DAC8420FP [ADI]

Quad 12-Bit Serial Voltage Output DAC; 四通道12位串行电压输出DAC
DAC8420FP
型号: DAC8420FP
厂家: ADI    ADI
描述:

Quad 12-Bit Serial Voltage Output DAC
四通道12位串行电压输出DAC

文件: 总16页 (文件大小:590K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Quad 12-Bit Serial  
Voltage Output DAC  
a
DAC8420  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
Guaranteed Monotonic Over Temperature  
Excellent Matching Between DACs  
Unipolar or Bipolar Operation  
VDD  
1
VREFHI  
5
SDI 10  
CS 12  
Buffered Voltage Outputs  
REG  
DAC A  
DAC B  
DAC C  
DAC D  
7
6
VOUTA  
VOUTB  
VOUTC  
VOUTD  
A  
High Speed Serial Digital Interface  
Reset to Zero- or Center-Scale  
Wide Supply Range, +5 V-Only to ؎15 V  
Low Power Consumption (35 mW max)  
Available in 16-Pin DIP and SOL Packages  
12  
CLK  
11  
REG  
B
SHIFT  
REGISTER  
APPLICATIONS  
Software Controlled Calibration  
Servo Controls  
Process Control and Automation  
ATE  
NC  
13  
REG  
C
3
4
DECODE  
14  
LD  
REG  
D
2
2
9
16  
15  
4
8
VREFLO  
VSS  
GND  
CLSEL CLR  
GENERAL DESCRIPTION  
The DAC8420 is available in 16-pin epoxy DIP, cerdip, and  
wide-body SOL (small-outline surface mount) packages. Opera-  
tion is specified with supplies ranging from +5 V-only to ±15 V,  
with references of +2.5 V to ±10 V respectively. Power dissipa-  
tion when operating from ±15 V supplies is less than 255 mW  
(max), and only 35 mW (max) with a +5 V supply.  
The DAC8420 is a quad, 12-bit voltage-output DAC with serial  
digital interface, in a 16-pin package. Utilizing BiCMOS tech-  
nology, this monolithic device features unusually high circuit  
density and low power consumption. The simple, easy-to-use  
serial digital input and fully buffered analog voltage outputs  
require no external components to achieve specified performance.  
For applications requiring product meeting MIL-STD-883,  
contact your local sales office for the DAC8420/883 data sheet,  
which specifies operation over the –55°C to +125°C tempera-  
ture range.  
The three-wire serial digital input is easily interfaced to micro-  
processors running at 10 MHz rates, with minimal additional  
circuitry. Each DAC is addressed individually by a 16-bit serial  
word consisting of a 12-bit data word and an address header.  
The user-programmable reset control CLR forces all four DAC  
outputs to either zero or midscale, asynchronously overriding  
the current DAC register values. The output voltage range, de-  
termined by the inputs VREFHI and VREFLO, is set by the  
user for positive or negative unipolar or bipolar signal swings  
within the supplies allowing considerable design flexibility.  
REV. 0  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 617/329-4700  
Fax: 617/326-8703  
DAC8420–SPECIFICATIONS  
(at VDD = +5.0 V ؎ 5%, VSS = 0.0 V, VVREFHI = +2.5 V, VVREFLD = 0.0 V, and  
VSS = –5.0 V ؎ 5%, VVREFLO = –2.5 V, –40؇C TA +85؇C unless otherwise noted. See Note 1 for supply variations.)  
ELECTRICAL CHARACTERISTICS  
Parameter  
Symbol  
Condition  
Min  
Typ  
Max  
Units  
STATIC ACCURACY  
Integral Linearity “E”  
Integral Linearity “E”  
Integral Linearity “F”  
Integral Linearity “F”  
Differential Linearity  
Min-Scale Error  
Full-Scale Error  
Min-Scale Error  
Full-Scale Error  
Min-Scale Tempco  
Full-Scale Tempco  
INL  
INL  
INL  
INL  
DNL  
ZSE  
FSE  
ZSE  
FSE  
±1/4  
±1/2  
±3/4  
±1  
±1  
±3  
±2  
±4  
±1  
±4  
±4  
±8  
±8  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
Note 2, VSS = 0 V  
Note 2, VSS = 0 V  
Monotonic Over Temperature  
±1/4  
R
R
L = 2 k, VSS = –5 V  
L = 2 k, VSS = –5 V  
Note 2, RL = 2 k, VSS = 0 V  
Note 2, RL = 2 k, VSS = 0 V  
Note 3, RL = 2 k, VSS = –5 V  
Note 3, RL = 2 k, VSS = –5 V  
LSB  
ppm/°C  
ppm/°C  
TCZSE  
TCFSE  
±10  
±10  
MATCHING PERFORMANCE  
Linearity Matching  
±1  
LSB  
REFERENCE  
Positive Reference Input Range  
Negative Reference Input Range  
Negative Reference Input Range  
Reference High Input Current  
Reference Low Input Current  
VVREFHI  
VVREFLO  
VVREFLO  
IVREFHI  
Note 4  
Note 4  
VVREFLO +2.5  
VSS  
0
–0.75  
–1.0  
VDD –2.5  
V
V
V
mA  
mA  
VVREFHI –2.5  
VVREFHI –2.5  
+0.75  
Note 4, VSS = 0 V  
Codes 000H, 555H  
Codes 000H, 555H, VSS = –5 V  
±0.25  
–0.6  
IVREFLO  
AMPLIFIER CHARACTERISTICS  
Output Current  
Settling Time  
IOUT  
tS  
SR  
VSS = –5 V  
to 0.01%, Note 5  
10% to 90%, Note 5  
–1.25  
2.4  
+1.25  
mA  
µs  
V/µs  
8
1.5  
Slew Rate  
LOGIC CHARACTERISTICS  
Logic Input High Voltage  
Logic Input Low Voltage  
Logic Input Current  
VINH  
VINL  
IIN  
V
V
µA  
pF  
0.8  
10  
Input Capacitance  
CIN  
Note 3  
13  
LOGIC TIMING CHARACTERISTICS3, 6  
Data Setup Time  
Data Hold  
Clock Pulse Width HIGH  
Clock Pulse Width LOW  
Select Time  
Deselect Delay  
Load Disable Time  
Load Delay  
Load Pulse Width  
Clear Pulse Width  
tDS  
tDH  
tCH  
tCL  
tCSS  
tCSH  
tLD1  
tLD2  
tLDW  
tCLRW  
25  
55  
90  
120  
90  
5
130  
35  
80  
150  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SUPPLY CHARACTERISTICS  
Power Supply Sensitivity  
Positive Supply Current  
Negative Supply Current  
Power Dissipation  
PSRR  
IDD  
ISS  
0.002  
4
–3  
0.01  
7
%/%  
mA  
mA  
–6  
PDISS  
VSS = 0 V  
20  
35  
mW  
NOTES  
1All supplies can be varied ±5% and operation is guaranteed. Device is tested with VDD = +4.75 V.  
2For single-supply operation (VVREFLO = 0 V, VSS = 0 V), due to internal offset errors INL and DNL are measured beginning at code 003H.  
3Guaranteed but not tested.  
4Operation is guaranteed over this reference range, but linearity is neither tested nor guaranteed.  
