ADuM1100ARZ-RL7 [ADI]

iCoupler Digital Isolator; iCoupler数字隔离器
ADuM1100ARZ-RL7
型号: ADuM1100ARZ-RL7
厂家: ADI    ADI
描述:

iCoupler Digital Isolator
iCoupler数字隔离器

驱动程序和接口 接口集成电路 光电二极管
文件: 总20页 (文件大小:384K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
iCoupler Digital Isolator  
Data Sheet  
ADuM1100  
FEATURES  
GENERAL DESCRIPTION  
High data rate: dc to 100 Mbps (NRZ)  
Compatible with 3.3 V and 5.0 V operation/level translation  
125°C maximum operating temperature  
Low power operation  
5 V operation  
1.0 mA maximum @ 1 Mbps  
4.5 mA maximum @ 25 Mbps  
16.8 mA maximum @ 100 Mbps  
3.3 V operation  
The ADuM11001 is a digital isolator based on Analog Devices  
Inc., iCoupler® technology. Combining high speed CMOS and  
monolithic air core transformer technology, this isolation  
component provides outstanding performance characteristics  
superior to alternatives, such as optocoupler devices.  
Configured as a pin-compatible replacement for existing high  
speed optocouplers, the ADuM1100 supports data rates as high  
as 25 Mbps and 100 Mbps.  
The ADuM1100 operates with a voltage supply ranging from  
3.0 V to 5.5 V, boasts a propagation delay of <18 ns and edge  
asymmetry of <2 ns, and is compatible with temperatures up  
to 125°C. It operates at very low power, less than 0.9 mA of  
quiescent current (sum of both sides), and a dynamic current  
of less than 160 μA per Mbps of data rate. Unlike other optocoupler  
alternatives, the ADuM1100 provides dc correctness with a  
patented refresh feature that continuously updates the output  
signal.  
0.4 mA maximum @ 1 Mbps  
3.5 mA maximum @ 25 Mbps  
7.1 mA maximum @ 50 Mbps  
8-lead SOIC_N package (RoHS compliant version available)  
High common-mode transient immunity: >25 kV/μs  
Safety and regulatory approvals  
UL recognized  
2500 V rms for 1 minute per UL 1577  
CSA Component Acceptance Notice #5A  
VDE Certificate of Conformity  
The ADuM1100 is offered in three grades. The ADuM1100AR  
and ADuM1100BR can operate up to a maximum temperature  
of 105°C and support data rates up to 25 Mbps and 100 Mbps,  
respectively. The ADuM1100UR can operate up to a maximum  
temperature of 125°C and supports data rates up to 100 Mbps.  
DIN V VDE V 0884-10 (VDE V 0884-10):2006-12  
V
IORM = 560 V peak  
APPLICATIONS  
Digital field bus isolation  
Opto-isolator replacement  
Computer peripheral interface  
Microprocessor system interface  
General instrumentation and data acquisition applications  
1 Protected by U.S. Patents 5,952,849; 6,525,566; 6,922,080; 6,903,578;  
6,873,065; 7,075,329.  
FUNCTIONAL BLOCK DIAGRAM  
V
1
2
8
V
DD1  
DD2  
D
E
C
O
D
E
E
N
C
O
D
E
V
I
7
6
GND  
2
(DATA IN)  
V
O
V
3
DD1  
(DATA OUT)  
UPDATE  
WATCHDOG  
GND  
1
4
5
GND  
2
ADuM1100  
NOTES  
1. FOR PRINCIPLES OF OPERATION, SEE METHOD OF OPERATION,  
DC CORRECTNESS, AND MAGNETIC FIELD IMMUNITY SECTION.  
Figure 1.  
Rev. I  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 www.analog.com  
Fax: 781.461.3113 ©2001–2012 Analog Devices, Inc. All rights reserved.  
 
 
ADuM1100  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Recommended Operating Conditions .................................... 11  
Absolute Maximum Ratings ......................................................... 12  
ESD Caution................................................................................ 12  
Pin Configuration and Function Descriptions........................... 13  
Typical Performance Characteristics ........................................... 14  
Application Information................................................................ 16  
PC Board Layout ........................................................................ 16  
Propagation Delay-Related Parameters................................... 16  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 3  
Specifications..................................................................................... 4  
Electrical Specifications—5 V Operation ................................. 4  
Electrical Specifications—3.3 V Operation .............................. 6  
Electrical Specifications—Mixed 5 V/3 V or 3 V/5 V  
Operation....................................................................................... 8  
Method of Operation, DC Correctness, and Magnetic  
Field Immunity........................................................................... 17  
Package Characteristics ............................................................. 10  
Regulatory Information............................................................. 10  
Insulation and Safety-Related Specifications.......................... 10  
Power Consumption .................................................................. 18  
Outline Dimensions....................................................................... 19  
Ordering Guide .......................................................................... 19  
DIN V VDE V 0884-10 (VDE V 0884-10):2006-12  
Insulation Characteristics.......................................................... 11  
Rev. I | Page 2 of 20  
Data Sheet  
ADuM1100  
REVISION HISTORY  
3/12—Rev. H to Rev. I  
4/03—Rev. B to Rev. C  
Created Hyperlink for Safety and Regulatory Approvals  
Entry in Features Section .................................................................1  
Change to PC Board Layout Section ............................................16  
Changes to Features and Patent Note.............................................1  
Changes to Regulatory Information...............................................6  
Changes to Insulation Characteristics Section..............................6  
Changes to Absolute Maximum Ratings........................................7  
Changes to Package Branding .........................................................8  
Changes to Method of Operation, DC Correctness, and  
3/11—Rev. G to Rev. H  
Changes to Data Sheet Title.............................................................1  
Changes to Ordering Guide...........................................................18  
Magnetic Field Immunity Section ................................................11  
Replaced Figure 9............................................................................12  
6/07—Rev. F to Rev. G  
Updated VDE Certification Throughout.......................................1  
Changes to Features and Endnote 1................................................1  
Changes to Table 5 and Table 6 .......................................................9  
Updated Outline Dimensions .......................................................18  
Changes to Ordering Guide ..........................................................18  
1/03—Rev. A to Rev. B  
Added ADuM1100UR Grade........................................... Universal  
Changed ADuM1100AR/ADuM1100BR to  
ADuM1100 ......................................................................... Universal  
Changes to Features and General Description..............................1  
Changes to Specifications ................................................................2  
Added Electrical Specifications, Mixed 5 V/3 V or 3 V/5 V  
Operation Table.................................................................................4  
Updated Regulatory Information ...................................................6  
Changes to VDE 0884 Insulation Characteristics ........................6  
Changes to Absolute Maximum Ratings........................................7  
Changes to Package Branding .........................................................8  
Updated TPC 3 to TPC 8 .................................................................9  
Deleted iCoupler in Field Bus Networks Section .......................11  
Changes to Figure 8 ........................................................................12  
Added Figure 9 and Related Text..................................................12  
3/06—Rev. E to Rev. F  
Updated Format.................................................................. Universal  
Added Note 1 .....................................................................................1  
Changes to Table 1 ............................................................................4  
Changes to Table 2 ............................................................................6  
Changes to Table 3 ............................................................................8  
Added Table 11 ................................................................................13  
Inserted Power Consumption Section..........................................18  
10/03—Rev. D to Rev. E  
Changes to Product Name, Features, and General Description .1  
Changes to Regulatory Information ...............................................6  
Changes to DIN EN 60747-5-2 (VDE 0884 Part 2) Insulation  
Characteristics ...................................................................................6  
Changes to Absolute Maximum Ratings........................................7  
Changes to Recommended Operating Conditions.......................7  
Changes to Ordering Guide.............................................................8  
11/02—Rev. 0 to Rev. A  
Edits to Features ................................................................................1  
Edits to Regulatory Information.....................................................4  
Edits to VDE 0884 Insulation Characteristics...............................5  
Added Revision History.................................................................12  
Updated Outline Dimensions........................................................12  
6/03—Rev. C to Rev. D  
Changed DIN EN 60747-5-2 (VDE 0884 Part 2) Insulation  
Characteristics ...................................................................................6  
Updated Ordering Guide .................................................................8  
Updated Outline Dimensions........................................................13  
Rev. I | Page 3 of 20  
 
