ADUM3441CRWZ [ADI]

Quad Channel, High Speed Digital Isolators; 四通道高速数字隔离器
ADUM3441CRWZ
型号: ADUM3441CRWZ
厂家: ADI    ADI
描述:

Quad Channel, High Speed Digital Isolators
四通道高速数字隔离器

文件: 总24页 (文件大小:389K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Quad Channel, High Speed  
Digital Isolators  
Data Sheet  
ADuM3440/ADuM3441/ADuM3442  
FEATURES  
FUNCTIONAL BLOCK DIAGRAMS  
Low power operation  
5 V operation  
1
2
3
16  
15  
14  
V
ADuM3440  
V
DD2  
DD1  
GND  
V
GND  
1
2
ENCODE  
ENCODE  
ENCODE  
ENCODE  
DECODE  
DECODE  
DECODE  
DECODE  
V
1.7 mA per channel maximum @ 0 Mbps to 2 Mbps  
68 mA per channel maximum @ 150 Mbps  
3.3 V operation  
1.0 mA per channel maximum @ 0 Mbps to 2 Mbps  
33 mA per channel maximum @ 150 Mbps  
Bidirectional communication  
IA  
IB  
OA  
V
4
5
13  
12  
V
OB  
V
V
V
IC  
ID  
OC  
6
7
8
11  
10  
9
V
OD  
NC  
GND  
V
E2  
GND  
1
2
Figure 1. ADuM3440 Functional Block Diagram  
3.3 V/5 V level translation  
High temperature operation: 105°C  
High data rate: dc to 150 Mbps (NRZ)  
Precise timing characteristics  
5 ns maximum pulse width distortion  
5 ns maximum channel-to-channel matching  
High common-mode transient immunity: >25 kV/μs  
Output enable function  
16-lead SOIC wide body package  
Safety and regulatory approvals  
UL recognition: 2500 V rms for 1 minute per UL 1577  
CSA Component Acceptance Notice #5A  
VDE certificate of conformity  
ADuM3441  
1
2
3
16  
15  
14  
V
V
DD1  
DD2  
GND  
GND  
1
2
V
V
ENCODE  
ENCODE  
ENCODE  
DECODE  
DECODE  
DECODE  
DECODE  
ENCODE  
V
V
V
IA  
OA  
OB  
OC  
4
5
13  
12  
IB  
V
IC  
6
7
8
11  
10  
9
V
V
V
OD  
ID  
V
E1  
E2  
GND  
GND  
1
2
Figure 2. ADuM3441 Functional Block Diagram  
1
2
3
16  
15  
14  
V
ADuM3442  
V
DD1  
DD2  
GND  
GND  
1
2
V
V
ENCODE  
ENCODE  
DECODE  
DECODE  
DECODE  
DECODE  
ENCODE  
ENCODE  
V
V
V
IA  
OA  
OB  
IC  
DIN V VDE V 0884-10 (VDE V 0884-10):2006-12  
4
5
13  
12  
IB  
V
IORM = 560 V peak  
V
V
OC  
OD  
APPLICATIONS  
6
7
8
11  
10  
9
V
V
ID  
V
High speed multichannel isolation  
SPI interface/data converter isolation  
Instrumentation  
E1  
E2  
GND  
GND  
1
2
Figure 3. ADuM3442 Functional Block Diagram  
GENERAL DESCRIPTION  
The ADuM344x1 are four channel, digital isolators based on the  
Analog Devices, Inc., iCoupler® technology supporting data rates  
up to 150 Mbps. Combining high speed CMOS and monolithic  
air core transformer technology, these isolation components  
provide outstanding performance characteristics superior to  
alternatives such as optocoupler devices.  
Furthermore, iCoupler devices consume one-tenth to one-sixth  
the power of optocouplers at comparable signal data rates.  
The ADuM344x isolators provide four independent isolation  
channels in a variety of channel configurations (see the  
Ordering Guide). The ADuM344x operates with the supply  
voltage on either side ranging from 3.0 V to 5.5 V, providing  
compatibility with lower voltage systems as well as enabling  
voltage translation functionality across the isolation barrier. In  
addition, the ADuM344x provides low pulse width distortion  
and tight channel-to-channel matching. Unlike other opto-  
coupler alternatives, the ADuM344x isolators have a patented  
refresh feature that ensures dc correctness in the absence of  
input logic transitions and during the power-up/power-down  
condition.  
By avoiding the use of LEDs and photodiodes, iCoupler  
devices remove the design difficulties commonly associated  
with optocouplers. The typical optocoupler concerns regarding  
uncertain current transfer ratios, nonlinear transfer functions,  
and temperature and lifetime effects are eliminated with the  
simple iCoupler digital interfaces and stable performance  
characteristics. The need for external drivers and other discrete  
components is eliminated with these iCoupler products.  
1 Protected by U.S. Patents 5,952,849; 6,873,065; 6,903,578; and 7,075,329.  
Rev. D  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©2007–2012 Analog Devices, Inc. All rights reserved.  
 
 
 
 
ADuM3440/ADuM3441/ADuM3442  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Absolute Maximum Ratings ......................................................... 12  
ESD Caution................................................................................ 12  
Pin Configurations and Function Descriptions ......................... 13  
Typical Performance Characteristics ........................................... 16  
Applications Information .............................................................. 18  
PC Board Layout ........................................................................ 18  
Propagation Delay-Related Parameters................................... 18  
System-Level ESD Considerations and Enhancements ........ 18  
DC Correctness and Magnetic Field Immunity........................... 18  
Power Consumption .................................................................. 19  
Insulation Lifetime..................................................................... 20  
Outline Dimensions....................................................................... 21  
Ordering Guide .......................................................................... 21  
Applications....................................................................................... 1  
Functional Block Diagrams............................................................. 1  
General Description ......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics—5 V Operation................................ 3  
Electrical Characteristics—3.3 V Operation ............................ 5  
Electrical Characteristics—Mixed 5 V/3.3 V or 3.3 V/5 V  
Operation....................................................................................... 7  
Package Characteristics ............................................................. 10  
Regulatory Information............................................................. 10  
Insulation and Safety-Related Specifications.......................... 10  
DIN V VDE V 0884-10 (VDE V 0884-10) Insulation  
Characteristics ............................................................................ 11  
Recommended Operating Conditions .................................... 11  
REVISION HISTORY  
2/12—Rev. C to Rev. D  
9/08—Rev. A to Rev. B  
Created Hyperlink for Safety and Regulatory Approvals  
Entry in Features Section................................................................. 1  
Change to PC Board Layout Section............................................ 18  
Updated Outline Dimensions....................................................... 21  
Changes to Pulse Width Distortion, |tPLH − tPHL| Parameter and  
Channel-to-Channel Matching, Codirectional Channels  
Parameter, Table 1 .............................................................................3  
Changes to Pulse Width Distortion, |tPLH − tPHL| Parameter and  
Channel-to-Channel Matching, Codirectional Channels  
Parameter, Table 2 .............................................................................5  
Changes to Pulse Width Distortion, |tPLH − tPHL| Parameter and  
Channel-to-Channel Matching, Codirectional Channels  
Parameter, Table 3 .............................................................................8  
1/09—Rev. B to Rev. C  
Change to Propagation Delay Parameter (Table 1)...................... 3  
Change to Propagation Delay Parameter (Table 2)...................... 5  
Change to Propagation Delay Parameter (Table 3)...................... 8  
5/08—Rev. 0 to Rev. A  
Changes to Ordering Guide.......................................................... 21  
11/07—Rev. 0: Initial Version  
Rev. D | Page 2 of 24  
 
