ADUM3470CRSZ-RL7 [ADI]

Isolated Switching Regulators (4/0 Channel Directionality);
ADUM3470CRSZ-RL7
型号: ADUM3470CRSZ-RL7
厂家: ADI    ADI
描述:

Isolated Switching Regulators (4/0 Channel Directionality)

光电二极管 接口集成电路
文件: 总36页 (文件大小:822K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PWM Controller and Transformer  
Driver with Quad-Channel Isolators  
ADuM3470/ADuM3471/ADuM3472/ADuM3473/ADuM3474  
Data Sheet  
FEATURES  
FUNCTIONAL BLOCK DIAGRAMS  
T1  
Isolated PWM controller  
VISO  
RECT  
VDD1  
Integrated transformer driver  
Regulated adjustable output: 3.3 V to 24 V  
2 W output power  
70% efficiency at guaranteed load of 400 mA at 5.0 V output  
Quad dc-to-25 Mbps (NRZ) signal isolation channels  
20-lead SSOP package  
V
REG  
X1  
X2  
ADuM3470/ADuM3471/  
ADuM3472/ADuM3473/  
ADuM3474  
V
DD2  
VDDA  
DRIVER  
REG  
5V  
FB  
PRIMARY  
CONVERTER  
SECONDARY  
CONTROLLER  
FB  
OC  
High temperature operation: 105°C maximum  
High common-mode transient immunity: >25 kV/µs  
200 kHz to 1 MHz adjustable oscillator frequency  
Soft start function at power-up  
Pulse-by-pulse overcurrent protection  
Thermal shutdown  
CH A  
CH B  
CH C  
CH D  
VIA/VOA  
VIB/VOB  
VIC/VOC  
VID/VOD  
VIA/VOA  
VIB/VOB  
VIC/VOC  
VID/VOD  
PRIMARY  
DATA  
I/O  
SECONDARY  
DATA  
I/O  
4CH  
4CH  
Safety and regulatory approvals  
GND1  
GND2  
UL recognition: 2500 V rms for 1 minute per UL 1577  
CSA Component Acceptance Notice #5A  
VDE certificate of conformity  
Figure 1. Functional Block Diagram  
ADuM3470  
ADuM3471  
DIN V VDE V 0884-10 (VDE V 0884-10):2006-12  
V
IORM = 560 V peak  
Qualified for automotive applications  
APPLICATIONS  
RS-232/RS-422/RS-485 transceivers  
Industrial field bus isolation  
Power supply start-up bias and gate drives  
Isolated sensor interfaces  
Process controls  
ADuM3472  
Automotive  
GENERAL DESCRIPTION  
The ADuM3470/ADuM3471/ADuM3472/ADuM3473/  
ADuM3474 devices1 are quad-channel digital isolators with an  
integrated PWM controller and transformer driver for an isolated  
dc-to-dc converter. Based on the Analog Devices, Inc., iCoupler®  
technology, the dc-to-dc converter provides up to 2 W of regulated,  
isolated power at 3.3 V to 24 V from a 5.0 V input supply or from  
a 3.3 V supply. This eliminates the need for a separate, isolated  
dc-to-dc converter in 2 W isolated designs. The iCoupler chip scale  
transformer technology is used to isolate the logic signals, and the  
integrated transformer driver with isolated secondary side control  
provides higher efficiency for the isolated dc-to-dc converter. The  
result is a small form factor, total isolation solution. The ADuM347x  
isolators provide four independent isolation channels in a variety of  
channel configurations and data rates (see the Ordering Guide).  
ADuM3473  
ADuM3474  
Figure 2. Block Diagrams of I/O Channels  
1 Protected by U.S. Patents 5,952,849; 6,873,065; and 7,075,329. Other patents pending.  
Rev. B  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2010–2014 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
ADuM3470/ADuM3471/ADuM3472/ADuM3473/ADuM3474  
TABLE OF CONTENTS  
Data Sheet  
Features .............................................................................................. 1  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagrams............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Typical Performance Characteristics ........................................... 19  
Terminology.................................................................................... 24  
Applications Information.............................................................. 25  
Application Schematics ............................................................. 25  
Transformer Design ................................................................... 26  
Transformer Turns Ratio........................................................... 26  
Transformer ET Constant ......................................................... 27  
Transformer Primary Inductance and Resistance ................. 27  
Transformer Isolation Voltage.................................................. 27  
Switching Frequency.................................................................. 27  
Transient Response .................................................................... 27  
Component Selection ................................................................ 27  
Printed Circuit Board (PCB) Layout ....................................... 28  
Thermal Analysis ....................................................................... 28  
Propagation Delay-Related Parameters................................... 28  
DC Correctness and Magnetic Field Immunity..................... 29  
Power Consumption .................................................................. 30  
Power Considerations................................................................ 30  
Insulation Lifetime..................................................................... 31  
Outline Dimensions....................................................................... 32  
Ordering Guide .......................................................................... 33  
Automotive Products................................................................. 33  
Electrical Characteristics—5 V Primary Input Supply/  
5 V Secondary Isolated Supply ................................................... 3  
Electrical Characteristics—3.3 V Primary Input Supply/  
3.3 V Secondary Isolated Supply ................................................ 5  
Electrical Characteristics—5 V Primary Input Supply/  
3.3 V Secondary Isolated Supply ................................................ 7  
Electrical Characteristics—5 V Primary Input Supply/  
15 V Secondary Isolated Supply ................................................. 9  
Package Characteristics ............................................................. 11  
Regulatory Approvals................................................................. 11  
Insulation and Safety-Related Specifications.......................... 11  
DIN V VDE V 0884-10 (VDE V 0884-10):2006-12  
Insulation Characteristics.......................................................... 12  
Recommended Operating Conditions .................................... 12  
Absolute Maximum Ratings.......................................................... 13  
ESD Caution................................................................................ 13  
Pin Configurations and Function Descriptions ......................... 14  
REVISION HISTORY  
5/14—Rev. A to Rev. B  
Change to Table 4 ............................................................................. 9  
Changes to Figure 6 and Table 14................................................. 16  
Changes to Figure 7 and Table 15................................................. 17  
Changes to Figure 8, Table 16, and Table 17............................... 18  
Change to Figure 9 ......................................................................... 19  
Changes to Terminology Section ................................................. 24  
Changes to Applications Information Section, Application  
Schematics Section, Figure 38, Figure 39, and Figure 40.......... 25  
Changes to Transformer Turns Ratio Section ............................ 26  
Changes to Transformer ET Constant Section,  
Transient Response Section, and Table 19 .................................. 27  
Changes to Figure 41...................................................................... 28  
Changes to Power Consumption Section and Figure 45........... 30  
Changes to Insulation Lifetime Section and Figure 48 ............. 31  
Changes to Ordering Guide.......................................................... 33  
Added Automotive Products Section .......................................... 33  
7/13—Rev. 0 to Rev. A  
Changed VDD1 Pin to NC Pin ....................................... Throughout  
Changes to Features Section, Applications Section,  
General Description Section, and Figure 1................................... 1  
Created Hyperlink for Safety and Regulatory Approvals  
Entry in Features Section................................................................. 1  
Changes to Table 1............................................................................ 3  
Changes to Table 2............................................................................ 5  
Changes to Table 3............................................................................ 7  
Changes to Table 4............................................................................ 9  
Changes to Regulatory Approvals Section.................................. 11  
Changes to Figure 3 and Table 9................................................... 12  
Changes to Figure 4 and Table 12................................................. 14  
Changes to Figure 5 and Table 13................................................. 15  
10/10—Revision 0: Initial Version  
Rev. B | Page 2 of 36  
 
Data Sheet  
ADuM3470/ADuM3471/ADuM3472/ADuM3473/ADuM3474  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS—5 V PRIMARY INPUT SUPPLY/5 V SECONDARY ISOLATED SUPPLY  
4.5 V ≤ VDD1 = VDDA ≤ 5.5 V; VDD2 = VREG = VISO = 5.0 V; fSW = 500 kHz; all voltages are relative to their respective grounds (see the  
application schematic in Figure 38). All minimum/maximum specifications apply over the entire recommended operating range, unless  
otherwise noted. All typical specifications are at TA = 25°C, VDD1 = VDDA = 5.0 V, VDD2 = VREG = VISO = 5.0 V.  
Table 1.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
DC-TO-DC CONVERTER POWER SUPPLY  
Isolated Output Voltage  
Feedback Voltage Setpoint  
Line Regulation  
Load Regulation  
Output Ripple  
VISO  
VFB  
VISO (LINE)  
VISO (LOAD)  
VISO (RIP)  
4.5  
1.125  
5.0  
1.25  
1
1
50  
5.5  
1.375  
10  
V
V
IISO = 0 mA, VISO = VFB × (R1 + R2)/R2  
IISO = 0 mA  
IISO = 50 mA, VDD1 = 4.5 V to 5.5 V  
IISO = 50 mA to 200 mA  
mV/V  
%
mV p-p  
2
20 MHz bandwidth,  
COUT = 0.1 µF||47 µF, IISO = 100 mA  
Output Noise  
VISO (N)  
fSW  
100  
mV p-p  
20 MHz bandwidth,  
COUT = 0.1 µF||47 µF, IISO = 100 mA  
ROC = 50 kΩ  
ROC = 270 kΩ  
Switching Frequency  
1000  
200  
318  
0.5  
kHz  
kHz  
kHz  
192  
515  
VOC = VDD2 (open loop)  
Switch On Resistance  
RON  
Undervoltage Lockout, VDD1, VDD2  
Supplies  
Positive Going Threshold  
Negative Going Threshold  
Hysteresis  
VUV+  
VUV−  
VUVH  
2.8  
2.6  
0.2  
V
V
V
DC to 2 Mbps Data Rate1  
Maximum Output Supply Current2  
Efficiency at Maximum Output  
Supply Current3  
f ≤ 1 MHz  
VISO = 5.0 V  
IISO = IISO (MAX)  
IISO (MAX)  
400  
mA  
%
70  
iCOUPLER DATA CHANNELS  
DC to 2 Mbps Data Rate1  
IDD1 Supply Current, No VISO Load  
ADuM3470  
IDD1 (Q)  
IISO = 0 mA, f ≤ 1 MHz  
14  
15  
16  
17  
18  
30  
30  
30  
30  
30  
mA  
mA  
mA  
mA  
mA  
ADuM3471  
ADuM3472  
ADuM3473  
ADuM3474  
25 Mbps Data Rate (C Grade Only)  
IDD1 Supply Current, No VISO Load  
ADuM3470  
IDD1 (D)  
IISO = 0 mA, CL = 15 pF, f = 12.5 MHz  
44  
46  
48  
50  
52  
mA  
mA  
mA  
mA  
mA  
ADuM3471  
ADuM3472  
ADuM3473  
ADuM3474  
Available VISO Supply Current4  
IISO (LOAD)  
CL = 15 pF, f = 12.5 MHz  
ADuM3470  
ADuM3471  
ADuM3472  
ADuM3473  
ADuM3474  
IDD1 Supply Current, Full VISO Load  
390  
388  
386  
384  
382  
550  
mA  
mA  
mA  
mA  
mA  
mA  
IDD1 (MAX)  
CL = 0 pF, f = 0 MHz, VDD1 = 5 V,  
IISO = 400 mA  
Rev. B | Page 3 of 36  
 
 
ADuM3470/ADuM3471/ADuM3472/ADuM3473/ADuM3474  
Data Sheet  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
µA  
V
V
V
Test Conditions/Comments  
I/O Input Currents  
IIA, IIB, IIC, IID −20  
VIH  
VIL  
VOAH, VOBH  
+0.01  
+20  
Logic High Input Threshold  
Logic Low Input Threshold  
Logic High Output Voltages  
2.0  
0.8  
,
V
DD1 − 0.3, 5.0  
IOx = −20 µA, VIx = VIxH  
Ox = −4 mA, VIx = VIxH  
VOCH, VODH  
VISO − 0.3  
VDD1 − 0.5, 4.8  
V
V
V
I
V
ISO − 0.5  
Logic Low Output Voltages  
VOAL, VOBL  
VOCL, VODL  
,
0.0  
0.0  
0.1  
0.4  
IOx = 20 µA, VIx = VIxL  
IOx = 4 mA, VIx = VIxL  
AC SPECIFICATIONS  
A Grade  
CL = 15 pF, CMOS signal levels  
Minimum Pulse Width  
Maximum Data Rate  
Propagation Delay  
Pulse Width Distortion, |tPLH − tPHL  
Propagation Delay Skew  
Channel-to-Channel Matching  
C Grade  
PW  
1000  
ns  
Mbps  
ns  
ns  
ns  
1
tPHL, tPLH  
PWD  
tPSK  
55  
100  
40  
50  
|
tPSKCD/tPSKOD  
50  
ns  
CL = 15 pF, CMOS signal levels  
Minimum Pulse Width  
Maximum Data Rate  
Propagation Delay  
PW  
40  
ns  
Mbps  
ns  
ns  
ps/°C  
ns  
25  
30  
tPHL, tPLH  
PWD  
45  
5
60  
8
Pulse Width Distortion, |tPLH − tPHL  
Change vs. Temperature  
Propagation Delay Skew  
Channel-to-Channel Matching  
Codirectional Channels  
Opposing Directional Channels  
Output Rise/Fall Time (10% to 90%)  
Common-Mode Transient Immunity  
|
tPSK  
15  
tPSKCD  
tPSKOD  
tR/tF  
8
15  
ns  
ns  
ns  
2.5  
CL = 15 pF, CMOS signal levels  
VCM = 1000 V, transient  
magnitude = 800 V  
At Logic High Output  
At Logic Low Output  
Refresh Rate  
|CMH|  
|CML|  
fr  
25  
25  
35  
35  
1.0  
kV/µs  
kV/µs  
Mbps  
VIx = VDD1 or VISO  
VIx = 0 V  
1 The contributions of supply current values for all four channels are combined at identical data rates.  
2 The VISO supply current is available for external use when all data rates are below 2 Mbps. At data rates above 2 Mbps, the data I/O channels draw additional current  
proportional to the data rate. Additional supply current associated with an individual channel operating at a given data rate can be calculated as described in the  
Power Consumption section. The dynamic I/O channel load must be treated as an external load and included in the VISO power budget.  
3 The power demands of the quiescent operation of the data channels is not separated from the power supply section. Efficiency includes the quiescent power  
consumed by the I/O channels as part of the internal power consumption.  
4 This current is available for driving external loads at the VISO output. All channels are simultaneously driven at a maximum data rate of 25 Mbps with full capacitive load  
representing the maximum dynamic load conditions. Refer to the Power Consumption section for calculation of the available current at less than the maximum data rate.  
Rev. B | Page 4 of 36  
 