Data Sheet  
ADuM1100  
SPECIFICATIONS  
ELECTRICAL SPECIFICATIONS—5 V OPERATION  
All voltages are relative to their respective ground. 4.5 V ≤ VDD1 ≤ 5.5 V, 4.5 V ≤ VDD2 ≤ 5.5 V. All minimum/maximum specifications  
apply over the entire recommended operation range, unless otherwise noted. All typical specifications are at TA = 25°C, VDD1 = VDD2 = 5 V.  
Table 1.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions  
DC SPECIFICATIONS  
Input Supply Current  
Output Supply Current  
Input Supply Current (25 Mbps)  
(See Figure 5)  
IDD1 (Q)  
IDD2 (Q)  
IDD1 (25)  
0.3  
0.01  
2.2  
0.8  
0.06  
3.5  
mA  
mA  
mA  
VI = 0 V or VDD1  
VI = 0 V or VDD1  
12.5 MHz logic signal frequency  
Output Supply Current1 (25 Mbps)  
(See Figure 6)  
Input Supply Current (100 Mbps)  
(See Figure 5)  
Output Supply Current1 (100 Mbps)  
(See Figure 6)  
Input Current  
IDD2 (25)  
IDD1 (100)  
IDD2 (100)  
0.5  
9.0  
2.0  
1.0  
14  
mA  
mA  
mA  
12.5 MHz logic signal frequency  
50 MHz logic signal frequency,  
ADuM1100BR/ADuM1100UR only  
50 MHz logic signal frequency,  
ADuM1100BR/ADuM1100UR only  
2.8  
+10  
II  
VOH  
−10  
VDD2 − 0.1  
VDD2 − 0.8  
+0.01  
5.0  
4.6  
0.0  
0.03  
0.3  
μA  
V
V
V
V
0 V ≤ VIN ≤ VDD1  
Logic High Output Voltage  
IO = −20 ꢀA, VI = VIH  
IO = −4 mA, VI = VIH  
IO = 20 ꢀA, VI = VIL  
IO = 400 ꢀA, VI = VIL  
IO = 4 mA, VI = VIL  
Logic Low Output Voltage  
VOL  
0.1  
0.1  
0.8  
V
SWITCHING SPECIFICATIONS  
For ADuM1100AR  
Minimum Pulse Width2  
Maximum Data Rate3  
For ADuM1100BR/ADuM1100UR  
Minimum Pulse Width2  
Maximum Data Rate3  
For All Grades  
PW  
PW  
40  
10  
ns  
Mbps  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
25  
6.7  
150  
ns  
Mbps  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
100  
Propagation Delay Time to Logic Low tPHL  
Output4, 5 (See Figure 7)  
10.5  
10.5  
18  
18  
2
ns  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
Propagation Delay Time to Logic High  
tPLH  
Output4, 5 (See Figure 7)  
5
Pulse Width Distortion |tPLH − tPHL  
|
PWD  
0.5  
3
ns  
ps/°C  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
Change vs. Temperature6  
Propagation Delay Skew  
(Equal Temperature)5, 7  
tPSK1  
tPSK2  
tR, tF  
8
6
Propagation Delay Skew  
ns  
CL = 15 pF, CMOS signal levels  
(Equal Temperature, Supplies)5, 7  
Output Rise/Fall Time  
3
ns  
CL = 15 pF, CMOS signal levels  
Common-Mode Transient Immunity  
at Logic Low/High Output8  
|CML|,  
|CMH|  
25  
35  
kV/μs  
VI = 0 V or VDD1, VCM = 1000 V,  
transient magnitude = 800 V  
Refresh Rate  
fr  
1.2  
Mbps  
Input Dynamic Supply Current9  
Output Dynamic Supply Current9  
IDDI (D)  
IDDO (D)  
0.09  
0.02  
mA/Mbps  
mA/Mbps  
Rev. I | Page 4 of 20  
 
