ADUM1100AR-REEL [ADI]

SPECIALTY TELECOM CIRCUIT, PDSO8, MS-012AA, SOIC-8;
ADUM1100AR-REEL
型号: ADUM1100AR-REEL
厂家: ADI    ADI
描述:

SPECIALTY TELECOM CIRCUIT, PDSO8, MS-012AA, SOIC-8

文件: 总16页 (文件大小:163K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
iCoupler® Digital Isolator  
a
ADuM1100  
GENERAL DESCRIPTION  
FEATURES  
The ADuM1100 is a digital isolator based on Analog Devices’  
iCoupler technology. Combining high speed CMOS and mono-  
lithic air core transformer technology, this isolation component  
provides outstanding performance characteristics superior to  
alternatives such as optocoupler devices.  
High Data Rate: DC to 100 Mbps (NRZ)  
Compatible with 3.3 V and 5.0 V Operation/  
Level Translation  
125؇C Max Operating Temperature  
Low Power Operation  
5 V Operation  
1.0 mA Max @ 1 Mbps  
4.5 mA Max @ 25 Mbps  
16.8 mA Max @ 100 Mbps  
Configured as a pin compatible replacement for existing high speed  
optocouplers, the ADuM1100 supports data rates as high as  
25 Mbps and 100 Mbps.  
The ADuM1100 operates with either voltage supply ranging from  
3.0 V to 5.5 V, boasts a propagation delay of <18 ns and edge  
asymmetry of <2 ns, and is compatible with temperatures up to  
125°C. It operates at very low power, less than 0.9 mA of quiescent  
current (sum of both sides), and a dynamic current of less than  
160 µA per Mbps of data rate. Unlike other optocoupler alter-  
natives, the ADuM1100 provides dc correctness with a patented  
refresh feature that continuously updates the output signal.  
3.3 V Operation  
0.4 mA Max @ 1 Mbps  
3.5 mA Max @ 25 Mbps  
7.1 mA Max @ 50 Mbps  
8-Lead SOIC Package (lead-free version available)  
High Common-Mode Transient Immunity: >25 kV/s  
Safety and Regulatory Information  
UL Recognized  
2500 V rms for 1 Minute per UL 1577  
CSA Component Acceptance Notice No. 5A  
VDE Certificate of Conformity  
DIN EN 60747-5-2 (VDE 0884 Part 2): 2003–01  
DIN EN 60950 (VDE 0805): 2001–12; EN 60950: 2000  
VIORM = 560 VPEAK  
The ADuM1100 is offered in three grades. The ADuM1100AR  
and ADuM1100BR can operate up to a maximum temperature  
of 105°C and support data rates up to 25 Mbps and 100 Mbps,  
respectively. The ADuM1100UR can operate up to a maximum  
temperature of 125°C and supports data rates up to 100 Mbps.  
APPLICATIONS  
Digital Fieldbus Isolation  
Opto-Isolator Replacement  
Computer-Peripheral Interface  
Microprocessor System Interface  
General Instrumentation and Data Acquisition  
Applications  
FUNCTIONAL BLOCK DIAGRAM  
V
V
DD1  
DD2  
D
E
N
C
O
D
E
E
C
O
D
E
V
GND  
I
2
(DATA IN)  
V
O
V
DD1  
(DATA OUT)  
UPDATE  
WATCHDOG  
GND  
2
GND  
1
ADuM1100  
FOR PRINCIPLES OF OPERATION, SEE METHOD OF OPERATION,  
DC CORRECTNESS, AND MAGNETIC FIELD IMMUNITY SECTION.  
REV. E  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© 2003 Analog Devices, Inc. All rights reserved.  
ADuM1100–SPECIFICATIONS  
(4.5 V VDD1 5.5 V, 4.5 V VDD2 5.5 V. All min/max  
ELECTRICAL SPECIFICATIONS, 5 V OPERATION1  
specifications apply over the entire recommended operation  
range, unless otherwise noted. All typical specifications are at TA = 25؇C, VDD1 = VDD2 = 5 V.)  
Parameter  
Symbol Min  
Typ Max  
Unit  
Test Conditions  
DC SPECIFICATIONS  
Input Supply Current  
Output Supply Current  
Input Supply Current (25 Mbps)  
(See TPC 1)  
IDD1(Q)  
IDD2(Q)  
IDD1(25)  
0.3  
0.01 0.06  
0.8  
mA  
mA  
mA  
VI = 0 V or VDD1  
VI = 0 V or VDD1  
12.5 MHz Logic Signal Frequency  
2.2  
0.5  
9.0  
2.0  
3.5  
1.0  
14  
Output Supply Current2 (25 Mbps)  
(See TPC 2)  
IDD2(25)  
IDD1(100)  
IDD2(100)  
mA  
mA  
mA  
12.5 MHz Logic Signal Frequency  
Input Supply Current (100 Mbps)  
(See TPC 1)  
50 MHz Logic Signal Frequency,  
ADuM1100BR/ADuM1100UR Only  
50 MHz Logic Signal Frequency,  
ADuM1100BR/ADuM1100UR Only  
0 VIN VDD1  
Output Supply Current2 (100 Mbps)  
(See TPC 2)  
2.8  
Input Current  
Logic High Output Voltage  
II  
VOH  
–10  
+0.01 +10  
µA  
V
V
V
V
VDD2 – 0.1 5.0  
VDD2 – 0.8 4.6  
0.0  
IO = –20 µA, VI = VIH  
IO = –4 mA, VI = VIH  
Logic Low Output Voltage  
VOL  
0.1  
IO = 20 µA, VI = VIL  
0.03 0.1  
0.3  
IO = 400 µA, VI = VIL  
0.8  
V
IO = 4 mA, VI = VIL  
SWITCHING SPECIFICATIONS  
For ADuM1100AR  
Minimum Pulse Width3  
Maximum Data Rate4  
For ADuM1100BR/ADuM1100UR  
Minimum Pulse Width3  
Maximum Data Rate4  
For All Grades  
Propagation Delay Time  
to Logic Low Output5, 6  
(See TPC 3)  
PW  
PW  
tPHL  
tPLH  
40  
10  
ns  
Mbps  
CL = 15 pF, CMOS Signal Levels  
CL = 15 pF, CMOS Signal Levels  
25  
6.7  
150  
ns  
Mbps  
CL = 15 pF, CMOS Signal Levels  
CL = 15 pF, CMOS Signal Levels  
100  
10.5 18  
10.5 18  
ns  