Data Sheet  
ADuM3440/ADuM3441/ADuM3442  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS—5 V OPERATION  
All voltages are relative to their respective ground. 4.5 V ≤ VDD1 ≤ 5.5 V, 4.5 V ≤ VDD2 ≤ 5.5 V. All minimum/maximum specifications  
apply over the entire recommended operation range, unless otherwise noted. All typical specifications are at TA = 25°C, VDD1 = VDD2 = 5 V.  
Table 1.  
Parameter  
Symbol  
Min  
Typ  
Max Unit  
Test Conditions  
DC SPECIFICATIONS  
Input Supply Current per Channel, Quiescent  
Output Supply Current per Channel, Quiescent  
ADuM3440, Total Supply Current, Four Channels1  
DC to 2 Mbps  
IDDI (Q)  
IDDO (Q)  
0.75  
0.5  
1.3  
1.2  
mA  
mA  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (Q)  
IDD2 (Q)  
3
2
3.9  
3
mA  
mA  
DC to 1 MHz logic signal frequency  
DC to 1 MHz logic signal frequency  
150 Mbps  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (150)  
IDD2 (150)  
120  
47  
220 mA  
75 MHz logic signal frequency  
75 MHz logic signal frequency  
55  
mA  
ADuM3441, Total Supply Current, Four Channels1  
DC to 2 Mbps  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (Q)  
IDD2 (Q)  
2.8  
2.3  
3.6  
2.9  
mA  
mA  
DC to 1 MHz logic signal frequency  
DC to 1 MHz logic signal frequency  
150 Mbps  
VDD1 Supply Current  
VDD2 Supply Current  
ADuM3442, Total Supply Current, Four Channels1  
DC to 2 Mbps  
VDD1 or VDD2 Supply Current  
150 Mbps  
VDD1 or VDD2 Supply Current  
For All Models  
IDD1 (150)  
IDD2 (150)  
101  
65  
165 mA  
75 MHz logic signal frequency  
75 MHz logic signal frequency  
80  
mA  
mA  
IDD1 (Q), IDD2 (Q)  
2.5  
83  
3.5  
DC to 1 MHz logic signal frequency  
75 MHz logic signal frequency  
IDD1 (150), IDD2 (150)  
130 mA  
Input Currents  
IIA, IIB, IIC,  
IID, IE1, IE2  
−10  
2.0  
+0.01 +10 µA  
V
0 VIA, VIB, VIC, VID VDD1 or VDD2  
0 VE1, VE2 VDD1 or VDD2  
,
Logic High Input Threshold  
Logic Low Input Threshold  
Logic High Output Voltages  
VIH, VEH  
VIL, VEL  
VOAH, VOBH  
0.8  
V
V
,
(VDD1 or  
VDD2) − 0.1  
(VDD1 or  
VDD2) − 0.4  
5.0  
4.8  
0.0  
IOx = −20 µA, VIx = VIxH  
VOCH, VODH  
V
V
IOx = −4 mA, VIx = VIxH  
IOx = 20 µA, VIx = VIxL  
Logic Low Output Voltages  
VOAL, VOBL  
,
0.1  
VOCL, VODL  
0.04  
0.2  
0.1  
0.4  
V
V
IOx = 400 µA, VIx = VIxL  
IOx = 4 mA, VIx = VIxL  
SWITCHING SPECIFICATIONS  
Minimum Pulse Width2  
Maximum Data Rate3  
PW  
6.67 ns  
Mbps  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
150  
20  
Propagation Delay4  
tPHL, tPLH  
PWD  
32  
2
5
Pulse Width Distortion, |tPLH − tPHL  
Change vs. Temperature  
Propagation Delay Skew6  
Channel-to-Channel Matching,  
Codirectional Channels5  
|
0.5  
3
ns  
ps/°C  
ns  
ns  
tPSK  
tPSKCD  
12  
2
Channel-to-Channel Matching,  
tPSKOD  
5
ns  
CL = 15 pF, CMOS signal levels  
Opposing Directional Channels5  
Rev. D | Page 3 of 24  
 
 
ADuM3440/ADuM3441/ADuM3442  
Data Sheet  
Parameter  
Symbol  
tPHZ, tPLH  
tPZH, tPZL  
Min  
Typ  
Max Unit  
Test Conditions  
For All Models  
Output Disable Propagation Delay  
(High/Low to High Impedance)  
Output Enable Propagation Delay  
(High Impedance to High/Low)  
Output Rise/Fall Time (10% to 90%)  
Common-Mode Transient Immunity  
at Logic High Output7  
Common-Mode Transient Immunity  
at Logic Low Output7  
6
6
8
8
ns  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
VIx = VDD1 or VDD2, VCM = 1000 V,  
transient magnitude = 800 V  
VIx = 0 V, VCM = 1000 V,  
tR/tF  
|CMH|  
2.5  
35  
ns  
kV/µs  
25  
25  
|CML|  
35  
kV/µs  
transient magnitude = 800 V  
Refresh Rate  
fr  
1.2  
0.196  
0.1  
Mbps  
mA/Mbps  
mA/Mbps  
Input Dynamic Supply Current per Channel8  
Output Dynamic Supply Current per Channel8  
IDDI (D)  
IDDO (D)  
1 The supply current values for all four channels are combined when running at identical data rates. Output supply current values are specified with no output load  
present. The supply current associated with an individual channel operating at a given data rate may be calculated as described in the Power Consumption section.  
See Figure 8 through Figure 10 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See Figure 11 through  
Figure 15 for total VDD1 and VDD2 supply currents as a function of data rate for ADuM3440/ADuM3441/ADuM3442 channel configurations.  
2 The minimum pulse width is the shortest pulse width at which the specified pulse width distortion is guaranteed.  
3 The maximum data rate is the fastest data rate at which the specified pulse width distortion is guaranteed.  
4 tPHL propagation delay is measured from the 50% level of the falling edge of the VIx signal to the 50% level of the falling edge of the VOx signal. tPLH propagation delay is  
measured from the 50% level of the rising edge of the VIx signal to the 50% level of the rising edge of the VOx signal.  
5 Codirectional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of  
the isolation barrier. Opposing-directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with  
inputs on opposing sides of the isolation barrier.  
6 tPSK is the magnitude of the worst-case difference in tPHL or tPLH that is measured between units at the same operating temperature, supply voltages, and output load  
within the recommended operating conditions.  
7 CMH is the maximum common-mode voltage slew rate that can be sustained while maintaining VO > 0.8 VDDO. CML is the maximum common-mode voltage slew rate  
that can be sustained while maintaining VO < 0.8 V. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient  
magnitude is the range over which the common mode is slewed.  
8 Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in signal data rate. See Figure 8 through Figure 10 for information  
on per-channel supply current for unloaded and loaded conditions. See the Power Consumption section for guidance on calculating the per-channel supply current  
for a given data rate.  
Rev. D | Page 4 of 24  
Data Sheet  
ADuM3440/ADuM3441/ADuM3442  
ELECTRICAL CHARACTERISTICS—3.3 V OPERATION  
All voltages are relative to their respective ground. 3.0 V ≤ VDD1 ≤ 3.6 V, 3.0 V ≤ VDD2 ≤ 3.6 V. All minimum/maximum specifications apply  
over the entire recommended operation range, unless otherwise noted. All typical specifications are at TA = 25°C, VDD1 = VDD2 = 3.3 V.  
Table 2.  
Parameter  
Symbol  
Min  
Typ  
Max Unit  
Test Conditions  
DC SPECIFICATIONS  
Input Supply Current per Channel, Quiescent  
Output Supply Current per Channel, Quiescent  
ADuM3440, Total Supply Current, Four Channels1  
DC to 2 Mbps  
IDDI (Q)  
IDDO (Q)  
0.43  
0.3  
0.90 mA  
0.60 mA  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (Q)  
IDD2 (Q)  
1.7  
1.2  
2.4  
1.7  
mA  
mA  
DC to 1 MHz logic signal frequency  
DC to 1 MHz logic signal frequency  
150 Mbps  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (150)  
IDD2 (150)  
63  
17  
110  
25  
mA  
mA  
75 MHz logic signal frequency  
75 MHz logic signal frequency  
ADuM3441, Total Supply Current, Four Channels1  
DC to 2 Mbps  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (Q)  
IDD2 (Q)  
1.6  
1.3  
2.2  
1.9  
mA  
mA  
DC to 1 MHz logic signal frequency  
DC to 1 MHz logic signal frequency  
150 Mbps  
VDD1 Supply Current  
VDD2 Supply Current  
ADuM3442, Total Supply Current, Four Channels1  
IDD1 (150)  
IDD2 (150)  
52  
29  
80  
40  
mA  
mA  
75 MHz logic signal frequency  
75 MHz logic signal frequency  
DC to 2 Mbps  
VDD1 or VDD2 Supply Current  
150 Mbps  
VDD1 or VDD2 Supply Current  
For All Models  
IDD1 (Q), IDD2 (Q)  
1.5  
40  
2.0  
66  
mA  
mA  
DC to 1 MHz logic signal frequency  
75 MHz logic signal frequency  
IDD1 (150), IDD2 (150)  
Input Currents  
IIA, IIB, IIC,  
IID, IE1, IE2  
−10  
1.6  
+0.01 +10 µA  
V
0 ≤ VIA, VIB, VIC, VID VDD1 or VDD2  
0 VE1, VE2 VDD1 or VDD2  
,
Logic High Input Threshold  
Logic Low Input Threshold  
Logic High Output Voltages  
VIH, VEH  
VIL, VEL  
VOAH, VOBH  
0.4  
V
V
,
(VDD1 or  
VDD2) − 0.1  
(VDD1 or  
VDD2) − 0.4  
3.0  
2.8  
0.0  
IOx = −20 µA, VIx = VIxH  
VOCH, VODH  
V
V
IOx = −4 mA, VIx = VIxH  
Logic Low Output Voltages  
VOAL, VOBL  
,
0.1  
IOx = 20 µA, VIx = VIxL  
VOCL, VODL  
0.04  
0.2  
0.1  
0.4  
V
V
IOx = 400 µA, VIx = VIxL  
IOx = 4 mA, VIx = VIxL  
SWITCHING SPECIFICATIONS  
Minimum Pulse Width2  
Maximum Data Rate3  
PW  
6.67 ns  
Mbps  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
150  
20  
Propagation Delay4  
tPHL, tPLH  
PWD  
36  
2
4
0.5  
3
ns  
Pulse Width Distortion, |tPLH − tPHL  
Change vs. Temperature  
Propagation Delay Skew5  
Channel-to-Channel Matching,  
Codirectional Channels6  
|
ps/°C  
ns  
ns  
tPSK  
tPSKCD  
16  
2
Channel-to-Channel Matching,  
tPSKOD  
5
ns  
CL = 15 pF, CMOS signal levels  
Opposing Directional Channels5  
Rev. D | Page 5 of 24  
 