Data Sheet  
ADuM1100  
1 Output supply current values are with no output load present. See Figure 5 and Figure 6 for information on supply current variation with logic signal frequency. See  
the Power Consumption section for guidance on calculating the input and output supply currents for a given data rate and output load.  
2 The minimum pulse width is the shortest pulse width at which the specified pulse width distortion is guaranteed.  
3 The maximum data rate is the fastest data rate at which the specified pulse width distortion is guaranteed.  
4 tPHL is measured from the 50% level of the falling edge of the VI signal to the 50% level of the falling edge of the VO signal. tPLH is measured from the 50% level of the  
rising edge of the VI signal to the 50% level of the rising edge of the VO signal.  
5 Because the input thresholds of the ADuM1100 are at voltages other than the 50% level of typical input signals, the measured propagation delay and pulse width  
distortion can be affected by slow input rise/fall times. See the Propagation Delay-Related Parameters section and Figure 14 through Figure 18 for information on the  
impact of given input rise/fall times on these parameters.  
6 Pulse width distortion change vs. temperature is the absolute value of the change in pulse width distortion for a 1°C change in operating temperature.  
7 tPSK1 is the magnitude of the worst-case difference in tPHL and/or tPLH that is measured between units at the same operating temperature and output load within the  
recommended operating conditions. tPSK2 is the magnitude of the worst-case difference in tPHL and/or tPLH that is measured between units at the same operating  
temperature, supply voltages, and output load within the recommended operating conditions.  
8 CMH is the maximum common-mode voltage slew rate that can be sustained while maintaining VO > 0.8 VDD2. CML is the maximum common-mode voltage slew rate  
that can be sustained while maintaining VO < 0.8 V. The common-mode voltage slew rates apply to both rising and falling edges. The transient magnitude is the range  
over which the common mode is slewed.  
9 Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in signal data rate. See Figure 5 and Figure 6 for information on  
supply current variation with logic signal frequency. See the Power Consumption section for guidance on calculating the input and output supply currents for a given  
data rate and output load.  
Rev. I | Page 5 of 20  
ADuM1100  
Data Sheet  
ELECTRICAL SPECIFICATIONS—3.3 V OPERATION  
All voltages are relative to their respective ground. 3.0 V ≤ VDD1 ≤ 3.6 V, 3.0 V ≤ VDD2 ≤ 3.6 V. All minimum/maximum specifications apply  
over the entire recommended operation range, unless otherwise noted. All typical specifications are at TA = 25°C, VDD1 = VDD2 = 3.3 V.  
Table 2.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions  
DC SPECIFICATIONS  
Input Supply Current  
Output Supply Current  
Input Supply Current (25 Mbps)  
(See Figure 5)  
IDD1 (Q)  
IDD2 (Q)  
IDD1 (25)  
0.1  
0.005  
2.0  
0.3  
0.04  
2.8  
mA  
mA  
mA  
VI = 0 V or VDD1  
VI = 0 V or VDD1  
12.5 MHz logic signal frequency  
Output Supply Current1 (25 Mbps)  
(See Figure 6)  
Input Supply Current (50 Mbps)  
(See Figure 5)  
Output Supply Current1 (50 Mbps)  
(See Figure 6)  
Input Current  
IDD2 (25)  
IDD1 (50)  
IDD2 (50)  
0.3  
4.0  
1.2  
0.7  
6.0  
1.6  
+10  
mA  
mA  
mA  
12.5 MHz logic signal frequency  
25 MHz logic signal frequency,  
ADuM1100BR/ADuM1100UR only  
25 MHz logic signal frequency,  
ADuM1100BR/ADuM1100UR only  
II  
VOH  
−10  
VDD2 − 0.1  
VDD2 − 0.5  
+0.01  
3.3  
3.0  
0.0  
0.04  
0.3  
μA  
V
V
V
V
0 V ≤ VIN ≤ VDD1  
Logic High Output Voltage  
IO = −20 ꢀA, VI = VIH  
IO = −2.5 mA, VI = VIH  
IO = 20 ꢀA, VI = VIH  
IO = 400 ꢀA, VI = VIH  
IO = 2.5 mA, VI = VIH  
Logic Low Output Voltage  
VOL  
0.1  
0.1  
0.4  
V
SWITCHING SPECIFICATIONS  
For ADuM1100AR  
Minimum Pulse Width2  
Maximum Data Rate3  
For ADuM1100BR/ADuM1100UR  
Minimum Pulse Width2  
Maximum Data Rate3  
For All Grades  
PW  
PW  
40  
20  
ns  
Mbps  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
25  
50  
10  
100  
ns  
Mbps  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
Propagation Delay Time to Logic Low tPHL  
Output4, 5 (See Figure 8)  
14.5  
15.0  
28  
28  
3
ns  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
Propagation Delay Time to Logic  
High Output4, 5 (See Figure 8)  
tPLH  
5
Pulse Width Distortion |tPLH − tPHL  
|
PWD  
0.5  
10  
ns  
ps/°C  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
Change vs. Temperature6  
Propagation Delay Skew  
(Equal Temperature)5, 7  
tPSK1  
tPSK2  
tR, tF  
15  
12  
Propagation Delay Skew  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
(Equal Temperature, Supplies)5, 7  
Output Rise/Fall Time  
3
ns  
Common-Mode Transient Immunity  
at Logic Low/High Output8  
|CML|,  
|CMH|  
25  
35  
kV/μs  
VI = 0 V or VDD1, VCM = 1000 V,  
transient magnitude = 800 V  
Refresh Rate  
fr  
1.1  
Mbps  
Input Dynamic Supply Current9  
Output Dynamic Supply Current9  
IDDI (D)  
IDDO (D)  
0.08  
0.04  
mA/Mbps  
mA/Mbps  
Rev. I | Page 6 of 20  
 