5VOUT swing between +2.5 V and –2.5 V with VDD = 5.0 V.  
6All input control signals are specified with tr = tf =5 ns (10% to 90% of +5 V) and timed from a voltage level of 1.6 V.  
7Typical values indicate performance measured at +25°C.  
Specifications subject to change without notice.  
–2–  
REV. 0  
DAC8420  
ELECTRICAL CHARACTERISTICS  
(at VDD = +15.0 V ؎ 5%, VSS = –15.0 V ؎ 5%, VVREFHI = +10.0 V,  
VVREFLO = –10.0 V, –40؇C TA +85؇C unless otherwise noted. See Note 1 for supply variations.)  
Parameter  
Symbol Condition  
Min  
Typ  
Max  
Units  
STATIC ACCURACY  
Integral Linearity “E”  
Integral Linearity “F”  
Differential Linearity  
Min-Scale Error  
INL  
INL  
DNL  
ZSE  
±1/4  
±1/2  
±1/4  
±1/2  
±1  
±1  
LSB  
LSB  
LSB  
LSB  
Monotonic Over Temperature  
RL = 2 kΩ  
±2  
Full-Scale Error  
FSE  
RL = 2 kΩ  
±2  
LSB  
Min-Scale Tempco  
Full-Scale Tempco  
TCZSE  
TCFSE  
Note 2, RL = 2 kΩ  
Note 2, RL = 2 kΩ  
±4  
±4  
ppm/°C  
ppm/°C  
MATCHING PERFORMANCE  
Linearity Matching  
±1  
LSB  
REFERENCE  
Positive Reference Input Range  
Negative Reference Input Range  
Reference High Input Current  
Reference Low Input Current  
VVREFHI Note 3  
VVREFLO Note 3  
VVREFLO +2.5  
–10  
VDD –2.5  
VVREFHI –2.5  
+2.0  
V
V
mA  
mA  
IVREFHI  
IVREFLO  
Codes 000H, 555H  
Codes 000H, 555H  
–2.0  
–3.5  
±1.0  
–2.0  
AMPLIFIER CHARACTERISTICS  
Output Current  
Settling Time  
IOUT  
tS  
SR  
–5  
+5  
mA  
µs  
V/µs  
to 0.01%, Note 4  
10% to 90%, Note 4  
13  
2
Slew Rate  
DYNAMIC PERFORMANCE  
Analog Crosstalk  
Digital Feedthrough  
Note 2  
Note 2  
>64  
>72  
90  
dB  
dB  
kHz  
Large Signal Bandwidth  
3 dB, VVREFHI = 5 V + 10 V p-p,  
VVREFLO = –10 V, Note 2  
Code Transition = 7FFH to 800H, Note 2  
Glitch Impulse  
64  
nV-s  
LOGIC CHARACTERISTICS  
Logic Input High Voltage  
Logic Input Low Voltage  
Logic Input Current  
VINH  
VINL  
IIN  
2.4  
V
V
µA  
pF  
0.8  
10  
Input Capacitance  
CIN  
Note 2  
13  
LOGIC TIMING CHARACTERISTICS2, 5  
Data Setup Time  
Data Hold  
Clock Pulse Width HIGH  
Clock Pulse Width LOW  
Select Time  
Deselect Delay  
Load Disable Time  
Load Delay  
Load Pulse Width  
Clear Pulse Width  
tDS  
tDH  
tCH  
tCL  
tCSS  
tCSH  
tLD1  
tLD2  
tLDW  
tCLRW  
25  
20  
30  
50  
55  
15  
40  
15  
45  
70  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SUPPLY CHARACTERISTICS  
Power Supply Sensitivity  
Positive Supply Current  
Negative Supply Current  
Power Dissipation  
PSRR  
IDD  
ISS  
0.002  
6
–5  
0.01  
9
%/%  
mA  
mA  
–8  
PDISS  
255  
mW  
NOTES  
1All supplies can be varied ±5% and operation is guaranteed.  
2Guaranteed but not tested.  
3Operation is guaranteed over this reference range, but linearity is neither tested nor guaranteed.  
4VOUT swing between +10 V and –10 V.  
5All input control signals are specified with tr = tf =5 ns (10% to 90% of +5 V) and timed from a voltage level of 1.6 V.  
6Typical values indicate performance measured at +25°C.  
Specifications subject to change without notice.  
REV. 0  
–3–  
DAC8420  
(at VDD = +15.0 V, VSS = –15.0 V, VREFHI = +10.0 V, VREFLO = –10.0 V, TA = +25؇C  
WAFER TEST LIMITS unless otherwise noted)  
DAC8420G  
Limit  
Parameter  
Symbol  
Conditions  
Units  
Integral Linearity  
Differential Linearity  
Min-Scale Offset  
INL  
DNL  
±1  
±1  
±1  
±1  
2.4  
0.8  
1
LSB max  
LSB max  
LSB max  
LSB max  
V min  
Max-Scale Offset  
Logic Input High Voltage  
Logic Input Low Voltage  
Logic Input Current  
Positive Supply Current  
Negative Supply Current  
VINH  
VINL  
IIN  
IDD  
ISS  
V max  
µA max  
mA max  
mA max  
8
7
NOTE  
Electrical tests are performed at wafer probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packaging is not guaranteed  
for standard product dice. Consult factory to negotiate specifications based on dice lot qualification through sample lot assembly and testing.  
ABSOLUTE MAXIMUM RATINGS  
3. Remove power before inserting or removing units from their  
(TA = +25°C unless otherwise noted)  
sockets.  
VDD to GND . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V, +18.0 V  
4. Analog Outputs are protected from short circuits to ground  
or either supply.  
V
V
V
V
SS to GND . . . . . . . . . . . . . . . . . . . . . . . . . . +0.3 V, –18.0 V  
SS to VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V, +36.0 V  
SS to VVREFLO . . . . . . . . . . . . . . . . . . . . . . –0.3 V, VSS – 2.0 V  
VREFHI to VVREFLO . . . . . . . . . . . . . . . . . . . +2.0 V, VDD – VSS  
DICE CHARACTERISTICS  
VVREFHI to VDD . . . . . . . . . . . . . . . . . . . . . . . +2.0 V, +33.0 V  
VREFHI, IVREFLO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 mA  
I
(SUBSTRATE)  
Digital Input Voltage to GND . . . . . . . . . –0.3 V, VDD + 0.3 V  
Output Short Circuit Duration . . . . . . . . . . . . . . . . Indefinite  
Operating Temperature Range  
CLSEL  
16  
CLR  
15  
VOUTD  
2
VDD  
1
EP, FP, ES, FS, EQ, FQ . . . . . . . . . . . . . . –40°C to +85°C  
Dice Junction Temperature . . . . . . . . . . . . . . . . . . . . . +150°C  
Storage Temperature . . . . . . . . . . . . . . . . . . –65°C to +150°C  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . 1000 mW  
Lead Temperature (Soldering, 60 sec) . . . . . . . . . . . . . +300°C  
14 LD  
13 NC  
Thermal Resistance  
Package Type  
θJA  
θJC  
Units  
VOUTC 3  
VREFLO  
16-Pin Plastic DIP (P)  
16-Pin Hermetic DIP (Q)  
16-Lead Small Outline  
Surface Mount (S)  
701  
821  
27  
9
°C/W  
°C/W  
4
862  
22  
°C/W  
VREFHI 5  
VOUTB 6  
NOTES  
1θJA is specified for worst case mounting conditions, i.e., θJA is specified for  
device in socket.  
