ADUCM362BCPZ256 [ADI]

ADUCM362BCPZ256;
ADUCM362BCPZ256
型号: ADUCM362BCPZ256
厂家: ADI    ADI
描述:

ADUCM362BCPZ256

时钟 DCS 分布式控制系统 外围集成电路
文件: 总24页 (文件大小:429K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Power, Precision Analog Microcontroller  
with Dual Sigma-Delta ADCs, ARM Cortex-M3  
Data Sheet  
ADuCM362/ADuCM363  
Power supply range: 1.8 V to 3.6 V (maximum)  
FEATURES  
Power consumption, MCU active mode  
Core consumes 290 μA/MHz  
Pin compatible with the ADuCM360/ADuCM361  
Analog input/output  
Overall system current consumption of 1.0 mA with core  
operating at 500 kHz (both ADCs on, input buffers off,  
PGA gain of 4, one SPI port on, and all timers on)  
Power consumption, power-down mode: 4 μA (wake-up  
timer active)  
Dual 24-bit ADCs (ADuCM362)  
Single 24-bit ADC (ADuCM363)  
Programmable ADC output rate (3.5 Hz to 3.906 kHz)  
Simultaneous 50 Hz/60 Hz noise rejection  
At 50 SPS continuous conversion mode  
At 16.67 SPS single conversion mode  
Flexible input mux for input channel selection to both ADCs  
Two 24-bit multichannel ADCs (ADC0 and ADC1)  
6 differential or 12 single-ended input channels  
4 internal channels for monitoring DAC, temperature  
sensor, IOVDD/4, and AVDD/4 (ADC1 only)  
Programmable gain (1 to 128)  
Gain of 1 with input buffer on/off supported  
RMS noise: 52 nV at 3.53 Hz, 200 nV at 50 Hz  
Programmable sensor excitation current sources  
On-chip precision voltage reference  
Two external reference options supported by both ADCs  
Single 12-bit voltage output DAC  
On-chip peripherals  
2× UART, I2C, and 2 × SPI serial input/output (I/O)  
16-bit pulse-width modulation (PWM) controller  
19-pin multifunction GPIO port  
2 general-purpose timers  
Wake-up timer/watchdog timer  
Multichannel DMA and interrupt controller  
DMA support for both SPI channels  
Package and temperature range  
48-lead, 7 mm × 7 mm LFCSP  
Specified for −40°C to +125°C operation  
Development tools  
Low cost QuickStart Development System  
Third-party compiler and emulator tool support  
Multiple diagnostic functions that support SIL certification  
NPN mode for 4 mA to 20 mA loop applications  
Microcontroller  
ARM Cortex-M3 32-bit processor  
Serial wire download and debug  
APPLICATIONS  
Industrial automation and process control  
Intelligent precision sensing systems  
4 mA to 20 mA loop-powered smart sensor systems  
Medical devices, patient monitoring  
Internal watch crystal for wake-up timer  
16 MHz oscillator with 8-way programmable divider  
Memory  
Up to 256 kB Flash/EE memory, 24 kB SRAM  
In-circuit debug/download via serial wire and UART  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2016 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
ADuCM362/ADuCM363  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
SPI Timing Specifications ......................................................... 16  
Absolute Maximum Ratings ......................................................... 18  
Thermal Resistance.................................................................... 18  
ESD Caution................................................................................ 18  
Pin Configuration and Function Descriptions........................... 19  
Typical Performance Characteristics ........................................... 22  
Typical System Configuration ...................................................... 23  
Outline Dimensions....................................................................... 24  
Ordering Guide .......................................................................... 24  
Applications....................................................................................... 1  
Revision History ............................................................................... 2  
General Description......................................................................... 3  
Functional Block Diagrams............................................................. 4  
Specifications..................................................................................... 6  
Microcontroller Electrical Specifications.................................. 6  
RMS Noise Resolution of ADC0 and ADC1 .......................... 11  
I2C Timing Specifications.......................................................... 15  
REVISION HISTORY  
10/2016—Revision 0: Initial Version  
Rev. 0| Page 2 of 24  
 
Data Sheet  
ADuCM362/ADuCM363  
GENERAL DESCRIPTION  
The ADuCM362/ADuCM363 are fully integrated, 3.9 kSPS,  
24-bit data acquisition systems that incorporate dual, high  
performance, multichannel sigma-delta (Σ-Δ) analog-to-digital  
converters (ADCs), a 32-bit ARM Cortex™-M3 processor, and  
Flash/EE memory on a single chip. The ADuCM362/  
ADuCM363 are designed for direct interfacing to external  
precision sensors in both wired and battery-powered applications.  
The ADuCM363 contains all the features of the ADuCM362,  
except that only one 24-bit Σ-Δ ADC (ADC1) is available.  
The devices contain a low noise, low drift internal band gap  
reference, but they can be configured to accept one or two  
external reference sources in ratiometric measurement config-  
urations. An option to buffer the external reference inputs is  
provided on chip. A single-channel buffered voltage output  
DAC is also provided on chip.  
The ADuCM362/ADuCM363 integrate a range of on-chip  
peripherals, which can be configured under microcontroller  
software control as required in the application. The peripherals  
include two UARTs, I2C, and dual SPI serial I/O communication  
controllers; a 19-pin GPIO port; two general-purpose timers;  
a wake-up timer; and a system watchdog timer. A 16-bit PWM  
controller with six output channels is also provided.  
The ADuCM362/ADuCM363 contain an on-chip 32 kHz  
oscillator and an internal 16 MHz high frequency oscillator. The  
high frequency oscillator is routed through a programmable clock  
divider from which the operating frequency of the processor core  
clock is generated. The maximum core clock speed is 16 MHz;  
this speed is not limited by operating voltage or temperature.  
The ADuCM362/ADuCM363 are specifically designed to operate  
in battery-powered applications where low power operation is  
critical. The microcontroller core can be configured in a normal  
operating mode that consumes 290 μA/MHz (including flash/  
SRAM IDD). An overall system current consumption of 1 mA can  
be achieved with both ADCs on (input buffers off), PGA gain of  
4, one SPI port on, and all timers on.  
The microcontroller core is a low power ARM Cortex-M3  
processor, a 32-bit RISC machine that offers up to 20 MIPS peak  
performance. The Cortex-M3 processor incorporates a flexible,  
11-channel DMA controller that supports all wired communica-  
tion peripherals (both SPIs, both UARTs, and I2C). Also  
integrated on chip are up to 256 kB of nonvolatile Flash/EE  
memory and 24 kB of SRAM.  
The ADuCM362/ADuCM363 can be configured in a number of  
low power operating modes under direct program control,  
including a hibernate mode (internal wake-up timer active) that  
consumes only 4 ꢀA. In hibernate mode, peripherals, such as  
external interrupts or the internal wake-up timer, can wake up  
the devices. This mode allows the devices to operate with ultralow  
power while still responding to asynchronous external or  
periodic events.  
The analog subsystem consists of dual ADCs, each connected to  
a flexible input mux. Both ADCs can operate in fully differential  
and single-ended modes. Other on-chip ADC features include  
dual programmable excitation current sources, diagnostic current  
sources, and a bias voltage generator of AVDD_REG/2 (900 mV)  
to set the common-mode voltage of an input channel. A low-side  
internal ground switch is provided to allow power-down of an  
external circuit (for example, a bridge circuit) between conversions.  
Optional input buffers are provided for the analog inputs and the  
external reference inputs. These buffers can be enabled for all PGA  
gain settings.  
On-chip factory firmware supports in-circuit serial download  
via a serial wire interface (2-pin JTAG system) and UART; non-  
intrusive emulation is also supported via the serial wire interface.  
These features are incorporated into a low cost QuickStart™  
Development System that supports this precision analog micro-  
controller family.  
The ADCs contain two parallel filters: a sinc3 or sinc4 filter in  
parallel with a sinc2 filter. The sinc3 or sinc4 filter is used for  
precision measurements. The sinc2 filter is used for fast measure-  
ments and for the detection of step changes in the input signal.  
The devices operate from an external 1.8 V to 3.6 V voltage  
supply and are specified over an industrial temperature range of  
−40°C to +125°C.  
Rev. 0 | Page 3 of 24  
 
ADuCM362/ADuCM363  
Data Sheet  
FUNCTIONAL BLOCK DIAGRAMS  
ON-CHIP  
1.8V ANALOG  
LDO  
ON-CHIP  
1.8V DIGITAL  
LDO  
12-BIT  
DAC  
POWER-ON  
RESET  
BUFFER  
DAC  
AVDD  
AGND  
RESET  
V
BIAS  
GENERATOR  
ON-CHIP  
OSCILLATOR  
(1% TYP)  
XTALO  
XTALI  
16MHz  
V
24-BIT  
Σ-ADC  
REF  
ARM  
CORTEX-M3  
PROCESSOR  
AIN0  
AIN1  
GPIO PORTS  
UART PORTS  
2 × SPI PORTS  
SINC3/  
SINC4  
FILTER  
Σ-∆  
MODULATOR  
AIN2  
MOD2  
GAIN  
16MHz  
AMP  
BUF  
AIN3  
2
I C PORTS  
AIN4/IEXC  
AIN5/IEXC  
TIMER0  
TIMER1  
19 GENERAL-  
PURPOSE  
I/O PORTS  
AIN6/IEXC  
SINC2  
MEMORY  
FILTER  
256kB FLASH  
WATCHDOG  
AIN7/VBIAS0/IEXC/  
EXTREF2IN+  
MUX  
24kB SRAM WAKE-UP TIMER  
PWM  
AIN8/EXTREF2IN–  
AIN9/DACBUFF+  
AIN10  
V
24-BIT  
Σ-ADC  
REF  
SERIAL WIRE  
DMA AND  
DEBUG,  
INTERRUPT  
CONTROLLER  
PROGRAMMING  
SINC3/  
SINC4  
FILTER  
Σ-∆  
MODULATOR  
AIN11/VBIAS1  
MOD2  
GAIN  
AND DEBUG  
AMP  
BUF  
SELECTABLE  
REF  
SOURCES  
SWDIO  
SWCLK  
V
DAC, TEMP,  
IOVDD/4,  
AVDD/4  
PRECISION  
REFERENCE  
ADuCM362  
DVDD_REG  
AVDD_REG  
IREF  
BUFFER  
CURRENT  
SOURCES  
BUFFER  
GND_SW  
VREF– VREF+  
INT_REF  
IOVDD  
IOVDD  
Figure 1. ADuCM362 Functional Block Diagram  
Rev. 0| Page 4 of 24  
 