Data Sheet  
ADuM1100  
1 Output supply current values are with no output load present. See Figure 5 and Figure 6 for information on supply current variation with logic signal frequency. See  
the Power Consumption section for guidance on calculating the input and output supply currents for a given data rate and output load.  
2 The minimum pulse width is the shortest pulse width at which the specified pulse width distortion is guaranteed.  
3 The maximum data rate is the fastest data rate at which the specified pulse width distortion is guaranteed.  
4 tPHL is measured from the 50% level of the falling edge of the VI signal to the 50% level of the falling edge of the VO signal. tPLH is measured from the 50% level of the  
rising edge of the VI signal to the 50% level of the rising edge of the VO signal.  
5 Because the input thresholds of the ADuM1100 are at voltages other than the 50% level of typical input signals, the measured propagation delay and pulse width  
distortion can be affected by slow input rise/fall times. See the Propagation Delay-Related Parameters section and Figure 14 through Figure 18 for information on the  
impact of given input rise/fall times on these parameters.  
6 Pulse width distortion change vs. temperature is the absolute value of the change in pulse width distortion for a 1°C change in operating temperature.  
7 tPSK1 is the magnitude of the worst-case difference in tPHL and/or tPLH that is measured between units at the same operating temperature and output load within the  
recommended operating conditions. tPSK2 is the magnitude of the worst-case difference in tPHL and/or tPLH that is measured between units at the same operating  
temperature, supply voltages, and output load within the recommended operating conditions.  
8 CMH is the maximum common-mode voltage slew rate that can be sustained while maintaining VO > 0.8 VDD2. CML is the maximum common-mode voltage slew rate  
that can be sustained while maintaining VO < 0.8 V. The common-mode voltage slew rates apply to both rising and falling edges. The transient magnitude is the range  
over which the common mode is slewed.  
9 Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in signal data rate. See Figure 5 and Figure 6 for information on  
supply current variation with logic signal frequency. See the Power Consumption section for guidance on calculating the input and output supply currents for a given  
data rate and output load.  
Rev. I | Page 7 of 20  
ADuM1100  
Data Sheet  
ELECTRICAL SPECIFICATIONS—MIXED 5 V/3 V OR 3 V/5 V OPERATION  
All voltages are relative to their respective ground. 5 V/3 V operation: 4.5 V ≤ VDD1 ≤ 5.5 V, 3.0 V ≤ VDD2 ≤ 3.6 V. 3 V/5 V operation:  
7 ≤ VDD1 ≤ 3.6 V, 4.5 V ≤ VDD2 ≤ 5.5 V. All minimum/maximum specifications apply over the entire recommended operation range,  
VOMFTT otherwise noted. All typical specifications are at TA = 25°C, VDD1 = 3.3 V, VDD2 = 5 V or VDD1 = 5 V, VDD2 = 3.3 V.  
Table 3.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions  
DC SPECIFICATIONS  
Input Supply Current, Quiescent  
5 V/3 V Operation  
IDDI (Q)  
0.3  
0.1  
0.8  
0.3  
mA  
mA  
3 V/5 V Operation  
Output Supply Current, Quiescent  
5 V/3 V Operation  
3 V/5 V Operation  
Input Supply Current, 25 Mbps  
5 V/3 V Operation  
3 V/5 V Operation  
Output Supply Current1, 25 Mbps  
5 V/3 V Operation  
3 V/5 V Operation  
Input Supply Current, 50 Mbps  
5 V/3 V Operation  
3 V/5 V Operation  
Output Supply Current1, 50 Mbps  
IDDO (Q)  
IDDI (25)  
IDDO (25)  
IDDI (50)  
IDDO (50)  
0.005  
0.01  
0.04  
0.06  
mA  
mA  
2.2  
2.0  
3.5  
2.8  
mA  
mA  
12.5 MHz logic signal frequency  
12.5 MHz logic signal frequency  
0.3  
0.5  
0.7  
1.0  
mA  
mA  
12.5 MHz logic signal frequency  
12.5 MHz logic signal frequency  
4.5  
4.0  
7.0  
6.0  
mA  
mA  
25 MHz logic signal frequency  
25 MHz logic signal frequency  
5 V/3 V Operation  
3 V/5 V Operation  
Input Currents  
Logic High Output Voltage  
5 V/3 V Operation  
1.2  
1.0  
+0.01  
3.3  
3.0  
0.0  
0.04  
0.3  
1.6  
1.5  
+10  
mA  
mA  
ꢀA  
V
V
V
25 MHz logic signal frequency  
25 MHz logic signal frequency  
0 V ≤ VIA, VIB, VIC, VID ≤ VDD1 or VDD2  
IO = −20 ꢀA, VI = VIH  
IO = −2.5 mA, VI = VIH  
IO = 20 ꢀA, VI = VIL  
IIA  
VOH  
−10  
VDD2 − 0.1  
VDD2 − 0.5  
Logic Low Output Voltage  
5 V/3 V Operation  
VOL  
0.1  
0.1  
0.4  
V
V
IO = 400 ꢀA, VI = VIL  
IO = 2.5 mA, VI = VIL  
Logic High Output Voltage  
3 V/5 V Operation  
Logic Low Output Voltage  
3 V/5 V Operation  
VOH  
VOL  
VDD2 − 0.1  
VDD2 − 0.8  
5.0  
4.6  
0.0  
0.03  
0.3  
V
V
V
V
IO = −20 ꢀA, VI = VIH  
IO = −4 mA, VI = VIH  
IO = 20 ꢀA, VI = VIL  
IO = 400 ꢀA, VI = VIL  
0.1  
0.1  
0.8  
V
IO = 4 mA, VI = VIL  
SWITCHING SPECIFICATIONS  
For ADuM1100AR  
Minimum Pulse Width2  
Maximum Data Rate3  
For ADuM1100BR/ADuM1100UR  
Minimum Pulse Width2  
Maximum Data Rate3  
For All Grades  
PW  
40  
20  
ns  
Mbps  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
25  
50  
PW  
ns  
Mbps  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
Propagation Delay Time to Logic  
Low/High Output4, 5  
tPHL, tPLH  
5 V/3 V Operation (See Figure 9)  
3 V/5 V Operation (See Figure 10)  
13  
16  
21  
26  
ns  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
Rev. I | Page 8 of 20  
 
Data Sheet  
ADuM1100  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions  
5
Pulse Width Distortion, |tPLH − tPHL  
|
PWD  
5 V/3 V Operation  
3 V/5 V Operation  
0.5  
0.5  
2
3
ns  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
Change in Pulse Width Distortion vs.  
Temperature6  
5 V/3 V Operation  
3 V/5 V Operation  
3
10  
ps/°C  
ps/°C  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
Propagation Delay Skew (Equal  
Temperature)5, 7  
5 V/3 V Operation  
3 V/5 V Operation  
Propagation Delay Skew (Equal  
Temperature, Supplies)5, 7  
5 V/3 V Operation  
tPSK1  
tPSK2  
tR, tF  
12  
15  
ns  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
9
12  
ns  
ns  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
3 V/5 V Operation  
Output Rise/Fall Time (10% to 90%)  
3
Common-Mode Transient Immunity at  
Logic Low/High Output8  
|CML|,  
|CMH|  
25  
35  
kV/μs  
VI = 0 V or VDD1, VCM = 1000 V,  
transient magnitude = 800 V  
Refresh Rate  
fr  
5 V/3 V Operation  
3 V/5 V Operation  
Input Dynamic Supply Current9  
1.2  
1.1  
Mbps  
Mbps  
CPD1  
5 V/3 V Operation  
3 V/5 V Operation  
Output Dynamic Supply Current9  
0.09  
0.08  
mA/Mbps  
mA/Mbps  
CPD2  
5 V/3 V Operation  
3 V/5 V Operation  
0.04  
0.02  
mA/Mbps  
mA/Mbps  
1 Output supply current values are with no output load present. See Figure 5 and Figure 6 for information on supply current variation with logic signal frequency. See  
the Power Consumption section for guidance on calculating the input and output supply currents for a given data rate and output load.  
2 The minimum pulse width is the shortest pulse width at which the specified pulse width distortion is guaranteed.  
3 The maximum data rate is the fastest data rate at which the specified pulse width distortion is guaranteed.  
4 tPHL is measured from the 50% level of the falling edge of the VI signal to the 50% level of the falling edge of the VO signal. tPLH is measured from the 50% level of the  
rising edge of the VI signal to the 50% level of the rising edge of the VO signal.  
5 Because the input thresholds of the ADuM1100 are at voltages other than the 50% level of typical input signals, the measured propagation delay and pulse width  
distortion can be affected by slow input rise/fall times. See the Propagation Delay-Related Parameters section and Figure 14 through Figure 18 for information on the  
impact of given input rise/fall times on these parameters.  
6 Pulse width distortion change vs. temperature is the absolute value of the change in pulse width distortion for a 1°C change in operating temperature.  
7 tPSK1 is the magnitude of the worst-case difference in tPHL and/or tPLH that is measured between units at the same operating temperature and output load within the  
recommended operating conditions. tPSK2 is the magnitude of the worst-case difference in tPHL and/or tPLH that is measured between units at the same operating  
temperature, supply voltages, and output load within the recommended operating conditions.  
8 CMH is the maximum common-mode voltage slew rate that can be sustained while maintaining VO > 0.8 VDD2. CML is the maximum common-mode voltage slew rate  
that can be sustained while maintaining VO < 0.8 V. The common-mode voltage slew rates apply to both rising and falling edges. The transient magnitude is the range  
over which the common mode is slewed.  
9 Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in signal data rate. See Figure 5 and Figure 6 for information on  
supply current variation with logic signal frequency. See the Power Consumption section for guidance on calculating the input and output supply currents for a given  
data rate and output load.  
Rev. I | Page 9 of 20  
 
