ADT7484A [ADI]

Digital Temperature Sensor with SST Interface; 数字温度传感器与SST接口
ADT7484A
型号: ADT7484A
厂家: ADI    ADI
描述:

Digital Temperature Sensor with SST Interface
数字温度传感器与SST接口

传感器 温度传感器
文件: 总16页 (文件大小:411K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Digital Temperature Sensor  
with SST Interface  
ADT7484A/ADT7486A  
GENERAL DESCRIPTION  
FEATURES  
1 on-chip temperature sensor  
1 or 2 remote temperature sensors  
Simple Serial Transport™ (SST™) interface Rev 1 compliant  
The ADT7484A/ADT7486A are simple digital temperature sensors  
for use in PC applications with a Simple Serial Transport (SST)  
interface. These devices can monitor their own temperature as  
well as the temperature of one (ADT7484A) or two (ADT7486A)  
remote sensor diodes. The ADT7484A/ADT7486A are controlled  
by a single SST bidirectional data line. The devices are fixed-  
address SST clients where the target address is chosen by the  
state of the two address pins, ADD0 and ADD1.  
APPLICATIONS  
Personal computers  
Portable personal devices  
Industrial sensor nets  
FUNCTIONAL BLOCK DIAGRAM  
ON-CHIP  
TEMPERATURE  
SENSOR  
LOCAL TEMPERATURE  
VALUE REGISTER  
SST INTERFACE  
SST  
A/D  
CONVERTER  
D1+  
D1–  
D2+  
D2–  
ANALOG MUX  
(ADT7486A ONLY)  
REMOTE TEMPERATURE  
VALUE REGISTER  
ADD1  
ADD0  
ADDRESS  
SELECTION  
ADT7484A/  
ADT7486A  
OFFSET REGISTERS  
V
GND  
RESERVED  
DD  
Figure 1.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2006 Analog Devices, Inc. All rights reserved.  
 
ADT7484A/ADT7486A  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
SST Interface ..................................................................................9  
Temperature Measurement ........................................................... 12  
Temperature Measurement Method........................................ 12  
Reading Temperature Measurements...................................... 12  
SST Temperature Sensor Data Format .................................... 13  
Using Discrete Transistors ........................................................ 13  
Layout Considerations............................................................... 13  
Temperature Offset .................................................................... 14  
Application Schematics ............................................................. 14  
Outline Dimensions....................................................................... 15  
Ordering Guide .......................................................................... 15  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 5  
Thermal Resistance ...................................................................... 5  
ESD Caution.................................................................................. 5  
Pin Configurations and Functional Descriptions ........................ 6  
Typical Performance Characteristics ............................................. 7  
Product Description......................................................................... 9  
REVISION HISTORY  
7/06—Revision 0: Initial Version  
Rev. 0 | Page 2 of 16  
 