ns  
CL = 15 pF, CMOS Signal Levels  
CL = 15 pF, CMOS Signal Levels  
Propagation Delay Time  
to Logic High Output5, 6  
(See TPC 3)  
6
Pulse Width Distortion |tPLH – tPHL  
Change versus Temperature7  
Propagation Delay Skew  
(Equal Temperature)6, 8  
Propagation Delay Skew  
|
PWD  
tPSK1  
tPSK2  
tR, tF  
0.5  
3
2
8
6
ns  
ps/°C  
ns  
CL = 15 pF, CMOS Signal Levels  
CL = 15 pF, CMOS Signal Levels  
CL = 15 pF, CMOS Signal Levels  
ns  
CL = 15 pF, CMOS Signal Levels  
(Equal Temperature, Supplies)6, 8  
Output Rise/Fall Time  
3
35  
ns  
kV/µs  
CL = 15 pF, CMOS Signal Levels  
VI = 0 or VDD1, VCM = 1000 V,  
Transient Magnitude = 800 V  
Common-Mode Transient Immunity |CML|, 25  
at Logic Low/High Output9  
Input Dynamic Power  
|CMH|  
CPD1  
35  
8
pF  
pF  
Dissipation Capacitance10  
Output Dynamic Power  
Dissipation Capacitance10  
CPD2  
See Notes on page 5.  
Specifications subject to change without notice.  
–2–  
REV. E  
ADuM1100  
(3.0 V VDD1 3.6 V, 3.0 V VDD2 3.6 V. All min/max  
specifications apply over the entire recommended operation  
range, unless otherwise noted. All typical specifications are at TA = 25؇C, VDD1 = VDD2 = 3.3 V.)  
ELECTRICAL SPECIFICATIONS, 3.3 V OPERATION1  
Parameter  
Symbol  
Min  
Typ Max  
Unit  
Test Conditions  
DC SPECIFICATIONS  
Input Supply Current  
Output Supply Current  
Input Supply Current (25 Mbps)  
(See TPC 1)  
IDD1(Q)  
IDD2(Q)  
IDD1(25)  
0.1  
0.005 0.04  
0.3  
mA  
mA  
mA  
VI = 0 V or VDD1  
VI = 0 V or VDD1  
12.5 MHz Logic Signal Frequency  
2.0  
0.3  
4.0  
1.2  
2.8  
0.7  
6.0  
1.6  
Output Supply Current2 (25 Mbps)  
(See TPC 2)  
IDD2(25)  
IDD1(50)  
IDD2(50)  
mA  
mA  
mA  
12.5 MHz Logic Signal Frequency  
Input Supply Current (50 Mbps)  
(See TPC 1)  
25 MHz Logic Signal Frequency,  
ADuM1100BR/ADuM1100UR Only  
25 MHz Logic Signal Frequency,  
ADuM1100BR/ADuM1100UR Only  
0 VIN VDD1  
Output Supply Current2 (50 Mbps)  
(See TPC 2)  
Input Current  
Logic High Output Voltage  
II  
VOH  
–10  
+0.01 +10  
µA  
V
V
V
V
VDD2 – 0.1 3.3  
VDD2 – 0.5 3.0  
0.0  
IO = –20 µA, VI = VIH  
IO = –2.5 mA, VI = VIH  
Logic Low Output Voltage  
VOL  
0.1  
IO = 20 µA, VI = VIL  
0.04 0.1  
0.3  
IO = 400 µA, VI = VIL  
0.4  
V
IO = 2.5 mA, VI = VIL  
SWITCHING SPECIFICATIONS  
For ADuM1100AR  
Minimum Pulse Width3  
Maximum Data Rate4  
For ADuM1100BR/ADuM1100UR  
Minimum Pulse Width3  
Maximum Data Rate4  
For All Grades  
PW  
PW  
tPHL  
tPLH  
40  
20  
ns  
Mbps  
CL = 15 pF, CMOS Signal Levels  
CL = 15 pF, CMOS Signal Levels  
25  
50  
10  
100  
ns  
Mbps  
CL = 15 pF, CMOS Signal Levels  
CL = 15 pF, CMOS Signal Levels  
Propagation Delay Time to  
14.5 28  
15.0 28  
ns  
ns  
CL = 15 pF, CMOS Signal Levels  
Logic Low Output5, 6  
(See TPC 4)  
Propagation Delay Time to  
CL = 15 pF, CMOS Signal Levels  
Logic High Output5, 6  
(See TPC 4)  
6
Pulse Width Distortion |tPLH – tPHL  
Change versus Temperature7  
Propagation Delay Skew  
(Equal Temperature)6, 8  
Propagation Delay Skew  
|
PWD  
tPSK1  
tPSK2  
tR, tF  
0.5  
10  
3
ns  
ps/°C  
ns  
CL = 15 pF, CMOS Signal Levels  
CL = 15 pF, CMOS Signal Levels  
CL = 15 pF, CMOS Signal Levels  
15  
12  
ns  
CL = 15 pF, CMOS Signal Levels  
(Equal Temperature, Supplies)6, 8  
Output Rise/Fall Time  
3
35  
ns  
kV/µs  
CL = 15 pF, CMOS Signal Levels  
VI = 0 or VDD1, VCM = 1000 V,  
Transient Magnitude= 800 V  
Common-Mode Transient Immunity |CML|,  
25  
at Logic Low/High Output9  
Input Dynamic Power Dissipation  
Capacitance10  
|CMH|  
CPD1  
47  
14  
pF  
pF  
Output Dynamic Power Dissipation  
CPD2  
Capacitance10  
See Notes on page 5.  
Specifications subject to change without notice.  
–3–  
REV. E  
ADuM1100  
(5 V/3 V operation: 4.5 V VDD1  
5.5 V, 3.0 V VDD2 3.6 V.  
ELECTRICAL SPECIFICATIONS, MIXED 5 V/3 V or 3 V/5 V OPERATION1  
3 V/5 V operation: 3.0 V VDD1 3.6 V, 4.5 V VDD2 5.5 V. All min/max specifications apply over the entire recommended operation range,  
unless otherwise noted. All typical specifications are at TA = 25؇C, VDD1 = 3.3 V, VDD2 = 5 V or VDD1 = 5 V, VDD2 = 3.3 V.)  
Parameter  
Symbol  
Min  
Typ  
Max Unit Test Conditions  
DC SPECIFICATIONS  
Input Supply Current, Quiescent  
5 V/3 V Operation  
IDDI(Q)  
0.3  
0.1  
0.8  
0.3  
mA  
mA  
3 V/5 V Operation  
Output Supply Current, Quiescent  
5 V/3 V Operation  
3 V/5 V Operation  
Input Supply Current, 25 Mbps  
5 V/3 V Operation  
3 V/5 V Operation  
Output Supply Current, 25 Mbps  
5 V/3 V Operation  
3 V/5 V Operation  
Input Supply Current, 50 Mbps  
5 V/3 V Operation  
3 V/5 V Operation  
Output Supply Current, 50 Mbps  
5 V/3 V Operation  
3 V/5 V Operation  
Input Currents  