 
ADuM1100  
Data Sheet  
PACKAGE CHARACTERISTICS  
Table 4.  
Parameter  
Symbol  
RI-O  
CI-O  
CI  
θJCI  
Min Typ Max Unit  
Test Conditions  
Resistance (Input-to-Output)1  
Capacitance (Input-to-Output)1  
Input Capacitance2  
1012  
1.0  
4.0  
46  
Ω
pF  
pF  
f = 1 MHz  
IC Junction-to-Case Thermal Resistance, Side 1  
IC Junction-to-Case Thermal Resistance, Side 2  
°C/W Thermocouple located at  
center of package underside  
θJCO  
41  
°C/W  
Package Power Dissipation  
PPD  
240  
mW  
1 The device is considered a 2-terminal device; Pin 1, Pin 2, Pin 3, and Pin 4 are shorted together, and Pin 5, Pin 6, Pin 7, and Pin 8 are shorted together.  
2 Input capacitance is measured at Pin 2 (VI).  
REGULATORY INFORMATION  
The ADuM1100 is approved by the following organizations.  
Table 5.  
UL  
CSA  
VDE  
Recognized under 1577  
Approved under CSA Component  
Acceptance Notice #5A  
Certified according to DIN V VDE V  
0884-10 (VDE V 0884-10):2006-122  
component recognition program1  
Single/basic insulation,  
2500 V rms isolation voltage  
Basic insulation per CSA 60950-1-03 and IEC 60950-1,  
400 V rms (565 V peak) maximum working voltage  
Reinforced insulation, 560 V peak  
File E214100  
File 205078  
File 2471900-4880-0001  
1 In accordance with UL 1577, each ADuM1100 is proof tested by applying an insulation test voltage ≥3000 V rms for 1 sec (current leakage detection limit = 5 μA).  
2 In accordance with DIN V VDE V 0884-10, each ADuM1100 is proof tested by applying an insulation test voltage ≥1050 V peak for 1 sec (partial discharge detection  
limit = 5 pC). The * marking branded on the component designates DIN V VDE V 0884-10 approval.  
INSULATION AND SAFETY-RELATED SPECIFICATIONS  
Table 6.  
Parameter  
Symbol  
Value  
Unit  
Conditions  
Minimum External Air Gap (Clearance)  
L(I01)  
4.90 min  
mm  
Measured from input terminals to output terminals,  
shortest distance through air  
Minimum External Tracking (Creepage)  
L(I02)  
4.01 min  
mm  
Measured from input terminals to output terminals,  
shortest distance path along body  
Minimum Internal Gap (Internal Clearance)  
Tracking Resistance (Comparative Tracking Index) CTI  
Isolation Group  
Maximum Working Voltage Compatible with  
50 Years Service Life  
0.016 min mm  
Insulation distance through insulation  
DIN IEC 112/VDE 0303 Part 1  
Material Group (DIN VDE 0110, 1/89, Table I)  
Continuous peak voltage across the isolation barrier  
>175  
IIIa  
V
VIORM  
565  
V peak  
Rev. I | Page 10 of 20  
 
 
Data Sheet  
ADuM1100  
DIN V VDE V 0884-10 (VDE V 0884-10):2006-12 INSULATION CHARACTERISTICS  
This isolator is suitable for reinforced isolation only within the safety limit data. Maintenance of the safety data is ensured by means of  
protective circuits. The asterisk (*) marking on the package denotes DIN V VDE V 0884-10 approval for 560 V peak working voltage.  
Table 7.  
Description  
Conditions  
Symbol Characteristic  
Unit  
Installation Classification per DIN VDE 0110  
For Rated Mains Voltage ≤ 150 V rms  
For Rated Mains Voltage ≤ 300 V rms  
For Rated Mains Voltage ≤ 400 V rms  
Climatic Classification  
Pollution Degree per DIN VDE 0110, Table 1  
Maximum Working Insulation Voltage  
Input-to-Output Test Voltage, Method B1  
I to IV  
I to III  
I to II  
40/105/21  
2
VIORM  
VPR  
560  
1050  
V peak  
V peak  
VIORM × 1.875 = VPR, 100% production test,  
tm = 1 sec, partial discharge < 5 pC  
Input-to-Output Test Voltage, Method A  
VIORM × 1.6 = VPR, tm = 60 sec, partial  
discharge < 5 pC  
VPR  
After Environmental Tests Subgroup 1  
After Input and/or Safety Test Subgroup 2 and Subgroup 3  
896  
672  
V peak  
V peak  
VIORM × 1.2 = VPR, tm = 60 sec, partial  
discharge < 5 pC  
Highest Allowable Overvoltage  
Safety-Limiting Values  
Transient overvoltage, tTR = 10 seconds  
Maximum value allowed in the event of  
a failure (see Figure 2)  
VTR  
4000  
V peak  
Case Temperature  
Side 1 Current  
Side 2 Current  
TS  
IS1  
IS2  
RS  
150  
160  
170  
>109  
°C  
mA  
mA  
Ω
Insulation Resistance at TS  
VIO = 500 V  
180  
160  
RECOMMENDED OPERATING CONDITIONS  
Table 8.  
Parameter  
140  
Symbol Min Max Unit  
OUTPUT CURRENT  
120  
Operating Temperature  
ADuM1100AR/ADuM1100BR TA  
−40 +105 °C  
−40 +125 °C  
100  
INPUT CURRENT  
ADuM1100UR  
Supply Voltages1  
TA  
VDD1  
80  
60  
40  
20  
0
,
3.0  
5.5  
V
VDD2  
Logic High Input Voltage,  
5 V Operation1, 2  
(See Figure 11 and Figure 12)  
VIH  
VIL  
VIH  
VIL  
2.0  
VDD1  
V
Logic Low Input Voltage,  
0.0  
1.5  
0.0  
0.8  
VDD1  
0.5  
1.0  
V
5 V Operation1, 2  
0
50  
100  
150  
200  
CASE TEMPERATURE (°C)  
(See Figure 11 and Figure 12)  
Figure 2. Thermal Derating Curve, Dependence of Safety-Limiting Values  
with Case Temperature per DIN V VDE V 0884-10  
Logic High Input Voltage,  
V
3.3 V Operation1, 2  
(See Figure 11 and Figure 12)  
Logic Low Input Voltage,  
V
3.3 V Operation1, 2  
(See Figure 11 and Figure 12)  
Input Signal Rise and Fall Times  
ms  
1 All voltages are relative to their respective ground.  
2 Input switching thresholds have 300 mV of hysteresis. See the Method of  
Operation, DC Correctness, and Magnetic Field Immunity section, Figure 19,  
and Figure 20 for information on immunity to external magnetic fields.  
Rev. I | Page 11 of 20  
 