Data Sheet  
ADuCM362/ADuCM363  
ON-CHIP  
1.8V ANALOG  
LDO  
ON-CHIP  
1.8V DIGITAL  
LDO  
12-BIT  
DAC  
POWER-ON  
RESET  
BUFFER  
DAC  
RESET  
AVDD  
AGND  
V
BIAS  
GENERATOR  
ON-CHIP  
XTALO  
OSCILLATOR  
(1% TYP)  
16MHz  
XTALI  
ARM  
CORTEX-M3  
PROCESSOR  
AIN0  
AIN1  
GPIO PORTS  
UART PORTS  
2 × SPI PORTS  
AIN2  
16MHz  
AIN3  
2
I C PORTS  
AIN4/IEXC  
AIN5/IEXC  
TIMER0  
TIMER1  
WATCHDOG  
WAKE-UP TIMER  
PWM  
19 GENERAL-  
PURPOSE  
I/O PORTS  
AIN6/IEXC  
SINC2  
MEMORY  
256kB FLASH  
24kB SRAM  
FILTER  
AIN7/VBIAS0/IEXC/  
EXTREF2IN+  
MUX  
AIN8/EXTREF2IN–  
AIN9/DACBUFF+  
AIN10  
V
24-BIT  
Σ-ADC  
REF  
SERIAL WIRE  
DEBUG,  
PROGRAMMING  
AND DEBUG  
DMA AND  
INTERRUPT  
CONTROLLER  
SINC3/  
SINC4  
FILTER  
Σ-∆  
MODULATOR  
AIN11/VBIAS1  
MOD2  
GAIN  
AMP  
BUF  
SELECTABLE  
SWDIO  
V
DAC, TEMP,  
IOVDD/4,  
AVDD/4  
REF  
SOURCES  
SWCLK  
PRECISION  
REFERENCE  
ADuCM363  
DVDD_REG  
AVDD_REG  
IREF  
BUFFER  
CURRENT  
SOURCES  
BUFFER  
GND_SW  
VREF– VREF+  
INT_REF  
IOVDD  
IOVDD  
Figure 2. ADuCM363 Functional Block Diagram  
Rev. 0 | Page 5 of 24  
ADuCM362/ADuCM363  
Data Sheet  
SPECIFICATIONS  
MICROCONTROLLER ELECTRICAL SPECIFICATIONS  
AVDD/IOVDD = 1.8 V to 3.6 V, internal 1.2 V reference, fCORE = 16 MHz, all specifications at TA = −40°C to +125°C, unless otherwise noted.  
Table 1.  
Parameter  
Test Conditions/Comments  
ADC0 and ADC1  
Chop off  
Min  
Typ  
Max  
Unit  
ADC SPECIFICATIONS  
Conversion Rate1  
3.5  
3.5  
24  
3906  
1302  
Hz  
Hz  
Bits  
Bits  
Chop on  
No Missing Codes1  
Chop off, fADC ≤ 500 Hz  
Chop on, fADC ≤ 250 Hz  
See Table 2 through Table 9  
Gain = 1, input buffer off  
Gain = 2, 4, 8, or 16  
Gain = 32, 64, or 128  
Chop off; offset error is in the order of  
the noise for the programmed gain and  
update rate following calibration  
Chop on1  
24  
RMS Noise and Data Output Rates  
Integral Nonlinearity1  
10  
15  
20  
ppm of FSR  
ppm of FSR  
ppm of FSR  
μV  
Offset Error2, 3, 4, 6, 7  
230ꢀgain  
1.0  
1ꢀgain  
230  
μV  
μVꢀ°C  
nVꢀ°C  
nVꢀ°C  
Offset Error Drift vs. Temperature1, 4, 6  
Chop off, gain ≤ 4  
Chop off, gain ≥ 8  
Chop on  
10  
Offset Error Lifetime Stability5  
Full-Scale Error1, 4, 6, 7, 8  
Full-Scale Error Lifetime Stability5  
Gain Error Drift vs. Temperature1, 4, 6  
Gain = 128  
1
μVꢀ1000 Hr  
mV  
μVꢀ1000 Hr  
0.5ꢀgain  
70  
Gain = 128  
External reference  
Gain = 1, 2, 4, 8, or 16  
Gain = 32, 64, or 128  
3
6
0.15  
ppmꢀ°C  
ppmꢀ°C  
%
PGA Gain Mismatch Error  
Power Supply Rejection1  
External reference  
Chop on, ADC input = 0.25 V, gain = 4  
Chop off, ADC input = 7.8 mV, gain = 128 80  
Chop off, ADC input = 1 V, gain = 1  
95  
dB  
dB  
dB  
90  
Absolute Input Voltage Range  
Unbuffered Mode  
Buffered Mode  
AGND  
AGND + 0.1  
AVDD  
V
V
Available for all gain settings G = 1 to 128  
AVDD − 0.1  
Differential Input Voltage Ranges1  
For gain = 32, 64, and 128, see Table 3  
and Table 7 for allowable input ranges  
and noise values  
Gain = 1  
Gain = 2  
Gain = 4  
Gain = 8  
Gain = 16  
VREF  
500  
250  
125  
62.5  
AVDD  
V
mV  
mV  
mV  
mV  
V
1
Common-Mode Voltage, VCM  
Ideally, VCM = ((AIN+) + (AIN−))ꢀ2; gain = 2  
to 128; input current varies with VCM  
(see Figure 9 and Figure 10)  
AGND  
Rev. 0| Page 6 of 24  
 