ADT7484A/ADT7486A  
SPECIFICATIONS  
TA = TMIN to TMAX, VCC = VMIN to VMAX, unless otherwise noted.  
Table 1.  
Parameter  
Min  
Typ  
Max  
3.6  
5
Unit  
Test Conditions/Comments  
POWER SUPPLY  
Supply Voltage, VCC  
Undervoltage Lockout Threshold  
Average Operating Supply Current, IDD  
TEMPERATURE-TO-DIGITAL CONVERTER  
Local Sensor Accuracy  
3.0  
3.3  
2.8  
3.8  
V
V
mA  
Continuous conversions  
+1  
1.ꢀ5  
°C  
°C  
°C  
°C  
40°C TA ꢀ0°C, VCC = 3.3 V 5ꢁ  
−40°C TA +100°C  
4
Remote Sensor Accuracy  
1
−40°C TD +125°C; TA = 25°C; VCC = 3.3 V  
+1  
1.ꢀ5  
−40°C TD +125°C; −40 TA ꢀ0°C,  
VCC = 3.3 V 5ꢁ  
4
°C  
−40°C TD +125°C; −40 TA +100°C  
Remote Sensor Source Current  
12  
80  
204  
0.016  
1.5  
μA  
μA  
μA  
°C  
Low level  
Mid level  
High level  
Resolution  
Series Resistance Cancellation  
kΩ  
The ADTꢀ484A and ADTꢀ486A cancel 1.5 kΩ  
in series with the remote thermal diode  
Conversion Time (Local Temperature)1  
Conversion Time (Remote Temperature)1  
Total Monitoring Cycle Time1  
DIGITAL INPUTS (ADD0, ADD1)  
Input High Voltage, VIH  
Input Low Voltage, VIL  
Input High Current, IIH  
Input Low Current, IIL  
Pin Capacitance  
12  
38  
50  
ms  
ms  
ms  
Averaging enabled  
Averaging enabled  
Averaging enabled  
2.3  
−1  
V
V
μA  
μA  
pF  
0.8  
1
VIN = VCC  
VIN = 0  
5
DIGITAL I/O (SST Pin)  
Input High Voltage, VIH  
Input Low Voltage, VIL  
Hysteresis1  
Output High Voltage, VOH  
High Impedance State Leakage, ILEAK  
1.1  
1.1  
V
V
mV  
V
ꢂA  
0.4  
150  
Between input switching levels  
ISOURCE = 6 mA (maximum)  
Device powered on SST bus;  
1.9  
1
V
SST = 1.1 V, VCC = 3.3 V  
High Impedance State Leakage, ILEAK  
Signal Noise Immunity, VNOISE  
10  
ꢂA  
Device unpowered on SST bus;  
VSST = 1.1 V, VCC = 0 V  
300  
mV p-p Noise glitches from 10 MHz to 100 MHz;  
width up to 50 ns  
SST TIMING  
Bitwise Period, tBIT  
High Level Time for Logic 1, tH1  
High Level Time for Logic 0, tH0  
0.495  
0.6 × tBIT  
0.2 × tBIT  
500  
ꢂs  
2
0.ꢀ5 × tBIT 0.8 × tBIT  
0.25 × tBIT 0.4 × tBIT  
0.2 × tBIT  
ꢂs  
ꢂs  
ꢂs  
tBIT defined in speed negotiation  
See SST Specification Rev 1.0  
Device responding to a constant low  
level driven by originator  
2
Time to Assert SST High for Logic 1, tSU, HIGH  
3
Hold Time, tHOLD  
0.5 × tBIT-M ꢂs  
2 × tBIT ꢂs  
Stop Time, tSTOP  
1.25 × tBIT 2 × tBIT  
Rev. 0 | Page 3 of 16  
 
ADT7484A/ADT7486A  
Parameter  
Min  
Typ  
Max  
Unit  
ms  
Test Conditions/Comments  
Time to Respond After a Reset, tRESET  
0.4  
Response Time to Speed Negotiation  
After Power-Up  
500  
ꢂs  
Time after power-up when device can  
participate in speed negotiation  
1 Guaranteed by design, not production tested.  
2 Minimum and maximum bit times are relative to tBIT defined in the timing negotiation pulse.  
3 Devices compatible with hold time specification as driven by SST originator.  
Rev. 0 | Page 4 of 16  
ADT7484A/ADT7486A  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
Parameter  
Supply Voltage (VCC)  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rating  
3.6 V  
3.6 V  
5 mA  
20 mA  
Voltage on Any Other Pin (Including SST Pin)  
Input Current at Any Pin  
Package Input Current  
Maximum Junction Temperature (TJ max)  
Storage Temperature Range  
Lead Temperature, Soldering  
IR Peak Reflow Temperature  
Lead Temperature (10 sec)  
ESD Rating  
150°C  
−65°C to +150°C  
THERMAL RESISTANCE  
260°C  
300°C  
1500 V  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
Table 3. Thermal Resistance  
Package Type  
θJA  
θJC  
44  
44  
Unit  
°C/W  
°C/W  
8-Lead MSOP (ADTꢀ484A)  
10-Lead MSOP (ADTꢀ486A)  
206  
206  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. 0 | Page 5 of 16  
 