 
ADuM1100  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
Table 9.  
Parameter  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Symbol Min  
Max  
+150  
+125  
Unit  
°C  
°C  
Storage Temperature  
TST  
TA  
−55  
−40  
Ambient Operating  
Temperature  
Supply Voltages1  
VDD1, VDD2 −0.5  
+6.5  
V
V
V
Input Voltage1  
VI  
VO  
−0.5  
−0.5  
VDD1 + 0.5  
VDD2 + 0.5  
Output Voltage1  
Average Current, per Pin2  
Temperature ≤ 105°C  
Temperature ≤ 125°C  
Input Current  
ESD CAUTION  
−25  
+25  
mA  
−7  
+7  
mA  
Output Current  
−20  
+20  
mA  
Common-Mode Transients3  
−100 +100  
kV/μs  
1 All voltages are relative to their respective ground.  
2 See Figure 2 for information on maximum allowable current for various  
temperatures.  
3 Refers to common-mode transients across the insulation barrier.  
Common-mode transients exceeding the Absolute Maximum Rating  
may cause latch-up or permanent damage.  
Table 10. Truth Table (Positive Logic)  
VI Input  
VDD1 State  
VDD2 State  
VO Output  
H
L
X
X
Powered  
Powered  
Unpowered  
Powered  
Powered  
Powered  
Powered  
Unpowered  
H
L
H1  
X1  
1 VO returns to VI state within 1 ꢀs of power restoration.  
Figure 3 shows the package branding. The asterisk (*) is the DIN EN 60747-5-2 mark, R is the package designator (R denotes SOIC_N),  
YYWW is the date code, and XXXXXX is the lot code.  
ADuM1100AR,  
ADuM1100AR-RL7  
ADuM1100BR,  
ADuM1100BR-RL7  
ADuM1100UR,  
ADuM1100UR-RL7  
8
8
8
AD1100A  
R YYWW*  
XXXXXX  
AD1100B  
R YYWW*  
XXXXXX  
AD1100U  
R YYWW*  
XXXXXX  
1
1
1
Figure 3. Package Branding  
Rev. I | Page 12 of 20  
 
 
Data Sheet  
ADuM1100  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
1
V
1
2
3
4
8
7
6
5
V
DD2  
DD1  
2
2
ADuM1100  
V
GND  
I
2
TOP VIEW  
1
V
V
DD1  
O
(Not to Scale)  
GND  
GND  
1
2
1
2
PIN 1 AND PIN 3 ARE INTERNALLY CONNECTED. EITHER OR BOTH  
MAY BE USED FOR V  
.
DD1  
PIN 5 AND PIN 7 ARE INTERNALLY CONNECTED. EITHER OR BOTH  
MAY BE USED FOR GND .  
2
Figure 4. Pin Configuration  
Table 11. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
2
3
4
5
6
7
8
VDD1  
VI  
VDD1  
GND1  
GND2  
VO  
GND2  
VDD2  
Input Supply Voltage, 3.0 V to 5.5 V.  
Logic Input.  
Input Supply Voltage, 3.0 V to 5.5 V.  
Input Ground Reference.  
Output Ground Reference.  
Logic Output.  
Output Ground Reference.  
Output Supply Voltage, 3.0 V to 5.5 V.  
Rev. I | Page 13 of 20  
 
ADuM1100  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
20  
18  
16  
14  
12  
10  
18  
17  
16  
15  
14  
13  
12  
tPHL  
tPLH  
8
5V  
6
3.3V  
4
2
0
0
25  
50  
75  
100  
125  
150  
–50  
–25  
0
25  
50  
75  
100  
125  
DATA RATE (Mbps)  
TEMPERATURE (°C)  
Figure 5. Typical Input Supply Current vs. Logic Signal Frequency  
for 5 V and 3.3 V Operation  
Figure 8. Typical Propagation Delays vs. Temperature, 3.3 V Operation  
14  
13  
5
4
tPLH  
12  
3
5V  
tPHL  
11  
2
3.3V  
10  
9
1
0
–50  
–25  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
150  
DATA RATE (Mbps)  
TEMPERATURE (°C)  
Figure 6. Typical Output Supply Current vs. Logic Signal Frequency  
for 5 V and 3.3 V Operation  
Figure 9. Typical Propagation Delays vs. Temperature, 5 V/3 V Operation  
13  
18  
17  
12  
16  
tPHL  
11  
15  
tPLH  
tPLH  
tPHL  
14  
13  
12  
10  
9
–50  
–25  
0
25  
50  
75  
100  
125  
–50  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 7. Typical Propagation Delays vs. Temperature, 5 V Operation  
Figure 10. Typical Propagation Delays vs. Temperature, 3 V/5 V Operation  
Rev. I | Page 14 of 20  
 
 
 
