Voltage Range Programming  
Table 8.  
(FIRST)  
(LAST)  
B15  
B0  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
B10  
B11  
B12  
B13  
B14  
A1  
A0  
NC  
NC  
D11  
(MSB)  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
—Address Word—  
—DAC Data-Word—  
(LSB)  
Rev. C | Page 13 of 23  
 
 
 
 
 
 
 
 
DAC8420  
Data Sheet  
Table 9. Analog Output Code  
DAC Data-Word (Hex)  
0xFFF  
VOUT  
Note  
Full-scale output  
Midscale + 1  
Midscale  
(VREFHI VREFLO)  
4096  
(VREFHI VREFLO)  
4096  
(VREFHI VREFLO)  
4096  
(VREFHI VREFLO)  
4096  
VREFLO +  
× 4095  
× 2049  
× 2048  
× 2047  
×0  
0x801  
0x800  
0x7FF  
0x000  
VREFLO +  
VREFLO +  
VREFLO +  
VREFLO +  
Midscale − 1  
Zero scale  
(VREFHI VREFLO)  
4096  
Rev. C | Page 14 of 23  
 
Data Sheet  
DAC8420  
POWER-UP SEQUENCE  
VREFHI INPUT REQUIREMENTS  
To prevent a CMOS latch-up condition, power up VDD, VSS,  
and GND prior to any reference voltages. The ideal power-up  
sequence is GND, VSS, VDD, VREFHI, VREFLO, and digital  
inputs. Noncompliance with the power-up sequence over an  
extended period can elevate the reference currents and eventually  
damage the device. On the other hand, if the noncompliant  
power-up sequence condition is as short as a few milliseconds,  
the device can resume normal operation without being damaged  
once VDD/VSS is powered.  
The DAC8420 utilizes a unique, patented DAC switch driver  
circuit that compensates for different supply, reference voltage,  
and digital code inputs. This ensures that all DAC ladder switches  
are always biased equally, ensuring excellent linearity under all  
conditions. Thus, as shown in Table 1, the VREFHI input of the  
DAC8420 requires both sourcing and sinking current capabili-  
ties from the reference voltage source. Many positive voltage  
references are intended as current sources only and offer little  
sinking capability. The user must consider references such as  
the AD584, AD586, AD587, AD588, AD780, and REF43 for  
such an application.  
Rev. C | Page 15 of 23  
 