ADT7484A/ADT7486A  
PIN CONFIGURATIONS AND FUNCTIONAL DESCRIPTIONS  
V
1
2
3
4
5
10 SST  
CC  
V
1
2
3
4
8
7
6
5
SST  
CC  
GND  
D1+  
D1–  
D2+  
9
8
7
6
ADD0  
ADT7486A  
ADT7484A  
GND  
D1+  
D1–  
ADD0  
TOP VIEW  
RESERVED  
ADD1  
TOP VIEW  
(Not to Scale)  
RESERVED  
ADD1  
(Not to Scale)  
D2–  
Figure 2. ADT7484A 8-Lead MSOP  
Figure 3. ADT7486A 10-Lead MSOP  
Table 4. ADT7484A Pin Function Descriptions  
Pin No.  
Mnemonic  
Type  
Description  
3.3 V 10ꢁ.  
Ground Pin.  
1
2
3
4
5
6
8
VCC  
GND  
D1+  
D1−  
ADD1  
RESERVED  
ADD0  
SST  
Power supply  
Ground  
Analog input  
Analog input  
Digital input  
Reserved  
Positive Connection to Remote Temperature Sensor.  
Negative Connection to Remote Temperature Sensor.  
SST Address Select.  
Connect to Ground.  
SST Address Select.  
Digital input  
Digital input/output  
SST Bidirectional Data Line.  
Table 5. ADT7486A Pin Function Descriptions  
Pin No.  
Mnemonic  
Type  
Description  
1
2
3
4
5
6
8
9
10  
VCC  
GND  
D1+  
D1−  
D2+  
D2−  
ADD1  
RESERVED  
ADD0  
SST  
Power supply  
Ground  
3.3 V 10ꢁ.  
Ground Pin.  
Analog input  
Analog input  
Analog input  
Analog input  
Analog input  
Analog input  
Digital input  
Digital input/output  
Positive Connection to Remote 1 Temperature Sensor.  
Negative Connection to Remote 1 Temperature Sensor.  
Positive Connection to Remote 2 Temperature Sensor.  
Negative Connection to Remote 2 Temperature Sensor.  
SST Address Select.  
Connect to Ground.  
SST Address Select.  
SST Bidirectional Data Line.  
Rev. 0 | Page 6 of 16  
 
ADT7484A/ADT7486A  
TYPICAL PERFORMANCE CHARACTERISTICS  
1.55  
1.55  
1.50  
1.45  
1.40  
1.35  
1.30  
1.25  
1.20  
750(~2mA)  
1.50  
750(~2mA)  
1.45  
270(~5.2mA)  
1.40  
270(~5.2mA)  
1.35  
1.30  
120(~10.6mA)  
120(~10.6mA)  
1.25  
1.20  
–50  
0
50  
100  
150  
2.6  
2.8  
3.0  
3.2  
(V)  
3.4  
3.6  
TEMPERATURE (°C)  
V
CC  
Figure 4. SST O/P Level vs. Supply Voltage  
Figure 7. SST O/P Level vs. Temperature  
3.56  
3.9  
3.7  
3.5  
3.3  
3.1  
2.9  
3.55  
3.54  
3.53  
3.52  
3.51  
3.50  
3.49  
3.48  
3.47  
3.46  
3.45  
DEV3  
DEV2  
DEV2  
DEV3  
DEV1  
DEV1  
–45  
–25  
–5  
15  
35  
55  
75  
95  
115  
2.65  
2.85  
3.05  
3.25  
3.45  
3.65  
TEMPERATURE (°C)  
V
(V)  
CC  
Figure 5. Supply Current vs. Temperature  
Figure 8. Supply Current vs. Voltage  
7
6
7
6
5
5
4
4
3
HI SPEC (V = 3V)  
CC  
3
2
HI SPEC (V = 3V)  
CC  
2
MEAN (V  
= 3.3V)  
1
CC  
MEAN (V  
= 3.3V)  
CC  
1
0
0
–1  
–2  
LO SPEC (V = 3.6V)  
CC  
LO SPEC (V = 3.6V)  
CC  
–1  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 9. Remote Temperature Error  
Figure 6. Local Temperature Error  
Rev. 0 | Page ꢀ of 16  
 