 
Data Sheet  
ADuM3470/ADuM3471/ADuM3472/ADuM3473/ADuM3474  
ELECTRICAL CHARACTERISTICS—3.3 V PRIMARY INPUT SUPPLY/3.3 V SECONDARY ISOLATED SUPPLY  
3.0 V ≤ VDD1 = VDDA ≤ 3.6 V; VDD2 = VREG = VISO = 3.3 V; fSW = 500 kHz; all voltages are relative to their respective grounds (see the  
application schematic in Figure 38). All minimum/maximum specifications apply over the entire recommended operating range, unless  
otherwise noted. All typical specifications are at TA = 25°C, VDD1 = VDDA = 3.3 V, VDD2 = VREG = VISO = 3.3 V.  
Table 2.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
DC-TO-DC CONVERTER POWER SUPPLY  
Isolated Output Voltage  
Feedback Voltage Setpoint  
Line Regulation  
Load Regulation  
Output Ripple  
VISO  
VFB  
VISO (LINE)  
VISO (LOAD)  
VISO (RIP)  
3.0  
1.125  
3.3  
1.25  
1
1
50  
3.6  
1.375  
10  
V
V
IISO = 0 mA, VISO = VFB × (R1 + R2)/R2  
IISO = 0 mA  
IISO = 50 mA, VDD1 = 3.0 V to 3.6 V  
IISO = 20 mA to 100 mA  
mV/V  
%
mV p-p  
2
20 MHz bandwidth,  
COUT = 0.1 µF||47 µF, IISO = 100 mA  
Output Noise  
VISO (N)  
fSW  
100  
mV p-p  
20 MHz bandwidth,  
COUT = 0.1 µF||47 µF, IISO = 100 mA  
ROC = 50 kΩ  
ROC = 270 kΩ  
Switching Frequency  
1000  
200  
318  
0.6  
kHz  
kHz  
kHz  
192  
515  
VOC = VDD2 (open loop)  
Switch On Resistance  
RON  
Undervoltage Lockout, VDD1, VDD2  
Supplies  
Positive Going Threshold  
Negative Going Threshold  
Hysteresis  
VUV+  
VUV−  
VUVH  
2.8  
2.6  
0.2  
V
V
V
DC to 2 Mbps Data Rate1  
Maximum Output Supply Current2  
Efficiency at Maximum Output  
Supply Current3  
f ≤ 1 MHz,  
VISO = 3.3 V  
IISO = IISO (MAX)  
IISO (MAX)  
250  
mA  
%
70  
iCOUPLER DATA CHANNELS  
DC to 2 Mbps Data Rate1  
IDD1 Supply Current, No VISO Load  
ADuM3470  
IDD1 (Q)  
IISO = 0 mA, f ≤ 1 MHz  
9
20  
20  
20  
20  
20  
mA  
mA  
mA  
mA  
mA  
ADuM3471  
ADuM3472  
ADuM3473  
ADuM3474  
10  
11  
11  
12  
25 Mbps Data Rate (C Grade Only)  
IDD1 Supply Current, No VISO Load  
ADuM3470  
IDD1 (D)  
IISO = 0 mA, CL = 15 pF, f = 12.5 MHz  
28  
29  
31  
32  
34  
mA  
mA  
mA  
mA  
mA  
ADuM3471  
ADuM3472  
ADuM3473  
ADuM3474  
Available VISO Supply Current4  
IISO (LOAD)  
CL = 15 pF, f = 12.5 MHz  
ADuM3470  
ADuM3471  
ADuM3472  
ADuM3473  
ADuM3474  
IDD1 Supply Current, Full VISO Load  
244  
243  
241  
240  
238  
350  
mA  
mA  
mA  
mA  
mA  
mA  
IDD1 (MAX)  
IIA, IIB, IIC, IID −10  
CL = 0 pF, f = 0 MHz, VDD1 = 3.3 V,  
IISO = 250 mA  
I/O Input Currents  
+0.01  
+10  
µA  
Rev. B | Page 5 of 36  
 
ADuM3470/ADuM3471/ADuM3472/ADuM3473/ADuM3474  
Data Sheet  
Parameter  
Symbol  
VIH  
VIL  
VOAH, VOBH  
VOCH, VODH  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
Logic High Input Threshold  
Logic Low Input Threshold  
Logic High Output Voltages  
1.6  
V
V
V
0.4  
,
V
DD1 − 0.3, 5.0  
IOx = −20 µA, VIx = VIxH  
IOx = −4 mA, VIx = VIxH  
VISO − 0.3  
VDD1 − 0.5, 4.8  
V
V
V
V
ISO − 0.5  
Logic Low Output Voltages  
VOAL, VOBL  
VOCL, VODL  
,
0.0  
0.0  
0.1  
0.4  
IOx = 20 µA, VIx = VIxL  
IOx = 4 mA, VIx = VIxL  
AC SPECIFICATIONS  
A Grade  
CL = 15 pF, CMOS signal levels  
Minimum Pulse Width  
Maximum Data Rate  
Propagation Delay  
Pulse Width Distortion, |tPLH − tPHL  
Propagation Delay Skew  
Channel-to-Channel Matching  
C Grade  
PW  
1000  
ns  
Mbps  
ns  
ns  
ns  
1
tPHL, tPLH  
PWD  
tPSK  
60  
100  
40  
50  
|
tPSKCD/tPSKOD  
50  
ns  
CL = 15 pF, CMOS signal levels  
Minimum Pulse Width  
Maximum Data Rate  
Propagation Delay  
PW  
40  
ns  
Mbps  
ns  
ns  
ps/°C  
ns  
25  
30  
tPHL, tPLH  
PWD  
60  
5
75  
8
Pulse Width Distortion, |tPLH − tPHL  
Change vs. Temperature  
Propagation Delay Skew  
Channel-to-Channel Matching  
Codirectional Channels  
Opposing Directional Channels  
Output Rise/Fall Time (10% to 90%)  
Common-Mode Transient Immunity  
|
tPSK  
45  
tPSKCD  
tPSKOD  
tR/tF  
8
15  
ns  
ns  
ns  
2.5  
CL = 15 pF, CMOS signal levels  
VCM = 1000 V, transient  
magnitude = 800 V  
At Logic High Output  
At Logic Low Output  
Refresh Rate  
|CMH|  
|CML|  
fr  
25  
25  
35  
35  
1.0  
kV/µs  
kV/µs  
Mbps  
VIx = VDD1 or VISO  
VIx = 0 V  
1 The contributions of supply current values for all four channels are combined at identical data rates.  
2 The VISO supply current is available for external use when all data rates are below 2 Mbps. At data rates above 2 Mbps, the data I/O channels draw additional current  
proportional to the data rate. Additional supply current associated with an individual channel operating at a given data rate can be calculated as described in the  
Power Consumption section. The dynamic I/O channel load must be treated as an external load and included in the VISO power budget.  
3 The power demands of the quiescent operation of the data channels is not separated from the power supply section. Efficiency includes the quiescent power  
consumed by the I/O channels as part of the internal power consumption.  
4 This current is available for driving external loads at the VISO output. All channels are simultaneously driven at a maximum data rate of 25 Mbps with full capacitive load  
representing the maximum dynamic load conditions. Refer to the Power Consumption section for calculation of the available current at less than the maximum data rate.  
Rev. B | Page 6 of 36  
 
 
Data Sheet  
ADuM3470/ADuM3471/ADuM3472/ADuM3473/ADuM3474  
ELECTRICAL CHARACTERISTICS—5 V PRIMARY INPUT SUPPLY/3.3 V SECONDARY ISOLATED SUPPLY  
4.5 V ≤ VDD1 = VDDA ≤ 5.5 V; VDD2 = VREG = VISO = 3.3 V; fSW = 500 kHz; all voltages are relative to their respective grounds (see the  
application schematic in Figure 38). All minimum/maximum specifications apply over the entire recommended operating range, unless  
otherwise noted. All typical specifications are at TA = 25°C, VDD1 = VDDA = 5.0 V, VDD2 = VREG = VISO = 3.3 V.  
Table 3.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
DC-TO-DC CONVERTER POWER SUPPLY  
Isolated Output Voltage  
Feedback Voltage Setpoint  
Line Regulation  
Load Regulation  
Output Ripple  
VISO  
VFB  
VISO (LINE)  
VISO (LOAD)  
VISO (RIP)  
3.0  
1.125  
3.3  
1.25  
1
1
50  
3.6  
1.375  
10  
V
V
IISO = 0 mA, VISO = VFB × (R1 + R2)/R2  
IISO = 0 mA  
IISO = 50 mA, VDD1 = 4.5 V to 5.5 V  
IISO = 50 mA to 200 mA  
mV/V  
%
mV p-p  
2
20 MHz bandwidth,  
COUT = 0.1 µF||47 µF, IISO = 100 mA  
Output Noise  
VISO (N)  
fSW  
100  
mV p-p  
20 MHz bandwidth,  
COUT = 0.1 µF||47 µF, IISO = 100 mA  
ROC = 50 kΩ  
ROC = 270 kΩ  
Switching Frequency  
1000  
200  
318  
0.5  
kHz  
kHz  
kHz  
192  
515  
VOC = VDD2 (open loop)  
Switch On Resistance  
RON  
Undervoltage Lockout, VDD1, VDD2  
Supplies  
Positive Going Threshold  
Negative Going Threshold  
Hysteresis  
VUV+  
VUV−  
VUVH  
2.8  
2.6  
0.2  
V
V
V
DC to 2 Mbps Data Rate1  
Maximum Output Supply Current2  
Efficiency at Maximum Output  
Supply Current3  
f ≤ 1 MHz  
VISO = 3.3 V  
IISO = IISO (MAX)  
IISO (MAX)  
400  
mA  
%
70  
iCOUPLER DATA CHANNELS  
DC to 2 Mbps Data Rate1  
IDD1 Supply Current, No VISO Load  
ADuM3470  
IDD1 (Q)  
IISO = 0 mA, f ≤ 1 MHz  
9
9
10  
10  
10  
30  
30  
30  
30  
30  
mA  
mA  
mA  
mA  
mA  
ADuM3471  
ADuM3472  
ADuM3473  
ADuM3474  
25 Mbps Data Rate (C Grade Only)  
IDD1 Supply Current, No VISO Load  
ADuM3470  
IDD1 (D)  
IISO = 0 mA, CL = 15 pF, f = 12.5 MHz  
33  
33  
33  
33  
33  
mA  
mA  
mA  
mA  
mA  
ADuM3471  
ADuM3472  
ADuM3473  
ADuM3474  
Available VISO Supply Current4  
IISO (LOAD)  
CL = 15 pF, f = 12.5 MHz  
ADuM3470  
ADuM3471  
ADuM3472  
ADuM3473  
ADuM3474  
IDD1 Supply Current, Full VISO Load  
393  
392  
390  
389  
388  
375  
mA  
mA  
mA  
mA  
mA  
mA  
IDD1 (MAX)  
IIA, IIB, IIC, IID −20  
CL = 0 pF, f = 0 MHz, VDD1 = 5 V,  
IISO = 400 mA  
I/O Input Currents  
+0.01  
+20  
µA  
Rev. B | Page 7 of 36  
 
ADuM3470/ADuM3471/ADuM3472/ADuM3473/ADuM3474  
Data Sheet  
Parameter  
Symbol  
VIH  
VIL  
VOAH, VOBH  
VOCH, VODH  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
Logic High Input Threshold  
Logic Low Input Threshold  
Logic High Output Voltages  
2.0  
V
V
V
0.8  
,
V
DD1 − 0.3, 5.0  
IOx = −20 µA, VIx = VIxH  
IOx = −4 mA, VIx = VIxH  
VISO − 0.3  
VDD1 − 0.5, 4.8  
V
V
V
V
ISO − 0.5  
Logic Low Output Voltages  
VOAL, VOBL  
VOCL, VODL  
,
0.0  
0.0  
0.1  
0.4  
IOx = 20 µA, VIx = VIxL  
IOx = 4 mA, VIx = VIxL  
AC SPECIFICATIONS  
A Grade  
CL = 15 pF, CMOS signal levels  
Minimum Pulse Width  
Maximum Data Rate  
Propagation Delay  
Pulse Width Distortion, |tPLH − tPHL  
Propagation Delay Skew  
Channel-to-Channel Matching  
C Grade  
PW  
1000  
ns  
Mbps  
ns  
ns  
ns  
1
tPHL, tPLH  
PWD  
tPSK  
55  
100  
40  
50  
|
tPSKCD/tPSKOD  
50  
ns  
CL = 15 pF, CMOS signal levels  
Minimum Pulse Width  
Maximum Data Rate  
Propagation Delay  
PW  
40  
ns  
Mbps  
ns  
ns  
ps/°C  
ns  
25  
30  
tPHL, tPLH  
PWD  
50  
5
70  
8
Pulse Width Distortion, |tPLH − tPHL  
Change vs. Temperature  
Propagation Delay Skew  
Channel-to-Channel Matching  
Codirectional Channels  
Opposing Directional Channels  
Output Rise/Fall Time (10% to 90%)  
Common-Mode Transient Immunity  
|
tPSK  
15  
tPSKCD  
tPSKOD  
tR/tF  
8
15  
ns  
ns  
ns  
2.5  
CL = 15 pF, CMOS signal levels  
VCM = 1000 V, transient  
magnitude = 800 V  
At Logic High Output  
At Logic Low Output  
Refresh Rate  
|CMH|  
|CML|  
fr  
25  
25  
35  
35  
1.0  
kV/µs  
kV/µs  
Mbps  
VIx = VDD1 or VISO  
VIx = 0 V  
1 The contributions of supply current values for all four channels are combined at identical data rates.  
2 The VISO supply current is available for external use when all data rates are below 2 Mbps. At data rates above 2 Mbps, the data I/O channels draw additional current  
proportional to the data rate. Additional supply current associated with an individual channel operating at a given data rate can be calculated as described in the  
Power Consumption section. The dynamic I/O channel load must be treated as an external load and included in the VISO power budget.  
3 The power demands of the quiescent operation of the data channels is not separated from the power supply section. Efficiency includes the quiescent power  
consumed by the I/O channels as part of the internal power consumption.  
4 This current is available for driving external loads at the VISO output. All channels are simultaneously driven at a maximum data rate of 25 Mbps with full capacitive load  
representing the maximum dynamic load conditions. Refer to the Power Consumption section for calculation of the available current at less than the maximum data rate.  
Rev. B | Page 8 of 36  
 