 
Data Sheet  
ADuM1100  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
–40°C  
+25°C  
–40°C  
+25°C  
+125°C  
+125°C  
1.1  
3.0  
3.0  
3.5  
4.0  
4.5  
5.0  
(V)  
5.5  
3.5  
4.0  
4.5  
5.0  
(V)  
5.5  
INPUT SUPPLY VOLTAGE, V  
INPUT SUPPLY VOLTAGE, V  
DD1  
DD1  
Figure 11. Typical Input Voltage Switching Threshold,  
Low-to-High Transition  
Figure 12. Typical Input Voltage Switching Threshold,  
High-to-Low Transition  
Rev. I | Page 15 of 20  
 
ADuM1100  
Data Sheet  
APPLICATION INFORMATION  
PC BOARD LAYOUT  
Pulse width distortion is the maximum difference between  
PLH and tPHL and provides an indication of how accurately the  
t
The ADuM1100 digital isolator requires no external interface  
circuitry for the logic interfaces. A bypass capacitor is recom-  
mended at the input and output supply pins. The input bypass  
capacitor can conveniently be connected between Pin 3 and  
Pin 4 (see Figure 13). Alternatively, the bypass capacitor can be  
located between Pin 1 and Pin 4. The output bypass capacitor  
can be connected between Pin 7 and Pin 8 or Pin 5 and Pin 8.  
The capacitor value should be between 0.01 μF and 0.1 μF. The  
total lead length between both ends of the capacitor and the  
power supply pins should not exceed 20 mm.  
input signal’s timing is preserved in the components output  
signal. Propagation delay skew is the difference between the  
minimum and maximum propagation delay values among  
multiple ADuM1100 components operated at the same  
operating temperature and having the same output load.  
Depending on the input signal rise/fall time, the measured  
propagation delay based on the input 50% level can vary from  
the true propagation delay of the component (as measured from  
its input switching threshold). This is because the input threshold,  
as is the case with commonly used optocouplers, is at a different  
voltage level than the 50% point of typical input signals. This  
propagation delay difference is given by  
V
V
DD1  
DD2  
V (DATA IN)  
I
(OPTIONAL)  
V
O
(DATA OUT)  
GND  
1
GND  
2
Δ
LH = tPLH tPLH = (tR/0.8 VI)(0.5 VI VITH (L-H)  
HL = tPHL tPHL = (tF/0.8 VI)(0.5 VI VITH (H-L)  
)
Figure 13. Recommended Printed Circuit Board Layout  
See the AN-1109 Application Note for board layout guidelines.  
PROPAGATION DELAY-RELATED PARAMETERS  
Δ
)
where:  
t
PLH and tPHL are the propagation delays as measured from the  
Propagation delay time describes the length of time it takes for  
a logic signal to propagate through a component. Propagation  
delay time to logic low output and propagation delay time to  
logic high output refer to the duration between an input  
signal transition and the respective output signal transition  
(see Figure 14).  
input 50% level.  
t’PLH and t’PHL are the propagation delays as measured from the  
input switching thresholds.  
tR and tF are the input 10% to 90% rise/fall times.  
VI is the amplitude of the input signal (0 V to VI levels assumed).  
V
ITH (L–H) and VITH (H–L) are the input switching thresholds.  
INPUT (V )  
50%  
I
tPLH  
tPHL  
OUTPUT (V  
)
50%  
O
Figure 14. Propagation Delay Parameters  
HL  
LH  
V
I
V
50%  
ITH(L–H)  
V
ITH(H–L)  
tPLH  
t'PHL  
INPUT (V )  
I
tPHL  
t'PLH  
50%  
OUTPUT (V  
)
O
Figure 15. Impact of Input Rise/Fall Time on Propagation Delay  
Rev. I | Page 16 of 20  
 
 
 
 
 
Data Sheet  
ADuM1100  
4
6
5
4
3
2
1
0
3
2
1
0
5V INPUT SIGNAL  
5V INPUT SIGNAL  
3.3V INPUT SIGNAL  
3.3V INPUT SIGNAL  
9
1
2
3
4
5
6
7
8
10  
9
1
2
3
4
5
6
7
8
10  
INPUT RISE TIME (10%–90%, ns)  
INPUT RISE/FALL TIME (10%–90%, ns)  
Figure 16. Typical Propagation Delay Change Due to  
Input Rise Time Variation (for VDD1 = 3.3 V and 5 V)  
Figure 18. Typical Pulse Width Distortion Adjustment Due to  
Input Rise/Fall Time Variation (for VDD1 = 3.3 V and 5 V)  
METHOD OF OPERATION, DC CORRECTNESS, AND  
MAGNETIC FIELD IMMUNITY  
0
–1  
–2  
–3  
–4  
The two coils in Figure 1 act as a pulse transformer. Positive  
and negative logic transitions at the isolator input cause narrow  
(2 ns) pulses to be sent via the transformer to the decoder. The  
decoder is bistable and therefore either set or reset by the pulses  
indicating input logic transitions. In the absence of logic transi-  
tions at the input for more than ~1 ꢀs, a periodic update pulse  
of the appropriate polarity is sent to ensure dc correctness at the  
output. If the decoder receives none of these update pulses for  
more than about 5 ꢀs, the input side is assumed to be unpowered  
or nonfunctional, in which case the isolator output is forced to  
a logic high state by the watchdog timer circuit.  
5V INPUT SIGNAL  
3.3V INPUT SIGNAL  
9
1
2
3
4
5
6
7
8
10  
INPUT RISE TIME (10%–90%, ns)  
The limitation on the magnetic field immunity of the  
ADuM1100 is set by the condition in which induced voltage in  
the transformer’s receiving coil is sufficiently large to either  
falsely set or reset the decoder. The analysis that follows defines  
the conditions under which this can occur. The 3.3 V operating  
condition of the ADuM1100 is examined because it represents  
the most susceptible mode of operation.  
Figure 17. Typical Propagation Delay Change Due to  
Input Fall Time Variation (for VDD1 = 3.3 V and 5 V)  
The impact of the slower input edge rates can also affect the  
measured pulse width distortion as based on the input 50%  
level. This impact can either increase or decrease the apparent  
pulse width distortion depending on the relative magnitudes of  
PHL, tPLH, and PWD. The case of interest here is the condition  
that leads to the largest increase in pulse width distortion. The  
change in this case is given by  
t
The pulses at the transformer output are greater than 1.0 V in  
amplitude. The decoder has sensing thresholds at about 0.5 V,  
therefore establishing a 0.5 V margin in which induced voltages  
can be tolerated. The voltage induced across the receiving coil  
is given by  
Δ
PWD = PWDPWD = ΔLH − ΔHL  
(t/0.8 VI)(V VITH (L-H) VITH (H-L)), (for t = tR = tF)  
where:  
=
2
V = (−/dt) ∑π rn , n = 1, 2, . . . , N  
PWD = |tPLH tPHL|.  
PWD’ = |t’PLH t’PHL|.  
where:  
β is the magnetic flux density (gauss).  
N is the number of turns in the receiving coil.  
rn is the radius of the nth turn in the receiving coil (cm).  
This adjustment in pulse width distortion is plotted as a  
function of input rise/fall time in Figure 18.  
Rev. I | Page 17 of 20  
 