ADT7484A/ADT7486A  
15  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
DEV1_EXT1  
10  
DEV2_EXT2  
DEV3_EXT1  
DEV3_EXT2  
D+ TO GND  
DEV1_EXT2  
DEV2_EXT1  
5
0
–5  
EXT2  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
DEV1_EXT1  
DEV1_EXT2  
DEV2_EXT1  
DEV2_EXT2  
DEV3_EXT1  
DEV3_EXT2  
EXT1  
D+ TO V  
CC  
0
20  
40  
60  
80  
100  
0
10  
20  
30  
40  
50  
RESISTANCE (M)  
CAPACITANCE (nF)  
Figure 10. Remote Temperature Error vs. PCB Resistance  
Figure 13. Remote Temperature Error vs. Capacitance Between D1+ and D1−  
30  
25  
20  
15  
10  
5
7
40mV  
6
5
4
3
100mV  
60mV  
20mV  
2
40mV  
0
1
10mV  
–5  
10k  
0
10k  
100k  
1M  
10M  
100M  
1G  
100k  
1M  
10M  
100M  
1G  
NOISE FREQUENCY (°C)  
NOISE FREQUENCY (°C)  
Figure 11. Temperature Error vs. Common-Mode Noise Frequency  
Figure 14. Temperature Error vs. Differential-Mode Noise Frequency  
20  
15  
10  
5
5
4
3
2
1
125mV  
125mV  
0
0
50mV  
50mV  
–1  
–5  
–2  
–3  
–10  
10k  
100k  
1M  
10M  
100M  
1G  
10k  
100k  
1M  
10M  
100M  
1G  
POWER SUPPLY NOISE FREQUENCY (Hz)  
POWER SUPPLY NOISE FREQUENCY (Hz)  
Figure 12. Local Temperature Error vs. Power Supply Noise  
Figure 15. Remote Temperature Error vs. Power Supply Noise  
Rev. 0 | Page 8 of 16  
ADT7484A/ADT7486A  
PRODUCT DESCRIPTION  
ADT7484A/ADT7486A Client Address  
The ADT7484A is a single remote temperature sensor, and the  
ADT7486A is a dual temperature sensor for use in PC applications.  
The ADT7484A/ADT7486A accurately measure local and remote  
temperature and communicate over a one-wire Simple Serial  
Transport (SST) bus interface.  
The client address for the ADT7484A/ADT7486A is selected  
using the address pin. The address pin is connected to a float  
detection circuit, which allows the ADT7484A/ADT7486A to  
distinguish between three input states: high, low (GND), and  
floating. The address range for fixed address, discoverable  
devices is 0x48 to 0x50.  
SST INTERFACE  
Simple Serial Transport (SST) is a one-wire serial bus and a  
communications protocol between components intended for  
use in personal computers, personal handheld devices, or other  
industrial sensor nets. The ADT7484A/ADT7486A support SST  
specification Rev 1.  
Table 6. ADT7484A/ADT7486A Selectable Addresses  
ADD1  
Low (GND)  
Low (GND)  
Low (GND)  
Float  
ADD0  
Low (GND)  
Float  
High  
Low (GND)  
Float  
Address Selected  
0x48  
0x49  
0x4A  
0x4B  
SST is a licensable bus technology from Analog Devices, Inc., and  
Intel Corporation. To inquire about obtaining a copy of the Simple  
Serial Transport Specification or an SST technology license,  
please email Analog Devices, at sst_licensing@analog.com or  
write to Analog Devices, 3550 North First Street, San Jose, CA  
95134, Attention: SST Licensing, M/S B7-24.  
Float  
0x4C  
Float  
High  
0x4D  
High  
High  
Low (GND)  
Float  
0x4E  
0x4F  
High  
High  
0x50  
Rev. 0 | Page 9 of 16  
 
ADT7484A/ADT7486A  
Command Summary  
Table 7 summarizes the commands supported by the ADT7484A/ADT7486A devices when directed at the target address selected by the  
fixed address pins. It contains the command name, command code (CC), write data length (WL), read data length (RL), and a brief  
description.  
Table 7. Command Code Summary  
Command  
Command Code, CC Write Length, WL Read Length, RL Description  
Ping()  
0x00  
0x00  
0x00  
Shows a nonzero FCS over the header if present.  
GetIntTemp()  
0x00  
0x01  
0x02  
Shows the temperature of the device’s internal  
thermal diode.  
GetExt1Temp() 0x01  
GetExt2Temp() 0x02  
0x01  
0x01  
0x02  
0x02  
Shows the temperature of External Thermal Diode 1.  
Shows the temperature of External Thermal Diode 2  
(ADTꢀ486A only).  
GetAllTemps()  
0x00  
0x01  
0x04 (ADTꢀ484A) Shows a 4- or 6-byte block of data (ADTꢀ484A:  
0x06 (ADTꢀ486A) GetIntTemp, GetExt1Temp; ADTꢀ486A: GetIntTemp,  
GetExt1Temp, GetExt2Temp).  
SetExt1Offset() 0xe0  
GetExt1Offset() 0xe0  
0x03  
0x01  
0x00  
Sets the offset used to correct errors in External Diode 1.  
0x02  
Shows the offset that the device is using to correct  
errors in External Diode 1.  
SetExt2Offset() 0xe1  
GetExt2Offset() 0xe1  
0x03  
0x01  
0x01  
0x00  
0x02  
0x00  
Sets the offset used to correct errors in External Diode 2  
(ADTꢀ486A only).  
Shows the offset that the device is using to correct  
errors in External Diode 2 (ADTꢀ486A only).  
Functional reset. The ADTꢀ484A/ADTꢀ486A also  
respond to this command when directed to the  
Target Address 0x00.  
Shows information used by SW to identify the device’s  
capabilities. Can be in 8- or 16-byte format.  
ResetDevice()  
GetDIB()  
0xf6  
0xfꢀ  
0xfꢀ  
0x01  
0x01  
0x08  
0x10  
Rev. 0 | Page 10 of 16  
 