2θJA is specified for device on board.  
CAUTION  
1. Stresses above those listed under “Absolute Maximum Rat-  
ings” may cause permanent damage to the device. This is a  
stress rating only and functional operation at or above this  
specification is not implied. Exposure to the above maximum  
rating conditions for extended periods may affect device  
reliability.  
12 CS  
11 CLK  
7
8
9
10  
SDI  
VOUTA  
VSS GND  
2. Digital inputs and outputs are protected, however, permanent  
damage may occur on unprotected units from high-energy  
electrostatic fields. Keep units in conductive foam or packaging  
at all times until ready to use. Use proper antistatic handling  
procedures.  
NC = NO CONNECT  
Die Size 0.119 × 0.283 inch, 33,677 sq. mils  
(3.023 × 7.188 mm, 21.73 sq. mm)  
Transistor Count 2,207  
For additional DICE ordering information, refer to databook.  
–4–  
REV. 0  
DAC8420  
DATA LOAD SEQUENCE  
CS  
tCSH  
tCSS  
SDI  
A1  
A0  
X
X
D11  
D10  
D9  
D8  
D4  
D3  
D2  
D1  
D0  
CLK  
LD  
tLD1  
tLD2  
tDS  
tDH  
DATA LOAD TIMING  
SDI  
CLEAR TIMING  
CLSEL  
tCLRW  
CLK  
CS  
CLR  
tCH  
tCL  
tS  
±1LSB  
tCSH  
V
OUT  
tLD2  
tLDW  
LD  
tS  
V
±1LSB  
OUT  
Timing Diagram  
ORDERING GUIDE  
5kΩ  
10Ω  
Temperature  
Range  
INL  
Package  
Package  
+15V  
1N4001  
1
2
3
4
16  
Model1  
(؎LSB) Description Option2  
+
10µF  
0.1µF  
NC  
15  
14  
DAC8420EP  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
0.5  
0.5  
0.5  
1.0  
1.0  
1.0  
1.0  
Plastic DIP  
Cerdip  
P
NC  
DAC8420EQ  
DAC8420ES  
DAC8420FP  
DAC8420FQ  
DAC8420FS  
DAC8420QBC  
Q
10Ω  
NC  
–10V  
1N4001  
13  
12  
11  
SOIC  
SOL  
P
DUT  
10µF  
0.1µF  
0.1µF  
+
+
Plastic DIP  
Cerdip  
5
6
Q
5kΩ  
NC  
NC  
SOIC  
Dice3  
SOL  
10Ω  
+10V  
1N4001  
7
8
10  
9
10µF  
NOTES  
1A complete /883 data sheet is available. For availability and burn-in informa-  
tion, contact your local sales office.  
10kΩ  
10Ω  
2PMI division letter designator.  
–15V  
1N4001  
3Dice tested at +25°C only.  
10µF  
0.1µF  
NC = NO CONNECT  
+
Burn-In Diagram  
REV. 0  
–5–  
DAC8420  
PIN CONFIGURATIONS  
SOL  
DIP  
16  
15  
14  
13  
12  
1
2
3
4
5
6
7
8
VDD  
CLSEL  
CLR  
1
2
3
4
VDD  
16 CLSEL  
15  
VOUTD  
CLR  
VOUTD  
VOUTC  
VOUTC  
LD  
NC  
14 LD  
DAC8420  
VREFLO  
TOP VIEW  
VREFLO  
DAC8420  
TOP VIEW  
(Not to Scale)  
13 NC  
12 CS  
(Not to Scale)  
CS  
VREFHI  
VOUTB  
5
6
7
8
VREFHI  
VOUTB  
VOUTA  
11  
10  
9
CLK  
SDI  
11 CLK  
10 SDI  
VOUTA  
VSS  
GND  
9
GND  
VSS  
NC = NO CONNECT  
NC = NO CONNECT  
PIN FUNCTION DESCRIPTION  
Power Supplies  
VDD: Positive Supply, +5 V to +15 V.  
VSS: Negative Supply, 0 V to –15 V.  
GND: Digital Ground.  
Clock  
CLK: System Serial Data Clock Input, TTL/CMOS levels. Data presented to the input SDI is shifted into  
the internal serial-parallel input register on the rising edge of clock. This input is logically ORed with CS.  
Control Inputs  
(All are CMOS/TTL compatible.)  
CLR: Asynchronous Clear, active low. Sets internal data registers A-D to zero or midscale, depending on cur-  
rent state of CLSEL. The data in the serial input shift register is unaffected by this control.  
CLSEL: Determines action of CLR. If HIGH, a Clear command will set the internal DAC registers A-D to  
midscale (800H). If LOW, the registers are set to zero (000H).  
CS: Device Chip Select, active low. This input is logically ORed with the clock and disables the serial data  
register input when HIGH. When LOW, data input clocking is enabled, see the Control Function Table.  
LD: Asynchronous DAC Register Load Control, active low. The data currently contained in the serial input  
shift register is shifted out to the DAC data registers on the falling edge of LD, independent of CS. Input data  
must remain stable while LD is LOW.  
Data Input  
(All are CMOS/TTL compatible.)  
SDI: Serial Data Input. Data presented to this pin is loaded into the internal serial-parallel shift register, which  
shifts data in beginning with DAC address Bit A1. This input is ignored when CS is HIGH.  
The format of the 16-bit serial word is:  
(FIRST)  
(LAST)  
B10 B11 B12 B13 B14 B15  
B0  
A1  
B1  
A0  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
NC NC D11 D10 D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
—Address Word—  
(MSB)  
—DAC Data Word—  
(LSB)  
NC = Don’t Care.  
Reference Inputs  
Analog Outputs  
VREFHI: Upper DAC ladder reference voltage input. Allowable range is (VDD – 2.5 V) to (VVREFLO +2.5 V).  
VREFLO: Lower DAC ladder reference voltage input, equal to zero scale output. Allowable range is VSS to  
(VVREFHI – 2.5 V).  
VOUTA through VOUTD: Four buffered DAC voltage outputs.  
–6–  
REV. 0  
DAC8420  
Table I. Control Function Logic Table  
CLK1  
CS1  
LD  
CLR  
CLSEL  
Serial Input Shift Register  
DAC Registers A-D  
NC  
NC  
NC  
L
H
H
H
H
L
H
H
H
H
H
L
L
H
H
H
H
H
H
L
No Change  
No Change  
No Change  
Shifts Register One Bit  
Shifts Register One Bit  
No Change  
No Change  
No Change  
Loads Midscale Value (800H)  
Loads Zero-Scale Value (000H)  
Latches Value  
H/L  
NC  
NC  
NC  
NC  
NC  
No Change  
No Change  
NC ( )  
NC  
H
Loads the Serial Data Word2  
H
NC  
L
H
Transparent3  
No Change  
NC = Don’t Care.  
NOTES  
1CS and CLK are interchangeable.  
2Returning CS HIGH while CLK is HIGH avoids an additional “false clock” of serial input data. See Note 1.  
3Do not clock in serial data while LD is LOW.  
(000H) or midscale (800H), depending on the state of CLSEL as  
shown in the Digital Function Table. The CLEAR function is  
asynchronous and is totally independent of CS. When CLR  