ADuM3440/ADuM3441/ADuM3442  
Data Sheet  
Parameter  
Symbol  
tPHZ, tPLH  
tPZH, tPZL  
Min  
Typ  
Max Unit  
Test Conditions  
For All Models  
Output Disable Propagation Delay  
(High/Low to High Impedance)  
Output Enable Propagation Delay  
(High Impedance to High/Low)  
6
6
8
8
ns  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
Output Rise/Fall Time (10% to 90%)  
tR/tF  
3
ns  
Common-Mode Transient Immunity  
at Logic High Output7  
Common-Mode Transient Immunity  
at Logic Low Output7  
|CMH|  
25  
25  
35  
kV/µs  
VIx = VDD1 or VDD2, VCM = 1000 V,  
transient magnitude = 800 V  
VIx = 0 V, VCM = 1000 V,  
|CML|  
35  
kV/µs  
transient magnitude = 800 V  
Refresh Rate  
fr  
1.1  
0.076  
0.028  
Mbps  
mA/Mbps  
mA/Mbps  
Input Dynamic Supply Current per Channel8  
Output Dynamic Supply Current per Channel8  
IDDI (D)  
IDDO (D)  
1 The supply current values for all four channels are combined when running at identical data rates. Output supply current values are specified with no output load  
present. The supply current associated with an individual channel operating at a given data rate may be calculated as described in the Power Consumption section.  
See Figure 8 through Figure 10 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See Figure 11 through  
Figure 15 for total VDD1 and VDD2 supply currents as a function of data rate for ADuM3440/ADuM3441/ADuM3442 channel configurations.  
2 The minimum pulse width is the shortest pulse width at which the specified pulse width distortion is guaranteed.  
3 The maximum data rate is the fastest data rate at which the specified pulse width distortion is guaranteed.  
4 tPHL propagation delay is measured from the 50% level of the falling edge of the VIx signal to the 50% level of the falling edge of the VOx signal. tPLH propagation delay is  
measured from the 50% level of the rising edge of the VIx signal to the 50% level of the rising edge of the VOx signal.  
5 tPSK is the magnitude of the worst-case difference in tPHL or tPLH that is measured between units at the same operating temperature, supply voltages, and output load  
within the recommended operating conditions.  
6 Codirectional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of  
the isolation barrier. Opposing directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with  
inputs on opposing sides of the isolation barrier.  
7 CMH is the maximum common-mode voltage slew rate that can be sustained while maintaining VO > 0.8 VDDO. CML is the maximum common-mode voltage slew rate  
that can be sustained while maintaining VO < 0.8 V. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient  
magnitude is the range over which the common mode is slewed.  
8 Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in signal data rate. See Figure 8 through Figure 10 for information  
on per-channel supply current for unloaded and loaded conditions. See the Power Consumption section for guidance on calculating the per-channel supply current  
for a given data rate.  
Rev. D | Page 6 of 24  
Data Sheet  
ADuM3440/ADuM3441/ADuM3442  
ELECTRICAL CHARACTERISTICS—MIXED 5 V/3.3 V OR 3.3 V/5 V OPERATION  
All voltages are relative to their respective ground. 5 V/3.3 V operation: 4.5 V ≤ VDD1 ≤ 5.5 V, 3.0 V ≤ VDD2 ≤ 3.6 V; 3 V/5 V operation:  
3.0 V ≤ VDD1 ≤ 3.6 V, 4.5 V ≤ VDD2 ≤ 5.5 V. All minimum/maximum specifications apply over the entire recommended operating range,  
unless otherwise noted. All typical specifications are at TA = 25°C; VDD1 = 3.3 V, VDD2 = 5 V or VDD1 = 5 V, VDD2 = 3.3 V.  
Table 3.  
Parameter  
Symbol  
Min  
Typ  
Max Unit  
Test Conditions  
DC SPECIFICATIONS  
Input Supply Current per Channel, Quiescent  
5 V/3.3 V Operation  
IDDI (Q)  
0.75  
0.43  
1.3  
0.9  
mA  
mA  
3.3 V/5 V Operation  
Output Supply Current per Channel, Quiescent  
5 V/3.3 V Operation  
IDDO (Q)  
0.3  
0.5  
0.7  
1.2  
mA  
mA  
3.3 V/5 V Operation  
ADuM3440, Total Supply Current, Four Channels1  
DC to 2 Mbps  
VDD1 Supply Current  
5 V/3.3 V Operation  
3.3 V/5 V Operation  
IDD1 (Q)  
3
1.7  
3.9  
2.4  
mA  
mA  
DC to 1 MHz logic signal frequency  
DC to 1 MHz logic signal frequency  
VDD2 Supply Current  
5 V/3.3 V Operation  
3.3 V/5 V Operation  
IDD2 (Q)  
1.2  
2
1.7  
3
mA  
mA  
DC to 1 MHz logic signal frequency  
DC to 1 MHz logic signal frequency  
150 Mbps  
VDD1 Supply Current  
5 V/3.3 V Operation  
3.3 V/5 V Operation  
IDD1 (150)  
120  
63  
220  
110  
mA  
mA  
75 MHz logic signal frequency  
75 MHz logic signal frequency  
VDD2 Supply Current  
5 V/3.3 V Operation  
3.3 V/5 V Operation  
IDD2 (150)  
17  
47  
25  
55  
mA  
mA  
75 MHz logic signal frequency  
75 MHz logic signal frequency  
ADuM3441, Total Supply Current, Four Channels1  
DC to 2 Mbps  
VDD1 Supply Current  
5 V/3.3 V Operation  
3.3 V/5 V Operation  
IDD1 (Q)  
2.8  
1.6  
3.6  
2.2  
mA  
mA  
DC to 1 MHz logic signal frequency  
DC to 1 MHz logic signal frequency  
VDD2 Supply Current  
5 V/3.3 V Operation  
3.3 V/5 V Operation  
IDD2 (Q)  
1.3  
2.3  
1.9  
2.9  
mA  
mA  
DC to 1 MHz logic signal frequency  
DC to 1 MHz logic signal frequency  
150 Mbps  
VDD1 Supply Current  
5 V/3.3 V Operation  
3.3 V/5 V Operation  
IDD1 (150)  
101  
52  
165  
80  
mA  
mA  
75 MHz logic signal frequency  
75 MHz logic signal frequency  
VDD2 Supply Current  
5 V/3.3 V Operation  
3.3 V/5 V Operation  
IDD2 (150)  
29  
65  
40  
80  
mA  
mA  
75 MHz logic signal frequency  
75 MHz logic signal frequency  
ADuM3442, Total Supply Current, Four Channels1  
DC to 2 Mbps  
VDD1 Supply Current  
5 V/3.3 V Operation  
3.3 V/5 V Operation  
IDD1 (Q)  
2.5  
1.5  
3.5  
2.0  
mA  
mA  
DC to 1 MHz logic signal frequency  
DC to 1 MHz logic signal frequency  
VDD2 Supply Current  
5 V/3.3 V Operation  
3.3 V/5 V Operation  
IDD2 (Q)  
1.5  
2.5  
2.0  
3.5  
mA  
mA  
DC to 1 MHz logic signal frequency  
DC to 1 MHz logic signal frequency  
Rev. D | Page 7 of 24  
 
