ADSP-BF536BBCZ-4B1 [ADI]

IC 16-BIT, 40 MHz, OTHER DSP, PBGA208, LEAD FREE, MO-205AM, MBGA-208, Digital Signal Processor;
ADSP-BF536BBCZ-4B1
型号: ADSP-BF536BBCZ-4B1
厂家: ADI    ADI
描述:

IC 16-BIT, 40 MHz, OTHER DSP, PBGA208, LEAD FREE, MO-205AM, MBGA-208, Digital Signal Processor

时钟 外围集成电路
文件: 总64页 (文件大小:3577K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Blackfin®  
Embedded Processor  
a
Preliminary Technical Data  
FEATURES  
ADSP-BF536/ADSP-BF537  
Two Dual-Channel Memory DMA Controllers  
Memory Management Unit Providing Memory Protection  
Up to 600 MHz High-Performance Blackfin Processor  
Two 16-Bit MACs, Two 40-Bit ALUs, Four 8-Bit Video  
ALUs, 40-Bit Shifter  
RISC-Like Register and Instruction Model for Ease of  
Programming and Compiler-Friendly Support  
Advanced Debug, Trace, and Performance-Monitoring  
0.8 V to 1.2 V Core VDD with On-chip Voltage Regulation  
2.5 V and 3.3 V-Tolerant I/O with Specific 5 V-Tolerant Pins  
182-Ball MBGA and 208-Ball Sparse MBGA Packages  
Lead Bearing and Lead Free Package Choices  
PERIPHERALS  
IEEE 802.3-Compliant 10/100 Ethernet MAC  
Controller Area Network (CAN) 2.0B Interface  
Parallel Peripheral Interface (PPI), Supporting ITU-R 656  
Video Data Formats  
Two Dual-Channel, Full-Duplex Synchronous Serial Ports  
(SPORTs), Supporting Eight Stereo I2S Channels  
12 Peripheral DMAs, 2 Mastered by the Ethernet MAC  
Two Memory-to-Memory DMAs With External Request Lines  
Event Handler With 32 Interrupt Inputs  
MEMORY  
Serial Peripheral Interface (SPI)-Compatible  
Two UARTs with IrDA® Support  
Two-Wire Interface (TWI) Controller  
Eight 32-Bit Timer/Counters with PWM Support  
Real-Time Clock (RTC) and Watchdog Timer  
32-Bit Core Timer  
48 General-Purpose I/Os (GPIOs), 8 with High Current Drivers  
On-Chip PLL Capable of 1x to 63x Frequency Multiplication  
Debug/JTAG Interface  
Up to 132K Bytes of On-Chip Memory:  
16K Bytes of Instruction SRAM/Cache  
48K Bytes of Instruction SRAM  
32K Bytes of Data SRAM/Cache  
32K Bytes of Data SRAM  
4K Bytes of Scratchpad SRAM  
External Memory Controller with Glueless Support for  
SDRAM and Asynchronous 8/16-Bit Memories  
Flexible Booting Options from External Flash, SPI and TWI  
Memory or from SPI, TWI, and UART Host Devices  
EVENT  
CONTROLLER/  
CORE TIMER  
JTAG TEST AND  
EMULATION  
WATCHDOG TIMER  
RTC  
GPIO  
PORT  
ETHERNET MAC  
H
VOLTAGE  
B
REGULATOR  
CAN  
PORT  
TWI  
J
L1  
L1  
MMU  
INSTRUCTION  
DATA  
SPORT0  
MEMORY  
MEMORY  
SPORT1  
GPIO  
CORE / SYSTEM BUS INTERFACE  
PORT  
G
PPI  
UART 0-1  
DMA  
GPIO  
PORT  
F
CONTROLLER  
SPI  
TIMERS 0-7  
BOOT ROM  
EXTERNAL PORT  
FLASH, SDRAM  
CONTROL  
Figure 1. Functional Block Diagram  
TigerSHARC and the TigerSHARC logo are registered trademarks of Analog Devices, Inc.  
Rev. PrE  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O.Box 9106, Norwood, MA 02062-9106 U.S.A.  
Tel:781/329-4700  
Fax:781/461-3113  
www.analog.com  
© 2005 Analog Devices, Inc. All rights reserved.  
