ADT7484ARMZ-RL7 [ONSEMI]

IC TEMP SENSOR DGTL W/SST 8-MSOP;
ADT7484ARMZ-RL7
型号: ADT7484ARMZ-RL7
厂家: ONSEMI    ONSEMI
描述:

IC TEMP SENSOR DGTL W/SST 8-MSOP

文件: 总14页 (文件大小:359K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ADT7484A/ADT7486A  
Digital Temperature Sensor  
with SST Interface  
The ADT7484A/ADT7486A are simple digital temperature sensors  
for use in PC applications with a Simple Serial Transport (SST)  
interface. These devices can monitor their own temperature as well as  
the temperature of one (ADT7484A) or two (ADT7486A) remote  
sensor diodes. The ADT7484A/ADT7486A are controlled by a single  
SST bidirectional data line. The devices are fixed-address SST clients  
where the target address is chosen by the state of the two address pins,  
ADD0 and ADD1.  
http://onsemi.com  
SOIC8  
MSOP8  
MSOP10  
CASE 751  
CASE 846AB  
CASE 846AC  
Features  
1 On-Chip Temperature Sensor  
PIN ASSIGNMENTS  
1 or 2 Remote Temperature Sensors  
Simple Serial Transport (SST) Interface Rev 1 Compliant  
These Devices are Pb-Free and are RoHS Compliant  
1
2
3
4
8
7
6
5
V
SST  
CC  
GND  
D1+  
D1  
ADD0  
ADT7484A  
(Top View)  
RESERVED  
ADD1  
Applications  
1
2
3
4
5
10  
9
Personal Computers  
Portable Personal Devices  
Industrial Sensor Nets  
V
SST  
CC  
GND  
D1+  
D1−  
D2+  
ADD0  
RESERVED  
ADD1  
D2−  
ADT7486A  
8
(Top View)  
7
6
ON-CHIP  
TEMPERATURE  
SENSOR  
ADT7484A/  
ADT7486A  
MARKING DIAGRAMS  
8
LOCAL TEMP  
VALUE REGISTER  
T7484A  
ALYWG  
G
D1+  
D1  
ANALOG  
MUX  
A/D  
CONVERTER  
SST  
INTERFACE  
1
D2+  
SOIC8  
D2−  
T7484A = Specific Device Code  
REMOTE TEMP  
VALUE REGISTER  
A
L
= Assembly Location  
= Wafer Lot  
ADDRESS  
SELECTION  
Y
W
G
= Year  
= Work Week  
= Pb-Free Package  
OFFSET  
REGISTERS  
8
1
10  
V
GND  
RESERVED  
ADD0 ADD1 SST  
CC  
T20  
T22  
AYWG  
AYWG  
ADT7486A ONLY  
G
G
Figure 1. Functional Block Diagram  
1
MSOP8  
MSOP10  
T2x = Specific Device Code  
A
Y
W
G
= Assembly Location  
= Year  
= Work Week  
= Pb-Free Package  
(Note: Microdot may be in either location)  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 11 of this data sheet.  
Semiconductor Components Industries, LLC, 2012  
1
Publication Order Number:  
July, 2012 Rev. 5  
ADT7484A86A/D  
ADT7484A/ADT7486A  
Table 1. ADT7484A PIN ASSIGNMENT  
Pin No.  
Mnemonic  
Type  
Power Supply  
Description  
1
2
3
4
5
6
7
8
V
CC  
3.3 V 10%  
GND  
D1+  
Ground  
Ground Pin  
Analog Input  
Analog Input  
Digital Input  
Reserved  
Positive Connection to Remote Temperature Sensor  
Negative Connection to Remote Temperature Sensor  
SST Address Select  
D1  
ADD1  
RESERVED  
ADD0  
SST  
Connect to Ground  
Digital Input  
Digital Input/Output  
SST Address Select  
SST Bidirectional Data Line  
Table 2. ADT7486A PIN ASSIGNMENT  
Pin No.  
Mnemonic  
Type  
Power Supply  
Description  
3.3 V 10%.  
1
2
V
CC  
GND  
D1+  
Ground  
Ground Pin  
3
Analog Input  
Analog Input  
Analog Input  
Analog Input  
Analog Input  
Analog Input  
Digital Input  
Digital Input/Output  
Positive Connection to Remote 1 Temperature Sensor  
Negative Connection to Remote 1 Temperature Sensor  
Positive Connection to Remote 2 Temperature Sensor  
Negative Connection to Remote 2 Temperature Sensor  
SST Address Select  
4
D1−  
5
D2+  
6
D2−  
7
ADD1  
RESERVED  
ADD0  
SST  
8
Connect to Ground  
9
SST Address Select  
10  
SST Bidirectional Data Line  
Table 3. ABSOLUTE MAXIMUM RATINGS  
Parameter  
Rating  
3.6  
Unit  
V
Supply Voltage (V  
)
CC  
Voltage on Any Other Pin (Including SST Pin)  
Input Current at Any Pin  
3.6  
V
5.0  
mA  
mA  
C  
C  
C  
Package Input Current  
20  
Maximum Junction Temperature (T  
)
150  
J MAX  
Storage Temperature Range  
65 to +150  
Lead Temperature, Soldering  
IR Reflow Peak Temperature  
Lead Temperature, Soldering (10 sec)  
260  
300  
ESD Rating  
1,500  
V
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the  
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect  
device reliability.  
NOTE: This device is ESD sensitive. Use standard ESD precautions when handling.  
Table 4. THERMAL CHARACTERISTICS (Note 1)  
Package Type  
8-lead MSOP and 8-lead SOIC NB Packages (ADT7484A)  
10-lead MSOP (ADT7486A)  
q
q
Unit  
C/W  
C/W  
JA  
JC  
206  
206  
44  
44  
1. q is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages.  
JA  
http://onsemi.com  
2
 