 
DAC8420  
Data Sheet  
APPLICATIONS  
In the case of 5 V only systems, it is desirable to use the same 5 V  
supply for both the analog circuitry and the digital portion of  
the circuit. Unfortunately, the typical 5 V supply is extremely  
noisy due to the fast edge rates of the popular CMOS logic families,  
which induce large inductive voltage spikes, and busy micro-  
controller or microprocessor buses, and therefore commonly have  
large current spikes during bus activity. However, by properly  
filtering the supply as shown in Figure 32, the digital 5 V supply  
can be used. The inductors and capacitors generate a filter that  
not only rejects noise due to the digital circuitry, but also filters  
out the lower frequency noise of switch mode power supplies.  
The analog supply must be connected as close as possible to the  
origin of the digital supply to minimize noise pickup from the  
digital section.  
POWER SUPPLY BYPASSING AND GROUNDING  
In any circuit where accuracy is important, careful consid-  
eration of the power supply and ground return layout helps to  
ensure the rated performance. The DAC8420 has a single ground  
pin that is internally connected to the digital section as the logic  
reference level. The first thought may be to connect this pin to  
digital ground; however, in large systems digital ground is often  
noisy because of the switching currents of other digital circuitry.  
Any noise that is introduced at the ground pin can couple into  
the analog output. Thus, to avoid error-causing digital noise in the  
sensitive analog circuitry, the ground pin must be connected to  
the system analog ground. The ground path (circuit board trace)  
must be as wide as possible to reduce any effects of parasitic  
inductance and ohmic drops. A ground plane is recommended  
if possible. The noise immunity of the on-board digital circuitry,  
typically in the hundreds of millivolts, is well able to reject the  
common-mode noise typically seen between system analog and  
digital grounds. Finally, the analog and digital ground must be  
connected to each other at a single point in the system to provide a  
common reference. This is preferably done at the power supply.  
FERRITE BEADS:  
2 TURNS, FAIR-RITE  
#2677006301  
TTL/CMOS  
LOGIC  
CIRCUITS  
+5V  
0.1µF  
+
+
100µF  
ELECT.  
10µF TO 22µF  
TANT.  
CER.  
+5V  
RETURN  
Good grounding practice is also essential to maintaining analog  
performance in the surrounding analog support circuitry. With  
two reference inputs and four analog outputs capable of moderate  
bandwidth and output current, there is a significant potential  
for ground loops. Again, a ground plane is recommended as the  
most effective solution to minimizing errors due to noise and  
ground offsets.  
+5V  
POWER SUPPLY  
Figure 32. Single-Supply Analog Supply Filter  
ANALOG OUTPUTS  
The DAC8420 features buffered analog voltage outputs capable  
of sourcing and sinking up to 5 mA when operating from 15 V  
supplies, eliminating the need for external buffer amplifiers in most  
applications while maintaining specified accuracy over the rated  
operating conditions. The buffered outputs are simply an  
operational amplifier connected as a voltage follower, and thus  
have output characteristics very similar to the typical operational  
amplifier. These amplifiers are short-circuit protected. The user  
must verify that the output load meets the capabilities of the device,  
in terms of both output current and load capacitance. The  
DAC8420 is stable with capacitive loads up to 2 nF typically.  
However, any capacitive load increases the settling time, and  
must be minimized if speed is a concern.  
1
+V  
V
DD  
S
10µF  
0.1µF  
8
9
–V  
V
GND  
S
SS  
10µF  
0.1µF  
10µF = TANTALUM  
0.1µF = CERAMIC  
The output stage includes a P-channel MOSFET to pull the output  
voltage down to the negative supply. This is very important in  
single-supply systems where VREFLO usually has the same  
potential as the negative supply. With no load, the zero-scale output  
voltage in these applications is less than 500 μV typically, or less  
than 1 LSB when VVREFHI = 2.5 V. However, when sinking current,  
this voltage does increase because of the finite impedance of the  
output stage. The effective value of the pull-down resistor in the  
output stage is typically 320 Ω. With a 100 kΩ resistor connected to  
5 V, the resulting zero-scale output voltage is 16 mV. Thus, the best  
single-supply operation is obtained with the output load connected  
to ground, so the output stage does not have to sink current.  
Figure 3±. Recommended Supply Bypassing Scheme  
The DAC8420 must have ample supply bypassing, located as  
close to the package as possible. Figure 31 shows the recom-  
mended capacitor values of 10 μF in parallel with 0.1 μF. The  
0.1 μF capacitor must have low effective series resistance (ESR) and  
effective series inductance (ESI) (such as any common ceramic  
type capacitor), which provide a low impedance path to ground  
at high frequencies to handle transient currents due to internal  
logic switching. To preserve the specified analog performance of  
the device, the supply must be as noise free as possible.  
Rev. C | Page 16 of 23  
 
 
 
 
 
Data Sheet  
DAC8420  
Like all amplifiers, the DAC8420 output buffers do generate  
voltage noise, 52 nV/√Hz typically. This is easily reduced by  
adding a simple RC low-pass filter on each output.  
The AD588 provides both voltages and needs no external  
components. Additionally, the device is trimmed in production  
for 12-bit accuracy over the full temperature range without user  
calibration. Performing a clear with the reset select CLSEL high  
allows the user to easily reset the DAC outputs to midscale, or  
0 V in these applications.  
REFERENCE CONFIGURATION  
The two reference inputs of the DAC8420 allow a great deal  
of flexibility in circuit design. The user must take care, however,  
to observe the minimum voltage input levels on VREFHI and  
VREFLO to maintain the accuracy shown in the data sheet.  
These input voltages can be set anywhere across a wide range  
within the supplies, but must be a minimum of 2.5 V apart in  
any case (see Figure 30). A wide output voltage range can be  
obtained with 5 V references, which can be provided by the  
AD588 as shown in Figure 33. Many applications utilize the  
DACs to synthesize symmetric bipolar waveforms, which  
require an accurate, low drift bipolar reference.  
When driving the reference inputs VREFHI and VREFLO, it is  
important to note that VREFHI both sinks and sources current,  
and that the input currents of both are code dependent. Many  
voltage reference products have a limited current sinking capability  
and must be buffered with an amplifier to drive VREFHI in order  
to maintain overall system accuracy. The input VREFLO, however,  
has no such requirement.  
+15V SUPPLY  
VREFHI  
1µF  
7
6
4
3
0.1µF  
+5V  
5
1
AD588  
A3  
R
DAC8420  
B
+5V  
–5V  
DAC A  
DAC B  
DAC C  
7
6
3
VOUTA  
VOUTB  
VOUTC  
1
A1  
R1  
14  
15  
R4  
A4  
R2  
R5  
+15V  
SUPPLY  
+V  
S
2
DIGITAL  
CONTROLS  
R3  
R6  
0.1µF  
0.1µF  
A2  
DAC D  
4
2
VOUTD  
0.1µF  
SYSTEM  
GROUND  
–V 16  
S
5
9
10  
8
12  
11 13  
10 11 12 14 15 16  
DIGITAL INPUTS  
9
8
–15V  
SUPPLY  
VREFLO  
–5V  
GND  
–15V SUPPLY  
Figure 33. ±±0 V Bipolar Reference Configuration Using the AD588  
Rev. C | Page 17 of 23  
 