returns HIGH, the DAC outputs remain latched at the reset  
value until LD is strobed, reloading the individual DAC data word  
registers with either the data held in the serial input register prior  
to the reset, or new data loaded through the serial interface.  
OPERATION  
Introduction  
The DAC8420 is a quad, voltage-output 12-bit DAC with serial  
digital input, capable of operating from a single +5 V supply.  
The straightforward serial interface can be connected directly to  
most popular microprocessors and microcontrollers, and can ac-  
cept data at a 10 MHz clock rate when operating from ±15 V  
supplies. A unique voltage reference structure assures maximum  
utilization of DAC output resolution by allowing the user to set  
the zero- and full-scale output levels within the supply rails. The  
analog voltage outputs are fully buffered, and are capable of  
driving a 2 kload. Output glitch impulse during major code  
transitions is a very low 64 nV-s (typ).  
Table II. DAC Address Word Decode Table  
A1  
A0  
DAC Addressed  
0
0
1
1
0
1
0
1
DAC A  
DAC B  
DAC C  
DAC D  
Digital Interface Operation  
The serial input of the DAC-8420, consisting of CS, SDI, and  
LD, is easily interfaced to a wide variety of microprocessor serial  
ports. As shown in Table I and the Timing Diagram, while CS  
is LOW the data presented to the input SDI is shifted into the  
internal serial/parallel shift register on the rising edge of the  
clock, with the address MSB first, data LSB last. The data for-  
mat, shown above, is two bits of DAC address and two “don’t  
care” fill bits, followed by the 12-bit DAC data word. Once all  
16 bits of the serial data word have been input, the load control  
LD is strobed and the word is parallel-shifted out onto the inter-  
nal data bus. The two address bits are decoded and used to  
route the 12-bit data word to the appropriate DAC data regis-  
ter, see the Applications Information.  
Programming the Analog Outputs  
The unique differential reference structure of the DAC8420  
allows the user to tailor the output voltage range precisely to the  
needs of the application. Instead of spending DAC resolution  
on an unused region near the positive or negative rail, the  
DAC8420 allows the user to determine both the upper and  
lower limits of the analog output voltage range. Thus, as shown  
in Table III and Figure 1, the outputs of DACs A through D  
range between VREFHI and VREFLO, within the limits speci-  
fied in the Electrical Characteristics tables. Note also that  
VREFHI must be greater than VREFLO.  
Correct Operation of CS and CLK  
V
DD  
As mentioned in Table I, the control pins CLK and CS require  
some attention during a data load cycle. Since these two inputs  
are fed to the same logical “OR” gate, their operation is in fact  
identical. The user must take care to operate them accordingly  
in order to avoid clocking in false data bits. As shown in the  
Timing Diagram, CLK must be either halted HIGH, or CS  
brought HIGH during the last HIGH portion of the CLK fol-  
lowing the rising edge which latched in the last data bit. Other-  
wise, an additional rising edge is generated by CS rising while  
CLK is LOW, causing CS to act as the clock and allowing a  
false data bit into the serial input register. The same issue must  
be considered in the beginning of the data load sequence also.  
2.5V MIN  
V
VREFHI  
FFF  
H
1 LSB  
2.5V MIN  
000  
H
–10V MIN  
V
VREFLO  
0V MIN  
Using CLR and CLSEL  
V
SS  
The CLEAR (CLR) control allows the user to perform an asyn-  
chronous reset function. Asserting CLR loads all four DAC data  
word registers, forcing the DAC outputs to either zero-scale  
Figure 1. Output Voltage Range Programming  
REV. 0  
–7–  
DAC8420  
Table III. Analog Output Code  
DAC Data Word (HEX)  
VOUT  
Note  
(VREFHI VREFLO )  
VREFLO +  
× 4095  
FFF  
801  
800  
7FF  
000  
Full-Scale Output  
Midscale + 1  
Midscale  
4096  
(VREFHI VREFLO )  
VREFLO +  
VREFLO +  
VREFLO +  
VREFLO +  
× 2049  
× 2048  
× 2047  
× 0  
4096  
(VREFHI VREFLO )  
4096  
(VREFHI VREFLO )  
Midscale – 1  
Zero Scale  
4096  
(VREFHI VREFLO )  
4096  
Typical Performance Characteristics  
0.3  
0.10  
0.3  
0.2  
T
= +25°C  
T
V
= +25°C  
A
A
0.05  
0.2  
= +5V, V = 0V  
V
V
= +15V, V = –15V  
DD  
SS  
DD  
SS  
V
= 0V  
= –10V  
VREFLO  
VREFLO  
0
0.1  
0
0.1  
0
–0.05  
–0.10  
–0.15  
–0.1  
–0.1  
T
= +25°C  
–0.20  
–0.25  
A
V
V
= +15V, V = –15V  
–0.2  
–0.3  
DD  
SS  
–0.2  
–0.3  
= –10V  
VREFLO  
–0.30  
1.5  
2.0  
2.5  
3.0  
– V  
3.5  
–6 –4 –2  
0
2
4
6
8
10 12 14  
–6 –4 –2  
0
2
4
6
8
10 12 14  
V
– V  
V
VREFHI  
V
– V  
VREFHI  
VREFHI  
Figure 3. Differential Linearity vs.  
VREFHI (+5 V)  
Figure 2. Differential Linearity vs.  
VREFHI (±15 V)  
Figure 4. INL vs. VREFHI (±15 V)  
0.7  
0.4  
1.2  
T
= +25°C  
x + 3σ  
A
x + 3σ  
0.3  
0.5  
1.0  
V
V
= +5V, V = 0V  
DD  
SS  
V
V
V
= +15V, V = –15V  
SS  
= 0V  
DD  
VREFLO  
0.2  
0.1  
V
V
V
= +15V, V = –15V  
SS  
= +10V  
DD  
VREFHI  
0.3  
0.1  
0.8  
0.6  
= +10V  
= –10V  
VREFHI  
VREFLO  
= –10V  
VREFLO  
x
0
x
–0.1  
–0.1  
0.4  
–0.2  
–0.3  
–0.3  
–0.5  
0.2  
0
x – 3σ  
x – 3σ  
–0.4  
0
200  
400  
600  
800  
1000  
1.5  
2.0  
2.5  
3.0  
– V  
3.5  
0
200  
400  
600  
800  
1000  
T = HOURS OF OPERATION AT +125°C  
CURVES NOT NORMALIZED  
V
T = HOURS OF OPERATION AT +125  
°C  
VREFHI  
CURVES NOT NORMALIZED  
Figure 5. INL vs. VREFHI (+5 V)  
Figure 6. Full-Scale Error vs.  
Time Accelerated by Burn-In  
Figure 7. Zero-Scale Error vs.  
Time Accelerated by Burn-In  
–8–  
REV. 0  
DAC8420  
1.2  
0.2  