 
Data Sheet  
ADuCM362/ADuCM363  
Parameter  
Input Current9  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
Buffered Mode  
Gain > 1 (excluding AIN4, AIN5, AIN6,  
and AIN7 pins)  
1
nA  
Gain > 1 (AIN4, AIN5, AIN6, and AIN7 pins)  
Input current varies with input voltage  
2
860  
nA  
nAꢀV  
Unbuffered Mode  
Average Input Current Drift1  
Buffered Mode  
AIN1, AIN3, AIN5, AIN7, and AIN11  
AIN0, AIN4, AIN9, and AIN10  
AIN2, AIN6, and AIN8  
5
9
15  
250  
pAꢀ°C  
pAꢀ°C  
pAꢀ°C  
pAꢀVꢀ°C  
Unbuffered Mode  
Common-Mode Rejection, DC1  
On ADC input  
ADC gain = 1, AVDD < 2 V  
ADC gain = 1, AVDD > 2 V  
ADC gain = 2 to 128  
65  
80  
80  
100  
100  
dB  
dB  
dB  
Common-Mode Rejection,  
50 Hzꢀ60 Hz1  
50 Hzꢀ60 Hz 1 Hz; fADC = 16.67 Hz,  
chop on; fADC = 50 Hz, chop off  
ADC gain = 1  
ADC gain = 2 to 128  
On ADC input  
97  
90  
dB  
dB  
Normal Mode Rejection, 50 Hzꢀ60 Hz1  
50 Hzꢀ60 Hz 1 Hz; fADC = 16.67 Hz,  
chop on; fADC = 50 Hz, chop off  
60  
80  
dB  
TEMPERATURE SENSOR1  
Voltage Output at 25°C  
After user calibration  
Processor powered down or in standby  
mode before measurement  
82.1  
mV  
Voltage Temperature Coefficient (TC)  
Accuracy  
250  
6
ꢁVꢀ°C  
°C  
GROUND SWITCH  
On Resistance (RON  
)
3.7  
10  
19  
20  
Ω
mA  
Allowable Current1  
VOLTAGE REFERENCE  
Internal VREF  
20 kΩ resistor off, direct short to ground  
ADC internal reference  
1.2  
V
Initial Accuracy  
Measured at TA = 25°C  
−0.1  
−15  
+0.1  
+15  
%
Reference Temperature Coefficient  
5
ppmꢀ°C  
(TC)1, 10  
Power Supply Rejection1  
EXTERNAL REFERENCE INPUTS  
Input Range  
82  
90  
dB  
Buffered Mode  
Unbuffered Mode  
AGND + 0.1  
0
AVDD − 0.1  
AVDD  
V
V
Minimum differential voltage between  
VREF+ and VREF− pins is 400 mV  
Input Current  
Buffered Mode  
Unbuffered Mode  
Normal Mode Rejection1  
Common-Mode Rejection1  
Reference Detect Levels1  
−20  
85  
+10  
500  
80  
100  
400  
+27  
nA  
nAꢀV  
dB  
dB  
mV  
Rev. 0 | Page 7 of 24  
ADuCM362/ADuCM363  
Data Sheet  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
EXCITATION CURRENT SOURCES  
Output Current  
Available from each current source; value  
programmable from 10 ꢁA to 1 mA  
10  
1000  
μA  
Initial Tolerance at 25°C1  
Drift1  
IOUT ≥ 50 ꢁA  
Using internal reference resistor  
Using external 150 kΩ reference resistor  
between IREF pin and AGND; resistor  
must have drift specification of 5 ppmꢀ°C  
5
100  
75  
%
400  
400  
ppmꢀ°C  
ppmꢀ°C  
Initial Current Matching at 25°C1  
Drift Matching1  
Load Regulation, AVDD1  
Output Compliance1  
Matching between both current sources  
0.5  
50  
0.2  
%
ppmꢀ°C  
%ꢀV  
V
V
AVDD = 3.3 V  
IOUT = 10 ꢁA to 210 ꢁA  
IOUT > 210 ꢁA  
AGND − 0.03  
AGND − 0.03  
AVDD − 0.85  
AVDD − 1.1  
DAC CHANNEL SPECIFICATIONS  
Voltage Range  
RL = 5 kΩ, CL = 100 pF  
Internal reference  
External reference  
0
0
VREF  
1.8  
V
V
DC Specifications11  
Resolution  
Relative Accuracy  
Differential Nonlinearity  
Offset Error  
12  
Bits  
LSB  
LSB  
mV  
%
3
0.5  
2
Guaranteed monotonic  
1.2 V internal reference  
VREF range (reference = 1.2 V)  
1
10  
0.5  
Gain Error  
NPN Mode1  
Resolution  
12  
Bits  
LSB  
LSB  
mA  
mA  
mA  
Relative Accuracy  
Differential Nonlinearity  
Offset Error  
3
0.5  
0.35  
0.75  
Gain Error  
Output Current Range  
Interpolation Mode1, 12  
Resolution  
Relative Accuracy  
Differential Nonlinearity  
Offset Error  
0.008  
23.6  
Only monotonic to 14 bits  
14  
6
0.6  
2
1
Bits  
LSB  
LSB  
mV  
%
For 14-bit resolution  
Monotonic (14 bits)  
1.2 V internal reference  
VREF range (reference = 1.2 V)  
AVDD range  
Gain Error  
1
%
DAC AC CHARACTERISTICS1  
Voltage Output Settling Time  
Digital-to-Analog Glitch Energy  
10  
20  
ꢁs  
nV-sec  
1 LSB change at major carry (maximum  
number of bits changes simultaneously  
in the DAC0DAT register)  
POWER-ON RESET (POR)  
POR Trip Level  
Voltage at DVDD pin  
Power-on level  
1.65  
1.65  
50  
V
V
ms  
Power-down level  
Timeout from POR1  
WATCHDOG TIMER (WDT)1  
Timeout Period  
0.00003  
8192  
sec  
ms  
Timeout Step Size  
FLASHꢀEE MEMORY1  
Endurance13  
T3CON[3:2] = 10  
TJ = 85°C  
7.8125  
10,000  
10  
Cycles  
Years  
Data Retention14  
Rev. 0| Page 8 of 24  
Data Sheet  
ADuCM362/ADuCM363  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
DIGITAL INPUTS  
Input Leakage Current  
All digital inputs  
Digital inputs except for the RESET,  
SWCLK, and SWDIO pins  
VINH = IOVDD or VINH = 1.8 V  
Internal pull-up disabled  
VINL = 0 V  
Logic 1  
Logic 0  
140  
1
160  
10  
μA  
nA  
μA  
nA  
Internal pull-up disabled  
RESET, SWCLK, and SWDIO pins  
Input Leakage Current  
Logic 1  
140  
160  
10  
μA  
μA  
pF  
Logic 0  
Input Capacitance1  
Logic Input Voltage  
Low, VINL  
0.2 × IOVDD  
V
V
High, VINH  
Logic Output Voltage  
High, VOH  
0.7 × IOVDD  
IOVDD − 0.4  
ISOURCE = 1 mA  
ISINK = 1 mA  
V
V
Low, VOL  
0.4  
0.8  
CRYSTAL OSCILLATOR1  
Logic Input Voltage, XTALI Only15  
Low, VINL  
32.768 kHz crystal inputs  
V
High, VINH  
1.7  
V
XTALI Capacitance  
XTALO Capacitance  
ON-CHIP LOW POWER OSCILLATOR  
Oscillator Frequency  
Accuracy  
6
6
pF  
pF  
32.768  
10  
kHz  
%
−30  
+30  
ON-CHIP HIGH FREQUENCY OSCILLATOR  
Oscillator Frequency  
Accuracy  
16  
MHz  
%
−40°C to +125°C  
−1.8  
+1.4  
Long Term Stability5  
PROCESSOR CLOCK RATE1  
0.8  
0.5  
°Cꢀ1000 Hr  
MHz  
Nine programmable core clock  
selections within specified range  
0.0625  
16  
16  
Using an External Clock  
PROCESSOR START-UP TIME1  
At Power-On  
0.032768  
MHz  
Includes kernel power-on execution  
time  
Includes kernel power-on execution  
time  
41  
ms  
ms  
fCLK  
μs  
After Reset Event  
1.44  
3 to 5  
30.8  
From Processor Power-Down  
(Mode 1, Mode 2, and Mode 3)  
From Total Halt or Hibernate Mode  
(Mode 4 or Mode 5)  
fCLK is the Cortex-M3 core clock  
Rev. 0 | Page 9 of 24  
ADuCM362/ADuCM363  
Data Sheet  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
POWER REQUIREMENTS  
Power Supply Voltages, VDD  
Power Consumption  
IDD (MCU Active Mode)16, 17  
AVDD, IOVDD  
1.8  
3.6  
V
Processor clock rate = 16 MHz;  
all peripherals on (CLKSYSDIV = 0)  
Processor clock rate = 8 MHz;  
all peripherals on (CLKSYSDIV = 1)  
Processor clock rate = 500 kHz; both  
ADCs on (input buffers off) with PGA  
gain = 4, 1 × SPI port on, all timers on  
5.5  
3
mA  
mA  
mA  
1
IDD (MCU Powered Down)  
Full temperature range, total halt mode  
(Mode 4)  
4
μA  
IDD, Total (ADC0)17  
PGA  
PGA enabled, gain ≥ 32  
320  
130  
180  
70  
70  
200  
120  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
Gain = 4, 8, or 16, PGA only  
Gain = 32, 64, or 128, PGA only  
2 × input buffers = 70 μA  
Input Buffers  
Digital Interface and Modulator  
IDD (ADC1)  
Input buffers off, gain = 4, 8, or 16 only  
60 μA each  
External Reference Input Buffers  
1 These numbers are not production tested, but are guaranteed by design andꢀor characterization data at production release.  
2 Tested at gain = 4 after initial offset calibration.  
3 Measured with an internal short. A system zero-scale calibration removes this error.  
4 A recalibration at any temperature removes these errors.  
5 The long term stability specification is noncumulative. The drift in subsequent 1000 hour periods is significantly lower than in the first 1000 hour period.  
6 These numbers do not include internal reference temperature drift.  
7 Factory calibrated at gain = 1.  
8 System calibration at a specific gain removes the error at this gain.  
9 Input current is measured with one ADC measuring a channel. If both ADCs measure the same input channel, the input current increases (approximately doubles).  
10 Measured using the box method.  
11 Reference DAC linearity is calculated using a reduced code range of 0x0AB to 0xF30.  
12 Measured using a low-pass filter with R = 1 kΩ, C = 100 nF.  
13 Endurance is qualified to 10,000 cycles as per JEDEC Standard 22, Method A117, and is measured at −40°C, +25°C, and +125°C. Typical endurance at 25°C is 170,000 cycles.  
14 Retention lifetime equivalent at junction temperature (TJ) = 85°C as per JEDEC Standard 22, Method A117. Retention lifetime derates with junction temperature.  
15 Voltage input levels are relevant only if driving XTAL input from a voltage source. If a crystal is connected directly, the internal crystal interface determines the  
common-mode voltage.  
16 Typical additional supply current consumed during FlashꢀEE memory program and erase cycles is 7 mA.  
17 Total IDD for ADC includes figures for PGA ≥ 32, input buffers, digital interface, and the Σ-Δ modulator.  
Rev. 0| Page 10 of 24  
Data Sheet  
ADuCM362/ADuCM363  
RMS NOISE RESOLUTION OF ADC0 AND ADC1  
Internal Reference (1.2 V)  
Table 2 through Table 5 provide rms noise specifications for ADC0 and ADC1 using the internal reference (1.2 V). Table 2 and Table 3 list  
the rms noise for both ADCs with various gain and output update rate values. Table 4 and Table 5 list the typical output rms noise effective  
number of bits (ENOB) in normal mode for both ADCs with various gain and output update rate values. (Peak-to-peak ENOB is shown in  
parentheses.)  
Table 2. RMS Noise vs. Gain and Output Update Rate, Internal Reference (1.2 V), Gain = 1, 2, 4, 8, and 16  
RMS Noise (μV)  
Gain = 2,  
500 mV,  
ADCxMDE =  
0x11  
Gain = 4,  
250 mV,  
ADCxMDE =  
0x21  
Gain = 8,  
125 mV,  
ADCxMDE =  
0x31  
Gain = 16,  
62.5 mV,  
ADCxMDE =  
0x41  
ADCFLT  
Register  
Rate (Hz) Chop/Sinc Value  
Gain = 1, VREF  
ADCxMDE =  
0x01  
,
Update  
3.53  
30  
50  
100  
488  
976  
1953  
3906  
Onꢀsinc3  
Offꢀsinc3  
Offꢀsinc3  
Offꢀsinc3  
Offꢀsinc4  
Offꢀsinc4  
Offꢀsinc4  
Offꢀsinc4  
0x8E7C  
0x007E  
0x007D  
0x004D  
0x100F  
0x1007  
0x1003  
0x1001  
1.05  
2.1  
3.7  
5.45  
10  
13.5  
19.3  
67.0  
0.45  
1.37  
1.6  
2.41  
4.7  
6.5  
10  
36  
0.23  
0.63  
0.83  
1.13  
2.2  
3.3  
4.7  
16.6  
0.135  
0.37  
0.47  
0.63  
1.3  
1.7  
2.6  
8.8  
0.072  
0.22  
0.29  
0.38  
0.79  
1.1  
1.55  
4.9  
Table 3. RMS Noise vs. Gain and Output Update Rate, Internal Reference (1.2 V), Gain = 32, 64, and 128  
RMS Noise (μV)  
Gain = 32,1  
62.5 mV,  
ADCxMDE =  
0x49  
Gain = 32,1, 2  
22.18 mV,  
ADCxMDE =  
0x51  
Gain = 64,3  
15.625 mV,  
ADCxMDE =  
0x59  
Gain = 64,3, 4  
10.3125 mV,  
ADCxMDE =  
0x61  
Gain = 128,5  
7.8125 mV,  
ADCxMDE =  
0x69  
Gain = 128,5, 6  
3.98 mV,  
ADCxMDE =  
0x71  
ADCFLT  
Register  
Value  
Update Chop/  
Rate (Hz) Sinc  
3.53  
30  
50  
100  
488  
976  
1953  
3906  
Onꢀsinc3  
0x8E7C  
0x007E  
0x007D  
0x004D  
0x100F  
0x1007  
0x1003  
0x1001  
0.067  
0.202  
0.24  
0.35  
0.7  
0.99  
1.78  
6.44  
0.064  
0.2  
0.073  
0.196  
0.25  
0.36  
0.71  
1.01  
1.48  
3.59  
0.055  
0.16  
0.21  
0.27  
0.58  
0.74  
1.15  
1.4  
0.058  
0.174  
0.21  
0.31  
0.62  
0.83  
1.25  
2.2  
0.052  
0.155  
0.2  
0.25  
0.57  
0.7  
Offꢀsinc3  
Offꢀsinc3  
Offꢀsinc3  
Offꢀsinc4  
Offꢀsinc4  
Offꢀsinc4  
Offꢀsinc4  
0.24  
0.32  
0.67  
0.91  
1.3  
1.0  
1.4  
2.68  
1 ADCxMDE = 0x49 sets the PGA for a gain of 16 with a modulator gain of 2. The modulator gain of 2 is implemented by adjusting the sampling capacitors into the  
modulator. ADCxMDE = 0x51 sets the PGA for a gain of 32 with the modulator gain off. ADCxMDE = 0x49 has slightly higher noise but supports a wider input range.  
2 If AVDD < 2.0 V and ADCxMDE = 0x51, the input range is 17.5 mV.  
3 ADCxMDE = 0x59 sets the PGA for a gain of 32 with a modulator gain of 2. The modulator gain of 2 is implemented by adjusting the sampling capacitors into the  
modulator. ADCxMDE = 0x61 sets the PGA for a gain of 64 with the modulator gain off. ADCxMDE = 0x59 has slightly higher noise but supports a wider input range.  
4 If AVDD < 2.0 V and ADCxMDE = 0x61, the input range is 8.715 mV.  
5 ADCxMDE = 0x69 sets the PGA for a gain of 64 with a modulator gain of 2. The modulator gain of 2 is implemented by adjusting the sampling capacitors into the  
modulator. ADCxMDE = 0x71 sets the PGA for a gain of 128 with the modulator gain off. ADCxMDE = 0x69 has slightly higher noise but supports a wider input range.  
6 If AVDD < 2.0 V and ADCxMDE = 0x71, the input range is 3.828 mV.  
Rev. 0 | Page 11 of 24  
 