Logic High Output Voltage,  
5 V/3 V Operation  
IDDO(Q)  
IDDI(25)  
IDDO(25)  
IDDI(50)  
IDDO(50)  
0.005 0.04 mA  
0.01  
0.06 mA  
2.2  
2.0  
3.5  
2.8  
mA  
mA  
12.5 MHz Logic Signal Frequency  
12.5 MHz Logic Signal Frequency  
0.3  
0.5  
0.7  
1.0  
mA  
mA  
12.5 MHz Logic Signal Frequency  
12.5 MHz Logic Signal Frequency  
4.5  
4.0  
7.0  
6.0  
mA  
mA  
25 MHz Logic Signal Frequency  
25 MHz Logic Signal Frequency  
1.2  
1.0  
+0.01 +10  
1.6  
1.5  
mA  
mA  
µA  
V
V
V
V
V
V
V
25 MHz Logic Signal Frequency  
25 MHz Logic Signal Frequency  
0 VIA, VIB, VIC, VID VDD1 or VDD2  
IO = –20 µA, VI = VIH  
IIA  
VOH  
–10  
VDD2 – 0.1 3.3  
VDD2 – 0.5 3.0  
0.0  
IO = –2.5 mA, VI = VIH  
IO = 20 µA, VI = VIL  
Logic Low Output Voltage,  
5 V/3 V Operation  
VOL  
0.1  
0.1  
0.4  
0.04  
IO = 400 µA, VI = VIL  
0.3  
VDD2 – 0.1 5.0  
VDD2 – 0.8 4.6  
0.0  
IO = 2.5 mA, VI = VIL  
Logic High Output Voltage,  
3 V/5 V Operation  
Logic Low Output Voltage,  
3 V/5 V Operation  
VOH  
VOL  
IO = –20 µA, VI = VIH  
IO = –4 mA, VI = VIH  
0.1  
0.1  
0.8  
V
V
V
IO = 20 µA, VI = VIL  
0.03  
0.3  
IO = 400 µA, VI = VIL  
IO = 4 mA, VI = VIL  
SWITCHING SPECIFICATIONS  
For ADuM1100AR  
Minimum Pulse Width3  
PW  
40  
20  
ns  
CL = 15 pF, CMOS Signal Levels  
Maximum Data Rate4  
25  
50  
Mbps CL = 15 pF, CMOS Signal Levels  
For ADuM1100BR/ADuM1100UR  
Minimum Pulse Width3  
Maximum Data Rate4  
PW  
ns  
CL = 15 pF, CMOS Signal Levels  
Mbps CL = 15 pF, CMOS Signal Levels  
For All Grades  
Propagation Delay Time to Logic  
tPHL, tPLH  
Low/High Output5, 6  
5 V/3 V Operation (See TPC 5)  
3 V/5 V Operation (See TPC 6)  
Pulse Width Distortion, |tPLH – tPHL  
5 V/3 V Operation  
13  
16  
21  
26  
ns  
ns  
CL = 15 pF, CMOS Signal Levels  
CL = 15 pF, CMOS Signal Levels  
6
|
PWD  
0.5  
0.5  
2
3
ns  
ns  
CL = 15 pF, CMOS Signal Levels  
CL = 15 pF, CMOS Signal Levels  
3 V/5 V Operation  
Change versus Temperature  
5 V/3 V Operation  
3 V/5 V Operation  
3
10  
ps/ºC CL = 15 pF, CMOS Signal Levels  
ps/ºC CL = 15 pF, CMOS Signal Levels  
Propagation Delay Skew  
(Equal Temperature)6, 8  
5 V/3 V Operation  
tPSK1  
12  
15  
ns  
ns  
CL = 15 pF, CMOS Signal Levels  
CL = 15 pF, CMOS Signal Levels  
3 V/5 V Operation  
–4–  
REV. E  
ADuM1100  
Parameter  
Symbol Min Typ Max  
Unit  
Test Conditions  
SWITCHING SPECIFICATIONS (continued)  
Propagation Delay Skew  
tPSK2  
(Equal Temperature, Supplies)6, 8  
5 V/3 V Operation  
9
12  
ns  
ns  
ns  
CL = 15 pF, CMOS Signal Levels  
CL = 15 pF, CMOS Signal Levels  
CL = 15 pF, CMOS Signal Levels  
3 V/5 V Operation  
Output Rise/Fall Time (10% to 90%)  
Common-Mode Transient Immunity at  
Logic Low/High Output8  
tR, tf  
3
|CML|, 25  
|CMH|  
35  
kV/µs VI = 0 or VDD1, VCM = 1000 V,  
Transient Magnitude = 800 V  
Input Dynamic Power Dissipation Capacitance10 CPD1  
5 V/3 V Operation  
35  
47  
pF  
pF  
3 V/5 V Operation  
Output Dynamic Power Dissipation Capacitance10 CPD2  
5 V/3 V Operation  
8
14  
pF  
pF  
3 V/5 V Operation  
NOTES  
1All voltages are relative to their respective ground.  
2Output supply current values are with no output load present. The supply current drawn at a given signal frequency when an output load is present is given by  
IDD2(L) = IDD2 + VDD2 × f × CL, where IDD2 is the unloaded output supply current, f is the input signal frequency, and CL is the output load capacitance.  
3The minimum pulse width is the shortest pulse width at which the specified pulse width distortion is guaranteed.  
4The maximum data rate is the fastest data rate at which the specified pulse width distortion is guaranteed.  
5tPHL is measured from the 50% level of the falling edge of the VI signal to the 50% level of the falling edge of the VO signal. tPLH is measured from the 50% level of  
the rising edge of the VI signal to the 50% level of the rising edge of the VO signal.  
6Since the input thresholds of the ADuM1100 are at voltages other than the 50% level of typical input signals, the measured propagation delay and pulse width distortion  
may be affected by slow input rise/fall times. See the Propagation Delay-Related Parameters section and Figures 3 to 7 for information on the impact of given input  
rise/fall times on these parameters.  
7Pulse width distortion change versus temperature is the absolute value of the change in pulse width distortion for a 1°C change in operating temperature.  
8tPSK1 is the magnitude of the worst-case difference in tPHL and/or tPLH that will be measured between units at the same operating temperature and output load within  