0.9  
T
= +25°C  
A
V
V
V
= +15V, V = –15V  
SS  
V
V
V
= +15V, V = –15V  
DD  
DD SS  
V
V
= +15V, V = –15V  
SS  
0.7  
0.5  
1.0  
0.8  
DD  
0.1  
0
= +10V  
= +10V  
VREFHI  
VREFHI  
= +10V  
DAC C  
DAC D  
= –10V  
= –10V  
VREFLO  
VREFLO  
DAC A  
0.3  
0.1  
0.6  
0.4  
–0.1  
–0.2  
DAC B  
DAC C  
DAC D  
–0.1  
–0.3  
–0.5  
0.2  
0
–0.3  
–0.4  
DAC A  
DAC B  
–0.2  
–0.4  
–0.5  
–0.6  
–0.7  
–0.9  
–75 –50 –25  
0
25  
50  
75 100 125  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
DIGITAL INPUT CODE  
–75 –50 –25  
0
25  
50  
75 100 125  
TEMPERATURE –  
°
C
TEMPERATURE – °C  
Figure 8. Full-Scale Error vs.  
Temperature  
Figure 9. Zero-Scale Error vs.  
Temperature  
Figure 10. Channel-to-Channel  
Matching ±15/±10  
+0.8  
+0.7  
13  
+1.5  
T
= +25°C  
T
= +25, –55, 125°C  
= +15V, V = –15V  
T
= +25°C  
A
A
A
12  
11  
10  
9
V
V
= +15V, V = –15V  
V
V
V
V
V
V
= +5V, V = 0V  
DD  
SS  
DD  
SS  
DD  
SS  
+1.0  
+0.5  
+0.6  
+0.5  
= –10V  
= +10V  
= +2.5V  
VREFLO  
VREFHI  
VREFHI  
= –10V  
= 0V  
VREFLO  
VREFLO  
+0.4  
+0.3  
+0.2  
0
–0.5  
–1.0  
–1.5  
+0.1  
0
8
7
–0.1  
–0.2  
6
–0.3  
–0.4  
5
4
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
DIGITAL INPUT CODE  
–7 –5 –3 –1 0  
1
3
5
7
9
11 13  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
DIGITAL INPUT CODE  
V
– V  
VREFHI  
Figure 13. INL vs. Code ±15/±10  
Figure 11. Channel-to-Channel  
Matching +5/+2.5  
Figure 12. IDD vs. VVREFHI, All  
DACs HIGH  
6.5mV  
CLR  
+1.5  
+1.0  
+0.5  
0
–250µV  
LD  
T
= +25°C  
A
V
V
V
= +5V, V = –5V  
DD  
SS  
= +2.5V  
VREFHI  
1.22mV  
= –2.5V  
VREFLO  
1 LSB  
0mV  
0mV  
1 LSB  
–1.22mV  
T
= +25°C  
A
T
= +25°C  
A
V
V
V
= +5V, V = –5V  
DD  
SS  
V
V
V
= +15V, V = –15V  
DD  
SS  
–0.5  
–1.0  
= +2.5V  
VREFHI  
= +10V  
VREFHI  
= –2.5V  
VREFLO  
= –10V  
VREFLO  
–10.25mV  
–3.5mV  
–4.9µs  
0
500 1000 1500 2000 2500 3000 3500 4000  
DIGITAL INPUT CODE  
+5µs/DIV  
+45.1µs  
–4.9µs  
5µs/DIV  
45.1µs  
tSETT 8µs  
tSETT 8µs  
Figure 14. IVREFHI vs. Code  
Figure 15. Settling Time (+)(±5 V)  
Figure 16. Settling Time (–)(±5 V)  
REV. 0  
–9–  
DAC8420  
+43.75mV  
CLR  
+31.25mV  
+5V  
LD  
T
= +25°C  
A
T
= +25°C  
A
V
V
V
= +15V, V = –15V  
DD  
SS  
V
V
V
= +15V, V = –15V  
DD  
SS  
= +10V  
VREFHI  
= +10V  
VREFHI  
= –10V  
VREFLO  
= –10V  
+1V  
/DIV  
VREFLO  
0
4.88mV  
1 LSB  
0mV  
T
= +25°C  
A
V
V
V
= +5V, V = –5V  
0mV  
1 LSB  
DD  
SS  
= +2.5V  
VREFHI  
–4.88mV  
= –2.5V  
VREFLO  
–5V  
–47.6µs  
–18.75mV  
–9.8µs  
–6.25mV  
20µs/DIV  
V
µs  
152.4µs  
V
µs  
+10µs/DIV  
+90.2µs  
–9.8µs  
+10µs/DIV  
+90.2µs  
tSETT 13µs  
tSETT 13µs  
SR  
= 1.65  
SR = 1.17  
FALL  
RISE  
Figure 17. Settling Time (+)(±15 V)  
Figure 18. Settling Time (–)(±15 V)  
Figure 19. Slew Rate (±5 V)  
+25V  
100  
90  
LD  
80  
70  
CLR  
+10  
0
–10  
–20  
+5V  
/DIV  
0
60  
50  
40  
–30  
T
= +25°C  
A
T
= +25°C  
A
V
V
V
= +15V, V = –15V  
30  
20  
10  
0
DD  
SS  
DATA = 000  
H
= 0 ± 100mV  
T
= +25°C  
VREFHI  
A
V
V
V
= +15V ±1V, V = –15V  
SS  
DD  
= –10V  
V
V
= +15V, V = –15V  
VREFLO  
DD  
SS  
= +10V  
VREFHI  
ALL BITS HIGH 200mV p-p  
= +10V, V  
= –10V  
VREFHI  
VREFLO  
= –10V  
VREFLO  
–25V  
–33.6µs  
10  
100  
1k  
10k  
100k  
1M  
20µs/DIV  
166.4µs  
10  
100  
1k  
10k  
100k  
1M  
10M  
V
µs  
V
µs  
FREQUENCY – Hz  
FREQUENCY – Hz  
SR  
RISE  
= 1.9  
SR  
= 2.02  
FALL  
Figure 22. PSRR vs. Frequency  
Figure 21. Small-Signal Response  
Figure 20. Slew Rate (±15 V)  
10  
8
6
I
DD  
VOUTA THROUGH VOUTD  
4
2
T = +25°C  
A
V
V
V
V
= +15V  
= –15V  
DD  
SS  
= +10V  
= –10V  
VREFHI  
V
V
V
V
= +15V  
= –15V  
6
DD  
SS  
T
= +25°C  
VREFLO  
A
0
DATA = 800  
V
V
V
V
= +15V  
= –15V  
= +10V  
= –10V  
H
DD  
SS  
VREFHI  
4
2
VREFLO  
= +10V  
ALL DACS HIGH (FULL SCALE)  
VREFHI  
–2  
= –10V  
VREFLO  
DATA = FFF OR 000  
H
H
–4  
–6  
I
SS  
0
10  
100  
1k  
10k  
–75  
0
75  
150  
TEMPERATURE – °C  
5V/DIV  
LOAD RESISTANCE – Ω  
Figure 24. DAC Output Current vs.  
VOUTX  
Figure 23. Power Supply Current  
vs. Temperature  
Figure 25. Output Swing vs.  
Load Resistance  
–10–  
REV. 0  
DAC8420  
VREFHI Input Requirements  
The DAC8420 should have ample supply bypassing, located as  
close to the package as possible. Figure 26 shows the recom-  
mended capacitor values of 10 µF in parallel with 0.1 µF. The  
0.1 µF cap should have low “Effective Series Resistance” (ESR)  
and “Effective Series Inductance” (ESI), such as the common  
ceramic types, which provide a low impedance path to ground  
at high frequencies to handle transient currents due to internal  
logic switching. In order to preserve the specified analog perfor-  
mance of the device, the supply should be as noise free as pos-  
sible. In the case of 5 V only systems it is desirable to use the  
same 5 V supply for both the analog circuitry and the digital  
portion of the circuit. Unfortunately, the typical 5 V supply is  
extremely noisy due to the fast edge rates of the popular CMOS  
logic families which induce large inductive voltage spikes, and  
busy microcontroller or microprocessor busses which commonly  
have large current spikes during bus activity. However, by prop-  
erly filtering the supply as shown in Figure 27, the digital 5 V  
supply can be used. The inductors and capacitors generate a fil-  
ter that not only rejects noise due to the digital circuitry, but  
also filters out the lower frequency noise of switch mode power  
supplies. The analog supply should be connected as close as  
possible to the origin of the digital supply to minimize noise  