ADT7484A/ADT7486A  
GetIntTemp()  
Command Code Details  
The ADT7484A/ADT7486A show the local temperature of the  
device in response to the GetIntTemp() command. The data has  
a little endian, 16-bit, twos complement format.  
ADT7484A/ADT7486A Device Identifier Block  
The GetDIB() command retrieves the device identifier block  
(DIB), which provides information to identify the capabilities of  
the ADT7484A/ADT7486A. The data returned can be in 8- or  
16-byte format. The full 16 bytes of DIB is detailed in Table 8.  
The 8-byte format involves the first eight bytes described in this  
table. Byte-sized data is returned in the respective fields as it  
appears in Table 8. Word-sized data, including vendor ID,  
device ID, and data values use little endian format, that is, the  
LSB is returned first, followed by the MSB.  
GetExtTemp()  
Prompted by the GetExtTemp() command, the ADT7484A/  
ADT7486A show the temperature of the remote diode in little  
endian, 16-bit, twos complement format. The ADT7484A/  
ADT7486A show 0x8000 in response to this command if the  
external diode is an open or short circuit.  
GetAllTemps()  
Table 8. DIB Byte Details  
Byte Name  
Value  
Description  
The ADT7484A shows the local and remote temperatures in a  
4-byte block of data (internal temperature first, followed by  
External Temperature 1) in response to a GetAllTemps()  
command. The ADT7486A shows the local and remote tem-  
peratures in a 6-byte block of data (internal temperature first,  
followed by External Temperature 1 and External Temperature 2)  
in response to this command.  
0
1
Device Capabilities 0xc0  
Fixed address device  
Meets Version 1 of the  
SST specification  
Contains company ID  
number in little endian  
format  
Contains device ID  
number in little  
endian format  
Version/Revision  
Vendor ID  
0x10  
2, 3  
4, 5  
00x11d4  
Device ID  
0xꢀ484 or  
0xꢀ486  
SetExtOffset()  
This command sets the offset that the ADT7484A/ADT7486A  
will use to correct errors in the external diode. The offset is set  
in little endian, 16-bit, twos complement format. The maximum  
offset is 128ꢀC with +0.25ꢀC resolution.  
6
Device Interface  
Function  
Interface  
0x01  
0x00  
SST device  
Reserved  
8
9
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Revision ID  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x05  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Contains revision ID  
Dependent on the state  
of the address pins  
GetExtOffset()  
10  
11  
12  
13  
14  
15  
This command causes the ADT7484A/ADT7486A to show the  
offset that they are using to correct errors in the external diode.  
The offset value is returned in little endian format, that is, LSB  
before MSB.  
Client Device  
Address  
0x48 to  
0x50  
ADT7484A/ADT7486A Response to Unsupported  
Commands  
Ping()  
A full list of command codes supported by the ADT7484A/  
ADT7486A is given in Table 7. The offset registers (Command  
Codes 0xe0 and 0xe1) are the only registers that the user can  
write to. The other defined registers are read only. Writing to  
Register Addresses 0x03 to 0xdf shows a valid FSC, but no action is  
taken by the ADT7484A/ADT7486A. The ADT7484A/ADT7486A  
show an invalid FSC if the user attempts to write to the devices  
between Command Codes 0xe2 to 0xee and no data is written  
to the device. These registers are reserved for the manufacturers  
use only, and no data can be written to the device via these  
addresses.  
The Ping() command verifies if a device is responding at a  
particular address. The ADT7484A/ADT7486A show a valid  
nonzero FCS in response to the Ping() command when  
correctly addressed.  
Table 9. Ping() Command  
Target Address  
Write Length  
Read Length  
FCS  
Device Address  
0x00  
0x00  
ResetDevice()  
This command resets the register map and conversion  
controller. The reset command can be global or directed at the  
client address of the ADT7484A/ADT7486A.  
Table 10. ResetDevice() Command  
Write  
Length  
Read  
Length  
Reset  
command  
Target Address  
FCS  
Device Address  
0x01  
0x00  
0xf6  
Rev. 0 | Page 11 of 16  
 