ADT7484A/ADT7486A  
Table 5. ELECTRICAL CHARACTERISTICS  
(T = T  
to T  
, V = V  
to V  
, unless otherwise noted)  
A
MIN  
MAX  
CC  
MIN  
MAX  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Power Supply  
Supply Voltage, V  
3.0  
3.3  
2.8  
3.8  
3.6  
V
V
CC  
Undervoltage Lockout Threshold  
Average Operating Supply  
Continuous Conversions  
5.0  
mA  
Current, I  
DD  
Temperature-to-Digital Converter  
Local Sensor Accuracy  
40C T 70C, V = 3.3 V 5%  
+1.0  
1.75  
4.0  
C  
C  
A
CC  
40C T +100C  
A
Remote Sensor Accuracy  
40C T +125C; T = 25C; V = 3.3 V  
+1.0  
1.0  
1.75  
D
A
CC  
40C T +125C; 40 T 70C,  
D
A
V
CC  
= 3.3 V 5%  
40C T +125C; 40 T +100C  
4.0  
D
A
Remote Sensor Source Current  
Low Level  
Mid Level  
High Level  
12  
80  
204  
mA  
Resolution  
0.016  
1.5  
C  
Series Resistance Cancellation  
The ADT7484A and ADT7486A Cancel  
1.5 kW in Series with the Remote Thermal  
Diode  
kW  
Conversion Time  
Averaging Enabled  
Averaging Enabled  
Averaging Enabled  
12  
12  
38  
50  
ms  
ms  
ms  
(Local Temperature) (Note 1)  
Conversion Time  
(Remote Temperature) (Note 1)  
Total Monitoring Cycle Time  
(Note 1)  
Digital Inputs (ADD0, ADD1)  
Input High Voltage, V  
2.3  
0.8  
V
IH  
Input Low Voltage, V  
V
IL  
Input High Current, I  
V
V
= V  
= 0  
1.0  
mA  
mA  
pF  
IH  
IN  
CC  
Input Low Current, I  
Pin Capacitance  
1.0  
IL  
IN  
5.0  
Digital I/O (SST Pin)  
Input High Voltage, V  
1.1  
0.4  
V
V
IH  
Input Low Voltage, V  
IL  
Hysteresis (Note 1)  
Between Input Switching Levels  
= 6 mA (maximum)  
150  
mV  
V
Output High Voltage, V  
I
1.1  
1.9  
1.0  
OH  
SOURCE  
High Impedance State Leakage,  
Device Powered On SST Bus;  
V = 1.1 V, V = 3.3 V  
SST  
mA  
I
LEAK  
CC  
High Impedance State Leakage,  
LEAK  
Device Unpowered On SST Bus;  
V = 1.1 V, V = 0 V  
SST  
10  
mA  
I
CC  
Signal Noise Immunity, V  
Noise Glitches from  
10 MHz to 100 MHz; Width Up to 50 ns  
300  
mV  
p-p  
NOISE  
http://onsemi.com  
3
 
ADT7484A/ADT7486A  
Table 5. ELECTRICAL CHARACTERISTICS (continued)  
(T = T to T , V = V to V , unless otherwise noted)  
A
MIN  
MAX  
CC  
MIN  
MAX  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
SST Timing  
Bitwise Period, t  
0.495  
500  
ms  
ms  
BIT  
High Level Time for Logic 1, t  
(Note 2)  
t
Defined in Speed Negotiation  
0.6 t  
0.2 t  
0.75 t  
0.8 t  
0.4 t  
0.2 t  
H1  
BIT  
BIT  
BIT  
BIT  
High Level Time for Logic 0, t  
(Note 2)  
0.25 t  
ms  
ms  
H0  
BIT  
BIT  
BIT  
Time to Assert SST High for  
BIT  
Logic 1, t  
SU, HIGH  
Hold Time, t  
Stop Time, t  
(Note 3)  
See SST Specification Rev 1.0  
0.5 t  
ms  
ms  
HOLD  
BITM  
Device Responding to a Constant Low Level  
Driven by Originator  
1.25 t  
2 t  
2 t  
BIT  
STOP  
BIT  
BIT  
Time to Respond After a Reset,  
RESET  
0.4  
ms  
t
Response Time to Speed  
Negotiation After Powerup  
Time after Powerup when Device Can  
Participate in Speed Negotiation  
500  
ms  
1. Guaranteed by design, not production tested.  
2. Minimum and maximum bit times are relative to t  
defined in the timing negotiation pulse.  
BIT  
3. Devices compatible with hold time specification as driven by SST originator.  
http://onsemi.com  
4
 