Data Sheet  
ADuM3470/ADuM3471/ADuM3472/ADuM3473/ADuM3474  
ELECTRICAL CHARACTERISTICS—5 V PRIMARY INPUT SUPPLY/15 V SECONDARY ISOLATED SUPPLY  
4.5 V ≤ VDD1 = VDDA ≤ 5.5 V; VREG = VISO = 15 V; VDD2 = 5.0 V; fSW = 500 kHz; all voltages are relative to their respective grounds (see the  
application schematic in Figure 39). All minimum/maximum specifications apply over the entire recommended operating range, unless  
otherwise noted. All typical specifications are at TA = 25°C, VDD1 = VDDA = 5.0 V, VREG = VISO = 15 V, VDD2 = 5.0 V.  
Table 4.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
DC-TO-DC CONVERTER POWER SUPPLY  
Isolated Output Voltage  
Feedback Voltage Setpoint  
VDD2 Linear Regulator  
VISO  
VFB  
13.5  
1.125  
15  
1.25  
16.5  
1.375  
V
V
IISO = 0 mA, VISO = VFB × (R1 + R2)/R2  
IISO = 0 mA  
Regulator Voltage  
VDD2  
4.6  
5.0  
5.7  
V
VREG = 7 V to 15 V, IDD2 = 0 mA  
to 50 mA  
Dropout Voltage  
Line Regulation  
Load Regulation  
Output Ripple  
VDD2 (DO)  
VISO (LINE)  
VISO (LOAD)  
VISO (RIP)  
0.5  
1
1
1.5  
20  
3
V
IDD2 = 50 mA  
IISO = 50 mA, VDD1 = 4.5 V to 5.5 V  
IISO = 20 mA to 100 mA  
mV/V  
%
mV p-p  
200  
20 MHz bandwidth,  
COUT = 0.1 µF||47 µF, IISO = 100 mA  
Output Noise  
VISO (N)  
fSW  
500  
mV p-p  
20 MHz bandwidth,  
COUT = 0.1 µF||47 µF, IISO = 100 mA  
ROC = 50 kΩ  
ROC = 270 kΩ  
Switching Frequency  
1000  
200  
318  
0.5  
kHz  
kHz  
kHz  
192  
100  
515  
VOC = VDD2 (open loop)  
Switch On Resistance  
RON  
Undervoltage Lockout, VDD1, VDD2 Supplies  
Positive Going Threshold  
Negative Going Threshold  
Hysteresis  
DC to 2 Mbps Data Rate1  
Maximum Output Supply Current2  
VUV+  
VUV−  
VUVH  
2.8  
2.6  
0.2  
V
V
V
f ≤ 1 MHz  
VISO = 5.0 V  
IISO = IISO (MAX)  
IISO (MAX)  
mA  
%
Efficiency at Maximum Output  
Supply Current3  
70  
iCOUPLER DATA CHANNELS  
DC to 2 Mbps Data Rate1  
IDD1 Supply Current, No VISO Load  
ADuM3470  
IDD1 (Q)  
IISO = 0 mA, f ≤ 1 MHz  
25  
27  
29  
31  
33  
45  
45  
45  
45  
45  
mA  
mA  
mA  
mA  
mA  
ADuM3471  
ADuM3472  
ADuM3473  
ADuM3474  
25 Mbps Data Rate (C Grade Only)  
IDD1 Supply Current, No VISO Load  
ADuM3470  
IDD1 (D)  
IISO = 0 mA, CL = 15 pF, f = 12.5 MHz  
73  
83  
93  
102  
112  
mA  
mA  
mA  
mA  
mA  
ADuM3471  
ADuM3472  
ADuM3473  
ADuM3474  
Available VISO Supply Current4  
IISO (LOAD)  
CL = 15 pF, f = 12.5 MHz  
ADuM3470  
ADuM3471  
ADuM3472  
ADuM3473  
ADuM3474  
IDD1 Supply Current, Full VISO Load  
91  
89  
86  
83  
80  
425  
mA  
mA  
mA  
mA  
mA  
mA  
IDD1 (MAX)  
CL = 0 pF, f = 0 MHz, VDD1 = 5 V,  
IISO = 100 mA  
Rev. B | Page 9 of 36  
 
ADuM3470/ADuM3471/ADuM3472/ADuM3473/ADuM3474  
Data Sheet  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
µA  
V
V
V
Test Conditions/Comments  
I/O Input Currents  
IIA, IIB, IIC, IID −20  
VIH  
VIL  
VOAH, VOBH  
+0.01  
+20  
Logic High Input Threshold  
Logic Low Input Threshold  
Logic High Output Voltages  
2.0  
0.8  
,
V
DD1 − 0.3, 5.0  
IOx = −20 µA, VIx = VIxH  
IOx = −4 mA, VIx = VIxH  
VOCH, VODH  
VISO − 0.3  
VDD1 − 0.5, 4.8  
V
V
V
V
ISO − 0.5  
Logic Low Output Voltages  
VOAL, VOBL  
VOCL, VODL  
,
0.0  
0.0  
0.1  
0.4  
IOx = 20 µA, VIx = VIxL  
IOx = 4 mA, VIx = VIxL  
AC SPECIFICATIONS  
A Grade  
CL = 15 pF, CMOS signal levels  
Minimum Pulse Width  
Maximum Data Rate  
Propagation Delay  
Pulse Width Distortion, |tPLH − tPHL  
Propagation Delay Skew  
Channel-to-Channel Matching  
C Grade  
PW  
1000  
ns  
Mbps  
ns  
ns  
ns  
1
tPHL, tPLH  
PWD  
tPSK  
55  
100  
40  
50  
|
tPSKCD/tPSKOD  
50  
ns  
CL = 15 pF, CMOS signal levels  
Minimum Pulse Width  
Maximum Data Rate  
Propagation Delay  
PW  
40  
ns  
Mbps  
ns  
ns  
ps/°C  
ns  
25  
30  
tPHL, tPLH  
PWD  
45  
5
60  
8
Pulse Width Distortion, |tPLH − tPHL  
Change vs. Temperature  
Propagation Delay Skew  
Channel-to-Channel Matching  
Codirectional Channels  
Opposing Directional Channels  
Output Rise/Fall Time (10% to 90%)  
Common-Mode Transient Immunity  
|
tPSK  
15  
tPSKCD  
tPSKOD  
tR/tF  
8
15  
ns  
ns  
ns  
2.5  
CL = 15 pF, CMOS signal levels  
VCM = 1000 V, transient  
magnitude = 800 V  
At Logic High Output  
At Logic Low Output  
Refresh Rate  
|CMH|  
|CML|  
fr  
25  
25  
35  
35  
1.0  
kV/µs  
kV/µs  
Mbps  
VIx = VDD1 or VISO  
VIx = 0 V  
1 The contributions of supply current values for all four channels are combined at identical data rates.  
2 The VISO supply current is available for external use when all data rates are below 2 Mbps. At data rates above 2 Mbps, the data I/O channels draw additional current  
proportional to the data rate. Additional supply current associated with an individual channel operating at a given data rate can be calculated as described in the  
Power Consumption section. The dynamic I/O channel load must be treated as an external load and included in the VISO power budget.  
3 The power demands of the quiescent operation of the data channels is not separated from the power supply section. Efficiency includes the quiescent power  
consumed by the I/O channels as part of the internal power consumption.  
4 This current is available for driving external loads at the VISO output. All channels are simultaneously driven at a maximum data rate of 25 Mbps with full capacitive load  
representing the maximum dynamic load conditions. Refer to the Power Consumption section for calculation of the available current at less than the maximum data rate.  
Rev. B | Page 10 of 36  
 
 
Data Sheet  
ADuM3470/ADuM3471/ADuM3472/ADuM3473/ADuM3474  
PACKAGE CHARACTERISTICS  
Table 5.  
Parameter  
Symbol Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
RESISTANCE AND CAPACITANCE  
Resistance (Input to Output)1  
Capacitance (Input to Output)1  
Input Capacitance2  
RI-O  
CI-O  
CI  
1012  
2.2  
4.0  
pF  
pF  
f = 1 MHz  
IC Junction to Ambient Thermal  
Resistance  
θJA  
50.5  
°C/W  
Thermocouple is located at the center of  
the package underside; test conducted on  
a 4-layer board with thin traces3  
THERMAL SHUTDOWN  
Thermal Shutdown Threshold  
Thermal Shutdown Hysteresis  
TSSD  
TSSD-HYS  
150  
20  
°C  
°C  
TJ rising  
1 The device is considered a 2-terminal device: Pin 1 to Pin 10 are shorted together, and Pin 11 to Pin 20 are shorted together.  
2 Input capacitance is from any input data pin to ground.  
3 See the Thermal Analysis section for thermal model definitions.  
REGULATORY APPROVALS  
The ADuM3470/ADuM3471/ADuM3472/ADuM3473/ADuM3474 are approved by the organizations listed in Table 6. Refer to Table 11  
and the Insulation Lifetime section for more information about the recommended maximum working voltages for specific cross-insulation  
waveforms and insulation levels.  
Table 6.  
UL  
CSA  
VDE  
Recognized under the UL 1577 component  
recognition program1  
Approved under CSA Component Acceptance Certified according to DIN V VDE V 0884-10  
Notice #5A  
(VDE V 0884-10):2006-122  
Single protection, 2500 V rms isolation  
voltage  
Basic insulation per CSA 60950-1-03 and  
IEC 60950-1, 600 V rms (848 V peak) maximum  
working voltage  
Reinforced insulation, 560 V peak  
File E214100  
File 205078  
File 2471900-4880-0001  
1 In accordance with UL 1577, each ADuM3470/ADuM3471/ADuM3472/ADuM3473/ADuM3474 is proof tested by applying an insulation test voltage of ≥3000 V rms  
for 1 sec (current leakage detection limit = 10 µA).  
2 In accordance with DIN V VDE V 0884-10 (VDE V 0884-10):2006-12, each ADuM3470/ADuM3471/ADuM3472/ADuM3473/ADuM3474 is proof tested by applying  
an insulation test voltage of ≥1050 V peak for 1 sec (partial discharge detection limit = 5 pC). The asterisk (*) marking branded on the component designates  
DIN V VDE V 0884-10 (VDE V 0884-10):2006-12 approval.  
INSULATION AND SAFETY-RELATED SPECIFICATIONS  
Table 7.  
Parameter  
Symbol  
Value  
2500  
>5.1  
Unit  
V rms  
mm  
Test Conditions/Comments  
Rated Dielectric Insulation Voltage  
Minimum External Air Gap (Clearance)  
1-minute duration  
Measured from input terminals to output terminals,  
shortest distance through air  
Measured from input terminals to output terminals,  
shortest distance path along body  
L(I01)  
L(I02)  
Minimum External Tracking (Creepage)  
>5.1  
mm  
Minimum Internal Distance (Internal Clearance)  
0.017 min mm  
Distance through insulation  
Tracking Resistance (Comparative Tracking Index) CTI  
Isolation Group  
>400  
II  
V
DIN IEC 112/VDE 0303, Part 1  
Material Group (DIN VDE 0110, 1/89, Table 1)  
Rev. B | Page 11 of 36  
 
 
 
 
 
 
 
 
 
ADuM3470/ADuM3471/ADuM3472/ADuM3473/ADuM3474  
Data Sheet  
DIN V VDE V 0884-10 (VDE V 0884-10):2006-12 INSULATION CHARACTERISTICS  
These isolators are suitable for reinforced electrical isolation only within the safety limit data. Maintenance of the safety data is ensured by  
protective circuits. The asterisk (*) marking branded on the component denotes DIN V VDE V 0884-10 (VDE V 0884-10):2006-12 approval.  
Table 8.  
Description  
Test Conditions/Comments  
Symbol Characteristic Unit  
Installation Classification per DIN VDE 0110  
For Rated Mains Voltage ≤ 150 V rms  
For Rated Mains Voltage ≤ 300 V rms  
For Rated Mains Voltage ≤ 400 V rms  
Climatic Classification  
Pollution Degree per DIN VDE 0110, Table 1  
Maximum Working Insulation Voltage  
Input-to-Output Test Voltage, Method B1  
I to IV  
I to III  
I to II  
40/105/21  
2
VIORM  
VPR  
560  
1050  
V peak  
V peak  
VIORM × 1.875 = VPR, 100% production test, tm = 1 sec,  
partial discharge < 5 pC  
Input-to-Output Test Voltage, Method A  
After Environmental Tests Subgroup 1  
After Input and/or Safety Tests Subgroup 2 VIORM × 1.2 = VPR, tm = 60 sec, partial discharge < 5 pC  
and Subgroup 3  
VPR  
VIORM × 1.6 = VPR, tm = 60 sec, partial discharge < 5 pC  
896  
672  
V peak  
V peak  
Highest Allowable Overvoltage  
Safety Limiting Values  
Transient overvoltage, tTR = 10 sec  
Maximum value allowed in the event of a failure  
(see Figure 3)  
VTR  
4000  
V peak  
Case Temperature  
Side 1 Current  
Insulation Resistance at TS  
TS  
IS1  
RS  
150  
1.25  
>109  
°C  
A
VIO = 500 V  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
0
50  
100  
150  
200  
CASE TEMPERATURE (°C)  
Figure 3. Thermal Derating Curve, Dependence of Safety Limiting Values on Case Temperature, per DIN EN 60747-5-2  
RECOMMENDED OPERATING CONDITIONS  
Table 9.  
Parameter  
Symbol  
Min  
Max  
Unit  
Operating Temperature  
Supply Voltages1  
VDD1 at VISO = 3.3 V  
VDD1 at VISO = 5.0 V  
VDD1 at VISO = 5.0 V  
Minimum Load  
TA  
−40  
+105  
°C  
VDD1  
VDD1  
VDD1  
IISO (MIN)  
3.0  
3.0  
4.5  
10  
3.6  
3.6  
5.5  
V
V
V
mA  
1 All voltages are relative to their respective grounds.  
Rev. B | Page 12 of 36  
 
 
 