 
DAC8420  
Data Sheet  
For a single 5 V supply, VVREFHI is limited to at most 2.5 V, and  
must always be at least 2.5 V less than the positive supply to ensure  
linearity of the device. For these applications, the REF43 is an  
excellent low drift 2.5 V reference that consumes only 450 μA  
(max). It works well with the DAC8420 in a single 5 V system as  
shown in Figure 34.  
LD  
One opto-isolated line ( ) can be eliminated from this circuit  
by adding an inexpensive 4-bit TTL counter to generate the load  
pulse for the DAC8420 after 16 clock cycles. The counter is used  
to count the number of clock cycles loading serial data to the  
DAC8420. After all 16 bits have been clocked into the converter,  
the counter resets, and a load pulse is generated on Clock 17. In  
either circuit, the serial interface of the DAC8420 provides a simple,  
low cost method of isolating the digital control.  
+5V SUPPLY  
REF43  
2
V
IN  
+5V SUPPLY  
HIGH VOLTAGE  
ISOLATION  
0.1µF  
2.5V  
4
6
GND  
V
OUT  
5V  
5V  
VREFHI  
0.1µF  
REG  
5
1
POWER  
DAC8420  
DAC A  
7
6
3
VOUTA  
VOUTB  
VOUTC  
5V  
10kΩ  
+5V  
REF43  
2
4
V
IN  
DAC B  
DAC C  
6
V
OUT  
GND  
LD  
SCLK  
SDI  
5V  
2.5V  
5V  
10kΩ  
0.1µF  
0.1µF  
DIGITAL  
5
1
5V  
10kΩ  
CONTROLS  
VREFHI  
CLR  
VDD  
DAC D  
4
2
VOUTD  
15  
16  
14  
12  
11  
10  
7
VOUTA  
CLSEL  
LD  
10 11 12 14 15 16  
DIGITAL INPUTS  
9
8
6
3
VOUTB  
VOUTC  
GND  
VREFLO  
DAC8420  
CS  
5V  
10kΩ  
Figure 34. 5 V Single-Supply Operation Using REF43  
CLK  
SDI  
2
VOUTD  
ISOLATED DIGITAL INTERFACE  
VREFLO VSS GND  
Because the DAC8420 is ideal for generating accurate voltages  
in process control and industrial applications, due to noise, from  
the central controller; it can be necessary to isolate it from the  
central controller. This can be easily achieved by using opto-  
isolators, which are commonly used to provide electrical isolation  
in excess of 3 kV. Figure 35 shows a simple 3-wire interface scheme  
for controlling the clock, data, and load pulse. For normal  
4
8
9
Figure 35. Opto-lsolated 3-Wire Interface  
CS  
operation,  
always selected. The resistor and capacitor on the  
a power-on reset with 10 ms time constant. The three opto-  
LD  
is tied permanently low so that the DAC8420 is  
CLR  
pin provide  
isolators are used for the SDI, CLK, and  
lines.  
Rev. C | Page 18 of 23  
 
 
 