ADT7484A/ADT7486A  
TYPICAL PERFORMANCE CHARACTERISTICS  
1.55  
1.50  
1.45  
1.40  
1.35  
3.56  
3.55  
3.54  
DEV 3  
DEV 2  
750 W (~2 mA)  
3.53  
3.52  
3.51  
3.50  
3.49  
3.48  
3.47  
3.46  
3.45  
270 W (~5.2 mA)  
120 W (~10.6 mA)  
1.30  
1.25  
1.20  
DEV 1  
2.6  
2.8  
3.0  
3.2  
(V)  
3.4  
3.6  
45 25 5  
15  
35 55 75  
95 115  
V
CC  
TEMPERATURE (C)  
Figure 2. SST O/P Level vs. Supply Voltage  
Figure 3. Supply Current vs. Temperature  
7
6
5
4
1.55  
750 W (~2 mA)  
1.50  
1.45  
1.40  
1.35  
1.30  
1.25  
1.20  
270 W (~5.2 mA)  
HI SPEC (V = 3.0 V)  
CC  
3
2
MEAN (V = 3.3 V)  
CC  
120 W (~10.6 mA)  
1
LO SPEC (V = 3.6 V)  
CC  
0
1  
50  
0
50  
100  
150  
60 40 20  
0
20 40 60 80 100 120 140  
TEMPERATURE (C)  
TEMPERATURE (C)  
Figure 4. Local Temperature Error  
Figure 5. SST O/P Level vs. Temperature  
3.9  
3.7  
3.5  
3.3  
3.1  
2.9  
7
6
5
4
3
2
1
0
DEV2  
DEV3  
DEV1  
HI SPEC (V = 3.0 V)  
CC  
MEAN (V = 3.3 V)  
CC  
LO SPEC (V = 3.6 V)  
CC  
1  
2  
2.65  
2.85  
3.05  
V
3.25  
(V)  
3.45  
3.65  
60 40 20  
0
20 40 60 80 100 120 140  
TEMPERATURE (C)  
CC  
Figure 6. Supply Current vs. Voltage  
Figure 7. Remote Temperature Error  
http://onsemi.com  
5
ADT7484A/ADT7486A  
TYPICAL PERFORMANCE CHARACTERISTICS (Cont’d)  
30  
15  
10  
5
DEV1_EXT1  
DEV1_EXT2  
DEV2_EXT1  
DEV2_EXT2  
DEV3_EXT1  
DEV3_EXT2  
100 mV  
D+ TO GND  
25  
20  
15  
10  
5
0
5  
10  
15  
20  
25  
30  
35  
40  
60 mV  
DEV1_EXT1  
DEV1_EXT2  
DEV2_EXT1  
DEV2_EXT2  
DEV3_EXT1  
DEV3_EXT2  
D+ TO V  
CC  
40 mV  
1M  
0
5  
10k  
100k  
10M  
100M  
1G  
0
20  
40  
60  
80  
100  
NOISE FREQUENCY (Hz)  
RESISTANCE (MW)  
Figure 8. Remote Temperature Error vs. PCB  
Resistance  
Figure 9. Temperature Error vs. Common-Mode  
Noise Frequency  
20  
0
10  
20  
15  
10  
5
30  
EXT2  
40  
EXT1  
50  
125 mV  
50 mV  
60  
70  
80  
90  
0
5  
10  
10k  
100k  
1M  
10M  
100M  
1G  
0
10  
20  
30  
40  
50  
POWER SUPPLY NOISE FREQUENCY (Hz)  
CAPACITANCE (nF)  
Figure 10. Local Temperature Error vs. Power  
Supply Noise  
Figure 11. Remote Temperature Error  
vs. Capacitance Between D1+ and D1  
7
5
4
3
2
1
0
40 mV  
6
5
4
3
125 mV  
20 mV  
50 mV  
2
1  
2  
3  
1
10 mV  
1M  
NOISE FREQUENCY (Hz)  
0
10k  
100k  
10M  
100M  
1G  
10k  
100k  
1M  
10M  
100M  
1G  
POWER SUPPLY NOISE FREQUENCY (Hz)  
Figure 12. Temperature Error vs. Differential-Mode  
Noise Frequency  
Figure 13. Remote Temperature Error vs. Power  
Supply Noise  
http://onsemi.com  
6
ADT7484A/ADT7486A  
Product Description  
low (GND), and floating. The address range for fixed  
address, discoverable devices is 0x48 to 0x50.  
The ADT7484A is a single remote temperature sensor,  
and the ADT7486A is a dual temperature sensor for use in  
PC applications. The ADT7484A/ADT7486A accurately  
measure local and remote temperature and communicate  
over a one-wire Simple Serial Transport (SST) bus interface.  
Table 6. ADT7484A/ADT7486A SELECTABLE  
ADDRESSES  
Address  
Selected  
ADD1  
Low (GND)  
Low (GND)  
Low (GND)  
Float  
ADD0  
Low (GND)  
Float  
SST Interface  
0x48  
Simple Serial Transport (SST) is a one-wire serial bus and  
a communications protocol between components intended  
for use in personal computers, personal handheld devices, or  
other industrial sensor nets. The ADT7484A/ADT7486A  
support SST specification Rev 1.  
SST is a licensable bus technology from Analog Devices,  
Inc., and Intel Corporation. To inquire about obtaining a  
copy of the Simple Serial Transport Specification or an SST  
technology license, please email Analog Devices, at  
sst_licensing@analog.com or write to Analog Devices,  
3550 North First Street, San Jose, CA 95134, Attention:  
SST Licensing, M/S B7-24.  
0x49  
High  
0x4A  
0x4B  
0x4C  
0x4D  
0x4E  
0x4F  
0x50  
Low (GND)  
Float  
Float  
Float  
High  
High  
Low (GND)  
Float  
High  
High  
High  
Command Summary  
Table 7 summarizes the commands supported by the  
ADT7484A/ADT7486A devices when directed at the target  
address selected by the fixed address pins. It contains the  
command name, command code (CC), write data length  
(WL), read data length (RL), and a brief description.  
ADT7484A/ADT7486A Client Address  
The client address for the ADT7484A/ADT7486A is  
selected using the address pin. The address pin is connected  
to a float detection circuit, which allows the ADT7484A/  
ADT7486A to distinguish between three input states: high,  
Table 7. COMMAND CODE SUMMARY  
Command  
Code, CC  
Write Length,  
WL  
Command  
Ping()  
Read Length, RL  
Description  
0x00  
0x00  
0x00  
0x01  
0x00  
0x02  
Shows a nonzero FCS over the header if present.  
GetIntTemp()  
Shows the temperature of the device’s internal thermal  
diode.  
GetExt1Temp()  
GetExt2Temp()  
0x01  
0x02  
0x01  
0x01  
0x02  
0x02  
Shows the temperature of External Thermal Diode 1.  
Shows the temperature of External Thermal Diode 2  
(ADT7486A only).  
GetAllTemps()  
0x00  
0x01  
0x04 (ADT7484A)  
0x06 (ADT7486A)  
Shows a 4- or 6-byte block of data (ADT7484A:  
GetIntTemp, GetExt1Temp; ADT7486A: GetIntTemp,  
GetExt1Temp, GetExt2Temp).  
SetExt1Offset()  
GetExt1Offset()  
0xe0  
0xe0  
0x03  
0x01  
0x00  
0x02  
Sets the offset used to correct errors in External Diode 1.  
Shows the offset that the device is using to correct errors  
in External Diode 1.  
SetExt2Offset()  
GetExt2Offset()  
ResetDevice()  
0xe1  
0xe1  
0xf6  
0x03  
0x01  
0x01  
0x00  
0x02  
0x00  
Sets the offset used to correct errors in External Diode 2  
(ADT7486A only).  
Shows the offset that the device is using to correct errors  
in External Diode 2 (ADT7486A only).  
Functional reset. The ADT7484A/ADT7486A also  
respond to this command when directed to the Target  
Address 0x00.  
GetDIB()  
0xf7  
0xf7  
0x01  
0x01  
0x08  
0x10  
Shows information used by SW to identify the device’s  
capabilities. Can be in 8- or 16-byte format.  
http://onsemi.com  
7
 