 
Data Sheet  
ADuM3470/ADuM3471/ADuM3472/ADuM3473/ADuM3474  
ABSOLUTE MAXIMUM RATINGS  
Ambient temperature = 25°C, unless otherwise noted.  
Table 11. Maximum Continuous Working Voltage  
Supporting 50-Year Minimum Lifetime1  
Table 10.  
Applicable  
Parameter  
Rating  
Parameter  
Max  
Unit  
Certification  
Storage Temperature Range (TST)  
Ambient Operating Temperature  
Range (TA)  
Supply Voltages1  
VDD1,2 VDDA, VDD2  
VREG, X1, X2  
Input Voltage (VIA, VIB, VIC, VID)1, 3  
Output Voltage (VOA, VOB, VOC, VOD)1, 3  
Average Output Current per Pin4  
Common-Mode Transients5  
−55°C to +150°C  
−40°C to +105°C  
AC Voltage, Bipolar  
Waveform  
AC Voltage, Unipolar  
Waveform  
565  
V peak  
All certifications  
−0.5 V to +7.0 V  
−0.5 V to +20.0 V  
−0.5 V to VDDI + 0.5 V  
−0.5 V to VDDO + 0.5 V  
−10 mA to +10 mA  
−100 kV/µs to +100 kV/µs  
Basic Insulation  
848  
848  
V peak  
V peak  
Working voltage  
per IEC 60950-1  
DC Voltage  
Basic Insulation  
Working voltage  
per IEC 60950-1  
1 Refers to the continuous voltage magnitude imposed across the isolation  
barrier. See the Insulation Lifetime section for more information.  
1 All voltages are relative to their respective grounds.  
2 VDD1 is the power supply for the push-pull transformer.  
3 VDDI and VDDO refer to the supply voltages on the input and output sides of a  
given channel, respectively. See the Printed Circuit Board (PCB) Layout section.  
4 See Figure 3 for maximum rated current values for various temperatures.  
5 Refers to common-mode transients across the insulation barrier. Common-  
mode transients exceeding the absolute maximum ratings may cause latch-up  
or permanent damage.  
ESD CAUTION  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. B | Page 13 of 36  
 
 
 
 
 
 
 
 
 
 
ADuM3470/ADuM3471/ADuM3472/ADuM3473/ADuM3474  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
Data Sheet  
X1  
1
2
3
4
5
6
7
8
9
20  
V
REG  
*GND  
19 GND *  
1
2
NC  
18  
V
DD2  
X2  
17 FB  
ADuM3470  
TOP VIEW  
(Not to Scale)  
V
16  
15  
14  
13  
V
V
V
V
IA  
OA  
OB  
OC  
OD  
V
IB  
V
IC  
V
ID  
V
12 OC  
DDA  
*GND 10  
11 GND *  
2
1
NOTES  
1. NC = NO INTERNAL CONNECTION.  
2. PIN 2 AND PIN 10 ARE INTERNALLY CONNECTED TO EACH OTHER; IT IS  
RECOMMENDED THAT BOTH PINS BE CONNECTED TO A COMMON GROUND.  
PIN 11 AND PIN 19 ARE INTERNALLY CONNECTED TO EACH OTHER; IT IS  
RECOMMENDED THAT BOTH PINS BE CONNECTED TO A COMMON GROUND.  
Figure 4. ADuM3470 Pin Configuration  
Table 12. ADuM3470 Pin Function Descriptions  
Pin No.  
Mnemonic Description  
1
X1  
Transformer Driver Output 1.  
2, 10  
GND1  
Ground Reference for the Primary Side of the Isolator. Pin 2 and Pin 10 are internally connected to each other;  
it is recommended that both pins be connected to a common ground.  
3
4
NC  
X2  
No Internal Connection.  
Transformer Driver Output 2.  
5
VIA  
Logic Input A.  
6
VIB  
Logic Input B.  
7
VIC  
Logic Input C.  
8
VID  
Logic Input D.  
9
VDDA  
GND2  
Supply Voltage for the Primary Side, 3.0 V to 5.5 V. Connect a 0.1 μF bypass capacitor from VDDA to GND1.  
Ground Reference for the Secondary Side of the Isolator. Pin 11 and Pin 19 are internally connected to each other;  
it is recommended that both pins be connected to a common ground.  
11, 19  
12  
OC  
Oscillator Control Pin. When the OC pin is connected high to the VDD2 pin, the secondary controller runs in open-  
loop (unregulated) mode. To regulate the output voltage, connect a resistor between the OC pin and GND2; the  
secondary controller runs at a frequency of 200 kHz to 1 MHz, as programmed by the resistor value.  
13  
14  
15  
16  
17  
VOD  
VOC  
VOB  
VOA  
FB  
Logic Output D.  
Logic Output C.  
Logic Output B.  
Logic Output A.  
Feedback Input from the Secondary Output Voltage, VISO. Use a resistor divider from the VISO output to the FB pin  
to set the VFB voltage equal to the 1.25 V internal reference level using the formula VISO = VFB × (R1 + R2)/R2. The  
resistor divider is required even in open-loop mode to provide soft start.  
18  
20  
VDD2  
Internal Supply Voltage for the Secondary Side Controller and the Side 2 Data Channels. When a sufficient external  
voltage is supplied to VREG, the internal regulator regulates the VDD2 pin to 5.0 V. Otherwise, VDD2 should be in the  
3.0 V to 5.5 V range. Connect a 0.1 μF bypass capacitor from VDD2 to GND2.  
Input of the Internal Regulator to Power the Secondary Side Controller and the Side 2 Data Channels. VREG should  
be in the 5.5 V to 15 V range to regulate the VDD2 output to 5.0 V.  
VREG  
Rev. B | Page 14 of 36  
 
Data Sheet  
ADuM3470/ADuM3471/ADuM3472/ADuM3473/ADuM3474  
X1  
1
2
3
4
5
6
7
8
9
20  
V
REG  
*GND  
19 GND *  
1
2
NC  
18  
V
DD2  
X2  
17 FB  
ADuM3471  
TOP VIEW  
(Not to Scale)  
V
16  
15  
14  
13  
V
V
V
V
IA  
OA  
OB  
OC  
ID  
V
IB  
V
IC  
V
OD  
V
12 OC  
DDA  
*GND 10  
11 GND *  
2
1
NOTES  
1. NC = NO INTERNAL CONNECTION.  
2. PIN 2 AND PIN 10 ARE INTERNALLY CONNECTED TO EACH OTHER; IT IS  
RECOMMENDED THAT BOTH PINS BE CONNECTED TO A COMMON GROUND.  
PIN 11 AND PIN 19 ARE INTERNALLY CONNECTED TO EACH OTHER; IT IS  
RECOMMENDED THAT BOTH PINS BE CONNECTED TO A COMMON GROUND.  
Figure 5. ADuM3471 Pin Configuration  
Table 13. ADuM3471 Pin Function Descriptions  
Pin No.  
Mnemonic Description  
1
X1  
Transformer Driver Output 1.  
2, 10  
GND1  
Ground Reference for the Primary Side of the Isolator. Pin 2 and Pin 10 are internally connected to each other;  
it is recommended that both pins be connected to a common ground.  
3
NC  
No Internal Connection.  
4
X2  
Transformer Driver Output 2.  
5
VIA  
Logic Input A.  
6
VIB  
Logic Input B.  
7
VIC  
Logic Input C.  
8
9
VOD  
VDDA  
GND2  
Logic Output D.  
Supply Voltage for the Primary Side, 3.0 V to 5.5 V. Connect a 0.1 μF bypass capacitor from VDDA to GND1.  
Ground Reference for the Secondary Side of the Isolator. Pin 11 and Pin 19 are internally connected to each other;  
it is recommended that both pins be connected to a common ground.  
11, 19  
12  
OC  
Oscillator Control Pin. When the OC pin is connected high to the VDD2 pin, the secondary controller runs in open-  
loop (unregulated) mode. To regulate the output voltage, connect a resistor between the OC pin and GND2; the  
secondary controller runs at a frequency of 200 kHz to 1 MHz, as programmed by the resistor value.  
13  
14  
15  
16  
17  
VID  
Logic Input D.  
Logic Output C.  
Logic Output B.  
Logic Output A.  
VOC  
VOB  
VOA  
FB  
Feedback Input from the Secondary Output Voltage, VISO. Use a resistor divider from the VISO output to the FB pin  
to set the VFB voltage equal to the 1.25 V internal reference level using the formula VISO = VFB × (R1 + R2)/R2. The  
resistor divider is required even in open-loop mode to provide soft start.  
18  
20  
VDD2  
Internal Supply Voltage for the Secondary Side Controller and the Side 2 Data Channels. When a sufficient external  
voltage is supplied to VREG, the internal regulator regulates the VDD2 pin to 5.0 V. Otherwise, VDD2 should be in the  
3.0 V to 5.5 V range. Connect a 0.1 μF bypass capacitor from VDD2 to GND2.  
Input of the Internal Regulator to Power the Secondary Side Controller and the Side 2 Data Channels. VREG should  
be in the 5.5 V to 15 V range to regulate the VDD2 output to 5.0 V.  
VREG  
Rev. B | Page 15 of 36  
ADuM3470/ADuM3471/ADuM3472/ADuM3473/ADuM3474  
Data Sheet  
X1  
1
2
3
4
5
6
7
8
9
20  
V
REG  
*GND  
19 GND *  
1
2
NC  
18  
V
DD2  
X2  
17 FB  
ADuM3472  
TOP VIEW  
(Not to Scale)  
V
16  
15  
14  
13  
V
V
V
V
IA  
OA  
OB  
IC  
V
IB  
V
OC  
V
OD  
ID  
V
12 OC  
DDA  
*GND 10  
11 GND *  
2
1
NOTES  
1. NC = NO INTERNAL CONNECTION.  
2. PIN 2 AND PIN 10 ARE INTERNALLY CONNECTED TO EACH OTHER; IT IS  
RECOMMENDED THAT BOTH PINS BE CONNECTED TO A COMMON GROUND.  
PIN 11 AND PIN 19 ARE INTERNALLY CONNECTED TO EACH OTHER; IT IS  
RECOMMENDED THAT BOTH PINS BE CONNECTED TO A COMMON GROUND.  
Figure 6. ADuM3472 Pin Configuration  
Table 14. ADuM3472 Pin Function Descriptions  
Pin No.  
Mnemonic Description  
1
X1  
Transformer Driver Output 1.  
2, 10  
GND1  
Ground Reference for the Primary Side of the Isolator. Pin 2 and Pin 10 are internally connected to each other;  
it is recommended that both pins be connected to a common ground.  
3
NC  
No Internal Connection.  
4
X2  
Transformer Driver Output 2.  
5
VIA  
Logic Input A.  
6
VIB  
Logic Input B.  
7
8
9
VOC  
VOD  
VDDA  
GND2  
Logic Output C.  
Logic Output D.  
Supply Voltage for the Primary Side, 3.0 V to 5.5 V. Connect a 0.1 μF bypass capacitor from VDDA to GND1.  
Ground Reference for the Secondary Side of the Isolator. Pin 11 and Pin 19 are internally connected to each other;  
it is recommended that both pins be connected to a common ground.  
11, 19  
12  
OC  
Oscillator Control Pin. When the OC pin is connected high to the VDD2 pin, the secondary controller runs in open-  
loop (unregulated) mode. To regulate the output voltage, connect a resistor between the OC pin and GND2; the  
secondary controller runs at a frequency of 200 kHz to 1 MHz, as programmed by the resistor value.  
13  
14  
15  
16  
17  
VID  
VIC  
VOB  
VOA  
FB  
Logic Input D.  
Logic Input C.  
Logic Output B.  
Logic Output A.  
Feedback Input from the Secondary Output Voltage, VISO. Use a resistor divider from the VISO output to the FB pin  
to set the VFB voltage equal to the 1.25 V internal reference level using the formula VISO = VFB × (R1 + R2)/R2. The  
resistor divider is required even in open-loop mode to provide soft start.  
18  
20  
VDD2  
Internal Supply Voltage for the Secondary Side Controller and the Side 2 Data Channels. When a sufficient external  
voltage is supplied to VREG, the internal regulator regulates the VDD2 pin to 5.0 V. Otherwise, VDD2 should be in the  
3.0 V to 5.5 V range. Connect a 0.1 μF bypass capacitor from VDD2 to GND2.  
Input of the Internal Regulator to Power the Secondary Side Controller and the Side 2 Data Channels. VREG should  
be in the 5.5 V to 15 V range to regulate the VDD2 output to 5.0 V.  
VREG  
Rev. B | Page 16 of 36  
Data Sheet  
ADuM3470/ADuM3471/ADuM3472/ADuM3473/ADuM3474  
X1  
1
2
3
4
5
6
7
8
9
20  
V
REG  
*GND  
19 GND *  
1
2
NC  
18  
V
DD2  
X2  
17 FB  
ADuM3473  
TOP VIEW  
(Not to Scale)  
V
16  
15  
14  
13  
V
V
V
V
IA  
OA  
V
OB  
OC  
OD  
IB  
V
V
IC  
ID  
V
12 OC  
DDA  
*GND 10  
11 GND *  
2
1
NOTES  
1. NC = NO INTERNAL CONNECTION.  
2. PIN 2 AND PIN 10 ARE INTERNALLY CONNECTED TO EACH OTHER; IT IS  
RECOMMENDED THAT BOTH PINS BE CONNECTED TO A COMMON GROUND.  
PIN 11 AND PIN 19 ARE INTERNALLY CONNECTED TO EACH OTHER; IT IS  
RECOMMENDED THAT BOTH PINS BE CONNECTED TO A COMMON GROUND.  
Figure 7. ADuM3473 Pin Configuration  
Table 15. ADuM3473 Pin Function Descriptions  
Pin No.  
Mnemonic Description  
1
X1  
Transformer Driver Output 1.  
2, 10  
GND1  
Ground Reference for the Primary Side of the Isolator. Pin 2 and Pin 10 are internally connected to each other;  
it is recommended that both pins be connected to a common ground.  
3
NC  
No Internal Connection.  
4
X2  
Transformer Driver Output 2.  
5
VIA  
Logic Input A.  
6
7
8
9
VOB  
VOC  
VOD  
VDDA  
GND2  
Logic Output B.  
Logic Output C.  
Logic Output D.  
Supply Voltage for the Primary Side, 3.0 V to 5.5 V. Connect a 0.1 μF bypass capacitor from VDDA to GND1.  
Ground Reference for the Secondary Side of the Isolator. Pin 11 and Pin 19 are internally connected to each other;  
it is recommended that both pins be connected to a common ground.  
11, 19  
12  
OC  
Oscillator Control Pin. When the OC pin is connected high to the VDD2 pin, the secondary controller runs in open-  
loop (unregulated) mode. To regulate the output voltage, connect a resistor between the OC pin and GND2; the  
secondary controller runs at a frequency of 200 kHz to 1 MHz, as programmed by the resistor value.  
13  
14  
15  
16  
17  
VID  
VIC  
VIB  
VOA  
FB  
Logic Input D.  
Logic Input C.  
Logic Input B.  
Logic Output A.  
Feedback Input from the Secondary Output Voltage, VISO. Use a resistor divider from the VISO output to the FB pin  
to set the VFB voltage equal to the 1.25 V internal reference level using the formula VISO = VFB × (R1 + R2)/R2. The  
resistor divider is required even in open-loop mode to provide soft start.  
18  
20  
VDD2  
Internal Supply Voltage for the Secondary Side Controller and the Side 2 Data Channels. When a sufficient external  
voltage is supplied to VREG, the internal regulator regulates the VDD2 pin to 5.0 V. Otherwise, VDD2 should be in the  
3.0 V to 5.5 V range. Connect a 0.1 μF bypass capacitor from VDD2 to GND2.  
Input of the Internal Regulator to Power the Secondary Side Controller and the Side 2 Data Channels. VREG should  
be in the 5.5 V to 15 V range to regulate the VDD2 output to 5.0 V.  
VREG  
Rev. B | Page 17 of 36  
ADuM3470/ADuM3471/ADuM3472/ADuM3473/ADuM3474  
Data Sheet  
X1  
1
2
3
4
5
6
7
8
9
20  
V
REG  
*GND  
19 GND *  
1
2
NC  
18  
V
DD2  
X2  
17 FB  
ADuM3474  
TOP VIEW  
(Not to Scale)  
V
16  
15  
14  
13  
V
V
V
V
OA  
OB  
OC  
OD  
IA  
IB  
IC  
ID  
V
V
V
V
12 OC  
DDA  
*GND 10  
11 GND *  
2
1
NOTES  
1. NC = NO INTERNAL CONNECTION.  
2. PIN 2 AND PIN 10 ARE INTERNALLY CONNECTED TO EACH OTHER; IT IS  
RECOMMENDED THAT BOTH PINS BE CONNECTED TO A COMMON GROUND.  
PIN 11 AND PIN 19 ARE INTERNALLY CONNECTED TO EACH OTHER; IT IS  
RECOMMENDED THAT BOTH PINS BE CONNECTED TO A COMMON GROUND.  
Figure 8. ADuM3474 Pin Configuration  
Table 16. ADuM3474 Pin Function Descriptions  
Pin No.  
Mnemonic Description  
1
X1  
Transformer Driver Output 1.  
2, 10  
GND1  
Ground Reference for the Primary Side of the Isolator. Pin 2 and Pin 10 are internally connected to each other;  
it is recommended that both pins be connected to a common ground.  
3
NC  
No Internal Connection.  
4
X2  
Transformer Driver Output 2.  
5
6
VOA  
VOB  
Logic Output A.  
Logic Output B.  
7
8
9
VOC  
VOD  
VDDA  
GND2  
Logic Output C.  
Logic Output D.  
Supply Voltage for the Primary Side, 3.0 V to 5.5 V. Connect a 0.1 μF bypass capacitor from VDDA to GND1.  
Ground Reference for the Secondary Side of the Isolator. Pin 11 and Pin 19 are internally connected to each other;  
it is recommended that both pins be connected to a common ground.  
11, 19  
12  
OC  
Oscillator Control Pin. When the OC pin is connected high to the VDD2 pin, the secondary controller runs in open-  
loop (unregulated) mode. To regulate the output voltage, connect a resistor between the OC pin and GND2; the  
secondary controller runs at a frequency of 200 kHz to 1 MHz, as programmed by the resistor value.  
13  
14  
15  
16  
17  
VID  
VIC  
VIB  
VIA  
FB  
Logic Input D.  
Logic Input C.  
Logic Input B.  
Logic Input A.  
Feedback Input from the Secondary Output Voltage, VISO. Use a resistor divider from the VISO output to the FB pin  
to set the VFB voltage equal to the 1.25 V internal reference level using the formula VISO = VFB × (R1 + R2)/R2. The  
resistor divider is required even in open-loop mode to provide soft start.  
18  
20  
VDD2  
Internal Supply Voltage for the Secondary Side Controller and the Side 2 Data Channels. When a sufficient external  
voltage is supplied to VREG, the internal regulator regulates the VDD2 pin to 5.0 V. Otherwise, VDD2 should be in the  
3.0 V to 5.5 V range. Connect a 0.1 μF bypass capacitor from VDD2 to GND2.  
Input of the Internal Regulator to Power the Secondary Side Controller and the Side 2 Data Channels. VREG should  
be in the 5.5 V to 15 V range to regulate the VDD2 output to 5.0 V.  
VREG  
Table 17. Truth Table (Positive Logic)  
VIx Input1  
High  
VDD1 State  
Powered  
Powered  
VDD2 State  
Powered  
Powered  
VOxOutput1  
High  
Notes  
Normal operation, data is high  
Normal operation, data is low  
Low  
Low  
1 VIx and VOx refer to the input and output signals of a given channel (A, B, C, or D).  
Rev. B | Page 18 of 36  
 