 
 
ADuM1100  
Data Sheet  
1000  
100  
10  
Given the geometry of the receiving coil in the ADuM1100 and  
an imposed requirement that the induced voltage be at most  
50% of the 0.5 V margin at the decoder, a maximum allowable  
magnetic field is calculated, as shown in Figure 19.  
100  
DISTANCE = 1m  
DISTANCE = 100mm  
10  
1
1
DISTANCE = 5mm  
0.1  
0.01  
0.1  
1k  
10k  
100k  
1M  
10M  
100M  
MAGNETIC FIELD FREQUENCY (Hz)  
0.01  
0.001  
Figure 20. Maximum Allowable Current for  
Various Current-to-ADuM1100 Spacings  
Note that at combinations of strong magnetic field and high  
frequency, any loops formed by printed circuit board traces  
could induce sufficiently large error voltages to trigger the  
thresholds of succeeding circuitry. Care should be taken in the  
layout of such traces to avoid this possibility.  
1k  
10k  
100k  
1M  
10M  
100M  
MAGNETIC FIELD FREQUENCY (Hz)  
Figure 19. Maximum Allowable External Magnetic Field  
For example, at a magnetic field frequency of 1 MHz, the  
maximum allowable magnetic field of 0.2 kgauss induces a  
voltage of 0.25 V at the receiving coil. This is about 50% of the  
sensing threshold and does not cause a faulty output transition.  
Similarly, if such an event were to occur during a transmitted  
pulse (and was of the worst-case polarity), it would reduce the  
received pulse from >1.0 V to 0.75 V, still well above the 0.5 V  
sensing threshold of the decoder.  
POWER CONSUMPTION  
The supply current of the ADuM1100 isolator is a function of  
the supply voltage, the input data rate, and the output load.  
The input supply current is given by  
I
I
DDI = IDDI (Q)  
f ≤ 0.5fr  
f > 0.5fr  
DDI = IDDI (D) × (2f fr) + IDDI (Q)  
The preceding magnetic flux density values correspond to  
specific current magnitudes at given distances away from the  
ADuM1100 transformers. Figure 20 expresses these allowable  
current magnitudes as a function of frequency for selected  
distances. As can be seen, the ADuM1100 is extremely immune  
and can be affected only by extremely large currents operated at  
high frequency and very close to the component. For the 1 MHz  
example noted, one would have to place a current of 0.5 kA  
5 mm away from the ADuM1100 to affect the components  
operation.  
The output supply current is given by  
I
I
DDO = IDDO (Q)  
f ≤ 0.5fr  
DDO = (IDDO (D) + (0.5 × 10−3) × CLVDDO) × (2f − fr) + IDDO (Q)  
f > 0.5fr  
where:  
DDI (D), IDDO (D) are the input and output dynamic supply currents  
per channel (mA/Mbps).  
I
CL is the output load capacitance (pF).  
V
DDO is the output supply voltage (V).  
f is the input logic signal frequency (MHz, half the input data  
rate, NRZ signaling).  
fr is the input stage refresh rate (Mbps).  
I
DDI (Q), IDDO (Q) are the specified input and output quiescent  
supply currents (mA).  
Rev. I | Page 18 of 20  
 
 
 
 
 
Data Sheet  
ADuM1100  
OUTLINE DIMENSIONS  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 21. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body (R-8)  
Dimensions shown in millimeters and (inches)  
ORDERING GUIDE  
Maximum Data  
Rate (Mbps)  
Minimum  
Pulse Width (ns)  
Package  
Option  
Model1  
Temperature Range  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
Package Description  
ADuM1100AR  
25  
25  
25  
25  
100  
100  
100  
100  
100  
100  
100  
100  
40  
40  
40  
40  
10  
10  
10  
10  
10  
10  
10  
10  
8-Lead SOIC_N  
8-Lead SOIC_N, 1,000 Piece Reel  
8-Lead SOIC_N  
8-Lead SOIC_N, 1,000 Piece Reel  
8-Lead SOIC_N  
8-Lead SOIC_N, 1,000 Piece Reel  
8-Lead SOIC_N  
8-Lead SOIC_N, 1,000 Piece Reel  
8-Lead SOIC_N  
8-Lead SOIC_N, 1,000 Piece Reel  
8-Lead SOIC_N  
R-8  
ADuM1100AR-RL7  
ADuM1100ARZ  
ADuM1100ARZ-RL7  
ADuM1100BR  
ADuM1100BR-RL7  
ADuM1100BRZ  
ADuM1100BRZ-RL7  
ADuM1100UR  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
ADuM1100UR-RL7  
ADuM1100URZ  
ADuM1100URZ-RL7  
8-Lead SOIC_N, 1,000 Piece Reel  
1 Z = RoHS Compliant Part.  
Rev. I | Page 19 of 20  
 
ADuM1100  
NOTES  
Data Sheet  
©2001–2012 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D02462-0-3/12(I)  
Rev. I | Page 20 of 20  

相关型号:

ADUM1100B

IC SPECIALTY TELECOM CIRCUIT, PDSO8, SOP-8, Telecom IC:Other
ADI

ADUM1100BR

iCoupler Digital Isolator
ADI

ADUM1100BR-RL7

iCoupler Digital Isolator
ADI

ADUM1100BRZ

iCoupler Digital Isolator
ADI

ADuM1100BRZ-RL7

iCoupler Digital Isolator
ADI

ADUM1100UR

iCoupler Digital Isolator
ADI

ADUM1100UR-RL7

iCoupler Digital Isolator
ADI

ADuM1100URZ

iCoupler Digital Isolator
ADI

ADuM1100URZ-RL7

iCoupler Digital Isolator
ADI

ADUM1100_15

Coupler Digital Isolator
ADI

ADUM110N

3.0 kV RMS, Single-Channel Digital Isolator
ADI

ADUM110N0BRZ

ADUM110N0BRZ
ADI