ADSP-BF536/BF537  
Preliminary Technical Data  
TABLE OF CONTENTS  
General Description ................................................. 3  
Portable Low-Power Architecture ............................. 3  
System Integration ................................................ 3  
ADSP-BF536/BF537 Processor Peripherals ................. 3  
Blackfin Processor Core .......................................... 4  
Memory Architecture ............................................ 4  
Internal (On-chip) Memory ................................. 5  
External (Off-Chip) Memory ................................ 5  
I/O Memory Space ............................................. 6  
Booting ........................................................... 6  
Event Handling ................................................. 6  
Core Event Controller (CEC) ................................ 7  
System Interrupt Controller (SIC) .......................... 7  
Event Control ................................................... 8  
DMA Controllers .................................................. 8  
Real-Time Clock ................................................... 9  
Watchdog Timer .................................................. 9  
Timers ............................................................. 10  
Serial Ports (SPORTs) .......................................... 10  
Serial Peripheral Interface (SPI) Port ....................... 10  
UART Ports (UARTs) .......................................... 11  
Controller Area Network (CAN) ............................ 11  
TWI Controller Interface ...................................... 11  
10/100 Ethernet MAC .......................................... 11  
Ports ................................................................ 12  
General-Purpose I/O (GPIO) .............................. 12  
Parallel Peripheral Interface (PPI) ........................... 13  
Dynamic Power Management ................................ 13  
Full-On Operating Mode – Maximum Performance . 13  
Active Operating Mode – Moderate Power Savings .. 13  
EZ-KIT Lite Evaluation Board ............................. 17  
Designing an Emulator-Compatible Processor  
Board (Target) ................................................. 17  
Related Documents .............................................. 18  
Pin Descriptions .................................................... 19  
Specifications ........................................................ 23  
Recommended Operating Conditions ...................... 23  
Absolute Maximum Ratings ................................... 25  
ESD Sensitivity ................................................... 25  
Timing Specifications ........................................... 26  
Asynchronous Memory Read Cycle Timing ............ 28  
Asynchronous Memory Write Cycle Timing ........... 29  
SDRAM Interface Timing .................................. 30  
External Port Bus Request and Grant Cycle Timing .. 31  
External DMA Request Timing ............................ 32  
Parallel Peripheral Interface Timing ...................... 33  
Serial Ports ..................................................... 34  
Serial Peripheral Interface (SPI) Port—  
Master Timing .............................................. 39  
Serial Peripheral Interface (SPI) Port—  
Slave Timing ................................................ 40  
Universal Asynchronous Receiver-Transmitter  
(UART) Ports—Receive and Transmit Timing ..... 41  
General-Purpose Port Timing ............................. 42  
Timer Cycle Timing .......................................... 43  
JTAG Test And Emulation Port Timing ................. 44  
TWI Controller Timing ..................................... 45  
10/100 Ethernet MAC Controller Timing ............... 49  
Output Drive Currents ......................................... 52  
Power Dissipation ............................................... 55  
Test Conditions .................................................. 55  
Output Enable Time ......................................... 55  
Output Disable Time ......................................... 55  
Example System Hold Time Calculation ................ 56  
Environmental Conditions .................................... 56  
182-Ball Mini-BGA Pinout ....................................... 57  
208-Ball Sparse Mini-BGA Pinout .............................. 60  
Outline Dimensions ................................................ 63  
Ordering Guide ..................................................... 64  
Sleep Operating Mode – High Dynamic  
Power Savings .............................................. 13  
Deep Sleep Operating Mode – Maximum Dynamic  
Power Savings .............................................. 13  
Hibernate Operating Mode – Maximum Static Power  
Savings ....................................................... 14  
Power Savings ................................................. 14  
Voltage Regulation .............................................. 14  
Clock Signals ..................................................... 14  
Booting Modes ................................................... 16  
Instruction Set Description ................................... 17  
Development Tools ............................................. 17  
Rev. PrE  
|
Page 2 of 64  
|
July 2005  
Preliminary Technical Data  
ADSP-BF536/BF537  
REVISION HISTORY  
Revision PrE: Corrections to PrD because of changes to Order-  
ing Guide, changes to recommended operating conditions,  
other minor corrections.  