 
 
ADuCM362/ADuCM363  
Data Sheet  
Table 4. Typical Output RMS Noise ENOB in Normal Mode, Internal Reference (1.2 V), Gain = 1, 2, 4, 8, and 16  
ENOB by Input Voltage Range and Gain1  
Gain = 2,  
500 mV,  
ADCxMDE = 0x11  
Gain = 4,  
250 mV,  
ADCxMDE = 0x21  
Gain = 8,  
125 mV,  
ADCxMDE = 0x31  
Gain = 16,  
62.5 mV,  
ADCxMDE = 0x41  
Update  
Rate (Hz)  
Gain = 1, VREF  
Chop/Sinc ADCxMDE = 0x01  
,
3.53  
30  
50  
100  
488  
976  
1953  
3906  
Onꢀsinc3  
Offꢀsinc3  
Offꢀsinc3  
Offꢀsinc3  
Offꢀsinc4  
Offꢀsinc4  
Offꢀsinc4  
Offꢀsinc4  
21.1 (18.4 p-p)  
20.1 (17.4 p-p)  
19.3 (16.6 p-p)  
18.7 (16.0 p-p)  
17.9 (15.2 p-p)  
17.4 (14.7 p-p)  
16.9 (14.2 p-p)  
15.1 (12.4 p-p)  
21.1 (18.4 p-p)  
19.5 (16.8 p-p)  
19.25 (16.5 p-p)  
18.66 (15.9 p-p)  
17.7 (15.0 p-p)  
17.2 (14.5 p-p)  
16.6 (13.9 p-p)  
14.8 (12.0 p-p)  
21.1 (18.3 p-p)  
19.6 (16.9 p-p)  
19.2 (16.5 p-p)  
18.75 (16.0 p-p)  
17.8 (15.1 p-p)  
17.2 (14.5 p-p)  
16.7 (14.0 p-p)  
14.9 (12.2 p-p)  
20.8 (18.1 p-p)  
19.4 (16.6 p-p)  
19.0 (16.3 p-p)  
18.6 (15.9 p-p)  
17.55 (14.8 p-p)  
17.2 (14.4 p-p)  
16.55 (13.8 p-p)  
14.8 (12.1 p-p)  
20.7 (18.0 p-p)  
19.1 (16.4 p-p)  
18.7 (16.0 p-p)  
18.3 (15.6 p-p)  
17.3 (14.5 p-p)  
16.8 (14.1 p-p)  
16.3 (13.6 p-p)  
14.6 (11.9 p-p)  
1 RMS bits are calculated as follows: log2 ((2 × Input Range)ꢀRMS Noise); peak-to-peak (p-p) bits are calculated as follows: log2 ((2 × Input Range)ꢀ(6.6 × RMS Noise)).  
Table 5. Typical Output RMS Noise ENOB in Normal Mode, Internal Reference (1.2 V), Gain = 32, 64, and 128  
ENOB by Input Voltage Range and Gain1  
Gain = 32,  
62.5 mV,  
ADCxMDE =  
Gain = 32,  
22.18 mV,  
ADCxMDE =  
0x51  
Gain = 64,  
15.625 mV,  
ADCxMDE =  
0x59  
Gain = 64,  
10.3125 mV,  
ADCxMDE =  
0x61  
Gain = 128,  
7.8125 mV,  
ADCxMDE =  
0x69  
Gain = 128,  
3.98 mV,  
ADCxMDE =  
0x71  
Update  
Rate (Hz)  
Chop/Sinc 0x49  
3.53  
30  
50  
100  
488  
976  
1953  
3906  
Onꢀsinc3  
Offꢀsinc3  
Offꢀsinc3  
Offꢀsinc3  
Offꢀsinc4  
Offꢀsinc4  
Offꢀsinc4  
Offꢀsinc4  
19.8 (17.1 p-p)  
18.2 (15.5 p-p)  
18.0 (15.2 p-p)  
17.4 (14.7 p-p)  
16.4 (13.7 p-p)  
15.9 (13.2 p-p)  
15.1 (12.4 p-p)  
13.2 (10.5 p-p)  
19.4 (16.7 p-p)  
17.75 (15.0 p-p) 17.3 (14.6 p-p)  
17.5 (14.8 p-p)  
17.1 (14.35 p-p) 16.4 (13.7 p-p)  
16.0 (13.3 p-p)  
15.6 (12.85 p-p) 14.91 (12.2 p-p) 14.8 (12.0 p-p)  
15.05 (12.3 p-p) 14.4 (11.6 p-p)  
14.0 (11.3 p-p) 13.1 (10.4 p-p)  
18.7 (16.0 p-p)  
18.5 (15.8 p-p)  
17.0 (14.25 p-p) 16.45 (13.7 p-p) 15.6 (12.9 p-p)  
18.0 (15.3 p-p)  
17.2 (14.5 p-p)  
16.93 (14.2 p-p) 16.6 (13.86 p-p) 16.2 (13.5 p-p) 15.3 (12.55 p-p)  
16.2 (13.5 p-p)  
15.1 (12.4 p-p)  
15.6 (12.9 p-p)  
14.6 (11.9 p-p)  
14.2 (11.5 p-p)  
13.6 (10.9 p-p)  
12.8 (10.1 p-p)  
15.0 (12.2 p-p)  
13.8 (11.0 p-p)  
13.4 (10.75 p-p)  
13.0 (10.2 p-p)  
12.5 (9.75 p-p)  
15.4 (12.7 p-p)  
14.1 (11.4 p-p)  
13.8 (11.1 p-p)  
1 RMS bits are calculated as follows: log2 ((2 × Input Range)ꢀRMS Noise); peak-to-peak (p-p) bits are calculated as follows: log2 ((2 × Input Range)ꢀ(6.6 × RMS Noise)).  
Rev. 0| Page 12 of 24  
 