ADT7484A/ADT7486A  
TEMPERATURE MEASUREMENT  
The ADT7484A/ADT7486A each have two dedicated  
temperature measurement channels: one for measuring the  
temperature of an on-chip band gap temperature sensor, and one  
for measuring the temperature of a remote diode, usually located in  
the CPU or GPU.  
To measure ΔVBE, the operating current through the sensor is  
switched between three related currents. Figure 16 shows N1 × I  
and N2 × I as different multiples of the current I. The currents  
through the temperature diode are switched between I and  
N1 × I, giving ΔVBE1, and then between I and N2 × I, giving  
ΔVBE2. The temperature can then be calculated using the two  
ΔVBE measurements. This method can also cancel the effect of  
series resistance on the temperature measurement. The  
resulting ΔVBE waveforms are passed through a 65 kHz low-pass  
filter to remove noise and then through a chopper-stabilized  
amplifier to amplify and rectify the waveform, producing a dc  
voltage proportional to ΔVBE. The ADC digitizes this voltage,  
and a temperature measurement is produced. To reduce the  
effects of noise, digital filtering is performed by averaging the  
results of 16 measurement cycles for low conversion rates.  
Signal conditioning and measurement of the internal  
The ADT7484A monitors one local and one remote  
temperature channel, whereas the ADT7486A monitors one  
local and two remote temperature channels. Monitoring of each  
of the channels is done in a round-robin sequence. The  
monitoring sequence is in the order shown in Table 11.  
Table 11. Temperature Monitoring Sequence  
Channel  
Number  
Measurement  
ConversionTime (ms)  
0
1
2
Local temperature  
Remote Temperature 1  
Remote Temperature 2  
(ADTꢀ486A only)  
12  
38  
38  
temperature sensor is performed in the same manner.  
V
DD  
I
BIAS  
I
N1 × I  
N2 × I  
TEMPERATURE MEASUREMENT METHOD  
A simple method for measuring temperature is to exploit the  
negative temperature coefficient of a diode by measuring the  
base-emitter voltage (VBE) of a transistor operated at constant  
current. Unfortunately, this technique requires calibration to  
null the effect of the absolute value of VBE, which varies from  
device to device.  
V
OUT+  
D+  
TO ADC  
REMOTE  
SENSING  
TRANSISTOR  
C1*  
D–  
BIAS  
DIODE  
V
OUT–  
LOW-PASS FILTER  
fC = 65kHz  
*CAPACITOR C1 IS OPTIONAL. IT SHOULD ONLY BE USED IN NOISY ENVIRONMENTS.  
Figure 16. Signal Conditioning for Remote Diode Temperature Sensors  
The technique used in the ADT7484A/ADT7486A measures  
the change in VBE when the device is operated at three different  
currents.  
READING TEMPERATURE MEASUREMENTS  
The temperature measurement command codes are detailed in  
Table 12. The temperature data returned is two bytes in little  
endian format, that is, LSB before MSB. All temperatures can be  
read together by using Command Code 0x00 with a read length  
of 0x04. The command codes and returned data are described  
in Table 12.  
Figure 16 shows the input signal conditioning used to measure  
the output of a remote temperature sensor. This figure shows  
the remote sensor as a substrate transistor, which is provided for  
temperature monitoring on some microprocessors, but it could  
also be a discrete transistor. If a discrete transistor is used, the  
collector is not grounded and should be linked to the base. To  
prevent ground noise from interfering with the measurement,  
the more negative terminal of the sensor is not referenced to  
ground, but is biased above ground by an internal diode at the  
D1− input. If the sensor is operating in an extremely noisy  
environment, C1 can be added as a noise filter. Its value should  
not exceed 1000 pF.  
Table 12. Temperature Channel Command Codes  
Temp Channel Command Code Returned data  
Internal  
0x00  
0x01  
0x02  
0x00  
LSB, MSB  
LSB, MSB  
LSB, MSB  
Internal LSB, Internal MSB;  
External 1 LSB, External 1  
MSB; External 2 LSB,  
External 2 MSB  
External 1  
External 2  
All Temps  
Rev. 0 | Page 12 of 16  
 
 
 