Data Sheet  
DAC8420  
5V SUPPLY  
REF43  
VINA  
5V  
2
4
V
IN  
5V SUPPLY  
0.1µF  
2.5V  
0.1µF  
6
GND  
V
OUT  
5V  
604  
0.1µF  
VREFHI  
3
5
1
CMP04  
VOUTA  
VOUTB  
VOUTC  
DAC8420  
5
4
DAC A  
7
6
3
RED LED  
5V  
C1  
C2  
C3  
2
1
OUT A  
DAC B  
DAC C  
7
6
604Ω  
9
8
RED LED  
DIGITAL  
CONTROLS  
14  
13  
OUT B  
VOUTD  
DAC D  
4
2
11  
10  
C4  
12  
10 11 12 14 15 16  
DIGITAL INPUTS  
9
8
GND  
VREFLO VSS  
VINB  
Figure 36. Dual Programmable Window Comparator  
DUAL WINDOW COMPARATOR  
PC2  
CLSEL  
PC1  
PC0  
CLR  
CS  
Often a comparator is needed to signal an out-of-range warning.  
Combining the DAC8420 with a quad comparator such as the  
CMP04 provides a simple dual window comparator with adjustable  
trip points as shown in Figure 36. This circuit can be operated with  
either a dual supply or a single supply. For the A input channel,  
DAC B sets the low trip point, and DAC A sets the upper trip  
point. The CMP04 has open-collector outputs that are connected  
together in a wire-ORed configuration to generate an out-of-  
range signal. For example, when VINA goes below the trip point  
set by DAC B, Comparator C2 pulls the output down, turning  
on the red LED. The output can also be used as a logic signal for  
further processing.  
MC68HC11*  
DAC8420*  
(PD5) SS  
SCK  
LD  
CLK  
SDI  
MOSI  
*ADDITIONAL PINS OMITTED FOR CLARITY.  
Figure 37. MC68HC11 Microcontroller Interface  
For correct operation, the MC68HC11 must be configured  
such that the CPOL bit and CPHA bit are both set to 1. In this  
configuration, serial data on MOSI of the MC68HC11 is valid  
on the rising edge of the clock, which is the required timing for  
the DAC8420. Data is transmitted in 8-bit bytes (MSB first), with  
only eight rising clock edges occurring in the transmit cycle. To  
load data to the input register of the DAC8420, PC0 is taken low  
and held low during the entire loading cycle. The first eight bits  
are shifted in address first, immediately followed by another eight  
bits in the second least-significant byte to load the complete 16-  
bit word. At the end of the second byte load, PC0 is then taken  
high. To prevent an additional advancing of the internal shift  
register, SCK must already be asserted before PC0 is taken high.  
To transfer the contents of the input shift register to the DAC  
MC68HC11 MICROCONTROLLER INTERFACING  
Figure 37 shows a serial interface between the DAC8420 and  
the MC68HC11 8-bit microcontroller. The SCK output of the  
port outputs the serial data to load into the SDI input of the  
DAC. The port lines (PD5, PC0, PC1, and PC2) provide the  
controls to the DAC as shown.  
LD  
register, PD5 is then taken low, asserting the  
and completing the loading process. PD5 must return high before  
CLR  
input of the DAC  
the next load cycle begins. The  
input of the DAC8420  
(controlled by the output PC1) provides an asynchronous clear  
function.  
Rev. C | Page 19 of 23  
 
 
 