ADT7484A/ADT7486A  
Command Code Details  
Table 10. RESET DEVICE() COMMAND  
Write  
Length  
Read  
Length  
Reset  
Command  
ADT7484A/ADT7486A Device Identifier Block  
Target Address  
FCS  
The GetDIB() command retrieves the device identifier  
block (DIB), which provides information to identify the  
capabilities of the ADP7484A/ADT7486A. The data  
returned can be in 8- or 16-byte format. The full 16-bytes of  
DIB is detailed in Table 8. The 8-byte format involves the  
first eight bytes described in this table. Byte-sized data is  
returned in the respective fields as it appears in Table 8.  
Word-sized data, including vendor ID, device ID, and data  
values use little endian format, that is, the LSB is returned  
first, followed by the MSB.  
Device Address  
0x01  
0x00  
0xf6  
GetIntTemp()  
The ADT7484A/ADT7486A show the local temperature  
of the device in response to the GetIntTemp() command. The  
data has a little endian, 16-bit, twos complement format.  
GetExtTemp()  
Prompted by the GetExtTemp() command, the  
ADT7484A/ADT7486A show the temperature of the  
remote diode in little endian, 16-bit, twos complement  
format. The ADT7484A/ADT7486A show 0x8000 in  
response to this command if the external diode is an open or  
short circuit.  
Table 8. DIB BYTE DETAILS  
Byte  
Name  
Value  
Description  
Device  
Capabilities  
0xc0  
Fixed Address Device  
0
GetAllTemps()  
Version/  
Revision  
0x10  
Meets Version 1 of  
the SST Specification  
1
The ADT7484A shows the local and remote temperatures  
in a 4-byte block of data (internal temperature first, followed  
by External Temperature 1) in response to a GetAllTemps()  
command. The ADT7486A shows the local and remote  
temperatures in a 6-byte block of data (internal temperature  
first, followed by External Temperature 1 and External  
Temperature 2) in response to this command.  
2, 3  
Vendor ID  
00x11d4  
Contains Company ID  
Number in Little  
Endian Format  
4, 5  
Device ID  
0x7484  
or  
0x7486  
Contains Device ID  
Number in Little  
Endian Format  
6
7
Device  
Interface  
0x01  
0x00  
SST Device  
SetExtOffset()  
Function  
Interface  
Reserved  
This command sets the offset that the ADT7484A/  
ADT7486A will use to correct errors in the external diode.  
The offset is set in little endian, 16-bit, twos complement  
format. The maximum offset is 128C with +0.25C  
resolution.  
8
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Revision ID  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x05  
Reserved  
9
Reserved  
10  
11  
12  
13  
14  
15  
Reserved  
Reserved  
GetExtOffset()  
Reserved  
This command causes the ADT7484A/ADT7486A to  
show the offset that they are using to correct errors in the  
external diode. The offset value is returned in little endian  
format, that is, LSB before MSB.  
Reserved  
Contains Revision ID  
Client Device  
Address  
0x48 to  
0x50  
Dependent on the  
State of the Address  
Pins  
ADT7484A/ADT7486A Response to Unsupported  
Commands  
A full list of command codes supported by the  
ADT7484A/ADT7486A is given in Table 7. The offset  
registers (Command Codes 0xe0 and 0xe1) are the only  
registers that the user can write to. The other defined  
registers are read only. Writing to Register Addresses 0x03  
to 0xdf shows a valid FSC, but no action is taken by the  
ADT7484A/ADT7486A. The ADT7484A/ADT7486A  
show an invalid FSC if the user attempts to write to the  
devices between Command Codes 0xe2 to 0xee and no data  
is written to the device. These registers are reserved for the  
manufacturer’s use only, and no data can be written to the  
device via these addresses.  
Ping()  
The Ping() command verifies if a device is responding at  
a particular address. The ADT7484A/ADT7486A show a  
valid nonzero FCS in response to the Ping() command when  
correctly addressed.  
Table 9. PING() COMMAND  
Target Address  
Write Length  
Read Length  
FCS  
Device Address  
0x00  
0x00  
ResetDevice()  
This command resets the register map and conversion  
controller. The reset command can be global or directed at  
the client address of the ADT7484A/ADT7486A.  
http://onsemi.com  
8
 