pickup from the digital section.  
The DAC8420 utilizes a unique, patented DAC switch driver  
circuit which compensates for different supply, reference volt-  
age, and digital code inputs. This ensures that all DAC ladder  
switches are always biased equally, ensuring excellent linearity  
under all conditions. Thus, as indicated in the specifications,  
the VREFHI input of the DAC8420 will require both sourcing  
and sinking current capability from the reference voltage source.  
Many positive voltage references are intended as current sources  
only, and offer little sinking capability. The user should consider  
references such as the AD584, AD586, AD587, AD588, AD780,  
and REF43 in this application.  
APPLICATIONS  
Power Supply Bypassing and Grounding  
In any circuit where accuracy is important, careful consideration  
of the power supply and ground return layout helps to ensure  
the rated performance. The DAC8420 has a single ground pin  
that is internally connected to the digital section as the logic  
reference level. The first thought may be to connect this pin to  
the digital ground; however, in large systems the digital ground  
is often noisy because of the switching currents of other digital  
circuitry. Any noise that is introduced at the ground pin could  
couple into the analog output. Thus, to avoid error causing  
digital noise in the sensitive analog circuitry, the ground pin  
should be connected to the system analog ground. The ground  
path (circuit board trace) should be as wide as possible to re-  
duce any effects of parasitic inductance and ohmic drops. A  
ground plane is recommended if possible. The noise immunity  
of the onboard digital circuitry, typically in the hundreds of mil-  
livolts, is well able to reject the common-mode noise typically  
seen between system analog and digital grounds. Finally, the  
analog and digital ground should be connected together at a  
single point in the system to provide a common reference.  
This is preferably done at the power supply.  
FERRITE BEADS:  
2 TURNS, FAIR-RITE  
#2677006301  
+5V  
TTL/CMOS  
LOGIC  
CIRCUITS  
100µF  
ELECT.  
10–22µF  
TANT.  
0.1µF  
CER.  
+5V  
RETURN  
+5V  
POWER SUPPLY  
Good grounding practice is essential to maintaining analog  
performance in the surrounding analog support circuitry as well.  
With two reference inputs, and four analog outputs capable of  
moderate bandwidth and output current, there is a significant  
potential for ground loops. Again, a ground plane is recom-  
mended as the most effective solution to minimizing errors due  
to noise and ground offsets.  
Figure 27. Single-Supply Analog Supply Filter  
Analog Outputs  
The DAC8420 features buffered analog voltage outputs capable  
of sourcing and sinking up to 5 mA when operating from ±15 V  
supplies, eliminating the need for external buffer amplifiers in  
most applications while maintaining specified accuracy over the  
rated operating conditions. The buffered outputs are simply an  
op amp connected as a voltage follower, and thus have output  
characteristics very similar to the typical operational amplifier.  
These amplifiers are short-circuit protected. The designer  
should verify that the output load meets the capabilities of the  
device, in terms of both output current and load capacitance.  
The DAC8420 is stable with capacitive loads up to 2 nF typical.  
However, any capacitive load will increase the settling time, and  
should be minimized if speed is a concern.  
1
+V  
S
VDD  
10µF  
0.1µF  
The output stage includes a p-channel MOSFET to pull the  
output voltage down to the negative supply. This is very impor-  
tant in single supply systems, where VREFLO usually has the  
same potential as the negative supply. With no load, the  
zero-scale output voltage in these applications will be less than  
500 µV typically, or less than 1 LSB when VVREFHI = 2.5 V.  
However, when sinking current this voltage does increase  
because of the finite impedance of the output stage. The effec-  
tive value of the pull-down resistor in the output stage is  
typically 320 . With a 100 kresistor connected to +5 V, the  
resulting zero-scale output voltage is 16 mV. Thus, the best  
8
9
–V  
VSS  
S
GND  
10µF  
0.1µF  
10µF = TANTALUM  
0.1µF = CERAMIC  
Figure 26. Recommended Supply Bypassing Scheme  
REV. 0  
–11–  
DAC8420  
single supply operation is obtained with the output load  
connected to ground, so the output stage does not have to sink  
current.  
DACs to synthesize symmetric bipolar wave forms, which  
requires an accurate, low drift bipolar reference. The AD588  
provides both voltages and needs no external components. Ad-  
ditionally, the part is trimmed in production for 12-bit accuracy  
over the full temperature range without user calibration. Per-  
forming a Clear with the reset select CLSEL HIGH allows the  
user to easily reset the DAC outputs to midscale, or zero volts in  
these applications.  
Like all amplifiers, the DAC8420 output buffers do generate  
voltage noise, 52 nV/Hz typically. This is easily reduced by  
adding a simple RC low-pass filter on each output.  
Reference Configuration  
The two reference inputs of the DAC8420 allow a great deal of  
flexibility in circuit design. The user must take care, however, to  
observe the minimum voltage input levels on VREFHI and  
VREFLO to maintain the accuracy shown in the data sheet.  
These input voltages can be set anywhere across a wide range  
within the supplies, but must be a minimum of 2.5 V apart in  
any case. See Figure 1. A wide output voltage range can be  