Related Documents ................................................. 18  
Recommended Operating Conditions ......................... 23  
Figure 9 ............................................................... 25  
Tables 10, 11, 12, and 13 ........................................... 26  
Figures 49 and 50 ....................................................59  
Figures 51 and 52 ................................................... 62  
Table 52 ............................................................... 60  
Table 53 ............................................................... 61  
Figures 53 and 54 ....................................................63  
Ordering Guide ..................................................... 64  
Changes to:  
Figure 2 ................................................................. 5  
Dynamic Power Management .................................... 13  
Clock Signals ......................................................... 14  
Figure 7 ................................................................ 15  
Booting Modes ....................................................... 16  
Development Tools ................................................. 17  
GENERAL DESCRIPTION  
The ADSP-BF536/BF537 processors are members of the Black-  
fin family of products, incorporating the Analog Devices/Intel  
Micro Signal Architecture (MSA). Blackfin processors combine  
a dual-MAC state-of-the-art signal processing engine, the  
advantages of a clean, orthogonal RISC-like microprocessor  
instruction set, and single-instruction, multiple-data (SIMD)  
multimedia capabilities into a single instruction-set  
architecture.  
The ADSP-BF536/BF537 processors are completely code and  
pin compatible, differing only with respect to their performance  
and on-chip memory. Specific performance and memory con-  
figurations are shown in Table 1.  
Table 1. Processor Comparison  
ADSP-BF536  
ADSP-BF537  
Maximum performance  
Instruction SRAM/Cache  
Instruction SRAM  
Data SRAM/Cache  
Data SRAM  
400 MHz  
16K bytes  
48K bytes  
16K bytes  
16K bytes  
4K bytes  
600 MHz  
16K bytes  
48K bytes  
32K bytes  
32K bytes  
4K bytes  
Scratchpad  
By integrating a rich set of industry-leading system peripherals  
and memory, Blackfin processors are the platform of choice for  
next-generation applications that require RISC-like program-  
mability, multimedia support and leading-edge signal  
processing in one integrated package.  
dard interfaces with a high performance signal processing core,  
users can develop cost-effective solutions quickly without the  
need for costly external components. The system peripherals  
include an IEEE-compliant 802.3 10/100 Ethernet MAC, a CAN  
2.0B controller, a TWI controller, two UART ports, an SPI port,  
two serial ports (SPORTs), nine general purpose 32-bit timers  
(eight with PWM capability), a real-time clock, a watchdog  
timer, and a Parallel Peripheral Interface.  
PORTABLE LOW-POWER ARCHITECTURE  
Blackfin processors provide world-class power management  
and performance. Blackfin processors are designed in a low  
power and low voltage design methodology and feature on-chip  
Dynamic Power Management, the ability to vary both the volt-  
age and frequency of operation to significantly lower overall  
power consumption. Varying the voltage and frequency can  
result in a substantial reduction in power consumption, com-  
pared with just varying the frequency of operation. This  
translates into longer battery life for portable appliances.  
ADSP-BF536/BF537 PROCESSOR PERIPHERALS  
The ADSP-BF536/BF537 processor contains a rich set of  
peripherals connected to the core via several high bandwidth  
buses, providing flexibility in system configuration as well as  
excellent overall system performance (see the block diagram  
on Page 1). The general-purpose peripherals include functions  
such as UARTs, SPI, TWI, Timers with PWM (Pulse Width  
Modulation) and pulse measurement capability, general pur-  
pose I/O pins, a Real-Time Clock, and a Watchdog Timer. This  
set of functions satisfies a wide variety of typical system support  
needs and is augmented by the system expansion capabilities of  
the part. The ADSP-BF536/BF537 processor contains dedicated  
network communication modules and high-speed serial and  
SYSTEM INTEGRATION  
The ADSP-BF536/BF537 processors are highly integrated sys-  
tem-on-a-chip solutions for the next generation of embedded  
network connected applications. By combining industry-stan-  
Rev. PrE  
|
Page 3 of 64  
|
July 2005  
ADSP-BF536/BF537  
Preliminary Technical Data  
parallel ports, an interrupt controller for flexible management  
of interrupts from the on-chip peripherals or external sources,  
and power management control functions to tailor the perfor-  
mance and power characteristics of the processor and system to  
many application scenarios.  
The program sequencer controls the flow of instruction execu-  
tion, including instruction alignment and decoding. For  
program flow control, the sequencer supports PC relative and  
indirect conditional jumps (with static branch prediction), and  
subroutine calls. Hardware is provided to support zero-over-  
head looping. The architecture is fully interlocked, meaning that  
the programmer need not manage the pipeline when executing  
instructions with data dependencies.  