the recommended operating conditions. tPSK2 is the magnitude of the worst-case difference in tPHL and/or tPLH that will be measured between units at the same operating  
temperature, supply voltages, and output load within the recommended operating conditions.  
9CMH is the maximum common-mode voltage slew rate that can be sustained while maintaining VO > 0.8 VDD2. CML is the maximum common-mode voltage slew  
rate that can be sustained while maintaining VO < 0.8 V. The common-mode voltage slew rates apply to both rising and falling edges. The transient magnitude is the  
range over which the common-mode is slewed.  
10The dynamic power dissipation capacitance is given by  
C
PDi = (IDDi(100) – IDDi(Q))/(VDDi × f), where i = 1 or 2 and f is the input signal frequency.  
The supply current consumptions at a given frequency and output load are calculated as  
IDD1 = CPD1 × VDD1 × f + IDD1(Q); IDD2(L) = (CPD2 + CL) × VDD2 × f + IDD2(Q), where CL is the output load capacitance.  
Specifications subject to change without notice.  
PACKAGE CHARACTERISTICS  
Parameter  
Symbol  
Min  
Typ Max  
Unit  
Test Conditions  
Resistance (Input-Output)1  
Capacitance (Input-Output)1  
Input Capacitance2  
Input IC Junction-to-Case  
Thermal Resistance  
RI–O  
CI–O  
CI  
1012  
1
4.0  
46  
pF  
f = 1 MHz  
pF  
°C/W  
θJCI  
Thermocouple Located at Center  
Underside of Package  
Output IC Junction-to-Case  
Thermal Resistance  
Package Power Dissipation  
θJCO  
41  
°C/W  
PPD  
240  
mW  
NOTES  
1Device considered a 2-terminal device: Pins 1, 2, 3, and 4 shorted together and Pins 5, 6, 7, and 8 shorted together.  
2Input capacitance is measured at Pin 2 (VI).  
–5–  
REV. E  
ADuM1100  
REGULATORY INFORMATION  
The ADuM1100 has been approved by the following organizations:  
UL  
CSA  
VDE  
Recognized under 1577  
Approved under CSA Component  
Certified according to  
Component Recognition Program1 Acceptance Notice No. 5A, C22.2 No. 1-98, DIN EN 60747-5-2 (VDE 0884 Part 2): 2003–12  
C22.2 No. 14-95, and C22.2 No. 950-95  
File 205078  
DIN EN 60950 (VDE 0805): 2001–12; EN60950: 2000  
File 2471900-4880-0002  
File E214100  
NOTES  
1In accordance with UL 1577, each ADuM1100 is proof tested by applying an insulation test voltage 3000 V rms for 1 second (leakage detection current limit, II–O 5 µA).  
2In accordance with DIN EN 60747-5-2, each ADuM1100 is proof tested by applying an insulation test voltage 1050 VPEAK for 1 second (partial discharge detection  
limit 5 pC). A “*” mark branded on the component designates DIN EN 60747-5-2 approval.  
INSULATION AND SAFETY-RELATED SPECIFICATIONS  
Parameter  
Symbol Value  
Unit Conditions  
Minimum External Air Gap (Clearance)  
L(I01)  
4.90 min  
mm  
Measured from input terminals to output terminals,  
shortest distance through air  
Measured from input terminals to output terminals,  
shortest distance path along body  
Insulation distance through insulation  
DIN IEC 112/VDE 0303 Part 1  
Material Group (DIN VDE 0110, 1/89, Table 1)  
Minimum External Tracking (Creepage)  
Minimum Internal Gap (Internal Clearance)  
Tracking Resistance (Comparative Tracking Index) CTI  
Isolation Group  
L(I02)  
4.01 min  
mm  
0.016 min mm  
>175  
IIIa  
V
DIN EN 60747-5-2 (VDE 0884 Part 2) INSULATION CHARACTERISTICS  
Description  
Symbol  
Characteristic  
Unit  
I
nstallation Classification per DIN VDE 0110  
For Rated Mains Voltage 150 V rms  
For Rated Mains Voltage 300 V rms  
For Rated Mains Voltage 400 V rms  
I to IV  
I to III  
I to II  
Climatic Classification  
ADuM1100AR and ADuM1100BR  
ADuM1100UR  
40/105/21  
40/125/21  
2
Pollution Degree (DIN VDE 0110, Table I)  
Maximum Working Insulation Voltage  
Input-to-Output Test Voltage, Method b1  
VIORM × 1.875 = VPR, 100% Production Test, tM = 1 sec, Partial Discharge < 5 pC  
Input-to-Output Test Voltage, Method a  
After Environmental Tests Subgroup 1  
VIORM × 1.6 = VPR, tM = 10 sec, Partial Discharge < 5 pC  
After Input and/or Output Safety Test Subgroup 2/3  
VIORM × 1.2 = VPR, tM = 10 sec, Partial Discharge < 5 pC  
Highest Allowable Overvoltage (Transient Overvoltage, tINI = 60 sec)  
Safety-Limiting Values (Maximum Value Allowed in the Event of a Failure,  
See Thermal Derating Curve, Figure 1  
Case Temperature  
VIORM  
560  
VPEAK  
VPR  
VPR  
1050  
672  
VPEAK  
VPEAK  
VPR  
896  
VPEAK  
VPR  
VTR  
672  
4000  
VPEAK  
VPEAK  
TS  
150  
160  
170  
>109  
°C  
mA  
mA  
Input Current  
Output Current  
Insulation Resistance at TS, VIO = 500 V  
IS, INPUT  
IS, OUTPUT  
Rs  
This isolator is suitable for basic isolation only within the safety limit data. Maintenance of the safety data shall be ensured by means of protective circuits.  