ADuM3440/ADuM3441/ADuM3442  
Data Sheet  
Parameter  
150 Mbps  
VDD1 Supply Current  
Symbol  
Min  
Typ  
Max Unit  
Test Conditions  
IDD1 (150)  
5 V/3.3 V Operation  
3.3 V/5 V Operation  
VDD2 Supply Current  
5 V/3.3 V Operation  
3.3 V/5 V Operation  
83  
40  
130  
66  
mA  
mA  
75 MHz logic signal frequency  
75 MHz logic signal frequency  
IDD2 (150)  
40  
83  
66  
130  
mA  
mA  
75 MHz logic signal frequency  
75 MHz logic signal frequency  
For All Models  
Input Currents  
IIA, IIB, IIC,  
IID, IE1, IE2  
−10  
+0.01  
+10  
µA  
0 ≤ VIA,VIB, VIC,VID VDD1 or VDD2  
0 ≤ VE1,VE2 VDD1 or VDD2  
,
Logic High Input Threshold  
5 V/3.3 V Operation  
3.3 V/5 V Operation  
VIH, VEH  
2.0  
1.6  
V
V
Logic Low Input Threshold  
5 V/3.3 V Operation  
3.3 V/5 V Operation  
VIL, VEL  
0.8  
0.4  
V
V
V
Logic High Output Voltages  
VOAH, VOBH  
,
(VDD1 or  
(VDD1 or  
IOx = −20 µA, VIx = VIxH  
VOCH, VODH  
VDD2) − 0.1 VDD2  
)
(VDD1 or (VDD1 or  
VDD2) − 0.4 VDD2) − 0.2  
0.0  
V
V
IOx = −4 mA, VIx = VIxH  
Logic Low Output Voltages  
VOAL, VOBL  
,
0.1  
IOx = 20 µA, VIx = VIxL  
VOCL, VODL  
0.04  
0.2  
0.1  
0.4  
V
V
IOx = 400 µA, VIx = VIxL  
IOx = 4 mA, VIx = VIxL  
SWITCHING SPECIFICATIONS  
Minimum Pulse Width2  
Maximum Data Rate3  
Propagation Delay4  
Pulse Width Distortion, |tPLH − tPHL  
Change vs. Temperature  
Propagation Delay Skew5  
PW  
6.67  
ns  
Mbps  
ns  
ns  
ps/°C  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
150  
20  
0.5  
3
tPHL, tPLH  
PWD  
35  
2
4
|
tPSK  
tPSKCD  
15  
2
Channel-to-Channel Matching,  
Codirectional Channels6  
ns  
Channel-to-Channel Matching,  
tPSKOD  
5
ns  
CL = 15 pF, CMOS signal levels  
Opposing Directional Channels5  
For All Models  
Output Disable Propagation Delay  
(High/Low to High Impedance)  
Output Enable Propagation Delay  
(High Impedance to High/Low)  
Output Rise/Fall Time (10% to 90%)  
5 V/3 V Operation  
3 V/5 V Operation  
tPHZ, tPLH  
tPZH, tPZL  
tR/tF  
6
6
8
8
ns  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
3.0  
2.5  
ns  
ns  
Common-Mode Transient Immunity  
at Logic High Output7  
Common-Mode Transient Immunity  
at Logic Low Output7  
|CMH|  
|CML|  
fr  
25  
25  
35  
kV/µs  
VIx = VDD1 or VDD2, VCM = 1000 V,  
transient magnitude = 800 V  
VIx = 0 V, VCM = 1000 V,  
35  
kV/µs  
transient magnitude = 800 V  
Refresh Rate  
5 V/3.3 V Operation  
3.3 V/5 V Operation  
Input Dynamic Supply Current per Channel8  
5 V/3.3 V Operation  
3.3 V/5 V Operation  
Output Dynamic Supply Current per Channel8  
1.2  
1.1  
Mbps  
Mbps  
IDDI (D)  
0.196  
0.076  
mA/Mbps  
mA/Mbps  
IDDO (D)  
5 V/3.3 V Operation  
3.3 V/5 V Operation  
0.028  
0.01  
mA/Mbps  
mA/Mbps  
Rev. D | Page 8 of 24  
Data Sheet  
ADuM3440/ADuM3441/ADuM3442  
1 The supply current values for all four channels are combined when running at identical data rates. Output supply current values are specified with no output load  
present. The supply current associated with an individual channel operating at a given data rate may be calculated as described in the Power Consumption section.  
See Figure 8 through Figure 10 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See Figure 11 through  
Figure 15 for total VDD1 and VDD2 supply currents as a function of data rate for ADuM3440/ADuM3441/ADuM3442 channel configurations.  
2 The minimum pulse width is the shortest pulse width at which the specified pulse width distortion is guaranteed.  
3 The maximum data rate is the fastest data rate at which the specified pulse width distortion is guaranteed.  
4 tPHL propagation delay is measured from the 50% level of the falling edge of the VIx signal to the 50% level of the falling edge of the VOx signal. tPLH propagation delay is  
measured from the 50% level of the rising edge of the VIx signal to the 50% level of the rising edge of the VOx signal.  
5 tPSK is the magnitude of the worst-case difference in tPHL or tPLH that is measured between units at the same operating temperature, supply voltages, and output load  
within the recommended operating conditions.  
6 Codirectional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of  
the isolation barrier. Opposing directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with  
inputs on opposing sides of the isolation barrier.  
7 CMH is the maximum common-mode voltage slew rate that can be sustained while maintaining VO > 0.8 VDDO. CML is the maximum common-mode voltage slew rate  
that can be sustained while maintaining VO < 0.8 V. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient  
magnitude is the range over which the common mode is slewed.  
8 Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in signal data rate. See Figure 8 through Figure 10 for information  
on per-channel supply current for unloaded and loaded conditions. See the Power Consumption section for guidance on calculating the per-channel supply current  
for a given data rate.  
Rev. D | Page 9 of 24  
ADuM3440/ADuM3441/ADuM3442  
Data Sheet  
PACKAGE CHARACTERISTICS  
Table 4.  
Parameter  
Symbol  
RI-O  
CI-O  
CI  
θJCI  
Min  
Typ  
1012  
2.2  
4.0  
33  
Max  
Unit  
pF  
pF  
°C/W  
Test Conditions  
Resistance (Input to Output)1  
Capacitance (Input to Output)1  
Input Capacitance2  
f = 1 MHz  
IC Junction-to-Case Thermal Resistance, Side 1  
Thermocouple located at  
center of package underside  
1 The device is considered a 2-terminal device; Pin 1 through Pin 8 are shorted together and Pin 9 through Pin 16 are shorted together.  
IC Junction-to-Case Thermal Resistance, Side 2  
θJCO  
28  
°C/W  
2 Input capacitance is from any input data pin to ground.  
REGULATORY INFORMATION  
The ADuM344x is approved by the organizations listed in Table 5. Refer to Table 10 and the Insulation Lifetime section for details  
regarding recommended maximum working voltages for specific cross-isolation waveforms and insulation levels.  
Table 5.  
UL  
CSA  
VDE  
Recognized under  
Approved under  
CSA Component Acceptance Notice #5A  
Certified according to  
1577 component recognition program1  
DIN V VDE V 0884-10 (VDE V 0884-10):2006-122  
Single protection,  
2500 V rms isolation voltage  
Basic insulation per CSA 60950-1-03 and  
IEC 60950-1, 800 V rms (1131 V peak)  
maximum working voltage  
Reinforced insulation, 560 V peak  
Reinforced insulation per CSA 60950-1-03  
and IEC 60950-1, 400 V rms (566 V peak)  
maximum working voltage  
File E214100  
File 205078  
File 2471900-4880-0001  
1 In accordance with UL 1577, each ADuM344x is proof tested by applying an insulation test voltage ≥3000 V rms for 1 sec (current leakage detection limit = 5 µA).  
2 In accordance with DIN V VDE V 0884-10, each ADuM344x is proof tested by applying an insulation test voltage ≥1050 V peak for 1 sec (partial discharge detection  
limit = 5 pC). An asterisk (*) marking branded on the component designates DIN V VDE V 0884-10 approval.  
INSULATION AND SAFETY-RELATED SPECIFICATIONS  
Table 6.  
Parameter  
Symbol Value  
Unit Conditions  
Rated Dielectric Insulation Voltage  
Minimum External Air Gap (Clearance)  
2500  
7.7 min  
V rms 1-minute duration  
mm Measured from input terminals to output terminals,  
shortest distance through air  
mm Measured from input terminals to output terminals,  
shortest distance path along body  
L(I01)  
L(I02)  
Minimum External Tracking (Creepage)  
Minimum Internal Gap (Internal Clearance)  
8.1 min  
0.017 min mm Insulation distance through insulation  
Tracking Resistance (Comparative Tracking Index) CTI  
Isolation Group  
>175  
IIIa  
V
DIN IEC 112/VDE 0303 Part 1  
Material Group (DIN VDE 0110, 1/89, Table 1)  
Rev. D | Page 10 of 24  
 