 
Data Sheet  
ADuCM362/ADuCM363  
External Reference (2.5 V)  
Table 6 through Table 9 provide rms noise specifications for ADC0 and ADC1 using the external reference (2.5 V). Table 6 and Table 7 list  
the rms noise for both ADCs with various gain and output update rate values. Table 8 and Table 9 list the typical output rms noise effective  
ENOB in normal mode for both ADCs with various gain and output update rate values. (Peak-to-peak ENOB is shown in parentheses.)  
Table 6. RMS Noise vs. Gain and Output Update Rate, External Reference (2.5 V), Gain = 1, 2, 4, 8, and 16  
RMS Noise (μV)  
Gain = 2,  
500 mV,  
ADCxMDE =  
0x11  
Gain = 4,  
250 mV,  
ADCxMDE =  
0x21  
Gain = 8,  
125 mV,  
ADCxMDE =  
0x31  
Gain = 16,  
62.5 mV,  
ADCxMDE =  
0x41  
ADCFLT  
Register  
Rate (Hz) Chop/Sinc Value  
Gain = 1, VREF  
ADCxMDE =  
0x01  
,
Update  
3.53  
30  
50  
100  
488  
976  
1953  
3906  
Onꢀsinc3  
Offꢀsinc3  
Offꢀsinc3  
Offꢀsinc3  
Offꢀsinc4  
Offꢀsinc4  
Offꢀsinc4  
Offꢀsinc4  
0x8E7C  
0x007E  
0x007D  
0x004D  
0x100F  
0x1007  
0x1003  
0x1001  
1.1  
3
3.9  
5.2  
0.5  
1.4  
2.2  
2.8  
5.0  
7
0.27  
0.85  
0.92  
1.25  
2.5  
3.5  
5.7  
35.0  
0.17  
0.44  
0.46  
0.63  
1.2  
1.75  
2.6  
17.2  
0.088  
0.27  
0.3  
0.38  
0.75  
1.2  
9.3  
12.5  
20.0  
140.0  
10  
70.0  
1.71  
8.9  
Table 7. RMS Noise vs. Gain and Output Update Rate, External Reference (2.5 V), Gain = 32, 64, and 128  
RMS Noise (μV)  
Gain = 32,1  
62.5 mV,  
ADCxMDE =  
0x49  
Gain = 32,1, 2  
22.18 mV,  
ADCxMDE =  
0x51  
Gain = 64,3  
15.625 mV,  
ADCxMDE =  
0x59  
Gain = 64,3, 4  
10.3125 mV,  
ADCxMDE =  
0x61  
Gain = 128,5  
7.8125 mV,  
ADCxMDE =  
0x69  
Gain = 128,5, 6  
3.98 mV,  
ADCxMDE =  
0x71  
ADCFLT  
Register  
Value  
Update Chop/  
Rate (Hz) Sinc  
3.53  
30  
50  
100  
488  
976  
1953  
3906  
Onꢀsinc3  
0x8E7C  
0x007E  
0x007D  
0x004D  
0x100F  
0x1007  
0x1003  
0x1001  
0.076  
0.21  
0.265  
0.37  
0.73  
1.1  
0.07  
0.22  
0.21  
0.32  
0.7  
0.83  
1.3  
4.8  
0.088  
0.21  
0.27  
0.366  
0.73  
1.01  
1.6  
0.06  
0.19  
0.2  
0.28  
0.57  
0.77  
1.24  
2.65  
0.068  
0.175  
0.225  
0.32  
0.64  
0.89  
1.3  
0.58  
0.17  
0.19  
0.26  
0.5  
0.75  
1.1  
1.88  
Offꢀsinc3  
Offꢀsinc3  
Offꢀsinc3  
Offꢀsinc4  
Offꢀsinc4  
Offꢀsinc4  
Offꢀsinc4  
2.05  
9.4  
5.1  
3.2  
1 ADCxMDE = 0x49 sets the PGA for a gain of 16 with a modulator gain of 2. The modulator gain of 2 is implemented by adjusting the sampling capacitors into the  
modulator. ADCxMDE = 0x51 sets the PGA for a gain of 32 with the modulator gain off. ADCxMDE = 0x49 has slightly higher noise but supports a wider input range.  
2 If AVDD < 2.0 V and ADCxMDE = 0x51, the input range is 17.5 mV.  
3 ADCxMDE = 0x59 sets the PGA for a gain of 32 with a modulator gain of 2. The modulator gain of 2 is implemented by adjusting the sampling capacitors into the  
modulator. ADCxMDE = 0x61 sets the PGA for a gain of 64 with the modulator gain off. ADCxMDE = 0x59 has slightly higher noise but supports a wider input range.  
4 If AVDD < 2.0 V and ADCxMDE = 0x61, the input range is 8.715 mV.  
5 ADCxMDE = 0x69 sets the PGA for a gain of 64 with a modulator gain of 2. The modulator gain of 2 is implemented by adjusting the sampling capacitors into the  
modulator. ADCxMDE = 0x71 sets the PGA for a gain of 128 with the modulator gain off. ADCxMDE = 0x69 has slightly higher noise but supports a wider input range.  
6 If AVDD < 2.0 V and ADCxMDE = 0x71, the input range is 3.828 mV.  
Rev. 0 | Page 13 of 24  
 
 
ADuCM362/ADuCM363  
Data Sheet  
Table 8. Typical Output RMS Noise ENOB in Normal Mode, External Reference (2.5 V), Gain = 1, 2, 4, 8, and 16  
ENOB by Input Voltage Range and Gain1  
Gain = 16,  
62.5 mV,  
ADCxMDE = 0x41  
Update  
Rate (Hz)  
Gain = 1, VREF  
Chop/Sinc ADCxMDE = 0x01  
,
Gain = 2, 500 mV,  
ADCxMDE = 0x11  
Gain = 4, 250 mV,  
ADCxMDE = 0x21  
Gain = 8, 125 mV,  
ADCxMDE = 0x31  
3.53  
30  
50  
100  
488  
976  
1953  
3906  
Onꢀsinc3  
Offꢀsinc3  
Offꢀsinc3  
Offꢀsinc3  
Offꢀsinc4  
Offꢀsinc4  
Offꢀsinc4  
Offꢀsinc4  
22.1 (19.4 p-p)  
20.7 (18.0 p-p)  
20.3 (17.6 p-p)  
19.9 (17.2 p-p)  
19.0 (16.3 p-p)  
18.6 (15.9 p-p)  
17.9 (15.2 p-p)  
15.1 (12.4 p-p)  
20.9 (18.2 p-p)  
19.4 (16.7 p-p)  
18.8 (16.1 p-p)  
18.4 (15.7 p-p)  
17.6 (14.9 p-p)  
17.1 (14.4 p-p)  
16.6 (13.9 p-p)  
13.8 (11.1 p-p)  
20.8 (18.1 p-p)  
19.2 (16.4 p-p)  
19.05 (16.3 p-p)  
18.6 (15.9 p-p)  
17.6 (14.9 p-p)  
17.1 (14.4 p-p)  
16.4 (13.7 p-p)  
13.8 (11.1 p-p)  
20.5 (17.7 p-p)  
19.1 (16.4 p-p)  
19.05 (16.3 p-p)  
18.6 (15.9 p-p)  
17.7 (14.9 p-p)  
17.1 (14.4 p-p)  
16.55 (13.8 p-p)  
13.8 (11.1 p-p)  
20.43 (17.7 p-p)  
18.82 (16.1 p-p)  
18.66 (15.9 p-p)  
18.32 (15.6 p-p)  
17.34 (14.6 p-p)  
16.66 (13.9 p-p)  
16.15 (13.4 p-p)  
13.77 (11.05 p-p)  
1 RMS bits are calculated as follows: log2 ((2 × Input Range)ꢀRMS Noise); peak-to-peak (p-p) bits are calculated as follows: log2 ((2 × Input Range)ꢀ(6.6 × RMS Noise)).  
Table 9. Typical Output RMS Noise ENOB in Normal Mode, External Reference (2.5 V), Gain = 32, 64, and 128  
ENOB by Input Voltage Range and Gain1  
Gain = 32,  
62.5 mV,  
ADCxMDE =  
Gain = 32,  
22.18 mV,  
ADCxMDE =  
0x51  
Gain = 64,  
15.625 mV,  
ADCxMDE =  
0x59  
Gain = 64,  
10.3125 mV,  
ADCxMDE =  
0x61  
Gain = 128,  
7.8125 mV,  
ADCxMDE =  
0x69  
Gain = 128,  
3.98 mV,  
ADCxMDE =  
0x71  
Update  
Rate (Hz)  
Chop/Sinc 0x49  
3.53  
30  
50  
100  
488  
976  
1953  
3906  
Onꢀsinc3  
Offꢀsinc3  
Offꢀsinc3  
Offꢀsinc3  
Offꢀsinc4  
Offꢀsinc4  
Offꢀsinc4  
Offꢀsinc4  
19.6 (16.9 p-p)  
18.2 (15.5 p-p)  
17.8 (15.1 p-p)  
17.4 (14.6 p-p)  
16.4 (13.7 p-p)  
15.8 (13.1 p-p)  
14.9 (12.1 p-p)  
12.7 (10.0 p-p)  
19.3 (16.55 p-p) 18.4 (15.7 p-p)  
18.4 (15.7 p-p)  
16.7 (14.0 p-p)  
16.65 (13.9 p-p) 16.1 (13.4 p-p)  
16.2 (13.4 p-p)  
15.1 (12.4 p-p)  
14.7 (12.0 p-p)  
17.8 (15.1 p-p)  
16.4 (13.7 p-p)  
17.1 (14.3 p-p)  
15.5 (12.8 p-p)  
15.35 (12.6 p-p)  
17.6 (14.9 p-p)  
17.7 (15.0 p-p)  
17.2 (14.5 p-p)  
16.8 (14.1 p-p)  
17.1 (14.35 p-p) 16.4 (13.7 p-p)  
15.6 (12.85 p-p) 14.9 (12.2 p-p)  
14.6 (11.85 p-p) 14.0 (11.2 p-p)  
14.1 (11.4 p-p)  
13.55 (10.8 p-p) 12.8 (10.1 p-p)  
12.25 (9.5 p-p) 12.0 (9.3 p-p)  
16.0 (13.2 p-p)  
15.7 (13.0 p-p)  
15.1 (12.3 p-p)  
13.2 (10.4 p-p)  
15.4 (12.7 p-p)  
14.9 (12.2 p-p)  
14.25 (11.5 p-p) 14.0 (11.3 p-p)  
12.6 (9.9 p-p) 12.9 (10.2 p-p)  
13.4 (10.6 p-p)  
1 RMS bits are calculated as follows: log2 ((2 × Input Range)ꢀRMS Noise); peak-to-peak (p-p) bits are calculated as follows: log2 ((2 × Input Range)ꢀ(6.6 × RMS Noise)).  
Rev. 0| Page 14 of 24  
 