 
Data Sheet  
ADuM3470/ADuM3471/ADuM3472/ADuM3473/ADuM3474  
TYPICAL PERFORMANCE CHARACTERISTICS  
1500  
1400  
1300  
1200  
1100  
1000  
900  
80  
70  
60  
50  
40  
30  
20  
10  
0
800  
700  
600  
500  
400  
300  
–40°C  
+25°C  
+105°C  
200  
100  
0
0
50  
100 150 200 250 300 350 400 450 500  
(kΩ)  
0
50  
100 150 200 250 300 350 400 450 500  
LOAD CURRENT (mA)  
R
OC  
Figure 9. Switching Frequency (fSW) vs. ROC Resistance  
Figure 12. Typical Efficiency over Temperature with Coilcraft Transformer,  
SW = 500 kHz, 5 V Input to 5 V Output  
f
80  
70  
80  
70  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
1MHz  
700kHz  
500kHz  
200kHz  
V
V
V
= 5V, V  
= 5V, V  
= 3.3V, V  
= 5V  
= 3.3V  
DD1  
DD1  
DD1  
ISO  
ISO  
= 3.3V  
ISO  
0
50  
100 150 200 250 300 350 400 450 500  
LOAD CURRENT (mA)  
0
50  
100 150 200 250 300 350 400 450 500  
LOAD CURRENT (mA)  
Figure 10. Typical Efficiency at Various Switching Frequencies with  
Coilcraft Transformer, 5 V Input to 5 V Output  
Figure 13. Single-Supply Efficiency with Coilcraft Transformer, fSW = 500 kHz  
80  
70  
80  
70  
60  
50  
40  
30  
60  
50  
40  
30  
20  
20  
1MHz  
1MHz  
700kHz  
700kHz  
500kHz  
200kHz  
500kHz  
200kHz  
10  
0
10  
0
0
50  
100 150 200 250 300 350 400 450 500  
LOAD CURRENT (mA)  
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140  
LOAD CURRENT (mA)  
Figure 14. Typical Efficiency at Various Switching Frequencies with  
Coilcraft Transformer, 5 V Input to 15 V Output  
Figure 11. Typical Efficiency at Various Switching Frequencies with  
Halo Transformer, 5 V Input to 5 V Output  
Rev. B | Page 19 of 36  
 
 
 
ADuM3470/ADuM3471/ADuM3472/ADuM3473/ADuM3474  
Data Sheet  
80  
15  
10  
5
70  
60  
50  
40  
30  
20  
10  
0
1MHz  
700kHz  
500kHz  
200kHz  
V
V
V
= 5V, V  
= 5V, V  
= 5V  
DD1  
DD1  
DD1  
ISO  
= 3.3V  
ISO  
= 3.3V, V  
= 3.3V  
ISO  
0
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140  
LOAD CURRENT (mA)  
0
5
10  
15  
20  
25  
DATA RATE (Mbps)  
Figure 15. Typical Efficiency at Various Switching Frequencies with  
Halo Transformer, 5 V Input to 15 V Output  
Figure 18. Typical Single-Supply ICH Supply Current per Forward Data Channel  
(15 pF Output Load)  
80  
70  
15  
10  
5
60  
50  
40  
30  
20  
V
V
V
= 5V, V  
= 5V, V  
= 5V  
DD1  
DD1  
DD1  
ISO  
–40°C  
+25°C  
+105°C  
= 3.3V  
10  
0
ISO  
= 3.3V, V  
= 3.3V  
ISO  
0
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140  
LOAD CURRENT (mA)  
0
5
10  
15  
20  
25  
DATA RATE (Mbps)  
Figure 16. Typical Efficiency over Temperature with Coilcraft Transformer,  
fSW = 500 kHz, 5 V Input to 15 V Output  
Figure 19. Typical Single-Supply ICH Supply Current per Reverse Data Channel  
(15 pF Output Load)  
80  
70  
60  
50  
40  
30  
20  
10  
5
V
V
V
= 5V, V  
= 5V, V  
= 5V  
DD1  
DD1  
DD1  
ISO  
= 3.3V  
ISO  
4
3
2
1
0
= 3.3V, V  
ISO  
= 3.3V  
V
V
= 5V, V  
= 5V, V  
= 15V  
= 12V  
DD1  
DD1  
ISO  
ISO  
0
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140  
LOAD CURRENT (mA)  
0
5
10  
15  
20  
25  
DATA RATE (Mbps)  
Figure 17. Double-Supply Efficiency with Coilcraft Transformer, fSW = 500 kHz  
Figure 20. Typical Single-Supply IISO (D) Dynamic Supply Current  
per Output Channel (15 pF Output Load)  
Rev. B | Page 20 of 36  
 
 
 
 
Data Sheet  
ADuM3470/ADuM3471/ADuM3472/ADuM3473/ADuM3474  
5
5
V
V
= 5V, V  
= 5V, V  
= 15V  
= 12V  
DD1  
DD1  
ISO  
ISO  
V
V
V
= 5V, V  
= 5V, V  
= 5V  
DD1  
DD1  
DD1  
ISO  
= 3.3V  
ISO  
4
3
2
1
0
4
3
2
1
0
= 3.3V, V  
ISO  
= 3.3V  
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
DATA RATE (Mbps)  
DATA RATE (Mbps)  
Figure 21. Typical Single-Supply IISO (D) Dynamic Supply Current  
per Input Channel  
Figure 24. Typical Double-Supply IISO (D) Dynamic Supply Current  
per Output Channel (15 pF Output Load)  
5
30  
V
V
= 5V, V  
= 5V, V  
= 15V  
= 12V  
DD1  
DD1  
ISO  
ISO  
V
V
= 5V, V  
= 5V, V  
= 15V  
= 12V  
DD1  
DD1  
ISO  
ISO  
25  
20  
15  
10  
5
4
3
2
1
0
0
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
DATA RATE (Mbps)  
DATA RATE (Mbps)  
Figure 22. Typical Double-Supply ICH Supply Current per Forward Data  
Channel (15 pF Output Load)  
Figure 25. Typical Double-Supply IISO (D) Dynamic Supply Current  
per Input Channel  
30  
6
5
4
V
V
= 5V, V  
= 5V, V  
= 15V  
= 12V  
DD1  
DD1  
ISO  
ISO  
25  
20  
15  
10  
5
3
2
1
0
0
0
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
25  
TIME (ms)  
DATA RATE (Mbps)  
Figure 26. Typical VISO Startup with 10 mA, 50 mA, and 400 mA Output Load,  
5 V Input to 5 V Output  
Figure 23. Typical Double-Supply ICH Supply Current per Reverse Data  
Channel (15 pF Output Load)  
Rev. B | Page 21 of 36  
 
 
 
 
 
ADuM3470/ADuM3471/ADuM3472/ADuM3473/ADuM3474  
Data Sheet  
5
4
3
2
1
6.0  
5.5  
5.0  
C
= 47µF, L1 = 47µH  
OUT  
4.5  
6.0  
5.5  
5.0  
4.5  
C
OUT  
= 47µF, L1 = 100µH  
1.0  
0.5  
0
V
V
V
AT 10mA  
AT 50mA  
AT 400mA  
ISO  
ISO  
ISO  
90% LOAD  
10% LOAD  
8
0
0
5
10  
15  
20  
25  
30  
–2  
0
2
4
6
10  
12  
14  
TIME (ms)  
TIME (ms)  
Figure 27. Typical VISO Startup with 10 mA, 50 mA, and 400 mA Output Load,  
5 V Input to 3.3 V Output  
Figure 30. Typical VISO Load Transient Response at 10% to 90% of 400 mA Load,  
fSW = 500 kHz, 5 V Input to 5 V Output  
5
4
3
2
1
4.0  
C
= 47µF, L1 = 47µH  
OUT  
3.5  
3.0  
4.0  
3.5  
3.0  
C
= 47µF, L1 = 100µH  
OUT  
1.0  
0.5  
0
V
V
V
AT 10mA  
AT 50mA  
AT 250mA  
ISO  
ISO  
ISO  
90% LOAD  
10% LOAD  
0
0
5
10  
15  
20  
25  
30  
–2  
0
2
4
6
8
10  
12  
14  
TIME (ms)  
TIME (ms)  
Figure 28. Typical VISO Startup with 10 mA, 50 mA, and 250 mA Output Load,  
3.3 V Input to 3.3 V Output  
Figure 31. Typical VISO Load Transient Response at 10% to 90% of 400 mA Load,  
fSW = 500 kHz, 5 V Input to 3.3 V Output  
18  
16  
14  
12  
10  
8
4.0  
C
= 47µF, L1 = 47µH  
OUT  
3.5  
3.0  
4.0  
3.5  
3.0  
C
= 47µF, L1 = 100µH  
OUT  
6
4
1.0  
0.5  
0
V
V
V
AT 10mA  
AT 20mA  
AT 100mA  
ISO  
ISO  
ISO  
2
0
90% LOAD  
10% LOAD  
0
5
10  
15  
20  
25  
30  
–2  
0
2
4
6
8
10  
12  
14  
TIME (ms)  
TIME (ms)  
Figure 29. Typical VISO Startup with 10 mA, 20 mA, and 100 mA Output Load,  
5 V Input to 15 V Output  
Figure 32. Typical VISO Load Transient Response at 10% to 90% of 250 mA Load,  
fSW = 500 kHz, 3.3 V Input to 3.3 V Output  
Rev. B | Page 22 of 36  
 