 
ADT7484A/ADT7486A  
SST TEMPERATURE SENSOR DATA FORMAT  
LAYOUT CONSIDERATIONS  
The data for temperature is structured to allow values in the  
range of 512ꢀC to be reported. Thus, the temperature sensor  
format uses a twos complement, 16-bit binary value to represent  
values in this range. This format allows temperatures to be  
represented with approximately a 0.016ꢀC resolution.  
Digital boards can be electrically noisy environments. Take the  
following precautions to protect the analog inputs from noise,  
particularly when measuring the very small voltages from a  
remote diode sensor:  
Place the device as close as possible to the remote sensing  
diode. Provided that the worst noise sources, such as clock  
generators, data/address buses, and CRTs, are avoided, this  
distance can be four to eight inches.  
Table 13. SST Temperature Data Format  
Twos Complement  
Temperature (°C)  
MSB  
LSB  
Route the D1+ and D1− tracks close together in parallel  
with grounded guard tracks on each side. Provide a ground  
plane under the tracks if possible.  
Use wide tracks to minimize inductance and reduce noise  
pickup. A 5 mil track minimum width and spacing is  
recommended.  
−125  
−80  
−40  
−20  
−5  
−1  
0
+1  
+5  
+20  
+40  
+80  
+125  
1110 0000  
1110 1100  
1111 0110  
1111 1011  
1111 1110  
1111 1111  
0000 0000  
0000 0000  
0000 0001  
0000 0100  
0000 1010  
0001 0100  
0001 1111  
1100 0000  
0000 0000  
0000 0000  
0011 1110  
1100 0000  
1100 0000  
0000 0000  
0100 0000  
0100 0000  
1100 0010  
0000 0000  
0000 0000  
0100 0000  
5MIL  
5MIL  
5MIL  
5MIL  
5MIL  
5MIL  
5MIL  
GND  
D+  
D–  
GND  
USING DISCRETE TRANSISTORS  
Figure 18. Arrangements of Signal Tracks  
If a discrete transistor is used, the collector is not grounded and  
should be linked to the base. If a PNP transistor is used, the base is  
connected to the D1− input and the emitter is connected to the  
D1+ input. If an NPN transistor is used, the emitter is connected  
to the D1− input and the base is connected to the D1+ input.  
Figure 17 shows how to connect the ADT7484A/ADT7486A to  
an NPN or PNP transistor for temperature measurement. To  
prevent ground noise from interfering with the measurement,  
the more negative terminal of the sensor is not referenced to  
ground, but is biased above ground by an internal diode at the  
D1− input.  
Try to minimize the number of copper/solder joints, which  
can cause thermocouple effects. Where copper/solder  
joints are used, make sure that they are in both the D1+  
and D1− paths and are at the same temperature.  
Thermocouple effects should not be a major problem because  
1ꢀC corresponds to about 240 μV, and thermocouple voltages  
are about 3 μV/ꢀC of the temperature difference. Unless there  
are two thermocouples with a big temperature differential  
between them, thermocouple voltages should be much less  
than 200 mV.  
Place a 0.1 μF bypass capacitor close to the device.  
If the distance to the remote sensor is more than eight  
inches, the use of a twisted-pair cable is recommended.  
This works for distances of about 6 to 12 feet.  
For very long distances (up to 100 feet), use shielded twisted-  
pair cables, such as Belden #8451 microphone cables.  
Connect the twisted-pair cable to D1+ and D1− and the  
shield to GND, close to the device. Leave the remote end of  
the shield unconnected to avoid ground loops.  
ADT7484A/  
ADT7486A  
ADT7484A/  
ADT7486A  
2N3904  
NPN  
D+  
D–  
D+  
D–  
2N3906  
PNP  
Figure 17. Connections for NPN and PNP Transistors  
The ADT7484A/ADT7486A show an external temperature  
value of 0x8000 if the external diode is an open or short circuit.  
Because the measurement technique uses switched current  
sources, excessive cable and/or filter capacitance can affect the  
measurement. When using long cables, the filter capacitor can  
be reduced or removed. Cable resistance can also introduce  
errors. A 1 Ω series resistance introduces about 0.5ꢀC error.  
Rev. 0 | Page 13 of 16  
 
 
 