The * marking on the package denotes DIN EN 60747-5-2 approval for 560 VPEAK working voltage.  
–6–  
REV. E  
ADuM1100  
ABSOLUTE MAXIMUM RATINGS1  
180  
160  
140  
120  
100  
80  
Parameter  
Symbol  
Min Max  
Unit  
Storage Temperature  
Ambient Operating  
Temperature  
TST  
TA  
–55 +150  
–40 +125  
°C  
°C  
OUTPUT CURRENT  
Supply Voltages2  
VDD1, VDD2 –0.5 +6.5  
VI  
VO  
V
V
V
INPUT CURRENT  
Input Voltage2  
–0.5 VDD1 + 0.5  
–0.5 VDD2 + 0.5  
Output Voltage2  
60  
Average Current, per Pin3  
Temperature 105°C  
Temperature 125°C  
Input Current  
–25 +25  
mA  
40  
20  
–7  
+7  
mA  
mA  
kV/µs  
0
Output Current  
–20 +20  
–100 +100  
0
50  
100  
150  
200  
Common-Mode Transients4  
CASETEMPERATURE (؇C)  
NOTES  
Figure 1. Thermal Derating Curve, Dependence of  
Safety-Limiting Values with Case Temperature per  
DIN EN 60747-5-2  
1 Stresses above those listed under Absolute Maximum Ratings may cause permanent  
damage to the device. This is a stress rating only. Functional operation of the device at  
these or any other conditions above those listed in the operational sections of this  
specification is not implied. Exposure to absolute maximum rating conditions may affect  
device reliability. Ambient temperature = 25°C, unless otherwise noted.  
2 All voltages are relative to their respective ground.  
3 See Figure 1 for information on maximum allowable current for various temperatures.  
4 Refers to common-mode transients across the insulation barrier. Common-mode  
transients exceeding the Absolute Maximum Rating may cause latch-up or permanent  
damage.  
RECOMMENDED OPERATING CONDITIONS  
Parameter  
Symbol  
Min  
Max  
Unit  
Operating Temperature  
ADuM1100AR and ADuM1100BR  
TA  
TA  
VDD1, VDD2  
VIH  
VIL  
–40  
–40  
3.0  
2.0  
0.0  
1.5  
0.0  
+105  
+125  
5.5  
VDD1  
0.8  
VDD1  
0.5  
1.0  
°C  
°C  
V
V
V
V
V
ms  
ADuM1100UR  
Supply Voltages1  
Logic High Input Voltage, 5 V Operation1, 2 (See TPCs 7 and 8)  
Logic Low Input Voltage, 5 V Operation1, 2 (See TPCs 7 and 8)  
Logic High Input Voltage, 3.3 V Operation1, 2 (See TPCs 7 and 8)  
Logic Low Input Voltage, 3.3 V Operation1, 2 (See TPCs 7 and 8)  
Input Signal Rise and Fall Times  
VIH  
VIL  
NOTES  
1All voltages are relative to their respective ground.  
2Input switching thresholds have 300 mV of hysteresis.  
See the Method of Operation, DC Correctness, and Magnetic Field Immunity section and Figures 8 and 9 for information on immunity to external magnetic fields.  
REV. E  
–7–  
ADuM1100  
Table I. Truth Table (Positive Logic)  
VI Input  
VDD1 State  
VDD2 State  
VO Output  
H
L
X
X
Powered  
Powered  
Unpowered  
Powered  
Powered  
Powered  
Powered  
Unpowered  
H
L
H*  
X*  
*VO returns to VI state within 1 µs of power restoration.  
Note: Package branding is as follows:  
PIN CONFIGURATION  
ADuM1100AR,  
ADuM1100BR,  
ADuM1100UR,  
ADuM1100AR-RL7  
ADuM1100BR-RL7  
ADuM1100UR-RL7  
8
8
8
1
1
2
3
4
8
7
6
5
V
V
DD1  
DD2  
AD1100B  
AD1100U  
AD1100A  
2
2
V
GND  
I
2
ADuM1100  
TOP VIEW  
(Not to Scale)  
R YYWW  
R YYWW  
R YYWW  
*
*
*
1
V
O
V
XXXXXX  
XXXXXX  
DD1  
XXXXXX  
GND  
GND  
1
2
1
1
1
NOTES  
1
where:  
PIN 1 AND PIN 3 ARE INTERNALLY CONNECTED. EITHER OR BOTH  
*
R
= DIN EN 60747-5-2 mark  
= Package Designator (R denotes SOIC)  
= Date Code  
MAY BE USED FORV  
PIN 5 AND PIN 7 ARE INTERNALLY CONNECTED. EITHER OR BOTH  
MAY BE USED FOR GND .  
.
DD1  
2
2
YYWW  
XXXXXX = Lot Code  
ORDERING GUIDE  
Max Data Min Pulse  
Temperature  
Range  
Package  
Option  
Model  
Rate (Mbps)  
Width (ns)  
Package Description  
ADuM1100AR  
ADuM1100AR-RL7  
ADuM1100ARZ*  
ADuM1100ARZ-RL7* –40°C to +105°C  
ADuM1100BR  
ADuM1100BR-RL7  
ADuM1100BRZ*  
ADuM1100BRZ-RL7* –40°C to +105°C  
ADuM1100UR  
ADuM1100UR-RL7  
ADuM1100URZ*  
ADuM1100URZ-RL7* –40°C to +125°C  
ADuM1100EVAL  
–40°C to +105°C  
–40°C to +105°C  
–40°C to +105°C  
25  
25  
25  
25  
100  
100  
100  
100  
100  
100  
100  
100  
40  
40  
40  
40  
10  
10  
10  
10  
10  
10  
10  
10  
8-Lead SOIC  
8-Lead SOIC, 1,000 Piece Reel R-8  
8-Lead SOIC  
8-Lead SOIC, 1,000 Piece Reel  
8-Lead SOIC  
8-Lead SOIC, 1,000 Piece Reel  
8-Lead SOIC  
8-Lead SOIC, 1,000 Piece Reel  
8-Lead SOIC  
8-Lead SOIC, 1,000 Piece Reel  
8-Lead SOIC  
8-Lead SOIC, 1,000 Piece Reel  
Evaluation Board  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
–40°C to +105°C  
–40°C to +105°C  
–40°C to +105°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
*Z = Lead Free  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although  
the ADuM1100 features proprietary ESD protection circuitry, permanent damage may occur on  
devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are  