 
DAC8420  
Data Sheet  
DAC8420 TO M68HC11 INTERFACE ASSEMBLY PROGRAM  
* M68HC11 Register Definitions  
PORTC EQU $1003 Port C control register  
* “0,0,0,0;0,CLSEL,CLR,CS”  
DDRC EQU $1007 Port C data direction  
PORTD EQU $1008 Port D data register  
* “0,0,LD,SCLK;SDI,0,0,0”  
DDRD EQU $1009 Port D data direction  
SPCR EQU $1028 SPI control register  
* “SPIE,SPE,DWOM,MSTR;CPOL,CPHA,SPR1,SPR0”  
SPSR EQU $1029 SPI status register  
* “SPIF,WCOL,0,MODF;0,0,0,0”  
SPDR EQU $102A SPI data register; Read-Buffer; Write-Shifter  
*
* SDI RAM variables: SDI1 is encoded from 0 (Hex) to CF (Hex)  
* To select: DAC A – Set SDI1 to $0X  
DAC B – Set SDI1 to $4X  
DAC C – Set SDI1 to $8X  
DAC D – Set SDI1 to $CX  
SDI2 is encoded from 00 (Hex) to FF (Hex)  
* DAC requires two 8-bit loads – Address + 12 bits  
SDI1 EQU $00 SDI packed byte 1 “A1,A0,0,0;MSB,DB10,DB9,DB8”  
SDI2 EQU $01 SDI packed byte 2  
“DB7,DB6,DB5,DB4;DB3,DB2,DB1,DB0”  
* Main Program  
ORG $C000 Start of user’s RAM in EVB  
INIT LDS #$CFFF Top of C page RAM  
* Initialize Port C Outputs  
* Initialize SPI Interface  
LDAA #$5F  
STAA SPCR SPI is Master,CPHA=1,CPOL=1,Clk rate=E/32  
* Call update subroutine  
BSR UPDATE Xfer 2 8-bit words to DAC-8420  
JMP $E000 Restart BUFFALO  
* Subroutine UPDATE  
UPDATE PSHX Save registers X, Y, and A  
PSHY  
PSHA  
* Enter Contents of SDI1 Data Register (DAC# and 4 MSBs)  
LDAA #$80 1,0,0,0;0,0,0,0  
STAA SDI1 SDI1 is set to 80 (Hex)  
* Enter Contents of SDI2 Data Register  
LDAA #$00 0,0,0,0;0,0,0,0  
STAA SDI2 SDI2 is set to 00 (Hex)  
LDX #SDI1 Stack pointer at 1st byte to send via SDI  
LDY #$1000 Stack pointer at on-chip registers  
* Clear DAC output to zero  
BCLR PORTC,Y $02 Assert CLR  
BSET PORTC,Y $02 Deassert CLR  
* Get DAC ready for data input  
BCLR PORTC,Y $01 Assert CS  
TFRLP LDAA 0,X Get a byte to transfer via SPI  
STAA SPDR Write SDI data reg to start xfer  
WAIT LDAA SPSR Loop to wait for SPIF  
BPL WAIT SPIF is the MSB of SPSR  
*
(when SPIF is set, SPSR is negated)  
Increment counter to next byte for xfer  
LDAA #$07 0,0,0,0;0,1,1,1  
* CLSEL-Hi, CLR-Hi, CS-Hi  
INX  
CPX #SDI2+ 1 Are we done yet ?  
BNE TFRLP If not, xfer the second byte  
* To reset DAC to ZERO-SCALE, set CLSEL-Lo ($03)  
* To reset DAC to MID-SCALE, set CLSEL-Hi ($07)  
STAA PORTC Initialize Port C Outputs  
LDAA #$07 0,0,0,0;0,1,1,1  
STAA DDRC CLSEL, CLR, and CS are now enabled as outputs  
* Initialize Port D Outputs  
LDAA #$30 0,0,1,1;0,0,0,0  
* LD-Hi,SCLK-Hi,SDI-Lo  
STAA PORTD Initialize Port D Outputs  
LDAA #$38 0,0,1,1;1,0,0,0  
* Update DAC output with contents of DAC register  
BCLR PORTD,Y 520 Assert LD  
BSET PORTD,Y $20 Latch DAC register  
BSET PORTC,Y $01 De-assert CS  
PULA When done, restore registers X, Y & A  
PULY  
PULX  
RTS  
** Return to Main Program **  
STAA DDRD LD,SCLK, and SDI are now enabled as outputs  
Rev. C | Page 20 of 23  
 
Data Sheet  
DAC8420  
OUTLINE DIMENSIONS  
0.775  
0.755  
0.735  
9
8
16  
1
0.280  
0.250  
0.240  
PIN 1  
INDICATOR  
TOP VIEW  
SIDE VIEW  
0.325  
0.310  
0.300  
0.100  
BSC  
0.195  
0.130  
0.115  
0.210  
MAX  
0.015  
0.150  
0.130  
0.115  
0.015  
GAUGE  
PLANE  
MIN  
END VIEW  
0.012  
0.010  
0.008  
SEATING  
PLANE  
0.021  
0.022  
0.430  
MAX  
0.018  
0.015  
0.016  
0.011  
0.070  
0.060  
0.055  
0.045  
0.039  
0.030  
COMPLIANT TO JEDEC STANDARDS MS-001-BB  
Figure 38. ±6-Lead Plastic Dual In-Line Package [PDIP]  
Narrow Body  
(N-±6)  
Dimensions shown in inches  
10.50 (0.4134)  
10.10 (0.3976)  
16  
1
9
7.60 (0.2992)  
7.40 (0.2913)  
10.65 (0.4193)  
8
10.00 (0.3937)  
0.75 (0.0295)  
0.0098)  
1.27 (0.0500)  
BSC  
45°  
2.65 (0.1043)  
2.35 (0.0925)  
0.25 (  
0.30 (0.0118)  
0.10 (0.0039)  
8°  
0°  
COPLANARITY  
0.10  
SEATING  
PLANE  
0.51 (0.0201)  
0.31 (0.0122)  
1.27 (0.0500)  
0.40 (0.0157)  
0.33 (0.0130)  
0.20 (0.0079)  
COMPLIANT TO JEDEC STANDARDS MS-013-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 39. ±6-Lead Standard Small Outline Package [SOIC_W]  
Wide Body  
(RW-±6)  
Dimensions shown in millimeters and (inches)  
Rev. C | Page 21 of 23  
 