 
 
 
 
Data Sheet  
ADuM3440/ADuM3441/ADuM3442  
DIN V VDE V 0884-10 (VDE V 0884-10) INSULATION CHARACTERISTICS  
These isolators are suitable for reinforced electrical isolation only within the safety limit data. Maintenance of the safety data is ensured by  
protective circuits. The asterisk (*) marking on packages denotes DIN V VDE V 0884-10 approval.  
Table 7.  
Description  
Conditions  
Symbol  
Characteristic  
Unit  
Installation Classification per DIN VDE 0110  
For Rated Mains Voltage ≤ 150 V rms  
For Rated Mains Voltage ≤ 300 V rms  
For Rated Mains Voltage ≤ 400 V rms  
Climatic Classification  
Pollution Degree per DIN VDE 0110, Table 1  
Maximum Working Insulation Voltage  
Input-to-Output Test Voltage, Method B1  
I to IV  
I to III  
I to II  
40/105/21  
2
VIORM  
VPR  
560  
1050  
V peak  
V peak  
VIORM × 1.875 = VPR, 100% production test, tm = 1 sec,  
partial discharge < 5 pC  
Input-to-Output Test Voltage, Method A  
After Environmental Tests Subgroup 1  
After Input and/or Safety Test  
Subgroup 2 and Subgroup 3  
VIORM × 1.6 = VPR, tm = 60 sec, partial discharge < 5 pC VPR  
896  
672  
V peak  
V peak  
VIORM × 1.2 = VPR, tm = 60 sec, partial discharge < 5 pC  
Highest Allowable Overvoltage  
Safety-Limiting Values  
Transient overvoltage, tTR = 10 seconds  
Maximum value allowed in the event of a failure  
(see Figure 4)  
VTR  
4000  
V peak  
Case Temperature  
Side 1 Current  
Side 2 Current  
TS  
IS1  
IS2  
RS  
150  
265  
335  
>109  
°C  
mA  
mA  
Insulation Resistance at TS  
VIO = 500 V  
350  
300  
RECOMMENDED OPERATING CONDITIONS  
Table 8.  
Parameter  
Rating  
250  
SIDE #2  
Operating Temperature Range, TA  
Supply Voltage Range, VDD1, VDD2  
Input Signal Rise and Fall Time  
−40°C to +105°C  
3.0 V to 5.5 V  
1.0 ms  
1
200  
150  
1 All voltages are relative to their respective ground. See the DC Correctness  
and Magnetic Field Immunity section for information on immunity to external  
magnetic fields.  
SIDE #1  
100  
50  
0
0
50  
100  
150  
200  
CASE TEMPERATURE (°C)  
Figure 4. Thermal Derating Curve, Dependence of Safety-Limiting Values  
with Case Temperature per DIN V VDE V 0884-10  
Rev. D | Page 11 of 24  
 
 
 
 
ADuM3440/ADuM3441/ADuM3442  
ABSOLUTE MAXIMUM RATINGS  
Data Sheet  
Ambient temperature = 25°C, unless otherwise noted.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Table 9.  
Parameter  
Rating  
Storage Temperature Range (TST)  
−65°C to +150°C  
Ambient Operating Temperature Range (TA) −40°C to +105°C  
1
Supply Voltages (VDD1, VDD2  
)
−0.5 V to +7.0 V  
Input Voltage (VIA, VIB, VIC, VID, VE1, VE2)1, 2  
Output Voltage (VOA, VOB, VOC, VOD)1, 2  
Average Output Current per Pin3  
Side 1 (IO1)  
Side 2 (IO2)  
Common-Mode Transients (CMH, CML)4  
−0.5 V to VDD1 + 0.5 V  
−0.5 V to VDDO + 0.5 V  
ESD CAUTION  
−18 mA to +18 mA  
−22 mA to +22 mA  
−100 kV/µs to  
+100 kV/µs  
1 All voltages are relative to their respective ground.  
2 VDDI and VDDO refer to the supply voltages on the input and output sides of a  
given channel, respectively. See the PC Board Layout section.  
3 See Figure 4 for maximum rated current values for various temperatures.  
4 Refers to common-mode transients across the insulation barrier. Common-  
mode transients exceeding the Absolute Maximum Ratings can cause latch-  
up or permanent damage.  
Table 10. Maximum Continuous Working Voltage1  
Parameter  
Max  
Unit  
Constraint  
AC Voltage, Bipolar Waveform  
AC Voltage, Unipolar Waveform  
Basic Insulation  
Reinforced Insulation  
DC Voltage  
565  
V peak  
50-year minimum lifetime  
1131  
560  
V peak  
V peak  
Maximum approved working voltage per IEC 60950-1  
Maximum approved working voltage per IEC 60950-1 and VDE V 0884-10  
Basic Insulation  
Reinforced Insulation  
1131  
560  
V peak  
V peak  
Maximum approved working voltage per IEC 60950-1  
Maximum approved working voltage per IEC 60950-1 and VDE V 0884-10  
1 Refers to continuous voltage magnitude imposed across the isolation barrier. See the Insulation Lifetime section for more details.  
Table 11. Truth Table (Positive Logic)  
VIX Input1  
VEX Input2 VDDI State1 VDDO State1 VOX Output1 Notes  
H
L
X
X
X
X
H or NC  
H or NC  
L
H or NC  
L
X
Powered  
Powered  
Powered  
Unpowered Powered  
Unpowered Powered  
Powered  
Powered  
Powered  
H
L
Z
H
Z
Outputs return to the input state within 1 µs of VDDI power restoration.  
Powered  
Unpowered Indeterminate Outputs return to the input state within 1 µs of VDDO power  
restoration if VEX state is H or NC. Outputs return to high impedance  
state within 8 ns of VDDO power restoration if VEX state is L.  
1 VIX and VOX refer to the input and output signals of a given channel (A, B, C, or D). VEX refers to the output enable signal on the same side as the VOX outputs. VDDI and  
VDDO refer to the supply voltages on the input and output sides of the given channel, respectively.  
2 In noisy environments, connecting VEX to an external logic high or low is recommended.  
Rev. D | Page 12 of 24  
 