recommended to avoid performance degradation or loss of functionality.  
–8–  
REV. E  
Typical Performance Characteristics—ADuM1100  
18  
20  
18  
16  
14  
12  
10  
8
17  
16  
tPHL  
15  
tPLH  
5V  
14  
13  
12  
6
3.3V  
4
2
0
–50  
–25  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
150  
TEMPERATURE (؇C)  
DATA RATE (Mbps)  
TPC 1. Typical Input Supply Current vs. Logic  
Signal Frequency for 5 V and 3.3 V Operation  
TPC 4. Typical Propagation Delays vs. Temperature,  
3.3 V Operation  
14  
13  
5
4
3
tPLH  
12  
tPHL  
5V  
11  
2
3.3V  
10  
9
1
0
–50  
–25  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
150  
TEMPERATURE (؇C)  
DATA RATE (Mbps)  
TPC 2. Typical Output Supply Current vs. Logic  
Signal Frequency for 5 V and 3.3 V Operation  
TPC 5. Typical Propagation Delays vs. Temperature,  
5 V/3 V Operation  
13  
12  
18  
17  
16  
tPHL  
11  
15  
tPLH  
tPLH  
tPHL  
14  
13  
12  
10  
9
–50  
–25  
0
25  
50  
75  
100  
125  
–50  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE (؇C)  
TEMPERATURE (؇C)  
TPC 3. Typical Propagation Delays vs. Temperature,  
5 V Operation  
TPC 6. Typical Propagation Delays vs. Temperature,  
3 V/5 V Operation  
REV. E  
–9–  
ADuM1100  
1.7  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
–40؇C  
+25؇C  
1.6  
1.5  
1.4  
1.3  
1.2  
–40؇C  
+25؇C  
+125؇C  
+125؇C  
1.1  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
INPUT SUPPLYVOLTAGE,V  
(V)  
INPUT SUPPLYVOLTAGE,V  
(V)  
DD1  
DD1  
TPC 7. Typical Input Voltage Switching Threshold,  
Low-to-High Transition  
TPC 8. Typical Input Voltage Switching Threshold,  
High-to-Low Transition  
APPLICATION INFORMATION  
PC Board Layout  
time to logic low output and propagation delay time to logic high  
output refer to the duration between an input signal transition and  
the respective output signal transition (Figure 3).  
The ADuM1100 digital isolator requires no external interface  
circuitry for the logic interfaces. A bypass capacitor is recom-  
mended at the input and output supply pins. The input bypass  
capacitor may most conveniently be connected between Pins 3  
and 4 (Figure 2). Alternatively, the bypass capacitor may be located  
between Pins 1 and 4. The output bypass capacitor may be con-  
nected between Pins 7 and 8 or Pins 5 and 8. The capacitor value  
should be between 0.01 µF and 0.1 µF. The total lead length  
between both ends of the capacitor and the power supply pins  
should not exceed 20 mm.  
Pulse width distortion is the maximum difference between tPLH and  
tPHL and provides an indication of how accurately the input signal’s  
timing is preserved in the component’s output signal. Propagation  
delay skew is the difference between the minimum and maximum  
propagation delay values among multiple ADuM1100 compo-  
nents operated at the same operating temperature and having  
the same output load.  
Depending on the input signal rise/fall time, the measured propa-  
gation delay based on the input 50% level can vary from the true  
propagation delay of the component (as measured from its input  
switching threshold). This is due to the fact that the input threshold,  
as is the case with commonly used optocouplers, is at a different  
voltage level than the 50% point of typical input signals. This  
propagation delay difference is given by  
V
V
DD2  
DD1  
(OPTIONAL)  
V
(DATA)  
1
V
O
(DATA OUT)  
GND  
1
GND  
2
Figure 2. Recommended Printed Circuit Board Layout  
= t'PLH tPLH = t / 0.8V 0.5V V  
(
)
(
LH  
HL  
r
I
1
)
ITH LH  
(
)
INPUT (V )  
50%  
I
= t'PHL tPHL = t / 0.8V 0.5V V  
(
)
(
f
I
1
)
ITH HL  
(
)
tPLH  
tPHL  
where:  
PLH, tPHL  
OUTPUT (V  
)
50%  
O
t
= propagation delays as measured from the  
input 50% level.  
= propagation delays as measured from the  
input switching thresholds.  
= input 10% to 90% rise/fall time.  
= amplitude of input signal (0 to VI levels  
assumed).  
Figure 3. Propagation Delay Parameters  
tPLH, tPHL  
Propagation Delay-Related Parameters  
Propagation delay time describes the length of time it takes for a  
logic signal to propagate through a component. Propagation delay  
tr , tf  
VI  
VITH(L–H), VITH(H–L) = input switching thresholds.  
LH  
HL  
V
I
V
50%  
ITH(L–H)  
V
ITH(H–L)  
tPLH  
t'PHL  
INPUT (V )  
I
tPHL  
t'PLH  
50%  
OUTPUT (V  
)
O
Figure 4. Impact of Input Rise/Fall Time on Propagation Delay  
–10–  
REV. E  
ADuM1100  
4
3
2
1
0
6
5
4
3
2
1
0
5V INPUT SIGNAL  
5V INPUT SIGNAL  
3.3V INPUT SIGNAL  
3.3V INPUT SIGNAL  
1
2
3
4
5
6
7
8
9
10  
1
2
3
4
5
6
7
8
9
10  
INPUT RISE TIME (10%–90%, ns)  
INPUT RISE/FALLTIME (10%–90%, ns)  