Data Sheet  
ADuM3470/ADuM3471/ADuM3472/ADuM3473/ADuM3474  
18  
3.34  
C
= 47µF, L1 = 47µH, L2 = 47µH  
OUT  
16  
14  
12  
18  
16  
14  
12  
3.32  
3.30  
3.28  
C
= 47µF, L1 = 100µH, L2 = 100µH  
OUT  
20  
X2 ON  
200  
100  
0
10  
10% LOAD  
90% LOAD  
X1 ON  
0
–2  
–1  
0
1
2
–2  
2
6
10  
14  
18  
22  
26  
30  
34  
TIME (µs)  
TIME (ms)  
Figure 33. Typical VISO Load Transient Response at 10% to 90% of 100 mA Load,  
fSW = 500 kHz, 5 V Input to 15 V Output  
Figure 36. Typical VISO Output Voltage Ripple at 250 mA Load,  
fSW = 500 kHz, 3.3 V Input to 3.3 V Output  
5.04  
5.02  
5.00  
4.98  
15.4  
15.2  
15.0  
14.8  
14.6  
20  
20  
X2 ON  
X2 ON  
10  
10  
X1 ON  
X1 ON  
0
–2  
0
–2  
–1  
0
1
2
–1  
0
1
2
TIME (µs)  
TIME (µs)  
Figure 34. Typical VISO Output Voltage Ripple at 400 mA Load,  
fSW = 500 kHz, 5 V Input to 5 V Output  
Figure 37. Typical VISO Output Voltage Ripple at 100 mA Load,  
fSW = 500 kHz, 5 V Input to 15 V Output  
3.34  
3.32  
3.30  
3.28  
20  
X2 ON  
10  
X1 ON  
0
–2  
–1  
0
1
2
TIME (µs)  
Figure 35. Typical VISO Output Voltage Ripple at 400 mA Load,  
fSW = 500 kHz, 5 V Input to 3.3 V Output  
Rev. B | Page 23 of 36  
 
ADuM3470/ADuM3471/ADuM3472/ADuM3473/ADuM3474  
TERMINOLOGY  
Data Sheet  
IDD1 (Q)  
tPLH Propagation Delay  
I
DD1 (Q) is the minimum operating current drawn at the VDD1 power  
The tPLH propagation delay is measured from the 50% level of  
the rising edge of the VIx signal to the 50% level of the rising  
edge of the VOx signal.  
input when there is no external load at VISO and the I/O pins are  
operating below 2 Mbps, requiring no additional dynamic supply  
current.  
Propagation Delay Skew (tPSK  
)
IDD1 (D)  
tPSK is the magnitude of the worst-case difference in tPHL and/or  
IDD1 (D) is the typical input supply current with all channels  
simultaneously driven at a maximum data rate of 25 Mbps with  
the full capacitive load representing the maximum dynamic  
load conditions. Treat resistive loads on the outputs separately  
from the dynamic load.  
tPLH that is measured between units at the same operating temper-  
ature, supply voltages, and output load within the recommended  
operating conditions.  
Channel-to-Channel Matching  
Channel-to-channel matching is the absolute value of the differ-  
ence in propagation delays between two channels when operated  
with identical loads.  
IDD1 (MAX)  
I
DD1 (MAX) is the input current under full dynamic and VISO load  
conditions.  
PHL Propagation Delay  
Minimum Pulse Width  
The minimum pulse width is the shortest pulse width at which  
the specified pulse width distortion is guaranteed.  
t
The tPHL propagation delay is measured from the 50% level of  
the falling edge of the VIx signal to the 50% level of the falling  
edge of the VOx signal.  
Maximum Data Rate  
The maximum data rate is the fastest data rate at which the  
specified pulse width distortion is guaranteed.  
Rev. B | Page 24 of 36  
 
Data Sheet  
ADuM3470/ADuM3471/ADuM3472/ADuM3473/ADuM3474  
D1  
L1  
V
+3.3V  
TO +15V  
=
ISO  
T1  
APPLICATIONS INFORMATION  
47µH  
C
OUT  
47µF  
The dc-to-dc converter section of the ADuM347x uses a  
V
R1  
DD1  
secondary side controller architecture with isolated pulse-width  
modulation (PWM) feedback. VDD1 power is supplied to an oscillat-  
ing circuit that switches current to the primary side of an external  
power transformer using internal push-pull switches at the X1  
and X2 pins. Power transferred to the secondary side of the trans-  
former is full wave rectified with external Schottky diodes (D1  
and D2), filtered with the L1 inductor and COUT capacitor, and  
regulated to the isolated power supply voltage from 3.3 V to 15 V.  
C
IN  
D2  
1 X1  
20 V  
REG  
0.1µF  
+5V  
2 GND  
3 NC  
4 X2  
19 GND  
18 V  
1
2
DD2  
ADuM3470/  
ADuM3471/  
ADuM3472/  
ADuM3473/  
ADuM3474  
17 FB  
V
FB  
5 V /V  
IA OA  
16 V /V  
IA OA  
15 V /V  
R2  
6 V /V  
IB OB  
IB OB  
7 V /V  
IC OC  
14 V /V  
IC OC  
13 V /V  
8 V /V  
ID OD  
ID OD  
The secondary (VISO) side controller regulates the output using  
a feedback voltage, VFB, from a resistor divider on the output to  
create a PWM control signal that is sent to the primary (VDD1) side  
by a dedicated iCoupler data channel labeled VFB. The primary side  
PWM converter varies the duty cycle of the X1 and X2 switches  
to modulate the oscillator circuit and control the power being  
sent to the secondary side. This feedback allows for significantly  
higher power and efficiency.  
R
100kΩ  
OC  
9 V  
DDA  
12 OC  
V
DD1  
0.1µF  
10 GND  
11 GND  
1
2
V
= V × (R1 + R2)/R2  
FB  
ISO  
= 3.3V OR 5V, CONNECT V  
FOR V  
, V  
, AND V  
.
ISO  
REG  
DD2  
ISO  
Figure 38. Single Power Supply  
D1  
L1  
V
=
ISO  
T1  
+12V TO  
47µH  
47µF  
+24V  
C
OUT1  
UNREGULATED  
+6V TO  
V
DD1  
+12V  
The ADuM347x devices implement undervoltage lockout  
(UVLO) with hysteresis on the VDDA power input. This feature  
ensures that the converter does not go into oscillation due to  
noisy input power or slow power-on ramp rates.  
C
C
IN  
D2  
D3  
D4  
OUT2  
L2  
47µF  
47µH  
R1  
A minimum load current of 10 mA is recommended to ensure  
optimum load regulation. Smaller loads can generate excess noise  
on the output due to short or erratic PWM pulses. Excess noise  
generated in this way can cause regulation problems in some  
circumstances.  
1 X1  
20 V  
REG  
2 GND  
3 NC  
4 X2  
19 GND  
18 V  
1
2
0.1µF  
+5V  
DD2  
ADuM3470/  
ADuM3471/  
ADuM3472/  
ADuM3473/  
ADuM3474  
17 FB  
V
FB  
5 V /V  
IA OA  
16 V /V  
IA OA  
15 V /V  
R2  
6 V /V  
IB OB  
IB OB  
14 V /V  
APPLICATION SCHEMATICS  
7 V /V  
IC OC  
IC OC  
13 V /V  
The ADuM347x devices have three main application schematics,  
as shown in Figure 38 to Figure 40. Figure 38 has a center-tapped  
secondary and two Schottky diodes that provide full wave  
rectification for a single output, typically for power supplies of  
3.3 V, 5 V, 12 V, and 15 V. For single supplies when VISO = 3.3 V  
or 5 V, VREG, VDD2, and VISO can be connected together.  
8 V /V  
ID OD  
ID OD  
R
100kΩ  
OC  
9 V  
DDA  
12 OC  
V
DD1  
0.1µF  
10 GND  
11 GND  
1
2
V
= V × (R1 + R2)/R2  
FB  
ISO  
FOR V  
= 15V OR LESS, V  
CAN CONNECT TO V .  
ISO  
REG  
ISO  
Figure 39. Doubling Power Supply  
D1  
L1  
V
=
ISO  
T1  
Figure 39 shows a voltage doubling circuit that can be used for a  
single supply with an output that exceeds 15 V; 15 V is the largest  
supply that can be connected to the regulator input, VREG (Pin 20).  
In the circuit shown in Figure 39, the output voltage can be as high  
as 24 V, and the voltage at the VREG pin can be as high as 12 V.  
When using the circuit shown in Figure 39 to obtain an output  
voltage lower than 10 V (for example, VDD1 = 3.3 V, VISO = 5 V),  
connect VREG to VISO directly.  
COARSELY  
REGULATED  
+5V TO +15V  
47µH  
47µF  
C
OUT1  
V
DD1  
C
C
OUT2  
IN  
D2  
D3  
D4  
L2  
UNREGULATED  
–5V TO –15V  
47µF  
47µH  
R1  
Figure 40, which also uses a voltage doubling secondary circuit,  
is an example of a coarsely regulated, positive power supply and  
an unregulated, negative power supply for outputs of approxi-  
mately 5 V, 12 V, and 15 V.  
1 X1  
20 V  
REG  
2 GND  
19 GND  
1
2
0.1µF  
+5V  
3 NC  
18 V  
ADuM3470/  
ADuM3471/  
ADuM3472/  
ADuM3473/  
ADuM3474  
DD2  
4 X2  
17 FB  
V
FB  
5 V /V  
16 V /V  
IA OA  
IA OA  
R2  
6 V /V  
IB OB  
15 V /V  
IB OB  
For all the circuits shown in Figure 38 to Figure 40, the isolated  
output voltage (VISO) can be set with the voltage dividers, R1  
and R2 (values 1 kΩ to 100 kΩ) using the following equation:  
7 V /V  
IC OC  
14 V /V  
IC OC  
8 V /V  
13 V /V  
ID OD  
ID OD  
DDA  
R
100kΩ  
OC  
9 V  
12 OC  
V
DD1  
0.1µF  
10 GND  
11 GND  
1
2
V
ISO = VFB × (R1 + R2)/R2  
V
= V × (R1 + R2)/R2  
FB  
ISO  
where VFB is the internal feedback voltage (approximately 1.25 V).  
Figure 40. Positive Supply and Unregulated Negative Supply  
Rev. B | Page 25 of 36  
 
 
 
 
 
ADuM3470/ADuM3471/ADuM3472/ADuM3473/ADuM3474  
Data Sheet  
VISO  
TRANSFORMER DESIGN  
+ VD  
NS  
2
Custom transformers were designed for use in the circuits shown  
in Figure 38, Figure 39, and Figure 40 (see Table 18). The trans-  
formers designed for use with the ADuM347x differ from other  
transformers used with isolated dc-to-dc converters that do not  
regulate the output voltage. The output voltage is regulated by a  
PWM controller in the ADuM347x that varies the duty cycle of  
the primary side switches in response to a secondary side feed-  
back voltage, VFB, received through an isolated digital channel.  
The internal controller has a maximum duty cycle of 40%.  
=
(2)  
NP  
VDD1 (MIN) ×D × 2  
where:  
NS/NP is the primary to secondary turns ratio.  
ISO is the isolated output supply voltage. VISO/2 is used because  
the circuit uses two pairs of diodes, creating a doubler circuit.  
VD is the Schottky diode voltage drop (0.5 V maximum).  
DD1 (MIN) is the minimum input supply voltage.  
D is the duty cycle = 0.30 for a 30% typical duty cycle (40% is  
the maximum duty cycle).  
V
V
TRANSFORMER TURNS RATIO  
To determine the transformer turns ratio—taking into account  
the losses for the primary switches and the losses for the secondary  
diodes and inductors—the external transformer turns ratio for  
the ADuM347x can be calculated using Equation 1.  
2 is a multiplier factor used for the push-pull switching cycle.  
For the circuit shown in Figure 39 using the 5 V to 15 V reference  
design in Table 18 and with VDD1 (MIN) = 4.5 V, the turns ratio is  
NS/NP = 3.  
V
ISO + VD  
NS  
NP  
The circuit shown in Figure 40 also uses double windings and  
diode pairs to create a doubler circuit. However, because a  
positive and negative output voltage are created, VISO is used,  
and the external transformer turns ratio can be calculated using  
Equation 3.  
(1)  
=
V
DD1 (MIN) ×D × 2  
where:  
NS/NP is the primary to secondary turns ratio.  
ISO is the isolated output supply voltage.  
VD is the Schottky diode voltage drop (0.5 V maximum).  
DD1 (MIN) is the minimum input supply voltage.  
V
V
ISO + VD  
NS  
NP  
(3)  
=
V
VDD1 (MIN) ×D × 2  
D is the duty cycle = 0.30 for a 30% typical duty cycle (40% is  
the maximum duty cycle).  
2 is a multiplier factor used for the push-pull switching cycle.  
where:  
NS/NP is the primary to secondary turns ratio.  
ISO is the isolated output supply voltage.  
VD is the Schottky diode voltage drop (0.5 V maximum).  
DD1 (MIN) is the minimum input supply voltage.  
V
For the circuit shown in Figure 38 using the 5 V to 5 V reference  
design in Table 18 and with VDD1 (MIN) = 4.5 V, the turns ratio is  
NS/NP = 2.  
V
D is the duty cycle = 0.35 for a 35% typical duty cycle (40% is  
For a 3.3 V input to 3.3 V output isolated single power supply  
and with VDD1 (MIN) = 3.0 V, the turns ratio is also NS/NP = 2.  
Therefore, the same transformer turns ratio, NS/NP = 2, can be  
used for the three single power applications: 5 V to 5 V, 5 V to  
3.3 V, and 3.3 V to 3.3 V.  
the maximum duty cycle).  
2 is a multiplier factor used for the push-pull switching cycle.  
For the circuit shown in Figure 40, the duty cycle, D, is set to 0.35  
for a 35% typical duty cycle to reduce the maximum voltages seen  
by the diodes for a 15 V supply.  
The circuit shown in Figure 39 uses double windings and diode  
pairs to create a doubler circuit; therefore, half the output voltage,  
For the circuit shown in Figure 40 using the +5 V to 15 V refer-  
ence design in Table 18 and with VDD1 (MIN) = 4.5 V, the turns  
ratio is NS/NP = 5.  
VISO/2, is used, as shown in Equation 2.  
Table 18. Transformer Reference Designs  
Turns Ratio, ET Constant Total Primary  
Manufacturer PRI:SEC  
(V × µs Min) Inductance (µH) Resistance (Ω) Voltage (rms) Type  
Total Primary Isolation  
Isolation  
Part No.  
Reference  
Figure 38  
Figure 39  
Figure 40  
JA4631-BL  
JA4650-BL  
KA4976-AL  
Coilcraft  
Coilcraft  
Coilcraft  
1CT:2CT  
1CT:3CT  
1CT:5CT  
18  
18  
18  
14  
14  
14  
14  
14  
14  
255  
255  
255  
389  
389  
389  
389  
389  
389  
0.2  
0.2  
0.2  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
2500  
2500  
2500  
2500  
2500  
2500  
1500  
1500  
1500  
Basic  
Basic  
Basic  
TGSAD-260V6LF Halo Electronics 1CT:2CT  
TGSAD-290V6LF Halo Electronics 1CT:3CT  
TGSAD-292V6LF Halo Electronics 1CT:5CT  
TGAD-260NARL Halo Electronics 1CT:2CT  
TGAD-290NARL Halo Electronics 1CT:3CT  
TGAD-292NARL Halo Electronics 1CT:5CT  
Supplemental Figure 38  
Supplemental Figure 39  
Supplemental Figure 40  
Functional  
Functional  
Functional  
Figure 38  
Figure 39  
Figure 40  
Rev. B | Page 26 of 36  
 