ADT7484A/ADT7486A  
Temperature Measurement  
Figure 14 shows the input signal conditioning used to  
measure the output of a remote temperature sensor. This  
figure shows the remote sensor as a substrate transistor,  
which is provided for temperature monitoring on some  
microprocessors, but it could also be a discrete transistor. If  
a discrete transistor is used, the collector is not grounded and  
should be linked to the base. To prevent ground noise from  
interfering with the measurement, the more negative  
terminal of the sensor is not referenced to ground, but is  
biased above ground by an internal diode at the D1input.  
If the sensor is operating in an extremely noisy environment,  
C1 can be added as a noise filter. Its value should not exceed  
1,000 pF.  
The ADT7484A/ADT7486A each have two dedicated  
temperature measurement channels: one for measuring the  
temperature of an on-chip band gap temperature sensor, and  
one for measuring the temperature of a remote diode, usually  
located in the CPU or GPU.  
The ADT7484A monitors one local and one remote  
temperature channel, whereas the ADT7486A monitors one  
local and two remote temperature channels. Monitoring of  
each of the channels is done in a round-robin sequence. The  
monitoring sequence is in the order shown in Table 11.  
Table 11. TEMPERATURE MONITORING SEQUENCE  
To measure DV , the operating current through the  
Channel  
Number  
Conversion  
Time (ms)  
BE  
Measurement  
Local Temperature  
Remote Temperature 1  
sensor is switched between three related currents. Figure 14  
shows N1 I and N2 I as different multiples of the current  
I. The currents through the temperature diode are switched  
0
1
2
12  
38  
38  
between I and N1 I, giving DV , and then between I and  
BE1  
Remote Temperature 2  
(ADT7486A Only)  
N2 I, giving DV . The temperature can then be  
BE2  
calculated using the two DV measurements. This method  
BE  
can also cancel the effect of series resistance on the  
Temperature Measurement Method  
temperature measurement. The resulting DV waveforms  
A simple method for measuring temperature is to exploit  
the negative temperature coefficient of a diode by measuring  
BE  
are passed through a 65 kHz low-pass filter to remove noise  
and then through a chopper-stabilized amplifier to amplify  
and rectify the waveform, producing a dc voltage  
the base-emitter voltage (V ) of a transistor operated at  
BE  
constant current. Unfortunately, this technique requires  
proportional to DV . The ADC digitizes this voltage, and  
calibration to null the effect of the absolute value of V  
which varies from device to device.  
,
BE  
BE  
a temperature measurement is produced. To reduce the  
effects of noise, digital filtering is performed by averaging  
the results of 16 measurement cycles for low conversion  
rates. Signal conditioning and measurement of the internal  
temperature sensor is performed in the same manner.  
The technique used in the ADT7484A/ADT7486A  
measures the change in V when the device is operated at  
BE  
three different currents.  
V
CC  
I
N1 I  
N2 I  
I
BIAS  
D+  
C1*  
D−  
V
OUT+  
REMOTE  
SENSING  
TRANSISTOR  
To ADC  
V
OUT−  
BIAS  
DIODE  
LOW-PASS FILTER  
= 65 kHz  
f
C
*CAPACITOR C1 IS OPTIONAL. IT SHOULD ONLY BE USED IN NOISY ENVIRONMENTS.  
Figure 14. Signal Conditioning for Remote Diode Temperature Sensors  
http://onsemi.com  
9
 