Figure 5. Typical Propagation Delay Change due to  
Input Rise Time Variation (for VDD1 = 3.3 V and 5 V)  
Figure 7. Typical Pulse Width Distortion Adjustment due  
to Input Rise/Fall Time Variation (at VDD1 = 3.3 V and 5 V)  
0
Method of Operation, DC Correctness, and  
Magnetic Field Immunity  
Referring to the functional block diagram, the two coils act as a  
pulse transformer. Positive and negative logic transitions at the  
isolator input cause narrow (2 ns) pulses to be sent via the trans-  
former to the decoder. The decoder is bistable and therefore  
either set or reset by the pulses indicating input logic transitions.  
In the absence of logic transitions at the input for more than 2 µs,  
a periodic update pulse of the appropriate polarity is sent to ensure  
dc correctness at the output. If the decoder receives none of  
these update pulses for more than about 5 µs, the input side is  
assumed to be unpowered or nonfunctional, in which case the  
isolator output is forced to a logic high state by the watchdog  
timer circuit.  
–1  
5V INPUT SIGNAL  
–2  
3.3V INPUT SIGNAL  
–3  
–4  
1
2
3
4
5
6
7
8
9
10  
INPUT RISE TIME (10%–90%, ns)  
The limitation on the ADuM1100’s magnetic field immunity is set  
by the condition in which induced voltage in the transformer’s  
receiving coil is sufficiently large to either falsely set or reset the  
decoder. The analysis that follows defines the conditions under  
which this may occur. The ADuM1100’s 3.3 V operating condi-  
tion is examined because it represents the most susceptible mode  
of operation.  
Figure 6. Typical Propagation Delay Change due to  
Input Fall Time Variation (for VDD1 = 3.3 V and 5 V)  
The impact of the slower input edge rates can also affect the  
measured pulse width distortion as based on the input 50% level.  
This impact may either increase or decrease the apparent pulse  
width distortion depending on the relative magnitudes of tPHL  
tPLH, and PWD. The case of interest here is the condition  
that leads to the largest increase in pulse width distortion. The  
change in this case is given by  
,
The pulses at the transformer output are greater than 1.0 V in  
amplitude. The decoder has sensing thresholds at about 0.5 V,  
therefore establishing a 0.5 V margin in which induced voltages can  
be tolerated. The induced voltage induced across the receiving  
coil is given by  
= PWDPWD = ∆LH HL =  
PWD  
V = dβ /dt Σπ r2;n = 1, 2,.... , N  
(
)
n
t/0.8V V V  
(
VITH HL , for t = t = t  
)
(
(
)
1
)
r
f
ITH LH  
(
)
(
)
where:  
where:  
β = magnetic flux density (Gauss).  
N = number of turns in receiving coil.  
rn = radius of nth turn in receiving coil (cm).  
PWD = tPLH tPHL  
PWD′ = tPLH tPHL  
This adjustment in pulse width distortion is plotted as a func-  
tion of input rise/fall time in Figure 7.  
REV. E  
–11–  
ADuM1100  
Given the geometry of the receiving coil in the ADuM1100 and an  
imposed requirement that the induced voltage be at most 50% of  
the 0.5 V margin at the decoder, a maximum allowable magnetic  
field is calculated as shown in Figure 8.  
The preceding magnetic flux density values correspond to specific  
current magnitudes at given distances away from the ADuM1100  
transformers. Figure 9 expresses these allowable current magnitudes  
as a function of frequency for selected distances. As can be seen,  
the ADuM1100 is extremely immune and can be affected only  
by extremely large currents operated at high frequency and very  
close to the component. For the 1 MHz example noted, one  
would have to place a current of 0.5 kA 5 mm away from the  
ADuM1100 to affect the component’s operation.  
100  
10  
1000  
1
DISTANCE = 1m  
100  
0.1  
10  
0.01  
DISTANCE = 100mm  
1
0.001  
1k  
10k  
100k  
1M  
10M  
100M  
DISTANCE = 5mm  
MAGNETIC FIELD FREQUENCY (Hz)  
0.1  
Figure 8. Maximum Allowable External Magnetic Field  
For example, at a magnetic field frequency of 1 MHz, the maximum  
allowable magnetic field of 0.2 KGauss induces a voltage of  
0.25 V at the receiving coil. This is about 50% of the sensing  
threshold and will not cause a faulty output transition. Similarly,  
if such an event were to occur during a transmitted pulse (and was  
of the worst-case polarity), it would reduce the received pulse  
from >1.0 V to 0.75 V—still well above the 0.5 V sensing  
threshold of the decoder.  
0.01  
1k  
10k  
100k  
1M  
10M  
100M  
MAGNETIC FIELD FREQUENCY (Hz)  
Figure 9. Maximum Allowable Current for  
Various Current-to-ADuM1100 Spacings  
Note that at combinations of strong magnetic field and high  
frequency, any loops formed by printed circuit board traces could  