 
 
 
 
 
 
Data Sheet  
ADuM3440/ADuM3441/ADuM3442  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
V
1
2
3
4
5
6
7
8
16  
V
DD2  
DD1  
GND *  
15 GND *  
1
2
V
V
V
V
14  
13  
12  
11  
10  
9
V
V
V
V
V
IA  
IB  
IC  
ID  
OA  
OB  
OC  
OD  
E2  
ADuM3440  
TOP VIEW  
(Not to Scale)  
NC  
GND *  
GND *  
1
2
NC = NO CONNECT  
*PIN 2 AND PIN 8 ARE INTERNALLY CONNECTED AND CONNECTING BOTH TO  
GND IS RECOMMENDED. PIN 9 AND PIN 15 ARE INTERNALLY CONNECTED AND  
1
CONNECTING BOTH TO GND IS RECOMMENDED.  
2
Figure 5. ADuM3440 Pin Configuration  
Table 12. ADuM3440 Pin Function Descriptions  
Pin No. Mnemonic Description  
1
2, 8  
3
VDD1  
GND1  
VIA  
Supply Voltage for Isolator Side 1, 3.0 V to 5.5 V.  
Ground 1. Ground reference for Isolator Side 1.  
Logic Input A.  
4
VIB  
Logic Input B.  
5
VIC  
Logic Input C.  
6
VID  
Logic Input D.  
7
NC  
No Connect.  
9, 15  
10  
GND2  
VE2  
Ground 2. Ground reference for Isolator Side 2.  
Output Enable 2. Active high logic input. VOA, VOB, VOC, and VOD outputs are enabled when VE2 is high or disconnected.  
VOA, VOB, VOC, and VOD outputs are disabled when VE2 is low. In noisy environments, connecting VE2 to an external  
logic high or low is recommended.  
11  
12  
13  
14  
16  
VOD  
VOC  
VOB  
VOA  
VDD2  
Logic Output D.  
Logic Output C.  
Logic Output B.  
Logic Output A.  
Supply Voltage for Isolator Side 2, 3.0 V to 5.5 V.  
Rev. D | Page 13 of 24  
 
ADuM3440/ADuM3441/ADuM3442  
Data Sheet  
V
1
2
3
4
5
6
7
8
16  
V
DD2  
DD1  
GND *  
15 GND *  
1
2
V
V
V
14  
13  
12  
11  
10  
9
V
V
V
V
V
IA  
IB  
IC  
OA  
OB  
OC  
ID  
ADuM3441  
TOP VIEW  
(Not to Scale)  
V
OD  
V
E1  
E2  
GND *  
GND *  
1
2
*PIN 2 AND PIN 8 ARE INTERNALLY CONNECTED AND CONNECTING BOTH TO  
GND IS RECOMMENDED. PIN 9 AND PIN 15 ARE INTERNALLY CONNECTED AND  
1
CONNECTING BOTH TO GND IS RECOMMENDED.  
2
Figure 6. ADuM3441 Pin Configuration  
Table 13. ADuM3441 Pin Function Descriptions  
Pin No. Mnemonic Description  
1
2, 8  
3
VDD1  
GND1  
VIA  
Supply Voltage for Isolator Side 1, 3.0 V to 5.5 V.  
Ground 1. Ground reference for Isolator Side 1.  
Logic Input A.  
4
VIB  
Logic Input B.  
5
VIC  
Logic Input C.  
6
7
VOD  
VE1  
Logic Output D.  
Output Enable 1. Active high logic input. VOD output is enabled when VE1 is high or disconnected. VOD is disabled  
when VE1 is low. In noisy environments, connecting VE1 to an external logic high or low is recommended.  
9, 15  
10  
GND2  
VE2  
Ground 2. Ground reference for Isolator Side 2.  
Output Enable 2. Active high logic input. VOA, VOB, and VOC outputs are enabled when VE2 is high or disconnected. VOA,  
VOB, and VOC outputs are disabled when VE2 is low. In noisy environments, connecting VE2 to an external logic high or  
low is recommended.  
11  
12  
13  
14  
16  
VID  
Logic Input D.  
Logic Output C.  
Logic Output B.  
Logic Output A.  
VOC  
VOB  
VOA  
VDD2  
Supply Voltage for Isolator Side 1, 3.0 V to 5.5 V.  
Rev. D | Page 14 of 24  
Data Sheet  
ADuM3440/ADuM3441/ADuM3442  
V
1
2
3
4
5
6
7
8
16  
V
DD2  
DD1  
GND *  
15 GND *  
1
2
V
V
14  
13  
12  
11  
10  
9
V
V
V
V
V
IA  
OA  
OB  
IC  
ADuM3442  
IB  
TOP VIEW  
(Not to Scale)  
V
V
OC  
OD  
ID  
V
E1  
E2  
GND *  
GND *  
1
2
*PIN 2 AND PIN 8 ARE INTERNALLY CONNECTED AND CONNECTING BOTH TO  
GND IS RECOMMENDED. PIN 9 AND PIN 15 ARE INTERNALLY CONNECTED AND  
1
CONNECTING BOTH TO GND IS RECOMMENDED.  
2
Figure 7. ADuM3442 Pin Configuration  
Table 14. ADuM3442 Pin Function Descriptions  
Pin No. Mnemonic Function  
1
2, 8  
3
VDD1  
GND1  
VIA  
Supply Voltage for Isolator Side 1, 3.0 V to 5.5 V.  
Ground 1. Ground reference for Isolator Side 1.  
Logic Input A.  
4
VIB  
Logic Input B.  
5
6
7
VOC  
VOD  
VE1  
Logic Output C.  
Logic Output D.  
Output Enable 1. Active high logic input. VOC and VOD outputs are enabled when VE1 is high or disconnected. VOC and  
VOD outputs are disabled when VE1 is low. In noisy environments, connecting VE1 to an external logic high or low is  
recommended.  
9, 15  
10  
GND2  
VE2  
Ground 2. Ground reference for Isolator Side 2.  
Output Enable 2. Active high logic input. VOA and VOB outputs are enabled when VE2 is high or disconnected. VOA and  
V
OB outputs are disabled when VE2 is low. In noisy environments, connecting VE2 to an external logic high or low is  
recommended.  
11  
12  
13  
14  
16  
VID  
VIC  
VOB  
VOA  
VDD2  
Logic Input D.  
Logic Input C.  
Logic Output B.  
Logic Output A.  
Supply Voltage for Isolator Side 2, 3.0 V to 5.5 V.  
Rev. D | Page 15 of 24  
ADuM3440/ADuM3441/ADuM3442  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
35  
30  
25  
140  
120  
100  
80  
20  
5V  
5V  
15  
10  
60  
40  
3.3V  
3.3V  
5
20  
0
0
0
50  
100  
150  
0
50  
100  
150  
DATA RATE (Mbps)  
DATA RATE (Mbps)  
Figure 8. Typical Input Supply Current per Channel vs. Data Rate  
for 5 V and 3.3 V Operation  
Figure 11. Typical ADuM3440 VDD1 Supply Current vs. Data Rate  
for 5 V and 3.3 V Operation  
14  
12  
10  
50  
45  
40  
35  
30  
8
5V  
5V  
25  
6
20  
15  
4
3.3V  
3.3V  
10  
2
5
0
0
0
50  
100  
150  
0
50  
100  
150  
DATA RATE (Mbps)  
DATA RATE (Mbps)  
Figure 9. Typical Output Supply Current per Channel vs. Data Rate  
for 5 V and 3.3 V Operation (No Output Load)  
Figure 12. Typical ADuM3440 VDD2 Supply Current vs. Data Rate  
for 5 V and 3.3 V Operation  
20  
18  
16  
14  
12  
120  
100  
80  
5V  
10  
60  
5V  
8
40  
6
3.3V  
3.3V  
4
20  
2
0
0
0
50  
100  
150  
0
50  
100  
150  
DATA RATE (Mbps)  
DATA RATE (Mbps)  
Figure 10. Typical Output Supply Current per Channel vs. Data Rate  
for 5 V and 3.3 V Operation (15 pF Output Load)  
Figure 13. Typical ADuM3441 VDD1 Supply Current vs. Data Rate  
for 5 V and 3.3 V Operation  
Rev. D | Page 16 of 24  
 