ADT7484A/ADT7486A  
Reading Temperature Measurements  
terminal of the sensor is not referenced to ground, but is  
The temperature measurement command codes are  
detailed in Table 12. The temperature data returned is two  
bytes in little endian format, that is, LSB before MSB. All  
temperatures can be read together by using Command Code  
0x00 with a read length of 0x04. The command codes and  
returned data are described in Table 12.  
biased above ground by an internal diode at the D1input.  
ADT7484A/  
ADT7486A  
2N3904  
D+  
NPN  
D−  
Table 12. TEMPERATURE CHANNEL COMMAND  
CODES  
ADT7484A/  
ADT8486A  
Temp  
Channel  
Command  
Code  
D+  
Returned Data  
LSB, MSB  
2N3906  
D−  
PNP  
Internal  
0x00  
0x01  
0x02  
0x00  
External 1  
External 2  
All Temps  
LSB, MSB  
LSB, MSB  
Figure 15. Connections for NPN and PNP Transistors  
The ADT7484A/ADT7486A show an external  
temperature value of 0x8000 if the external diode is an open  
or short circuit.  
Internal LSB, Internal MSB;  
External 1 LSB, External 1 MSB;  
External 2 LSB, External 2 MSB  
Layout Considerations  
SST Temperature Sensor Data Format  
Digital boards can be electrically noisy environments.  
Take the following precautions to protect the analog inputs  
from noise, particularly when measuring the very small  
voltages from a remote diode sensor:  
The data for temperature is structured to allow values in  
the range of 512C to be reported. Thus, the temperature  
sensor format uses a twos complement, 16-bit binary value  
to represent values in this range. This format allows  
temperatures to be represented with approximately a  
0.016C resolution.  
1. Place the device as close as possible to the remote  
sensing diode. Provided that the worst noise  
sources, such as clock generators, data/address  
buses, and CRTs, are avoided, this distance can be  
four to eight inches.  
Table 13. SST TEMPERATURE DATA FORMAT  
Twos Complement  
2. Route the D1+ and D1tracks close together in  
parallel with grounded guard tracks on each side.  
Provide a ground plane under the tracks if  
possible.  
3. Use wide tracks to minimize inductance and  
reduce noise pickup. A 5 mil track minimum width  
and spacing is recommended.  
MSB  
LSB  
Temperature (5C)  
125  
80  
40  
20  
5  
1110 0000  
1110 1100  
1111 0110  
1111 1011  
1111 1110  
1111 1111  
0000 0000  
0000 0000  
0000 0001  
0000 0100  
0000 1010  
0001 0100  
0001 1111  
1100 0000  
0000 0000  
0000 0000  
0011 1110  
1100 0000  
1100 0000  
0000 0000  
0100 0000  
0100 0000  
1100 0010  
0000 0000  
0000 0000  
0100 0000  
1  
GND  
D+  
5 MIL  
5 MIL  
5 MIL  
5 MIL  
5 MIL  
5 MIL  
5 MIL  
0
+1  
+5  
+20  
+40  
+80  
+125  
D−  
GND  
Figure 16. Arrangement of Signal Tracks  
Using Discrete Transistors  
4. Try to minimize the number of copper/solder  
joints, which can cause thermocouple effects.  
Where copper/solder joints are used, make sure  
that they are in both the D1+ and D1paths and  
are at the same temperature.  
5. Thermocouple effects should not be a major  
problem because 1C corresponds to about  
240 mV, and thermocouple voltages are about  
3 mV/C of the temperature difference. Unless  
If a discrete transistor is used, the collector is not grounded  
and should be linked to the base. If a PNP transistor is used,  
the base is connected to the D1input and the emitter is  
connected to the D1+ input. If an NPN transistor is used, the  
emitter is connected to the D1input and the base is  
connected to the D1+ input. Figure 17 shows how to connect  
the ADT7484A/ADT7486A to an NPN or PNP transistor for  
temperature measurement. To prevent ground noise from  
interfering with the measurement, the more negative  
http://onsemi.com  
10  
 