induce sufficiently large error voltages to trigger the thresholds  
of succeeding circuitry. Care should be taken in the layout of  
such traces to avoid this possibility.  
–12–  
REV. E  
ADuM1100  
OUTLINE DIMENSIONS  
8-Lead Standard Small Outline Package [SOIC]  
Narrow Body  
(R-8)  
Dimensions shown in millimeters and (inches)  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2440)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
؋
 45؇  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8؇  
0.51 (0.0201)  
0.31 (0.0122)  
0؇ 1.27 (0.0500)  
COPLANARITY  
0.10  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
0.40 (0.0157)  
COMPLIANT TO JEDEC STANDARDS MS-012AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
REV. E  
–13–  
ADuM1100  
Revision History  
Location  
Page  
10/03—Data Sheet changed from REV. D to REV. E.  
Changes to Product Name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Changes to FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Changes to GENERAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Changes to REGULATORY INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Changes to DIN EN 60747-5-2 (VDE 0884 Part 2) INSULATION CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Changes to ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Changes to RECOMMENDED OPERATING CONDITIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Changes to ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
6/03—Data Sheet changed from REV. C to REV. D.  
Changed DIN EN 60747-5-2 (VDE 0884 Part 2) INSULATION CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Updated ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Updated OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
4/03—Data Sheet changed from REV. B to REV. C.  
Changes to FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Changes to Patent note . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Changes to REGULATORY INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Changes to INSULATION CHARACTERISTICS section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Changes to ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Changes to Package Branding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Changes to Method of Operation, DC Correctness, and Magnetic Field Immunity section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Replaced Figure 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
1/03—Data Sheet changed from REV. A to REV. B.  
Added ADuM1100UR Grade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Universal  
Changed ADuM1100AR/ADuM1100BR to ADuM1100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Universal  
Changes to FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Changes to GENERAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Changes to SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Added Electrical Specifications, Mixed 5 V/3 V or 3 V/5 V Operation table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Updated REGULATORY INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Changes to VDE 0884 INSULATION CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Changes to ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Changes to Package Branding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Updated TPCs 3–8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Deleted iCoupler in Field Bus Networks section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Changes to Figure 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Added a new Figure 9 and related text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
11/02—Data Sheet changed from REV. 0 to REV. A.  
Edits to FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Edits to REGULATORY INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Edits to VDE 0884 INSULATION CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Added Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Updated OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
–14–  
REV. E  
–15–  
–16–  

相关型号:

ADUM1100AR-RL7

iCoupler Digital Isolator
ADI

ADUM1100ARWZ

ESD/Latch-Up Considerations with iCoupler® Isolation Products
ADI

ADUM1100ARZ

iCoupler Digital Isolator
ADI

ADuM1100ARZ-RL7

iCoupler Digital Isolator
ADI

ADUM1100B

IC SPECIALTY TELECOM CIRCUIT, PDSO8, SOP-8, Telecom IC:Other
ADI

ADUM1100BR

iCoupler Digital Isolator
ADI

ADUM1100BR-RL7

iCoupler Digital Isolator
ADI

ADUM1100BRZ

iCoupler Digital Isolator
ADI

ADuM1100BRZ-RL7

iCoupler Digital Isolator
ADI

ADUM1100UR

iCoupler Digital Isolator
ADI

ADUM1100UR-RL7

iCoupler Digital Isolator
ADI

ADuM1100URZ

iCoupler Digital Isolator
ADI