 
 
Data Sheet  
ADuM3470/ADuM3471/ADuM3472/ADuM3473/ADuM3474  
The ADuM347x devices also have an open-loop mode where  
the output voltage is not regulated and is dependent on the  
TRANSFORMER ET CONSTANT  
The next transformer design factor to consider is the ET constant.  
This constant determines the minimum V × µs constant of the  
transformer over the operating temperature. ET values of 14 V × µs  
and 18 V × µs were selected for the ADuM347x transformer  
designs listed in Table 18 using the following equation:  
transformer turns ratio, NS/NP, and the conditions of the output  
including output load current and the losses in the dc-to-dc  
converter circuit. This open-loop mode is selected when the OC  
pin is connected high to the VDD2 pin. In open-loop mode, the  
switching frequency is 318 kHz.  
VDD1 (MAX)  
ET(MIN) =  
TRANSIENT RESPONSE  
f
SW(MIN) × 2  
The load transient response of the ADuM347x output voltage for  
10% to 90% of the full load is shown in Figure 30 to Figure 33  
for the application schematics in Figure 38 and Figure 39. The  
response shown is slow but stable and can have more output  
change than desired for some applications. The output voltage  
change with load transient is reduced, and the output is shown  
to remain stable by adding more inductance to the output circuits,  
as shown in the second VISO output waveform in Figure 30 to  
Figure 33. For additional improvement in transient response,  
add a 0.1 µF ceramic capacitor (CFB) in parallel with the high  
feedback resistor. This value helps to reduce the overshoot and  
undershoot during load transients.  
where:  
DD1 (MAX) is the maximum input supply voltage.  
SW (MIN) is the minimum primary switching frequency = 300 kHz  
V
f
in startup.  
2 is a multiplier factor used for the push-pull switching cycle.  
TRANSFORMER PRIMARY INDUCTANCE AND  
RESISTANCE  
Another important characteristic of the transformer for designs  
with the ADuM347x is the primary inductance. Transformers  
for the ADuM347x are recommended to have between 60 µH to  
100 µH of inductance per primary winding. Values of primary  
inductance in this range are needed for smooth operation of the  
ADuM347x pulse-by-pulse current-limit circuit, which can help  
protect against a build-up of saturation currents in the transformer.  
If the inductance is specified for the total of both primary wind-  
ings, for example, as 400 µH, the inductance of one winding is  
one-fourth of two equal windings, or 100 µH.  
COMPONENT SELECTION  
The ADuM347x digital isolators with 2 W dc-to-dc converters  
require no external interface circuitry for the logic interfaces.  
Power supply bypassing is required at the input and output supply  
pins. Note that a low ESR ceramic bypass capacitor of 0.1 µF is  
required on Side 1 between Pin 9 and Pin 10, and on Side 2  
between Pin 18 and Pin 19, as close to the chip pads as possible.  
Another important characteristic of the transformer for designs  
with the ADuM347x is primary resistance. Primary resistance as  
low as is practical (less than 1 Ω) helps to reduce losses and  
improves efficiency. The dc primary resistance can be measured  
and specified, and is shown for the transformers in Table 18.  
The power supply section of the ADuM347x uses a high oscillator  
frequency to efficiently pass power through the external power  
transformer. In addition, normal operation of the data section of  
the iCoupler introduces switching transients on the power supply  
pins. Bypass capacitors are required for several operating frequen-  
cies. Noise suppression requires a low inductance, high frequency  
capacitor; ripple suppression and proper regulation require a large  
value capacitor. To suppress noise and reduce ripple, large value  
ceramic capacitors of X5R or X7R dielectric type are recom-  
mended. The recommended capacitor value is 10 µF for VDD1 and  
47 µF for VISO. These capacitors have a low ESR and are available  
in moderate 1206 or 1210 sizes for voltages up to 10 V. Fo r output  
voltages larger than 10 V, t w o 2 2 µF ceramic capacitors can be  
used in parallel. See Table 19 for recommended components.  
TRANSFORMER ISOLATION VOLTAGE  
Isolation voltage and isolation type should be determined for  
the requirements of the application and then specified. The  
transformers in Table 18 have been specified for 2500 V rms  
for supplemental or basic isolation and for 1500 V rms functional  
isolation. Other isolation levels and isolation voltages can be  
specified and requested from the transformer manufacturers  
listed in Table 18 or from other manufacturers.  
SWITCHING FREQUENCY  
The ADuM347x switching frequency can be adjusted from  
200 kHz to 1 MHz by changing the value of the ROC resistor  
shown in Figure 38, Figure 39, and Figure 40. The value of the  
Table 19. Recommended Components  
Part No.  
Manufacturer  
Value  
GRM32ER71A476KE15L Murata  
GRM32ER71C226KEA8L Murata  
GRM31CR71A106KA01L Murata  
47 µF, 10 V, X7R, 1210  
22 µF, 16 V, X7R, 1210  
10 µF, 10 V, X7R, 1206  
ROC resistor needed for the desired switching frequency can be  
determined from the switching frequency vs. ROC resistance curve  
shown in Figure 9. The output filter inductor value and output  
capacitor value for the ADuM347x application schematics have  
been designed to be stable over the switching frequency range of  
500 kHz to 1 MHz, when loaded from 10% to 90% of the maxi-  
mum load.  
MBR0540T1G  
ON Semiconductor Schottky, 0.5 A, 40 V,  
SOD-123  
LQH3NPN470MM0  
ME3220-104KL  
LQH6PPN470M43  
LQH6PPN101M43  
Murata  
Coilcraft  
Murata  
Murata  
47 µH, 0.41 A, 1212  
100 µH, 0.34 A, 1210  
47 µH, 1.10 A, 2424  
100 µH, 0.80 A, 2424  
Rev. B | Page 27 of 36  
 
 
 
 
 
 
 
ADuM3470/ADuM3471/ADuM3472/ADuM3473/ADuM3474  
Data Sheet  
Inductors must be selected based on the value and supply  
current needed. Most applications with switching frequencies  
between 500 kHz and 1 MHz and load transients between 10%  
and 90% of full load are stable with the 47 μH inductor value  
listed in Table 19. Values as large as 200 μH can be used for power  
supply applications with a switching frequency as low as 200 kHz  
to help stabilize the output voltage or for improved load transient  
response (see Figure 30 to Figure 33). Inductors in a small 1212  
or 1210 size are listed in Table 19 with a 47 μH value and a 0.41 A  
current rating to handle the majority of applications below a  
400 mA load, and with a 100 μH value and a 0.34 A current  
rating to handle a load up to 300 mA.  
The board layout in Figure 41 shows enlarged pads for Pin 2  
and Pin 10 (GND1) on Side 1 and Pin 11 and Pin 19 (GND2)  
on Side 2. Large diameter vias should be implemented from the  
pad to the ground planes and power planes to increase thermal  
conductivity and to reduce inductance. Multiple vias in the  
thermal pads can significantly reduce temperatures inside the  
chip. The dimensions of the expanded pads are left to the discre-  
tion of the designer and depend on the available board space.  
THERMAL ANALYSIS  
The ADuM347x parts consist of two internal die attached to a  
split lead frame with two die attach paddles. For the purposes  
of thermal analysis, the die are treated as a thermal unit, with  
the highest junction temperature reflected in the θJA value from  
Table 5. The value of θJA is based on measurements taken with  
the parts mounted on a JEDEC standard, 4-layer board with  
fine width traces and still air.  
Recommended Schottky diodes have low forward voltage to  
reduce losses and high reverse voltage of up to 40 V to withstand  
the peak voltages available in the doubling circuits shown in  
Figure 39 and Figure 40.  
PRINTED CIRCUIT BOARD (PCB) LAYOUT  
Under normal operating conditions, the ADuM347x devices  
operate at full load across the full temperature range without  
derating the output current. However, following the recom-  
mendations in the Printed Circuit Board (PCB) Layout section  
decreases thermal resistance to the PCB, allowing increased  
thermal margins at high ambient temperatures.  
Figure 41 shows the recommended PCB layout for the  
ADuM347x. Note that the total lead length between the ends  
of the low ESR capacitor and the VDDx and GNDx pins must not  
exceed 2 mm. Installing a bypass capacitor with traces more  
than 2 mm in length can result in data corruption.  
The ADuM347x devices have a thermal shutdown circuit  
that shuts down the dc-to-dc converter and the outputs of the  
ADuM347x when a die temperature of approximately 160°C  
is reached. When the die cools below approximately 140°C, the  
ADuM347x dc-to-dc converter and outputs turn on again.  
X1  
V
REG  
GND  
GND  
2
1
NC  
V
DD2  
X2  
FB  
V
V
V
V
/V  
V
V
/V  
IA OA  
IA OA  
/V  
/V  
IB OB  
IB OB  
/V  
V /V  
IC OC  
IC OC  
PROPAGATION DELAY-RELATED PARAMETERS  
/V  
V /V  
ID OD  
ID OD  
Propagation delay is a parameter that describes the length of  
time it takes for a logic signal to propagate through a compo-  
nent (see Figure 42). The propagation delay to a logic low output  
can differ from the propagation delay to a logic high output.  
V
OC  
DDA  
GND  
GND  
1
2
Figure 41. Recommended PCB Layout  
In applications that involve high common-mode transients, ensure  
that board coupling across the isolation barrier is minimized.  
Furthermore, design the board layout such that any coupling that  
does occur affects all pins equally on a given component side.  
Failure to ensure this can cause voltage differentials between pins  
that exceed the absolute maximum ratings specified in Table 10,  
thereby leading to latch-up and/or permanent damage.  
INPUT (V  
)
50%  
Ix  
tPLH  
tPHL  
OUTPUT (V  
)
50%  
Ox  
Figure 42. Propagation Delay Parameters  
Pulse width distortion is the maximum difference between  
these two propagation delay values and is an indication of how  
accurately the timing of the input signal is preserved.  
The ADuM3470/ADuM3471/ADuM3472/ADuM3473/  
ADuM3474 are power devices that dissipate approximately 1 W  
of power when fully loaded and running at maximum speed.  
Because it is not possible to apply a heat sink to an isolation device,  
the devices primarily depend on heat dissipation into the PCB  
through the GNDx pins. If the devices are used at high ambient  
temperatures, provide a thermal path from the GNDx pins to the  
PCB ground plane.  
Channel-to-channel matching refers to the maximum amount  
that the propagation delay differs between channels within a  
single ADuM347x component.  
Propagation delay skew refers to the maximum amount that the  
propagation delay differs between multiple ADuM347x compo-  
nents operating under the same conditions.  
Rev. B | Page 28 of 36  
 
 
 
 
 
Data Sheet  
ADuM3470/ADuM3471/ADuM3472/ADuM3473/ADuM3474  
For example, at a magnetic field frequency of 1 MHz, the  
maximum allowable magnetic field of 0.2 kgauss induces a  
voltage of 0.25 V at the receiving coil. This voltage is approxi-  
mately 50% of the sensing threshold and does not cause a faulty  
output transition. Similarly, if such an event occurs during a  
transmitted pulse (and is of the worst-case polarity), it reduces  
the received pulse from >1.0 V to 0.75 V—still well above the  
0.5 V sensing threshold of the decoder.  
DC CORRECTNESS AND MAGNETIC FIELD  
IMMUNITY  
Positive and negative logic transitions at the isolator input cause  
narrow (~1 ns) pulses to be sent to the decoder via the transformer.  
The decoder is bistable and is, therefore, either set or reset by  
the pulses, indicating input logic transitions. In the absence of  
logic transitions at the input for more than 1 µs, periodic sets of  
refresh pulses indicative of the correct input state are sent to ensure  
dc correctness at the output. If the decoder receives no internal  
pulses for more than approximately 5 µs, the input side is assumed  
to be unpowered or nonfunctional, and the isolator output is forced  
to a default state by the watchdog timer circuit (see Table 17).  
This situation should occur in the ADuM347x devices only  
during power-up and power-down operations.  
The preceding magnetic flux density values correspond to  
specific current magnitudes at given distances from the  
ADuM347x transformers. Figure 44 expresses these allowable  
current magnitudes as a function of frequency for selected  
distances. As shown in Figure 44, the ADuM347x is extremely  
immune and can be affected only by extremely large currents  
operated at high frequency very close to the component. For the  
1 MHz example, a 0.5 kA current must be placed 5 mm away  
from the ADuM347x to affect the operation of the component.  
1k  
The limitation on the magnetic field immunity of the ADuM347x  
is set by the condition in which induced voltage in the transformer  
receiving coil is sufficiently large to either falsely set or reset the  
decoder. The following analysis defines the conditions under  
which this can occur.  
DISTANCE = 1m  
100  
The 3.3 V operating condition of the ADuM347x is examined  
because it represents the most susceptible mode of operation.  
10  
The pulses at the transformer output have an amplitude of >1.0 V.  
The decoder has a sensing threshold of approximately 0.5 V, thus  
establishing a 0.5 V margin in which induced voltages can be  
tolerated. The voltage induced across the receiving coil is given by  
DISTANCE = 100mm  
1
DISTANCE = 5mm  
2
V = (−dβ/dt) ∑ πrn ; n = 1, 2, …, N  
0.1  
where:  
β is the magnetic flux density (gauss).  
rn is the radius of the nth turn in the receiving coil (cm).  
N is the number of turns in the receiving coil.  
0.01  
1k  
10k  
100k  
1M  
10M  
100M  
MAGNETIC FIELD FREQUENCY (Hz)  
Figure 44. Maximum Allowable Current  
for Various Current-to-ADuM347x Spacings  
Given the geometry of the receiving coil in the ADuM347x and  
an imposed requirement that the induced voltage be, at most,  
50% of the 0.5 V margin at the decoder, a maximum allowable  
magnetic field is calculated as shown in Figure 43.  
100  
At combinations of strong magnetic field and high frequency, any  
loops formed by PCB traces can induce error voltages sufficiently  
large to trigger the thresholds of succeeding circuitry. Care should  
be taken in the layout of such traces to avoid this possibility.  
10  
1
0.1  
0.01  
0.001  
1k  
10k  
100k  
1M  
10M  
100M  
MAGNETIC FIELD FREQUENCY (Hz)  
Figure 43. Maximum Allowable External Magnetic Flux Density  
Rev. B | Page 29 of 36  
 