ADT7484A/ADT7486A  
there are two thermocouples with a big  
temperature differential between them,  
thermocouple voltages should be much less than  
200 mV.  
one-time calibration of the system, the offset caused by  
system board noise can be calculated and nulled by  
specifying it in the ADT7484A/ADT7486A. The offset is  
automatically added to every temperature measurement.  
The maximum offset is 128C with 0.25C resolution. The  
offset format is the same as the temperature data format;  
16-bit, twos complement notation, as shown in Table 13.  
The offset should be programmed in little endian format,  
that is, LSB before MSB. The offset value is also returned  
in little endian format when read.  
6. Place a 0.1 mF bypass capacitor close to the  
device.  
7. If the distance to the remote sensor is more than  
eight inches, the use of a twisted-pair cable is  
recommended. This works for distances of about  
6 feet to 12 feet.  
8. For very long distances (up to 100 feet), use  
shielded twisted-pair cables, such as Belden #8451  
microphone cables. Connect the twisted-pair cable  
to D1+ and D1and the shield to GND, close to  
the device. Leave the remote end of the shield  
unconnected to avoid ground loops.  
Application Schematics  
V
CC  
ADT7484A  
1
2
V
SST  
ADD0  
D1+ RESERVED  
D1ADD1  
8
7
SST  
CC  
GND  
2N3904  
or  
CPU  
THERMAL  
DIODE  
3
4
6
5
Because the measurement technique uses switched  
current sources, excessive cable and/or filter capacitance  
can affect the measurement. When usin g long cables, the  
filter capacitor can be reduced or removed. Cable resistance  
can also introduce errors. A 1ĂW series resistance introduces  
about 0.5C error.  
Figure 17. ADT7484A Typical Application Schematic  
V
CC  
ADT7486A  
Temperature Offset  
1
2
V
SST 10  
SST  
CC  
As CPUs run faster, it is more difficult to avoid high  
frequency clocks when running the D1+ and D1tracks  
around a system board. Even when the recommended layout  
guidelines are followed, there may still be temperature  
errors, attributed to noise being coupled on to the D1+ and  
D1lines. High frequency noise generally has the effect of  
producing temperature measurements that are consistently  
too high by a specific amount. The ADT7484A/  
ADT87486A have a temperature offset command code of  
0xe0 through which a desired offset can be set. By doing a  
GND  
D1+ RESERVED  
ADD0  
9
2N3904  
NPN  
3
4
5
8
7
6
D1−  
ADD1  
D2+  
D2−  
CPU  
THERMAL  
DIODE  
Figure 18. ADT7486A Typical Application Schematic  
Table 14. ORDERING INFORMATION  
Device Order Number*  
ADT7484AARZREEL  
ADT7484AARMZRL  
ADT7486AARMZRL  
Branding  
Package Option  
R8  
Package Type  
SOIC8 NB  
Shipping  
2,500 Tape & Reel  
3,000 Tape & Reel  
3,000 Tape & Reel  
T20  
T22  
RM8  
8-lead MSOP  
10-lead MSOP  
RM10  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
*These are Pb-Free packages.  
http://onsemi.com  
11  
ADT7484A/ADT7486A  
PACKAGE DIMENSIONS  
SOIC8 NB  
CASE 75107  
ISSUE AK  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
X−  
A
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
8
5
4
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
6. 75101 THRU 75106 ARE OBSOLETE. NEW  
STANDARD IS 75107.  
S
M
M
B
0.25 (0.010)  
Y
1
K
Y−  
MILLIMETERS  
DIM MIN MAX  
INCHES  
G
MIN  
MAX  
0.197  
0.157  
0.069  
0.020  
A
B
C
D
G
H
J
K
M
N
S
4.80  
3.80  
1.35  
0.33  
5.00 0.189  
4.00 0.150  
1.75 0.053  
0.51 0.013  
C
N X 45  
_
SEATING  
PLANE  
1.27 BSC  
0.050 BSC  
Z−  
0.10  
0.19  
0.40  
0
0.25 0.004  
0.25 0.007  
1.27 0.016  
0.010  
0.010  
0.050  
8
0.020  
0.244  
0.10 (0.004)  
M
J
H
D
8
0
_
_
_
_
0.25  
5.80  
0.50 0.010  
6.20 0.228  
M
S
S
X
0.25 (0.010)  
Z
Y
SOLDERING FOOTPRINT*  
1.52  
0.060  
7.0  
4.0  
0.275  
0.155  
0.6  
0.024  
1.270  
0.050  
mm  
inches  
ǒ
Ǔ
SCALE 6:1  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
http://onsemi.com  
12  
ADT7484A/ADT7486A  
PACKAGE DIMENSIONS  
MSOP8  
CASE 846AB01  
ISSUE O  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
D
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE  
BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED  
0.15 (0.006) PER SIDE.  
4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION.  
INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.  
5. 846A-01 OBSOLETE, NEW STANDARD 846A-02.  
H
E
E
MILLIMETERS  
INCHES  
NOM  
−−  
0.003  
0.013  
0.007  
0.118  
DIM  
A
A1  
b
c
D
MIN  
−−  
0.05  
0.25  
0.13  
2.90  
2.90  
NOM  
−−  
MAX  
MIN  
−−  
0.002  
0.010  
0.005  
0.114  
0.114  
MAX  
0.043  
0.006  
0.016  
0.009  
0.122  
0.122  
PIN 1 ID  
1.10  
0.15  
0.40  
0.23  
3.10  
3.10  
e
0.08  
b 8 PL  
0.33  
M
S
S
0.08 (0.003)  
T B  
A
0.18  
3.00  
E
3.00  
0.118  
e
L
0.65 BSC  
0.55  
4.90  
0.026 BSC  
0.021  
0.193  
0.40  
4.75  
0.70  
5.05  
0.016  
0.187  
0.028  
0.199  
SEATING  
PLANE  
H
E
T−  
A
0.038 (0.0015)  
L
A1  
c
SOLDERING FOOTPRINT*  
1.04  
0.38  
8X  
8X 0.041  
0.015  
3.20  
4.24  
5.28  
0.126  
0.167 0.208  
0.65  
6X0.0256  
SCALE 8:1  
mm  
inches  
ǒ
Ǔ
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
http://onsemi.com  
13  
ADT7484A/ADT7486A  
PACKAGE DIMENSIONS  
MSOP10  
CASE 846AC01  
ISSUE O  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
A−  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION “A” DOES NOT INCLUDE MOLD  
FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE  
BURRS SHALL NOT EXCEED 0.15 (0.006)  
PER SIDE.  
4. DIMENSION “B” DOES NOT INCLUDE  
INTERLEAD FLASH OR PROTRUSION.  
INTERLEAD FLASH OR PROTRUSION  
SHALL NOT EXCEED 0.25 (0.010) PER SIDE.  
5. 846B01 OBSOLETE. NEW STANDARD  
846B02  
B−  
K
G
PIN 1 ID  
D 8 PL  
M
S
S
A
0.08 (0.003)  
T B  
MILLIMETERS  
INCHES  
DIM MIN  
MAX  
3.10  
3.10  
MIN  
MAX  
0.122  
0.122  
0.043  
0.012  
A
B
C
D
G
H
J
2.90  
2.90  
0.95  
0.20  
0.114  
0.114  
1.10 0.037  
0.30 0.008  
C
0.038 (0.0015)  
0.50 BSC  
0.020 BSC  
T−  
SEATING  
PLANE  
L
0.05  
0.10  
4.75  
0.40  
0.15 0.002  
0.21 0.004  
5.05 0.187  
0.70 0.016  
0.006  
0.008  
0.199  
0.028  
H
J
K
L
SOLDERING FOOTPRINT*  
1.04  
0.041  
0.32  
0.0126  
10X  
10X  
3.20  
4.24  
5.28  
0.126  
0.167 0.208  
0.50  
mm  
inches  
ǒ
Ǔ
8X0.0196  
SCALE 8:1  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
SST is a licensable bus technology from Analog Devices, Inc., and Intel Corporation.  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks,  
copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. SCILLC  
reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any  
particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without  
limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications  
and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC  
does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where  
personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and  
its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly,  
any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture  
of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81358171050  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
ADT7484A86A/D  