 
Data Sheet  
ADuCM362/ADuCM363  
I2C TIMING SPECIFICATIONS  
The capacitive load for each I2C bus line (CB) is 400 pF maximum as per the I2C bus specifications. I2C timing is guaranteed by design, but  
is not production tested.  
Table 10. I2C Timing in Fast Mode (400 kHz)  
Parameter  
Description  
Min  
1300  
600  
600  
100  
0
600  
600  
1.3  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
s  
ns  
ns  
ns  
tL  
tH  
Serial clock (SCL) low pulse width  
SCL high pulse width  
Start condition hold time  
Data setup time  
Data hold time  
Setup time for repeated start  
Stop condition setup time  
Bus free time between a stop condition and a start condition  
Rise time for both SCL and serial data (SDA)  
Fall time for both SCL and SDA  
Pulse width of suppressed spike  
tSHD  
tDSU  
tDHD  
tRSU  
tPSU  
tBUF  
tR  
20 + 0.1 CB  
20 + 0.1 CB  
0
300  
300  
50  
tF  
tSUP  
Table 11. I2C Timing in Standard Mode (100 kHz)  
Parameter  
Description  
Min  
4.7  
4.0  
4.7  
250  
0
4.0  
4.0  
4.7  
Max  
Unit  
μs  
ns  
μs  
ns  
μs  
μs  
μs  
μs  
μs  
ns  
tL  
tH  
SCL low pulse width  
SCL high pulse width  
Start condition hold time  
Data setup time  
Data hold time  
Setup time for repeated start  
Stop condition setup time  
Bus free time between a stop condition and a start condition  
Rise time for both SCL and SDA  
Fall time for both SCL and SDA  
tSHD  
tDSU  
tDHD  
tRSU  
tPSU  
tBUF  
tR  
1
300  
tF  
tBUF  
tSUP  
tR  
SDA (I/O)  
MSB  
LSB  
ACK  
MSB  
tF  
tDSU  
tDSU  
tDHD  
tDHD  
tPSU  
tR  
tSHD  
tRSU  
tH  
1
8
9
1
SCL (I)  
tL  
tSUP  
P
S
S(R)  
tF  
STOP  
START  
REPEATED  
START  
CONDITION CONDITION  
Figure 3. I2C-Compatible Interface Timing  
Rev. 0 | Page 15 of 24  
 
ADuCM362/ADuCM363  
Data Sheet  
SPI TIMING SPECIFICATIONS  
Table 12. SPI Master Mode Timing  
Parameter  
Description  
Min  
Typ  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tSL  
tSH  
SCLK low pulse width1  
(SPIDIV + 1) × tUCLK  
(SPIDIV + 1) × tUCLK  
0
SCLK high pulse width1  
tDAV  
tDOSU  
tDSU  
tDHD  
tDF  
tDR  
tSR  
tSF  
Data output valid after SCLK edge  
Data output setup time before SCLK edge1  
Data input setup time before SCLK edge  
Data input hold time after SCLK edge  
Data output fall time  
Data output rise time  
SCLK rise time  
SCLK fall time  
35.5  
(SPIDIV + 1) × tUCLK  
58.7  
16  
12  
12  
12  
12  
35.5  
35.5  
35.5  
35.5  
1 tUCLK = 62.5 ns. It corresponds to the internal 16 MHz clock before the clock divider.  
CS  
1/2 SCLK  
CYCLE  
3/4 SCLK  
CYCLE  
tCS  
tSFS  
SCLK  
(POLARITY = 0)  
tSH  
tSL  
tSR  
tSF  
SCLK  
(POLARITY = 1)  
tDAV  
tDF  
tDR  
MOSI  
MISO  
MSB  
BIT 6 TO BIT 1  
LSB  
MSB IN  
BIT 6 TO BIT 1  
LSB IN  
tDSU  
tDHD  
Figure 4. SPI Master Mode Timing (Phase Mode = 1)  
CS  
1 SCLK CYCLE  
tCS  
1 SCLK CYCLE  
tSFS  
SCLK  
(POLARITY = 0)  
tSH  
tSL  
tSR  
tSF  
SCLK  
(POLARITY = 1)  
tDAV  
tDOSU  
tDF  
tDR  
MOSI  
MISO  
MSB  
BIT 6 TO BIT 1  
LSB  
MSB IN  
BIT 6 TO BIT 1  
LSB IN  
tDSU  
tDHD  
Figure 5. SPI Master Mode Timing (Phase Mode = 0)  
Rev. 0| Page 16 of 24  
 
Data Sheet  
ADuCM362/ADuCM363  
Table 13. SPI Slave Mode Timing  
Parameter  
Description  
Min  
Typ  
Max  
Unit  
tCS  
CS to SCLK edge  
62.5  
ns  
tSL  
tSH  
SCLK low pulse width1  
(SPIDIV + 1) × tUCLK  
(SPIDIV + 1) × tUCLK  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCLK high pulse width1  
Data output valid after SCLK edge  
Data input setup time before SCLK edge  
Data input hold time after SCLK edge  
Data output fall time  
62.5  
tDAV  
tDSU  
tDHD  
tDF  
tDR  
tSR  
49.1  
20.2  
10.1  
12  
12  
12  
12  
35.5  
35.5  
35.5  
35.5  
Data output rise time  
SCLK rise time  
SCLK fall time  
CS high after SCLK edge  
tSF  
tSFS  
0
1 tUCLK = 62.5 ns. It corresponds to the internal 16 MHz clock before the clock divider.  
CS  
tSFS  
tCS  
SCLK  
(POLARITY = 0)  
tSH  
tSL  
tSR  
tSF  
SCLK  
(POLARITY = 1)  
tDAV  
tDF  
tDR  
MISO  
MOSI  
MSB  
BIT 6 TO BIT 1  
LSB  
MSB IN  
BIT 6 TO BIT 1  
LSB IN  
tDSU  
tDHD  
Figure 6. SPI Slave Mode Timing (Phase Mode = 1)  
CS  
tCS  
tSFS  
SCLK  
(POLARITY = 0)  
tSH  
tSL  
tSR  
tSF  
SCLK  
(POLARITY = 1)  
tDAV  
tDOCS  
tDF  
tDR  
MISO  
MSB  
BIT 6 TO BIT 1  
LSB  
MOSI  
MSB IN  
BIT 6 TO BIT 1  
LSB IN  
tDSU  
tDHD  
Figure 7. SPI Slave Mode Timing (Phase Mode = 0)  
Rev. 0 | Page 17 of 24  
ADuCM362/ADuCM363  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 14.  
Thermal performance is directly linked to printed circuit board  
(PCB) design and operating environment. Close attention to  
PCB thermal design is required.  
Parameter  
Rating  
AVDD to AGND  
IOVDD to DGND  
−0.3 V to +3.96 V  
−0.3 V to +3.96 V  
−0.3 V to +3.96 V  
−0.3 V to +3.96 V  
−0.3 V to +3.96 V  
−40°C to +125°C  
−65°C to +150°C  
150°C  
Digital Input Voltage to DGND  
Digital Output Voltage to DGND  
Analog Inputs to AGND  
Operating Temperature Range  
Storage Temperature Range  
Junction Temperature  
ESD Rating, All Pins  
Table 15. Thermal Resistance  
Package Type  
θJA  
Unit  
CP-48-4  
27  
°CꢀW  
ESD CAUTION  
Human Body Model (HBM)  
2 kV  
Field-Induced Charged Device  
Model (FICDM)  
850 V  
Peak Solder Reflow Temperature  
SnPb Assemblies (10 sec to 30 sec)  
240°C  
Pb-Free Assemblies (20 sec to 40 sec) 260°C  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the product. This is a stress  
rating only; functional operation of the product at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
product reliability.  
Rev. 0| Page 18 of 24  
 
 
 