 
 
ADuM3470/ADuM3471/ADuM3472/ADuM3473/ADuM3474  
Data Sheet  
The preceding analysis assumes a 15 pF capacitive load on each  
data output. If the capacitive load is larger than 15 pF, the additional  
POWER CONSUMPTION  
The VDD1 power supply provides power to the iCoupler data  
channels, as well as to the power converter. For this reason,  
the quiescent currents drawn by the power converter and the  
primary and secondary I/O channels cannot be determined  
separately. All of these quiescent power demands are combined  
in the IDD1 (Q) current (see the simplified diagram in Figure 45).  
The total IDD1 supply current is equal to the sum of the quiescent  
operating current; the dynamic current, IDD1 (D), demanded by  
the I/O channels; and any external IISO load.  
current must be included in the analysis of IDD1 and IISO (LOAD)  
.
POWER CONSIDERATIONS  
Soft Start Mode and Current-Limit Protection  
When the ADuM347x device first receives power from VDD1, it is  
in soft start mode, and the output voltage, VISO, is increased  
gradually while it is below the start-up threshold. In soft start  
mode, the width of the PWM signal is increased gradually by  
the primary converter to limit the peak current during VISO  
power-up. When the output voltage is larger than the start-up  
threshold, the PWM signal can be transferred from the second-  
ary controller to the primary converter, and the dc-to-dc converter  
switches from soft start mode to the normal PWM control mode.  
I
I
ISO  
DD1 (Q)  
FB  
PRIMARY  
CONVERTER  
SECONDARY  
CONTROLLER  
I
DD1 (D)  
I
I
ISO (D)  
DDP (D)  
If a short circuit occurs, the push-pull converter shuts down for  
approximately 2 ms and then enters soft start mode. If, at the end  
of soft start, a short circuit still exists, the process is repeated,  
which is called hiccup mode. If the short circuit is cleared, the  
ADuM347x device enters normal operation.  
PRIMARY  
DATA  
I/O  
SECONDARY  
DATA  
I/O  
4CH  
4CH  
The ADuM347x devices also have a pulse-by-pulse current  
limit, which is active in startup and normal operation. This  
current limit protects the primary switches, X1 and X2, from  
exceeding approximately 1.2 A peak and also protects the  
transformer windings.  
Figure 45. Power Consumption Within the ADuM347x  
Dynamic I/O current is consumed only when operating a channel  
at speeds higher than the refresh rate of fr. The dynamic current  
of each channel is determined by its data rate. Figure 18 and  
Figure 22 show the current for a channel in the forward direction,  
meaning that the input is on the primary side of the part. Figure 19  
and Figure 23 show the current for a channel in the reverse direc-  
tion, meaning that the input is on the secondary side of the part.  
Figure 18, Figure 19, Figure 22, and Figure 23 assume a typical  
15 pF output load.  
Data Channel Power Cycle  
The ADuM347x data input channels on the primary side and  
the data input channels on the secondary side are protected from  
premature operation by UVLO circuitry. Below the minimum  
operating voltage, the power converter holds its oscillator inactive,  
and all input channel drivers and refresh circuits are idle. Outputs  
are held in a low state to prevent transmission of undefined states  
during power-up and power-down operations.  
The following relationship allows the total IDD1 current to be  
I
DD1 = (IISO × VISO)/(E × VDD1) + Σ ICHn; n = 1 to 4  
(1)  
where:  
During application of power to VDD1, the primary side circuitry  
is held idle until the UVLO preset voltage is reached. At that time,  
the data channels are initialized to their default low output state  
until they receive data pulses from the secondary side.  
I
I
DD1 is the total supply input current.  
ISO is the current drawn by the secondary side external load.  
E is the power supply efficiency at the given output load from  
Figure 13 or Figure 17 at the VISO and VDD1 condition of interest.  
CHn is the current drawn by a single channel, determined from  
The primary side input channels sample the input and send a  
pulse to the inactive secondary output. The secondary side  
converter begins to accept power from the primary, and the VISO  
voltage starts to rise. When the secondary side UVLO is reached,  
the secondary side outputs are initialized to their default low state  
until data, either a transition or a dc refresh pulse, is received from  
the corresponding primary side input. It can take up to 1 μs after  
the secondary side is initialized for the state of the output to  
correlate with the primary side input.  
I
Figure 18, Figure 19, Figure 22, or Figure 23, depending on  
channel direction.  
The maximum external load can be calculated by subtracting  
the dynamic output load from the maximum allowable load.  
I
ISO (LOAD) = IISO (MAX) − Σ IISO (D)n; n = 1 to 4  
where:  
ISO (LOAD) is the current available to supply an external secondary  
side load.  
ISO (MAX) is the maximum external secondary side load current  
available at VISO  
ISO (D)n is the dynamic load current drawn from VISO by an  
(2)  
I
Secondary side inputs sample their state and transmit it to the  
primary side. Outputs are valid one propagation delay after the  
secondary side becomes active.  
I
.
I
output or input channel, as shown for a single supply in Figure 20  
or Figure 21 or for a double supply in Figure 24 or Figure 25.  
Rev. B | Page 30 of 36  
 
 
 
Data Sheet  
ADuM3470/ADuM3471/ADuM3472/ADuM3473/ADuM3474  
Because the rate of charge of the secondary side is dependent  
on the soft start cycle, loading conditions, input voltage, and  
output voltage level selected, care should be taken in the design  
to allow the converter to stabilize before valid data is required.  
Bipolar ac voltage is the most stringent environment. A 50-year  
operating lifetime under the bipolar ac condition determines the  
maximum working voltage recommended by Analog Devices.  
In the case of unipolar ac or dc voltage, the stress on the insulation  
is significantly lower. This allows operation at higher working  
voltages while still achieving a 50-year service life. The working  
voltages listed in Table 11 can be applied while maintaining the  
50-year minimum lifetime, provided that the voltage conforms  
to either the unipolar ac or dc voltage cases. Treat any cross-  
insulation voltage waveform that does not conform to Figure 47  
or Figure 48 as a bipolar ac waveform, and limit its peak voltage  
to the 50-year lifetime voltage value listed in Table 11.  
When power is removed from VDD1, the primary side converter  
and coupler shut down when the UVLO level is reached. The  
secondary side stops receiving power and starts to discharge.  
The outputs on the secondary side hold the last state that they  
received from the primary side until either the UVLO level is  
reached and the outputs are placed in their default low state,  
or the outputs detect a lack of activity from the inputs and the  
outputs are set to their default value before the secondary power  
reaches UVLO.  
The voltage presented in Figure 48 is shown as sinusoidal for  
illustration purposes only. It is meant to represent any voltage  
waveform varying between 0 V and some limiting value. The  
limiting value can be positive or negative, but the voltage cannot  
cross 0 V.  
INSULATION LIFETIME  
All insulation structures eventually break down when subjected  
to voltage stress over a sufficiently long period. The rate of insu-  
lation degradation is dependent on the characteristics of the voltage  
waveform applied across the insulation. Analog Devices conducts  
an extensive set of evaluations to determine the lifetime of the  
insulation structure within the ADuM347x devices.  
RATED PEAK VOLTAGE  
0V  
Figure 46. Bipolar AC Waveform  
Accelerated life testing is performed using voltage levels higher  
than the rated continuous working voltage. Acceleration factors  
for several operating conditions are determined, allowing calcu-  
lation of the time to failure at the working voltage of interest.  
The values shown in Table 11 summarize the peak voltages for  
50 years of service life in several operating conditions. In many  
cases, the working voltage approved by agency testing is higher  
than the 50-year service life voltage. Operation at working  
voltages higher than the service life voltage listed in Table 11  
leads to premature insulation failure.  
RATED PEAK VOLTAGE  
0V  
Figure 47. DC Waveform  
RATED PEAK VOLTAGE  
0V  
The insulation lifetime of the ADuM347x depends on the voltage  
waveform type imposed across the isolation barrier. The iCoupler  
insulation structure degrades at different rates, depending on  
whether the waveform is bipolar ac, dc, or unipolar ac. Figure 46,  
Figure 47, and Figure 48 illustrate these different isolation  
voltage waveforms.  
Figure 48. Unipolar AC Waveform  
Rev. B | Page 31 of 36  
 
 
 
 
ADuM3470/ADuM3471/ADuM3472/ADuM3473/ADuM3474  
OUTLINE DIMENSIONS  
Data Sheet  
7.50  
7.20  
6.90  
11  
20  
5.60  
5.30  
5.00  
8.20  
7.80  
7.40  
1
10  
0.25  
0.09  
1.85  
1.75  
1.65  
2.00 MAX  
8°  
4°  
0°  
0.95  
0.75  
0.55  
0.38  
0.22  
0.05 MIN  
SEATING  
PLANE  
COPLANARITY  
0.10  
0.65 BSC  
COMPLIANT TO JEDEC STANDARDS MO-150-AE  
Figure 49. 20-Lead Shrink Small Outline Package [SSOP]  
(RS-20)  
Dimensions shown in millimeters  
Rev. B | Page 32 of 36  
 
Data Sheet  
ADuM3470/ADuM3471/ADuM3472/ADuM3473/ADuM3474  
ORDERING GUIDE  
Number  
Number  
Maximum Maximum  
Maximum  
of Inputs, of Inputs, Data Rate Propagation  
Pulse Width  
Temperature Package  
Delay, 5 V (ns) Distortion (ns) Range (°C) Description  
Package  
Option  
Model1, 2, 3  
VDD1 Side VISO Side  
(Mbps)  
1
ADuM3470ARSZ  
ADuM3470CRSZ  
ADuM3470WARSZ  
ADuM3470WCRSZ  
ADuM3471ARSZ  
ADuM3471CRSZ  
ADuM3471WARSZ  
ADuM3471WCRSZ  
ADuM3472ARSZ  
ADuM3472CRSZ  
ADuM3472WARSZ  
ADuM3472WCRSZ  
ADuM3473ARSZ  
ADuM3473CRSZ  
ADuM3473WARSZ  
ADuM3473WCRSZ  
ADuM3474ARSZ  
ADuM3474CRSZ  
ADuM3474WARSZ  
ADuM3474WCRSZ  
4
4
4
4
3
3
3
3
2
2
2
2
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
2
2
2
2
3
3
3
3
4
4
4
4
100  
60  
40  
8
−40 to +105  
−40 to +105  
−40 to +105  
−40 to +105  
−40 to +105  
−40 to +105  
−40 to +105  
−40 to +105  
−40 to +105  
−40 to +105  
−40 to +105  
−40 to +105  
−40 to +105  
−40 to +105  
−40 to +105  
−40 to +105  
−40 to +105  
−40 to +105  
−40 to +105  
−40 to +105  
20-Lead SSOP RS-20  
20-Lead SSOP RS-20  
20-Lead SSOP RS-20  
20-Lead SSOP RS-20  
20-Lead SSOP RS-20  
20-Lead SSOP RS-20  
20-Lead SSOP RS-20  
20-Lead SSOP RS-20  
20-Lead SSOP RS-20  
20-Lead SSOP RS-20  
20-Lead SSOP RS-20  
20-Lead SSOP RS-20  
20-Lead SSOP RS-20  
20-Lead SSOP RS-20  
20-Lead SSOP RS-20  
20-Lead SSOP RS-20  
20-Lead SSOP RS-20  
20-Lead SSOP RS-20  
20-Lead SSOP RS-20  
20-Lead SSOP RS-20  
25  
1
25  
1
25  
1
25  
1
25  
1
25  
1
25  
1
25  
1
100  
60  
40  
8
100  
60  
40  
8
100  
60  
40  
8
100  
60  
40  
8
100  
60  
40  
8
100  
60  
40  
8
100  
60  
40  
8
100  
60  
40  
8
25  
1
25  
100  
60  
40  
8
1 Z = RoHS Compliant Part.  
2 W = Qualified for Automotive Applications.  
3 Tape and reel are available. The addition of an RL7 suffix designates a 7” (500 units) tape and reel option.  
AUTOMOTIVE PRODUCTS  
The ADuM3470W, ADuM3471W, ADuM3472W, ADuM3473W, and ADuM3474W models are available with controlled manufacturing  
to support the quality and reliability requirements of automotive applications. Note that these automotive models may have specifications  
that differ from the commercial models; therefore, designers should review the Specifications section of this data sheet carefully. Only the  
automotive grade products shown are available for use in automotive applications. Contact your local Analog Devices account representative  
for specific product ordering information and to obtain the specific Automotive Reliability reports for these models.  
Rev. B | Page 33 of 36  
 
 
 
 
 
ADuM3470/ADuM3471/ADuM3472/ADuM3473/ADuM3474  
NOTES  
Data Sheet  
Rev. B | Page 34 of 36  
Data Sheet  
NOTES  
ADuM3470/ADuM3471/ADuM3472/ADuM3473/ADuM3474  
Rev. B | Page 35 of 36  
ADuM3470/ADuM3471/ADuM3472/ADuM3473/ADuM3474  
NOTES  
Data Sheet  
©2010–2014 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D09369-0-5/14(B)  
Rev. B | Page 36 of 36  

相关型号:

ADUM3471

PWM Controller and Transformer Driver with Quad-Channel Isolators
ADI

ADUM3471ARSZ

PWM Controller and Transformer Driver with Quad-Channel Isolators
ADI

ADUM3471CRSZ

PWM Controller and Transformer Driver with Quad-Channel Isolators
ADI

ADUM3472

PWM Controller and Transformer Driver with Quad-Channel Isolators
ADI

ADUM3472ARSZ

PWM Controller and Transformer Driver with Quad-Channel Isolators
ADI

ADUM3472CRSZ

PWM Controller and Transformer Driver with Quad-Channel Isolators
ADI

ADUM3473

PWM Controller and Transformer Driver with Quad-Channel Isolators
ADI

ADUM3473ARSZ

PWM Controller and Transformer Driver with Quad-Channel Isolators
ADI

ADUM3473CRSZ

PWM Controller and Transformer Driver with Quad-Channel Isolators
ADI

ADUM3474

PWM Controller and Transformer Driver with Quad-Channel Isolators
ADI

ADUM3474ARSZ

PWM Controller and Transformer Driver with Quad-Channel Isolators
ADI

ADUM3474ARSZ-RL7

Isolated Switching Regulators (0/4 Channel Directionality)
ADI