 
 
 
 
Data Sheet  
ADuM3440/ADuM3441/ADuM3442  
70  
60  
50  
40  
30  
20  
10  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
5V  
5V  
3.3V  
3.3V  
0
0
50  
100  
150  
0
50  
100  
150  
DATA RATE (Mbps)  
DATA RATE (Mbps)  
Figure 14. Typical ADuM3441 VDD2 Supply Current vs. Data Rate  
for 5 V and 3.3 V Operation  
Figure 15. Typical ADuM3442 VDD1 or VDD2 Supply Current vs.Data Rate  
for 5 V and 3.3 V Operation  
Rev. D | Page 17 of 24  
 
ADuM3440/ADuM3441/ADuM3442  
Data Sheet  
APPLICATIONS INFORMATION  
SYSTEM-LEVEL ESD CONSIDERATIONS AND  
ENHANCEMENTS  
PC BOARD LAYOUT  
The ADuM344x digital isolator requires no external interface  
circuitry for the logic interfaces. Power supply bypassing is  
strongly recommended at the input and output supply pins (see  
Figure 16). Bypass capacitors are most conveniently connected  
between Pin 1 and Pin 2 for VDD1 and between Pin 15 and Pin 16  
for VDD2. The capacitor value should be between 0.01 μF and 0.1 μF.  
The total lead length between both ends of the capacitor and  
the input power supply pin should not exceed 20 mm. Bypassing  
between Pin 1 and Pin 8 and between Pin 9 and Pin 16 should  
be considered unless the ground pair on each package side is  
connected close to the package.  
System-level ESD reliability (for example, per IEC 61000-4-x)  
is highly dependent on system design, which varies widely by  
application. The ADuM344x incorporate many enhancements  
to make ESD reliability less dependent on system design. The  
enhancements include the following:  
ESD protection cells added to all input/output interfaces.  
Key metal trace resistances reduced using wider geometry  
and paralleling of lines with vias.  
The SCR effect inherent in CMOS devices is minimized by  
the use of guarding and isolation techniques between  
PMOS and NMOS devices.  
V
V
DD1  
DD2  
GND  
GND  
1
IA  
IB  
2
V
V
V
V
V
V
V
OA  
OB  
Areas of high electric field concentration eliminated using  
45° corners on metal traces.  
V
V
IC/OC  
ID/OD  
OC/IC  
OD/ID  
E2  
V
E1  
GND  
GND  
Supply pin overvoltage prevented with larger ESD clamps  
between each supply pin and its respective ground.  
1
2
Figure 16. Recommended Printed Circuit Board Layout  
While the ADuM344x improve system-level ESD reliability,  
they are no substitute for a robust system-level design. See the  
AN-793 application note, ESD/Latch-Up Considerations with  
iCoupler Isolation Products for detailed recommendations on  
board layout and system-level design.  
In applications involving high common-mode transients, care  
should be taken to ensure that board coupling across the isolation  
barrier is minimized. Furthermore, the board layout should be  
designed such that any coupling that does occur equally affects  
all pins on a given component side. Failure to ensure this could  
cause voltage differentials between pins exceeding the devices  
absolute maximum ratings, thereby leading to latch-up or  
permanent damage.  
DC CORRECTNESS AND MAGNETIC FIELD IMMUNITY  
Positive and negative logic transitions at the isolator input cause  
narrow (~1 ns) pulses to be sent to the decoder via the transformer.  
The decoder is bistable and is, therefore, either set or reset by  
the pulses, indicating input logic transitions. In the absence of  
logic transitions at the input for more than ~1 μs, a periodic set  
of refresh pulses indicative of the correct input state are sent to  
ensure dc correctness at the output. If the decoder receives no  
internal pulses of more than about 5 μs, the input side is assumed  
unpowered or nonfunctional, in which case the isolator output  
is forced to a default state (see the Absolute Maximum Ratings  
section) by the watchdog timer circuit.  
See the AN-1109 Application Note for board layout guidelines.  
PROPAGATION DELAY-RELATED PARAMETERS  
Propagation delay is a parameter that describes the time it takes  
a logic signal to propagate through a component. The propagation  
delay to a logic low output may differ from the propagation  
delay to a logic high.  
INPUT (V  
)
50%  
Ix  
tPLH  
tPHL  
The limitation on the magnetic field immunity of the ADuM344x  
is set by the condition in which induced voltage in the receiving  
coil of the transformer is sufficiently large to either falsely set or  
reset the decoder. The following analysis defines the conditions  
under which this can occur. The 3 V operating condition of the  
ADuM344x is examined because it represents the most susceptible  
mode of operation.  
OUTPUT (V  
)
50%  
Ox  
Figure 17. Propagation Delay Parameters  
Pulse width distortion is the maximum difference between  
these two propagation delay values and is an indication of how  
accurately the input signals timing is preserved.  
Channel-to-channel matching refers to the maximum amount  
the propagation delay differs between channels within a single  
ADuM344x component.  
The pulses at the transformer output have an amplitude greater  
than 1.0 V. The decoder has a sensing threshold at about 0.5 V,  
thus establishing a 0.5 V margin in which induced voltages can  
be tolerated.  
Propagation delay skew refers to the maximum amount the  
propagation delay differs between multiple ADuM344x  
components operating under the same conditions.  
Rev. D | Page 18 of 24  
 
 
 
 
 
 
Data Sheet  
ADuM3440/ADuM3441/ADuM3442  
1000  
100  
The voltage induced across the receiving coil is given by  
DISTANCE = 1m  
2
V = (−dβ/dt)∑ πrn ; n = 1, 2, … , N  
where:  
β is magnetic flux density (gauss).  
N is the number of turns in the receiving coil.  
rn is the radius of the nth turn in the receiving coil (cm).  
10  
1
DISTANCE = 100mm  
DISTANCE = 5mm  
Given the geometry of the receiving coil in the ADuM344x and  
an imposed requirement that the induced voltage be at most  
50% of the 0.5 V margin at the decoder, a maximum allowable  
magnetic field is calculated as shown in Figure 18.  
100  
0.1  
0.01  
1k  
10k  
100k  
1M  
10M  
100M  
MAGNETIC FIELD FREQUENCY (Hz)  
10  
1
Figure 19. Maximum Allowable Current  
for Various Current-to-ADuM344x Spacings  
Note that at combinations of strong magnetic field and high  
frequency, any loops formed by printed circuit board traces  
could induce error voltages sufficiently large enough to trigger  
the thresholds of succeeding circuitry. Care should be taken in  
the layout of such traces to avoid this possibility.  
0.1  
0.01  
0.001  
POWER CONSUMPTION  
The supply current at a given channel of the ADuM344x  
isolator is a function of the supply voltage, the channels data  
rate, and the channels output load.  
1k  
10k  
100k  
1M  
10M  
100M  
MAGNETIC FIELD FREQUENCY (Hz)  
Figure 18. Maximum Allowable External Magnetic Flux Density  
For each input channel, the supply current is given by  
For example, at a magnetic field frequency of 1 MHz, the  
maximum allowable magnetic field of 0.2 kgauss induces a  
voltage of 0.25 V at the receiving coil. This is about 50% of the  
sensing threshold and does not cause a faulty output transition.  
Similarly, if such an event were to occur during a transmitted  
pulse (and was of the worst-case polarity), it would reduce the  
received pulse from >1.0 V to 0.75 V—still well above the 0.5 V  
sensing threshold of the decoder.  
I
DDI = IDDI (Q)  
f ≤ 0.5 fr  
f > 0.5 fr  
IDDI = IDDI (D) × (2f fr) + IDDI (Q)  
For each output channel, the supply current is given by  
DDO = IDDO (Q) f ≤ 0.5 fr  
DDO = (IDDO (D) + (0.5 × 10−3) × CL × VDDO) × (2f − fr) + IDDO (Q)  
f > 0.5 fr  
I
I
The preceding magnetic flux density values correspond to  
specific current magnitudes at given distances from the  
ADuM344x transformers. Figure 19 expresses these allowable  
current magnitudes as a function of frequency for selected  
distances. As shown, the ADuM344x is extremely immune  
and can be affected only by extremely large currents operated  
at high frequency very close to the component. For the 1 MHz  
example noted, one would have to place a 0.5 kA current 5 mm  
away from the ADuM344x to affect the components operation.  
where:  
DDI (D), IDDO (D) are the input and output dynamic supply currents  
per channel (mA/Mbps).  
I
CL is the output load capacitance (pF).  
VDDO is the output supply voltage (V).  
f is the input logic signal frequency (MHz); it is half of the input  
data rate expressed in units of Mbps.  
fr is the input stage refresh rate (Mbps).  
IDDI (Q), IDDO (Q) are the specified input and output quiescent  
supply currents (mA).  
To calculate the total VDD1 and VDD2 supply current, the supply  
currents for each input and output channel corresponding to  
V
DD1 and VDD2 are calculated and totaled. Figure 8 and Figure 9  
provide per-channel supply currents as a function of data rate  
for an unloaded output condition. Figure 10 provides per-  
channel supply current as a function of data rate for a 15 pF  
output condition. Figure 11 through Figure 15 provide total  
VDD1 and VDD2 supply current as a function of data rate for  
ADuM3440/ADuM3441/ADuM3442 channel configurations.  
Rev. D | Page 19 of 24  
 