DAC8420  
Data Sheet  
0.005 (0.13) MIN  
0.098 (2.49) MAX  
9
16  
0.310 (7.87)  
0.220 (5.59)  
1
8
PIN 1  
0.100 (2.54) BSC  
0.320 (8.13)  
0.290 (7.37)  
0.840 (21.34) MAX  
0.060 (1.52)  
0.015 (0.38)  
0.200 (5.08)  
MAX  
0.150  
(3.81)  
MIN  
0.200 (5.08)  
0.125 (3.18)  
0.015 (0.38)  
0.008 (0.20)  
SEATING  
PLANE  
15°  
0°  
0.070 (1.78)  
0.030 (0.76)  
0.023 (0.58)  
0.014 (0.36)  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 40. ±6-Lead Ceramic Dual In-Line Package [CERDIP]  
(Q-±6)  
Dimensions shown in inches and (millimeters)  
ORDERING GUIDE  
Model1  
Temperature Range  
Package Description  
Package Option  
INL2 ( LSB)  
DAC8420EPZ  
DAC8420ES  
DAC8420ESZ  
DAC8420ESZ-REEL  
DAC8420FPZ  
DAC8420FQ  
DAC8420FS  
DAC8420FSZ  
DAC8420FSZ-REEL  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
16-Lead Plastic Dual In-Line Package [PDIP]  
16-Lead Standard Small Outline Package [SOIC_W]  
16-Lead Standard Small Outline Package [SOIC_W]  
16-Lead Standard Small Outline Package [SOIC_W]  
16-Lead Plastic Dual In-Line Package [PDIP]  
16-Lead Ceramic Dual In-Line Package [CERDIP]  
16-Lead Standard Small Outline Package [SOIC_W]  
16-Lead Standard Small Outline Package [SOIC_W]  
16-Lead Standard Small Outline Package [SOIC_W]  
N-16  
0.5  
0.5  
0.5  
0.5  
1.0  
1.0  
1.0  
1.0  
1.0  
RW-16  
RW-16  
RW-16  
N-16  
Q-16  
RW-16  
RW-16  
RW-16  
1 Z = RoHS Compliant Part.  
2 INL measured at VDD = +15 V and VSS = −15 V.  
Rev. C | Page 22 of 23  
 
Data Sheet  
NOTES  
DAC8420  
©2003–2016 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D00275-0-9/16(C)  
Rev. C | Page 23 of 23  
 

相关型号:

DAC8420ESZ-REEL

Quad 12-Bit Serial Voltage Output DAC
ADI

DAC8420ESZ-REEL2

Quad 12-Bit Serial Voltage Output DAC
ADI

DAC8420ESZ2

Quad 12-Bit Serial Voltage Output DAC
ADI

DAC8420FP

Quad 12-Bit Serial Voltage Output DAC
ADI

DAC8420FP

QUAD, SERIAL INPUT LOADING, 8us SETTLING TIME, 12-BIT DAC, PDIP16, PLASTIC, MS-001AB, DIP-16
ROCHESTER

DAC8420FPZ

Quad 12-Bit Serial Voltage Output DAC
ADI

DAC8420FPZ2

Quad 12-Bit Serial Voltage Output DAC
ADI

DAC8420FQ

Quad 12-Bit Serial Voltage Output DAC
ADI

DAC8420FS

Quad 12-Bit Serial Voltage Output DAC
ADI

DAC8420FS-REEL

Quad 12-Bit Serial Voltage Output DAC
ADI

DAC8420FSZ

Quad 12-Bit Serial Voltage Output DAC
ADI

DAC8420FSZ

QUAD, SERIAL INPUT LOADING, 8 us SETTLING TIME, 12-BIT DAC, PDSO16, ROHS COMPLIANT, MS-013AA, SOIC-16
ROCHESTER