obtained with ±5 V references, which can be provided by the  
AD588 as shown in Figure 28. Many applications utilize the  
When driving the reference inputs VREFHI and VREFLO, it is  
important to note that VREFHI both sinks and sources current,  
and that the input currents of both are code dependent. Many  
voltage reference products have limited current sinking capabil-  
ity and must be buffered with an amplifier to drive VREFHI, in  
order to maintain overall system accuracy. The input VREFLO,  
however, has no such requirement.  
+15V SUPPLY  
1µF  
+5V  
VREFHI  
0.1µF  
6
7
4
3
1
5
DAC-8420  
R
+5V  
–5V  
DAC A  
VOUTA  
VOUTB  
B
7
6
3
2
A3  
A4  
1
A1  
AD588  
14  
15  
R4  
R5  
DAC B  
DAC C  
R1  
R2  
VOUTC  
VOUTD  
+15V  
SUPPLY  
2
+V  
DIGITAL  
CONTROL  
S
R3  
R6  
0.1µF  
0.1µF  
A2  
DAC D  
4
SYSTEM  
GROUND  
–V 16  
S
5
9
10  
12  
8
11  
13  
10 11 12 14 15 16  
DIGITAL INPUTS  
9
8
–15V  
SUPPLY  
VREFLO  
–5V  
GND  
0.1µF  
–15V SUPPLY  
Figure 28. ±10 V Bipolar Reference Configuration Using the AD588  
–12–  
REV. 0  
DAC8420  
One opto-isolated line (LD) can be eliminated from this circuit  
by adding an inexpensive 4-bit TTL Counter to generate the  
Load pulse for the DAC8420 after 16 clock cycles. The counter  
is used to count of the number of clock cycles loading serial data  
to the DAC8420. After all 16 bits have been clocked into the  
converter, the counter resets, and a load pulse is generated on  
clock 17. In either circuit, the DAC8420’s serial interface pro-  
vides a simple, low cost method of isolating the digital control.  
For a single 5 V supply, VVREFHI is limited to at most 2.5 V, and  
must always be at least 2.5 V less than the positive supply to  
ensure linearity of the device. For these applications, the REF43  
is an excellent low drift 2.5 V reference that consumes only  
450 µA (max). It works well with the DAC8420 in a single 5 V  
system as shown in Figure 29.  
+5V SUPPLY  
REF-43  
2
VIN  
+5V SUPPLY  
HIGH VOLTAGE  
ISOLATION  
0.1µF  
+5V  
+5V  
2.5V  
REG  
GND VOUT  
4
6
POWER  
0.1µF  
VREFHI  
5
1
+5V  
+5V  
REF-43  
10kΩ  
2
4
VIN  
DAC A  
VOUTA  
VOUTB  
VOUTC  
VOUTD  
7
DAC-8420  
+5V  
VOUT  
GND  
6
LD  
2.5V  
0.1µF  
6
3
2
DAC B  
DAC C  
+5V  
5
1
10kΩ  
VREFHI  
CLR  
VDD  
15  
16  
14  
12  
11  
10  
10kΩ  
VOUTA  
7
6
3
1µF  
SCLK  
DIGITAL  
CONTROL  
CLSEL  
LD  
VOUTB  
VOUTC  
VOUTD  
DAC D  
4
DAC-8420  
+5V  
CS  
CLK  
10 11 12 14 15 16  
DIGITAL INPUTS  
9
8
10kΩ  
2
GND  
VREFLO  
SDI  
SDI  
GND  
9
VREFLO VSS  
4
8
Figure 29. +5 V Single Supply Operation Using REF43  
Isolated Digital Interface  
Because the DAC8420 is ideal for generating accurate voltages  
in process control and industrial applications, due to noise,  
safety requirements, or distance, it may be necessary to isolate it  
from the central controller. This can be easily achieved by using  
opto-isolators, which are commonly used to provide electrical  
isolation in excess of 3 kV. Figure 30 shows a simple 3-wire  
interface scheme to control the clock, data, and load pulse. For  
normal operation, CS is tied permanently LOW so that the  
DAC8420 is always selected. The resistor and capacitor on the  
CLR pin provide a power-on reset with 10 ms time constant. The  
three opto-isolators are used for the SDI, CLK, and LD lines.  
Figure 30. Opto-lsolated 3-Wire Interface  
Dual Window Comparator  
Often a comparator is needed to signal an out-of-range warning.  
Combining the DAC8420 with a quad comparator such as the  
CMP04 provides a simple dual window comparator with adjust-  
able trip points as shown in Figure 31. This circuit can be  
operated with either a dual or a single supply. For the A input  
channel, DAC B sets the low trip point and DAC A sets the up-  
per trip point. The CMP04 has open-collector outputs that are  
connected together in “Wired-OR” configuration to generate an  
out-of-range signal. For example, when VINA goes below the  
trip point set by DAC B, comparator C2 pulls the output down,  
turning the red LED on. The output can also be used as a logic  
signal for further processing.  
REV. 0  
–13–  
DAC8420  
+5V SUPPLY  
VINA  
+5V  
REF-43  
+5V SUPPLY  
2
4
VIN  
0.1µF  
0.1µF  
2.5V  
6
+5V  
V
GND  
OUT  
0.1µF  
VREFHI  
3
604Ω  
5
1
CMP-04  
VOUTA  
VOUTB  
RED LED  
5
4
7
DAC A  
DAC B  
DAC-8420  
2
OUT A  
C1  
C2  
+5V  
7
6
6
3
2
604Ω  
1
VOUTC  
VOUTD  
RED LED  
9
8
DAC C  
OUT B  
14  
13  
C3  
DIGITAL  
CONTROL  
11  
10  
DAC D  
4
C4  
12  
10 11 12 14 15 16  
DIGITAL INPUTS  
9
8
GND  
VREFLO  
VSS  
VINB  
Figure 31. Dual Programmable Window Comparator  
MC68HC11 Microcontroller Interfacing  
For correct operation, the 68HC11 should be configured such  
that its CPOL bit and CPHA bit are both set to 1. In this con-  
figuration, serial data on MOSI of the 68HC11 is valid on the  
rising edge of the clock, which is the required timing for the  
DAC8420 Data is transmitted in 8-bit bytes (MSB first), with  
only eight rising clock edges occurring in the transmit cycle. To  
load data to the DAC8420’s input register, PC0 is taken low  
and held low during the entire loading cycle. The first 8 bits are  
shifted in address first, immediately followed by another 8 bits  
in the second least-significant byte to load the complete 16-bit  
word. At the end of the second byte load, PC0 is then taken  
high. To prevent an additional advancing of the internal shift  
register, SCK must already be asserted before PC0 is taken  
high. To transfer the contents of the input shift register to the  
DAC register, PD5 is then taken low, asserting the LD input of  