Data Sheet  
ADuCM362/ADuCM363  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
1
2
36 P0.7/POR/TxD1  
35  
P0.6/IRQ2/RxD1  
RESET  
P2.1/SDA/UART1DCD/UARTDCD  
3
4
5
6
7
8
9
10  
P2.2/BM  
XTALO  
XTALI  
34 P0.5/IRQ1/CTS  
33 P0.4/RTS/ECLKO/RTS1  
32  
P0.3/IRQ0/CS1/RTS1/RTS  
31 P0.2/MOSI1/SDA/TxD  
ADuCM362/  
ADuCM363  
TOP VIEW  
(Not to Scale)  
IOVDD  
DVDD_REG  
AIN0  
30  
29  
P0.1/SCLK1/SCL/RxD  
P0.0/MISO1/UART1DCD/UARTDCD  
AIN1  
AIN2  
28 AIN11/VBIAS1  
27 AIN10  
11  
AIN3  
26 AIN9/DACBUFF+  
25 AIN8/EXTREF2IN–  
AIN4/IEXC 12  
NOTES  
1. EXPOSED PAD. THE LFCSP HAS AN EXPOSED PAD THAT MUST BE SOLDERED TO A METAL  
PLATE ON THE PCB AND TO DGND FOR MECHANICAL REASONS.  
Figure 8. Pin Configuration  
Table 16. Pin Function Descriptions  
Pin No. Mnemonic  
Description  
1
2
RESET  
Reset Pin, Active Low Input. An internal pull-up is provided.  
P2.1ꢀSDAꢀUART1DCDꢀUARTDCD General-Purpose InputꢀOutput P2.1ꢀI2C Serial Data PinꢀUART1 Data Carrier Detect PinꢀUART  
Data Carrier Detect Pin.  
3
P2.2ꢀBM  
General-Purpose InputꢀOutput P2.2ꢀBoot Mode Input Select Pin. When this pin is held low  
during and for a short time after any reset sequence, the devices enter UART download mode.  
4
5
6
7
XTALO  
XTALI  
IOVDD  
DVDD_REG  
External Crystal Oscillator Output Pin. Optional 32.768 kHz source for real-time clock.  
External Crystal Oscillator Input Pin. Optional 32.768 kHz source for real-time clock.  
Digital System Supply Pin. This pin must be connected to DGND via a 0.1 ꢁF capacitor.  
Digital Regulator Supply. This pin must be connected to DGND via a 470 nF capacitor and to  
Pin 18, AVDD_REG.  
8
AIN0  
ADC Analog Input 0. This pin can be configured as a positive or negative input to either ADC  
in differential or single-ended mode.  
9
AIN1  
ADC Analog Input 1. This pin can be configured as a positive or negative input to either ADC  
in differential or single-ended mode.  
10  
11  
12  
AIN2  
ADC Analog Input 2. This pin can be configured as a positive or negative input to either ADC  
in differential or single-ended mode.  
ADC Analog Input 3. This pin can be configured as a positive or negative input to either ADC  
in differential or single-ended mode.  
ADC Analog Input 4ꢀExcitation Current Source. This pin can be configured as a positive or  
negative input to either ADC in differential or single-ended mode (AIN4). This pin can also be  
configured as the output pin for Excitation Current Source 0 or Excitation Current Source 1 (IEXC).  
AIN3  
AIN4ꢀIEXC  
Rev. 0 | Page 19 of 24  
 
ADuCM362/ADuCM363  
Data Sheet  
Pin No. Mnemonic  
Description  
13  
14  
GND_SW  
VREF+  
Sensor Power Switch to Analog Ground Reference.  
External Reference Positive Input. An external reference can be applied between the VREF+  
and VREF− pins.  
15  
VREF−  
External Reference Negative Input. An external reference can be applied between the VREF+  
and VREF− pins.  
16  
17  
18  
AGND  
AVDD  
AVDD_REG  
Analog System Ground Reference Pin.  
Analog System Supply Pin. This pin must be connected to AGND via a 0.1 ꢁF capacitor.  
Internal Analog Regulator Supply Output. This pin must be connected to AGND via a 470 nF  
capacitor and to Pin 7, DVDD_REG.  
19  
20  
21  
DAC  
INT_REF  
IREF  
DAC Voltage Output.  
Internal Reference. This pin must be connected to ground via a 470 nF decoupling capacitor.  
Optional Reference Current Resistor Connection for the Excitation Current Sources. The  
reference current used for the excitation current sources is set by a low drift (5 ppmꢀ°C)  
external resistor connected to this pin.  
22  
23  
24  
AIN5ꢀIEXC  
ADC Analog Input 5ꢀExcitation Current Source. This pin can be configured as a positive or  
negative input to either ADC in differential or single-ended mode (AIN5). This pin can also be  
configured as the output pin for Excitation Current Source 0 or Excitation Current Source 1 (IEXC).  
ADC Analog Input 6ꢀExcitation Current Source. This pin can be configured as a positive or  
negative input to either ADC in differential or single-ended mode (AIN6). This pin can also be  
configured as the output pin for Excitation Current Source 0 or Excitation Current Source 1 (IEXC).  
ADC Analog Input 7ꢀBias Voltage OutputꢀExcitation Current SourceꢀExternal Reference 2  
Positive Input. This pin can be configured as a positive or negative input to either ADC in  
differential or single-ended mode (AIN7). This pin can also be configured as an analog output  
pin to generate a bias voltage, VBIAS0 of AVDD_REGꢀ2 (VBIAS0); as the output pin for Excitation  
Current Source 0 or Excitation Current Source 1 (IEXC); or as the positive input for External  
Reference 2 (EXTREF2IN+).  
AIN6ꢀIEXC  
AIN7ꢀVBIAS0ꢀIEXCꢀEXTREF2IN+  
25  
26  
AIN8ꢀEXTREF2IN−  
AIN9ꢀDACBUFF+  
ADC Analog Input 8ꢀExternal Reference 2 Negative Input. This pin can be configured as a  
positive or negative input to either ADC in differential or single-ended mode (AIN8). This pin  
can also be configured as the negative input for External Reference 2 (EXTREF2IN−).  
ADC Analog Input 9ꢀNoninverting Input to the DAC Output Buffer. This pin can be configured  
as a positive or negative input to either ADC in differential or single-ended mode (AIN9). This  
pin can also be configured as the noninverting input to the DAC output buffer when the DAC  
is configured for NPN mode (DACBUFF+).  
27  
28  
AIN10  
ADC Analog Input 10. This pin can be configured as a positive or negative input to either ADC  
in differential or single-ended mode.  
ADC Analog Input 11ꢀBias Voltage Output. This pin can be configured as a positive or  
negative input to either ADC in differential or single-ended mode (AIN11). This pin can also be  
configured as an analog output pin to generate a bias voltage, VBIAS1 of AVDD_REGꢀ2 (VBIAS1).  
AIN11ꢀVBIAS1  
29  
30  
31  
32  
P0.0ꢀMISO1ꢀUART1DCDꢀ  
UARTDCD  
General-Purpose InputꢀOutput P0.0ꢀSPI1 Master Input, Slave Output PinꢀUART1 Data Carrier  
Detect Pinꢀ UART Data Carrier Detect Pin.  
General-Purpose InputꢀOutput P0.1ꢀSPI1 Serial Clock PinꢀI2C Serial Clock PinꢀUART Serial  
Input (Data Input for the UART Downloader).  
General-Purpose InputꢀOutput P0.2ꢀSPI1 Master Output, Slave Input PinꢀI2C Serial Data Pinꢀ  
UART Serial Output (Data Output for the UART Downloader).  
General-Purpose InputꢀOutput P0.3ꢀExternal Interrupt Request 0ꢀSPI1 Chip Select Pin (Active  
Low) (when using SPI1, configure this pin as CS1)ꢀUART1 Request to Send SignalꢀUART  
Request to Send Signal.  
P0.1ꢀSCLK1ꢀSCLꢀRxD  
P0.2ꢀMOSI1ꢀSDAꢀTxD  
P0.3ꢀIRQ0ꢀCS1ꢀRTS1ꢀRTS  
33  
P0.4ꢀRTSꢀECLKOꢀRTS1  
General-Purpose InputꢀOutput P0.4ꢀUART Request to Send SignalꢀExternal Clock Output Pin  
for Test PurposesꢀUART1 Request to Send Signal.  
34  
35  
36  
37  
38  
P0.5ꢀIRQ1ꢀCTS  
General-Purpose InputꢀOutput P0.5ꢀExternal Interrupt Request 1ꢀUART Clear to Send Signal.  
General-Purpose InputꢀOutput P0.6ꢀExternal Interrupt Request 2ꢀUART1 Serial Input.  
General-Purpose InputꢀOutput P0.7ꢀPower-On Reset Pin (Active High)ꢀUART1 Serial Output.  
Digital System Supply Pin. This pin must be connected to DGND via a 0.1 ꢁF capacitor.  
General-Purpose InputꢀOutput P1.0ꢀExternal Interrupt Request 3ꢀPWM External  
Synchronization InputꢀExternal Clock Input Pin.  
P0.6ꢀIRQ2ꢀRxD1  
P0.7ꢀPORꢀTxD1  
IOVDD  
P1.0ꢀIRQ3ꢀPWMSYNCꢀEXTCLK  
39  
40  
P1.1ꢀIRQ4ꢀPWMTRIPꢀDTR  
P1.2ꢀPWM0ꢀRI  
General-Purpose InputꢀOutput P1.1ꢀExternal Interrupt Request 4ꢀPWM External Trip Inputꢀ  
UART Data Terminal Ready Pin.  
General-Purpose InputꢀOutput P1.2ꢀPWM0 OutputꢀUART Ring Indicator Pin.  
Rev. 0| Page 20 of 24  
Data Sheet  
ADuCM362/ADuCM363  
Pin No. Mnemonic  
Description  
41  
42  
P1.3ꢀPWM1ꢀDSR  
General-Purpose InputꢀOutput P1.3ꢀPWM1 OutputꢀUART Data Set Ready Pin.  
General-Purpose InputꢀOutput P1.4ꢀPWM2 OutputꢀSPI0 Master Input, Slave Output PinꢀI2C  
Serial Data Pin.  
General-Purpose InputꢀOutput P1.5ꢀExternal Interrupt Request 5ꢀPWM3 OutputꢀSPI0 Serial  
Clock Pin.  
General-Purpose InputꢀOutput P1.6ꢀExternal Interrupt Request 6ꢀPWM4 OutputꢀSPI0 Master  
Output, Slave Input Pin.  
P1.4ꢀPWM2ꢀMISO0ꢀSDA  
P1.5ꢀIRQ5ꢀPWM3ꢀSCLK0  
P1.6ꢀIRQ6ꢀPWM4ꢀMOSI0  
P1.7ꢀIRQ7ꢀPWM5ꢀCS0  
43  
44  
45  
General-Purpose InputꢀOutput P1.7ꢀExternal Interrupt Request 7ꢀPWM5 OutputꢀSPI0 Chip  
Select Pin (Active Low) (when using SPI0, configure this pin as CS0).  
46  
47  
48  
P2.0ꢀSCLꢀUARTCLK  
General-Purpose InputꢀOutput P2.0ꢀI2C Serial Clock PinꢀInput Clock Pin for UART Block Only.  
Serial Wire Debug Clock Input Pin.  
Serial Wire Debug Data InputꢀOutput Pin.  
Exposed Pad. The LFCSP has an exposed pad that must be soldered to a metal plate on the  
PCB and to DGND for mechanical reasons.  
SWCLK  
SWDIO  
EP  
Rev. 0 | Page 21 of 24  
ADuCM362/ADuCM363  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
60  
50  
40  
30  
250  
200  
150  
100  
50  
I
P
I
20  
10  
N
I
– I  
N
P
BOOST = 0  
0
–10  
–20  
–30  
BOOST = 30  
400  
0
0
200  
600  
800  
1000  
1200  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
COMMON-MODE VOLTAGE (V)  
CAPACITANCE (nF)  
Figure 9. Input Current vs. Common-Mode Voltage (VCM), Gain = 4,  
ADC Input = 250 mV, AVDD = 3.6 V, TA = 25°C, VCM = ((AIN+) + (AIN−))/2  
Figure 12. VBIASx Output Settling Time vs. Load Capacitance, TA = 25°C,  
IOVDD and AVDD = 3.3 V  
5
4
30  
25  
20  
15  
10  
5
3
2
1
0
–1  
–2  
–3  
–4  
–5  
I
I
I
P
N
P
– I  
N
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
COMMON-MODE VOLTAGE (V)  
VOLTAGE (V)  
Figure 13. Digital Input Pin Pull-Up Resistance Value vs. Voltage Applied  
to Digital Pin, TA = 25°C, IOVDD = 3.4 V  
Figure 10. Input Current vs. Common-Mode Voltage (VCM), Gain = 128,  
ADC Input = 7.8125 mV, AVDD = 3.6 V, TA = 25°C, VCM = ((AIN+) + (AIN−))/2  
14000000  
12000000  
10000000  
8000000  
6000000  
4000000  
2000000  
60  
50  
40  
30  
20  
10  
0
0
0.5  
1.0  
1.5  
2.0  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 14. Digital Input Pin Pull-Up Resistance Value vs. Voltage Applied  
to Digital Pin, TA = 25°C, IOVDD = 1.8 V  
Figure 11. ADC Codes (Decimal Values) vs. Die Temperature  
Rev. 0| Page 22 of 24  
 