 
 
ADuM3440/ADuM3441/ADuM3442  
Data Sheet  
In the case of unipolar ac or dc voltage, the stress on the insulation  
is significantly lower, which allows operation at higher working  
voltages while still achieving a 50-year service life. The working  
voltages listed in Table 10 can be applied while maintaining the  
50-year minimum lifetime provided the voltage conforms to  
either the unipolar ac or dc voltage cases. Any cross insulation  
voltage waveform that does not conform to Figure 21 or Figure 22  
should be treated as a bipolar ac waveform and its peak voltage  
should be limited to the 50-year lifetime voltage value listed in  
Table 10.  
INSULATION LIFETIME  
All insulation structures eventually break down when subjected  
to voltage stress over a sufficiently long period. The rate of  
insulation degradation is dependent on the characteristics of  
the voltage waveform applied across the insulation. In addition  
to the testing performed by the regulatory agencies, Analog  
Devices carries out an extensive set of evaluations to determine  
the lifetime of the insulation structure within the ADuM344x.  
Analog Devices performs accelerated life testing using voltage levels  
higher than the rated continuous working voltage. Acceleration  
factors for several operating conditions are determined. These  
factors allow calculation of the time to failure at the actual working  
voltage. The values shown in Figure 20 summarize the peak voltage  
for 50 years of service life for a bipolar ac operating condition, and  
the maximum CSA/VDE approved working voltages. In many  
cases, the approved working voltage is higher than the 50-year  
service life voltage. Operation at these high working voltages  
can lead to shortened insulation life in some cases.  
Note that the voltage presented in Figure 21 is shown as sinusoidal  
for illustration purposes only. It is meant to represent any voltage  
waveform varying between 0 V and some limiting value. The  
limiting value can be positive or negative, but the voltage cannot  
cross 0 V.  
RATED PEAK VOLTAGE  
0V  
Figure 20. Bipolar AC Waveform  
The insulation lifetime of the ADuM344x depends on the  
voltage waveform type imposed across the isolation barrier.  
The iCoupler insulation structure degrades at different rates  
depending on whether the waveform is bipolar ac, unipolar ac,  
or dc. Figure 20, Figure 21, and Figure 22 illustrate these  
different isolation voltage waveforms.  
RATED PEAK VOLTAGE  
0V  
Figure 21. Unipolar AC Waveform  
Bipolar ac voltage is the most stringent environment. The goal  
of a 50-year operating lifetime under the ac bipolar condition  
determines the maximum working voltage recommended by  
Analog Devices.  
RATED PEAK VOLTAGE  
0V  
Figure 22. DC Waveform  
Rev. D | Page 20 of 24  
 
 
 
 
Data Sheet  
ADuM3440/ADuM3441/ADuM3442  
OUTLINE DIMENSIONS  
10.50 (0.4134)  
10.10 (0.3976)  
16  
1
9
8
7.60 (0.2992)  
7.40 (0.2913)  
10.65 (0.4193)  
10.00 (0.3937)  
0.75 (0.0295)  
45°  
1.27 (0.0500)  
BSC  
2.65 (0.1043)  
0.25 (0.0098)  
2.35 (0.0925)  
0.30 (0.0118)  
0.10 (0.0039)  
8°  
0°  
COPLANARITY  
0.10  
SEATING  
PLANE  
0.51 (0.0201)  
0.31 (0.0122)  
1.27 (0.0500)  
0.40 (0.0157)  
0.33 (0.0130)  
0.20 (0.0079)  
COMPLIANT TO JEDEC STANDARDS MS-013-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 23. 16-Lead Standard Small Outline Package [SOIC_W]  
Wide Body (RW-16)  
Dimensions shown in millimeters and (inches)  
ORDERING GUIDE  
Number of Number of Maximum Maximum  
Maximum  
Data Rate Propagation Pulse Width  
Inputs,  
VDD1 Side  
Inputs,  
VDD2 Side  
Temperature  
Package  
Description  
Package  
Option  
Model1, 2  
(Mbps)  
Delay, 5 V (ns) Distortion (ns) Range  
ADuM3440CRWZ  
ADuM3441CRWZ  
ADuM3442CRWZ  
4
3
2
0
1
2
150  
150  
150  
32  
32  
32  
2
2
2
−40°C to +105°C 16-Lead SOIC_W RW-16  
−40°C to +105°C 16-Lead SOIC_W RW-16  
−40°C to +105°C 16-Lead SOIC_W RW-16  
1 Z = RoHS Compliant Part.  
2 Tape and reel are available. The addition of an -RL suffix designates a 13” (1,000 units) tape-and-reel option.  
Rev. D | Page 21 of 24  
 
 
 
ADuM3440/ADuM3441/ADuM3442  
NOTES  
Data Sheet  
Rev. D | Page 22 of 24  
Data Sheet  
NOTES  
ADuM3440/ADuM3441/ADuM3442  
Rev. D | Page 23 of 24  
ADuM3440/ADuM3441/ADuM3442  
NOTES  
Data Sheet  
©2007–2012 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06837-0-2/12(D)  
Rev. D | Page 24 of 24  

相关型号:

ADUM3441CRWZ-RL

Quad Channel, High Speed Digital Isolators
ADI

ADUM3441_15

Quad Channel, High Speed Digital Isolators
ADI

ADUM3442

Quad Channel, High Speed Digital Isolators
ADI

ADUM3442CRWZ

Quad Channel, High Speed Digital Isolators
ADI

ADUM3442_15

Quad Channel, High Speed Digital Isolators
ADI

ADUM344X

Digital Isolator Product Selection and Resource Guide
ADI

ADUM3470

PWM Controller and Transformer Driver with Quad-Channel Isolators
ADI

ADUM3470ARSZ

PWM Controller and Transformer Driver with Quad-Channel Isolators
ADI

ADUM3470CRSZ

PWM Controller and Transformer Driver with Quad-Channel Isolators
ADI

ADUM3470CRSZ-RL7

Isolated Switching Regulators (4/0 Channel Directionality)
ADI

ADUM3471

PWM Controller and Transformer Driver with Quad-Channel Isolators
ADI

ADUM3471ARSZ

PWM Controller and Transformer Driver with Quad-Channel Isolators
ADI