相关型号:

ADT7485A

SST Digital Temperature Sensor and Voltage Monitor
ADI

ADT7485A

Temperature Sensor and Voltage Monitor with Simple Serial Transport
ONSEMI

ADT7485AARMZ-R

Temperature Sensor and Voltage Monitor with Simple Serial Transport
ONSEMI

ADT7485AARMZ-R7

Temperature Sensor and Voltage Monitor with Simple Serial Transport
ONSEMI

ADT7485AARMZ-REEL

SST Digital Temperature Sensor and Voltage Monitor
ADI

ADT7485AARMZ-REEL7

SST Digital Temperature Sensor and Voltage Monitor
ADI

ADT7486A

Digital Temperature Sensor with SST Interface
ADI

ADT7486AARMZ-R7

Digital Temperature Sensor with SST Interface
ONSEMI

ADT7486AARMZ-REEL

Digital Temperature Sensor with SST Interface
ADI

ADT7486AARMZ-REEL7

Digital Temperature Sensor with SST Interface
ADI

ADT7486AARMZ-RL

Digital Temperature Sensor with SST Interface
ONSEMI

ADT7486AARMZ-U5

Switch/Digital Output Temperature Sensor, DIGITAL TEMP SENSOR-SERIAL, 16BIT(s), 4Cel, SQUARE, SURFACE MOUNT, LEAD FREE, MO-187-AA, MSOP-10
ONSEMI