ADT7484A/ADT7486A  
TEMPERATURE OFFSET  
APPLICATION SCHEMATICS  
V
CC  
ADT7484A  
As CPUs run faster, it is more difficult to avoid high frequency  
clocks when routing the D1+ and D1− tracks around a system  
board. Even when the recommended layout guidelines are  
followed, there may still be temperature errors, attributed to  
noise being coupled on to the D1+ and D1− lines. High frequency  
noise generally has the effect of producing temperature mea-  
surements that are consistently too high by a specific amount.  
The ADT7484A/ADT7486A have a temperature offset command  
code of 0xe0 through which a desired offset can be set. By doing  
a one-time calibration of the system, the offset caused by system  
board noise can be calculated and nulled by specifying it in the  
ADT7484A/ADT7486A. The offset is automatically added to  
every temperature measurement. The maximum offset is 128ꢀC  
with 0.25ꢀC resolution. The offset format is the same as the  
temperature data format—16-bit, twos complement notation,  
as shown in Table 13. The offset should be programmed in little  
endian format, that is, LSB before MSB. The offset value is also  
returned in little endian format when read.  
SST  
1
2
3
4
V
SST  
ADD0  
D1+ RESERVED  
D1– ADD1  
8
7
6
5
CC  
GND  
2N3904 OR CPU  
THERMAL DIODE  
Figure 19. ADT7484A Typical Application Schematic  
V
CC  
ADT7486A  
1
2
3
4
5
V
SST 10  
SST  
CC  
GND  
D1+ RESERVED  
ADD0  
9
8
7
6
2N3904  
NPN  
D1–  
D2+  
ADD1  
D2–  
CPU  
THERMAL  
DIODE  
Figure 20. ADT7486A Typical Application Schematic  
Rev. 0 | Page 14 of 16  
 
ADT7484A/ADT7486A  
OUTLINE DIMENSIONS  
3.20  
3.00  
2.80  
8
1
5
4
5.15  
4.90  
4.65  
3.20  
3.00  
2.80  
PIN 1  
0.65 BSC  
0.95  
0.85  
0.75  
1.10 MAX  
0.80  
0.60  
0.40  
8°  
0°  
0.15  
0.00  
0.38  
0.22  
0.23  
0.08  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 21. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters  
3.10  
3.00  
2.90  
10  
6
5.15  
4.90  
4.65  
3.10  
3.00  
2.90  
1
5
PIN 1  
0.50 BSC  
0.95  
0.85  
0.75  
1.10 MAX  
0.80  
8°  
0°  
0.15  
0.05  
0.60  
0.40  
0.33  
0.17  
SEATING  
PLANE  
0.23  
0.08  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-BA  
Figure 22. 10-Lead Mini Small Outline Package [MSOP]  
(RM-10)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
ADTꢀ484AARMZ-REEL1  
ADTꢀ484AARMZ-REELꢀ1  
ADTꢀ486AARMZ-REEL1  
ADTꢀ486AARMZ-REELꢀ1  
Temperature Range  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
Package Description  
8-Lead MSOP  
8-Lead MSOP  
Package Option  
Branding  
T20  
T20  
RM-8  
RM-8  
10-Lead MSOP  
10-Lead MSOP  
RM-10  
RM-10  
T22  
T22  
1 Z = Pb-free part.  
Rev. 0 | Page 15 of 16  
 
ADT7484A/ADT7486A  
NOTES  
©2006 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D05198-0-7/06(0)  
Rev. 0 | Page 16 of 16  

相关型号:

ADT7484AARMZ-R7

Digital Temperature Sensor with SST Interface
ONSEMI

ADT7484AARMZ-REEL

Digital Temperature Sensor with SST Interface
ADI

ADT7484AARMZ-REEL7

Digital Temperature Sensor with SST Interface
ADI

ADT7484AARMZ-RL

Digital Temperature Sensor with SST Interface
ONSEMI

ADT7484AARZ-REEL

Digital Temperature Sensor with SST Interface
ONSEMI

ADT7484AARZ-RL7

Digital Temperature Sensor with SST Interface
ONSEMI

ADT7484ARMZ-RL7

IC TEMP SENSOR DGTL W/SST 8-MSOP
ONSEMI

ADT7485A

SST Digital Temperature Sensor and Voltage Monitor
ADI

ADT7485A

Temperature Sensor and Voltage Monitor with Simple Serial Transport
ONSEMI

ADT7485AARMZ-R

Temperature Sensor and Voltage Monitor with Simple Serial Transport
ONSEMI

ADT7485AARMZ-R7

Temperature Sensor and Voltage Monitor with Simple Serial Transport
ONSEMI

ADT7485AARMZ-REEL

SST Digital Temperature Sensor and Voltage Monitor
ADI