 
 
Data Sheet  
ADuCM362/ADuCM363  
TYPICAL SYSTEM CONFIGURATION  
Figure 15 shows a typical ADuCM362/ADuCM363 configuration.  
This figure illustrates some of the hardware considerations. The  
bottom of the LFCSP package has an exposed pad that must be  
soldered to a metal plate on the PCB for mechanical reasons  
and to DGND. The metal plate of the PCB can be connected to  
ground. Place the 0.47 ꢀF capacitor on the AVDD_REG and  
DVDD_REG pins as close to the pins as possible. In noisy  
environments, an additional 1 nF capacitor can be added to  
IOVDD and AVDD.  
43  
42  
41  
48  
47  
46  
45  
44  
RESET  
1
2
3
4
5
6
7
8
9
RESET  
40  
39  
P1.2/PWM0/RI  
P2.1/SDA/UART1DCD/UARTDCD  
P1.1/IRQ4/PWMTRIP/DTR  
DVDD  
12pF  
12pF  
P2.2/BM  
XTALO  
XTALI  
P1.0/IRQ3/PWMSYNC/EXTC  
LK 38  
37  
36  
35  
34  
IOVDD  
0.1µF  
DGND  
P0.7/POR/TxD1  
P0.6/IRQ2/RxD1  
P0.5/CTS/IRQ1  
DVDD  
DGND  
IOVDD  
DVDD_REG  
AIN0  
0.1µF  
DGND  
P0.4/RTS/ECLKO/RTS1 33  
P0.3/IRQ0/CS1/RTS1/RTS 32  
P0.2/MOSI1/SDA/TxD 31  
P0.1/SCLK1/SCL/RxD 30  
P0.0/MISO1/UART1DCD/UARTDCD 29  
AIN11/VBIAS1 28  
ADuCM362/  
ADuCM363  
AIN1  
10 AIN2  
11 AIN3  
0.47µF  
DGND  
12 AIN4/IEXC  
13 GND_SW  
14 VREF+  
15 VREF–  
16 AGND  
AIN10 27  
AIN9/DACBUFF+ 26  
AIN8/EXTREF2IN– 25  
17  
18  
19  
20  
21  
22  
23  
24  
AVDD  
0.1µF  
0.47µF  
150k  
0.47µF  
RESET  
GND  
RESET  
SWDIO  
DGND  
SWIO  
TX  
SWCLK  
RX  
SWCLK  
5V USB  
DVDD  
AVDD  
ADP1720ARMZ-3.3  
1.6Ω  
IN  
OUT  
1µF  
560Ω  
DGND  
EN  
4.7µF  
0.1µF  
4.7µF  
0.1µF  
GND  
DGND  
AGND  
AGND AGND  
DGND  
Figure 15. Typical System Configuration  
Rev. 0 | Page 23 of 24  
 
 
ADuCM362/ADuCM363  
OUTLINE DIMENSIONS  
Data Sheet  
7.00  
BSC SQ  
0.30  
0.23  
0.18  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
48  
37  
36  
1
0.50  
BSC  
EXPOSED  
PAD  
5.20  
5.10 SQ  
5.00  
12  
13  
25  
24  
0.45  
0.40  
0.35  
0.25 MIN  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
COPLANARITY  
0.08  
0.20 REF  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-WKKD.  
Figure 16. 48-Lead Lead Frame Chip Scale Package [LFCSP]  
7 mm × 7 mm Body and 0.75 mm Package Height  
(CP-48-4)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Package  
Ordering  
Quantity  
Model1  
ADCs  
Flash/SRAM Temperature Range Package Description  
Option  
CP-48-4  
CP-48-4  
CP-48-4  
CP-48-4  
CP-48-4  
CP-48-4  
CP-48-4  
CP-48-4  
ADuCM362BCPZ256  
Dual 24-Bit  
256 kBꢀ24 kB −40°C to +125°C  
256 kBꢀ24 kB −40°C to +125°C  
128 kBꢀ16 kB −40°C to +125°C  
128 kBꢀ16 kB −40°C to +125°C  
256 kBꢀ24 kB −40°C to +125°C  
256 kBꢀ24 kB −40°C to +125°C  
128 kBꢀ16 kB −40°C to +125°C  
128 kBꢀ16 kB −40°C to +125°C  
48-Lead LFCSP  
48-Lead LFCSP  
48-Lead LFCSP  
48-Lead LFCSP  
48-Lead LFCSP  
48-Lead LFCSP  
48-Lead LFCSP  
48-Lead LFCSP  
ADuCM362BCPZ256RL7 Dual 24-Bit  
ADuCM362BCPZ128 Dual 24-Bit  
ADuCM362BCPZ128RL7 Dual 24-Bit  
ADuCM363BCPZ256 Single 24-Bit  
ADuCM363BCPZ256RL7 Single 24-Bit  
ADuCM363BCPZ128 Single 24-Bit  
750  
750  
750  
750  
ADuCM363BCPZ128RL7 Single 24-Bit  
EVAL-ADuCM362QSPZ  
ADuCM362 QuickStart Plus  
Development System  
EVAL-ADuCM363QSPZ  
ADuCM363 QuickStart Plus  
Development System  
1 Z = RoHS Compliant Part.  
I2C refers to a communications protocol originally developed by Philips Semiconductors (now NXP Semiconductors).  
©2016 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D14919-0-10/16(0)  
Rev. 0| Page 24 of 24  
 
 
 

相关型号:

ADuCM362BCPZ256RL7

At 50 SPS continuous conversion mode
ADI

ADUCM363

集成单通道Σ-Δ型ADC和ARM Cortex-M3的低功耗精密模拟微控制器
ADI

ADUCM363BCPZ128

ADUCM363BCPZ128
ADI

ADuCM363BCPZ128RL7

At 50 SPS continuous conversion mode
ADI

ADUCM363BCPZ256

ADUCM363BCPZ256
ADI

ADUCM363BCPZ256RL7

ADUCM363BCPZ256RL7
ADI

ADUCM4050

Ultra Low Power ARM Cortex-M4F MCU with Integrated Power Management
ADI

ADUCM4050BCBZ-R7

Ultra Low Power ARM Cortex-M4F MCU with Integrated Power Management
ADI

ADUCM4050BCBZ-RL

Ultra Low Power ARM Cortex-M4F MCU with Integrated Power Management
ADI

ADUCM4050BCPZ

Ultra Low Power ARM Cortex-M4F MCU with Integrated Power Management
ADI

ADUCM4050BCPZ-R7

Ultra Low Power ARM Cortex-M4F MCU with Integrated Power Management
ADI

ADUCM4050BCPZ-RL

Ultra Low Power ARM Cortex-M4F MCU with Integrated Power Management
ADI