the DAC and completing the loading process. PD5 should re-  
turn high before the next load cycle begins. The DAC8420’s  
CLR input, controlled by the output PC1, provides an asyn-  
chronous clear function.  
Figure 32 shows a serial interface between the DAC8420 and  
the MC68HC11 8-bit microcontroller. The SCK output of the  
68HC11 drives the CLK input of the DAC, and the MOSI port  
outputs the serial data to load into the SDI input of the DAC.  
The port lines PD5, PC0, PC1, and PC2 provide the controls to  
the DAC as shown.  
PC2  
PC1  
PC0  
CLSEL  
CLR  
CS  
MC68HC11*  
DAC-8420*  
(PD5) SS  
SCK  
LD  
CLK  
SDI  
MOSI  
*ADDITIONAL PINS OMITTED FOR CLARITY  
Figure 32. MC68HC11 Microcontroller Interface  
–14–  
REV. 0  
DAC8420  
DAC8420 to M68HC11 Interface Assembly Program  
*
M68HC11 Register Definitions  
* Initialize SPI Interface  
LDAA #$5F  
PORTC EQU $1003 Port C control register  
*
“0,0,0,0;0,CLSEL,CLR,CS”  
STAA SPCR SPI is Master,CPHA=1,CPOL=1,Clk rate=E/32  
* Call update subroutine  
DDRC EQU $1007 Port C data direction  
PORTD EQU $1008 Port D data register  
*
BSR UPDATE Xfer 2 8-bit words to DAC-8420  
JMP $E000 Restart BUFFALO  
“0,0,LD,SCLK;SDI,0,0,0”  
DDRD EQU $1009 Port D data direction  
SPCR EQU $1028 SPI control register  
* Subroutine UPDATE  
UPDATE PSHX  
PSHY  
Save registers X, Y, and A  
*
“SPIE,SPE,DWOM,MSTR;CPOL,CPHA,SPR1,SPR0”  
SPSR EQU $1029 SPI status register  
“SPIF,WCOL,0,MODF;0,0,0,0”  
PSHA  
*
* Enter Contents of SDI1 Data Register (DAC# and 4 MSBs)  
LDAA #$80 1,0,0,0;0,0,0,0  
STAA SDI1 SDI1 is set to 80 (Hex)  
* Enter Contents of SDI2 Data Register  
LDAA #$00 0,0,0,0;0,0,0,0  
STAA SDI2 SDI2 is set to 00 (Hex)  
LDX #SDI1 Stack pointer at 1st byte to send via SDI  
LDY #$1000 Stack pointer at on-chip registers  
* Clear DAC output to zero  
SPDR EQU $102A SPI data register; Read-Buffer; Write-Shifter  
*
* SDI RAM variables: SDI1 is encoded from 0 (Hex) to CF (Hex)  
* To select: DAC A – Set SDI1 to $0X  
DAC B – Set SDI1 to $4X  
DAC C – Set SDI1 to $8X  
DAC D – Set SDI1 to $CX  
SDI2 is encoded from 00 (Hex) to FF (Hex)  
*
DAC requires two 8-bit loads – Address + 12 bits  
BCLR PORTC,Y $02 Assert CLR  
SDI1 EQU $00 SDI packed byte 1 “A1,A0,0,0;MSB,DB10,DB9,DB8”  
SDI2 EQU $01 SDI packed byte 2  
BSET PORTC,Y $02 Deassert CLR  
* Get DAC ready for data input  
BCLR PORTC,Y $01 Assert CS  
“DB7,DB6,DB5,DB4;DB3,DB2,DB1,DB0”  
* Main Program  
TFRLP LDAA 0,X Get a byte to transfer via SPI  
STAA SPDR Write SDI data reg to start xfer  
WAIT LDAA SPSR Loop to wait for SPIF  
BPL WAIT SPIF is the MSB of SPSR  
ORG $C000 Start of user’s RAM in EVB  
INIT LDS #$CFFF Top of C page RAM  
* Initialize Port C Outputs  
*
(when SPIF is set, SPSR is negated)  
INX  
Increment counter to next byte for xfer  
LDAA #$07 0,0,0,0;0,1,1,1  
CPX #SDI2+ 1 Are we done yet ?  
BNE TFRLP If not, xfer the second byte  
*
*
*
CLSEL-Hi, CLR-Hi, CS-Hi  
To reset DAC to ZERO-SCALE, set CLSEL-Lo ($03)  
To reset DAC to MID-SCALE, set CLSEL-Hi ($07)  
STAA PORTC Initialize Port C Outputs  
LDAA #$07 0,0,0,0;0,1,1,1  
STAA DDRC CLSEL, CLR, and CS are now enabled as outputs  
* Update DAC output with contents of DAC register  
BCLR PORTD,Y 520 Assert LD  
BSET PORTD,Y $20 Latch DAC register  
BSET PORTC,Y $01 De-assert CS  
PULA When done, restore registers X, Y & A  
PULY  
* Initialize Port D Outputs  
LDAA #$30 0,0,1,1;0,0,0,0  
PULX  
*
LD-Hi,SCLK-Hi,SDI-Lo  
RTS  
** Return to Main Program **  
STAA PORTD Initialize Port D Outputs  
LDAA #$38 0,0,1,1;1,0,0,0  
STAA DDRD LD,SCLK, and SDI are now enabled as outputs  
REV. 0  
–15–  
DAC8420  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
16-Pin Epoxy DIP  
(P Suffix)  
16  
1
9
0.280 (7.11)  
0.240 (6.10)  
PIN 1  
8
0.325 (8.25)  
0.840 (21.33)  
0.745 (18.93)  
0.300 (7.62)  
0.060 (1.52)  
0.015 (0.38)  
0.210  
(5.33)  
MAX  
0.195 (4.95)  
0.115 (2.93)  
0.130  
(3.30)  
MIN  
0.160 (4.06)  
0.115 (2.93)  
0.015 (0.381)  
0.008 (0.204)  
SEATING  
PLANE  
0.022 (0.558)  
0.014 (0.356)  
0.070 (1.77)  
0.045 (1.15)  
0.100  
(2.54)  
BSC  
16-Pin Wide-Body SOL  
(SOL)  
16  
9
0.2992 (7.60)  
0.2914 (7.40)  
0.4193 (10.65)  
0.3937 (10.00)  
PIN 1  
8
1
0.1043 (2.65)  
0.4133 (10.50)  
0.3977 (10.00)  
0.0926 (2.35)  
0.0291 (0.74)  
x 45°  
0.0098 (0.25)  
0.0500 (1.27)  
0.0157 (0.40)  
8
0
°
°
0.0118 (0.30)  
0.0040 (0.10)  
0.0192 (0.49)  
0.0138 (0.35)  
0.0500  
(1.27)  
BSC  
0.0125 (0.32)  
0.0091 (0.23)  
16-Pin Cerdip  
(Q Suffix)  
0.080 (2.03) MAX  
0.005 (0.13) MIN  
9
16  
0.310 (7.87)  
PIN 1  
0.220 (5.59)  
1
8
0.320 (8.13)  
0.290 (7.37)  
0.840 (21.34) MAX  
0.060 (1.52)  
0.015 (0.38)  
0.200  
(5.08)  
MAX  
0.150  
(3.81)  
MIN  
0.015 (0.38)  
0.008 (0.20)  
0.200 (5.08)  
0.125 (3.18)  
15°  
0°  
0.070 (1.78)  
SEATING  
PLANE  
0.023 (0.58)  
0.014 (0.36)  
0.100  
(2.54)  
BSC  
0.030 (0.76)  
–16–  
REV. 0  

相关型号:

DAC8420FPZ

Quad 12-Bit Serial Voltage Output DAC
ADI

DAC8420FPZ2

Quad 12-Bit Serial Voltage Output DAC
ADI

DAC8420FQ

Quad 12-Bit Serial Voltage Output DAC
ADI

DAC8420FS

Quad 12-Bit Serial Voltage Output DAC
ADI

DAC8420FS-REEL

Quad 12-Bit Serial Voltage Output DAC
ADI

DAC8420FSZ

Quad 12-Bit Serial Voltage Output DAC
ADI

DAC8420FSZ

QUAD, SERIAL INPUT LOADING, 8 us SETTLING TIME, 12-BIT DAC, PDSO16, ROHS COMPLIANT, MS-013AA, SOIC-16
ROCHESTER

DAC8420FSZ-REEL

Quad 12-Bit Serial Voltage Output DAC
ADI

DAC8420FSZ-REEL2

Quad 12-Bit Serial Voltage Output DAC
ADI

DAC8420FSZ2

Quad 12-Bit Serial Voltage Output DAC
ADI

DAC8420GBC

12-Bit Digital-to-Analog Converter
ETC

DAC8420QBC

Quad 12-Bit Serial Voltage Output DAC
ADI