All of the peripherals, except for general-purpose I/O, CAN,  
TWI, Real-Time Clock, and timers, are supported by a flexible  
DMA structure. There are also separate memory DMA channels  
dedicated to data transfers between the processor's various  
memory spaces, including external SDRAM and asynchronous  
memory. Multiple on-chip buses running at up to 133 MHz  
provide enough bandwidth to keep the processor core running  
along with activity on all of the on-chip and external  
peripherals.  
The address arithmetic unit provides two addresses for simulta-  
neous dual fetches from memory. It contains a multiported  
register file consisting of four sets of 32-bit Index, Modify,  
Length, and Base registers (for circular buffering), and eight  
additional 32-bit pointer registers (for C-style indexed stack  
manipulation).  
The ADSP-BF536/BF537 processor includes an on-chip voltage  
regulator in support of the ADSP-BF536/BF537 processor  
Dynamic Power Management capability. The voltage regulator  
provides a range of core voltage levels when supplied from a sin-  
gle 2.25 V to 3.6 V input. The voltage regulator can be bypassed  
at the user's discretion.  
Blackfin processors support a modified Harvard architecture in  
combination with a hierarchical memory structure. Level 1 (L1)  
memories are those that typically operate at the full processor  
speed with little or no latency. At the L1 level, the instruction  
memory holds instructions only. The two data memories hold  
data, and a dedicated scratchpad data memory stores stack and  
local variable information.  
BLACKFIN PROCESSOR CORE  
In addition, multiple L1 memory blocks are provided, offering a  
configurable mix of SRAM and cache. The Memory Manage-  
ment Unit (MMU) provides memory protection for individual  
tasks that may be operating on the core and can protect system  
registers from unintended access.  
As shown in Figure 2 on Page 5, the Blackfin processor core  
contains two 16-bit multipliers, two 40-bit accumulators, two  
40-bit ALUs, four video ALUs, and a 40-bit shifter. The compu-  
tation units process 8-bit, 16-bit, or 32-bit data from the register  
file.  
The architecture provides three modes of operation: User mode,  
Supervisor mode, and Emulation mode. User mode has  
restricted access to certain system resources, thus providing a  
protected software environment, while Supervisor mode has  
unrestricted access to the system and core resources.  
The compute register file contains eight 32-bit registers. When  
performing compute operations on 16-bit operand data, the  
register file operates as 16 independent 16-bit registers. All  
operands for compute operations come from the multiported  
register file and instruction constant fields.  
The Blackfin processor instruction set has been optimized so  
that 16-bit opcodes represent the most frequently used instruc-  
tions, resulting in excellent compiled code density. Complex  
DSP instructions are encoded into 32-bit opcodes, representing  
fully featured multifunction instructions. Blackfin processors  
support a limited multi-issue capability, where a 32-bit instruc-  
tion can be issued in parallel with two 16-bit instructions,  
allowing the programmer to use many of the core resources in a  
single instruction cycle.  
Each MAC can perform a 16-bit by 16-bit multiply in each  
cycle, accumulating the results into the 40-bit accumulators.  
Signed and unsigned formats, rounding, and saturation are  
supported.  
The ALUs perform a traditional set of arithmetic and logical  
operations on 16-bit or 32-bit data. In addition, many special  
instructions are included to accelerate various signal processing  
tasks. These include bit operations such as field extract and pop-  
ulation count, modulo 232 multiply, divide primitives, saturation  
and rounding, and sign/exponent detection. The set of video  
instructions include byte alignment and packing operations, 16-  
bit and 8-bit adds with clipping, 8-bit average operations, and 8-  
bit subtract/absolute value/accumulate (SAA) operations. Also  
provided are the compare/select and vector search instructions.  
The Blackfin processor assembly language uses an algebraic syn-  
tax for ease of coding and readability. The architecture has been  
optimized for use in conjunction with the C/C++ compiler,  
resulting in fast and efficient software implementations.  
MEMORY ARCHITECTURE  
For certain instructions, two 16-bit ALU operations can be per-  
formed simultaneously on register pairs (a 16-bit high half and  
16-bit low half of a compute register). By also using the second  
ALU, quad 16-bit operations are possible.  
The ADSP-BF536/BF537 processor views memory as a single  
unified 4G byte address space, using 32-bit addresses. All  
resources, including internal memory, external memory, and  
I/O control registers, occupy separate sections of this common  
address space. The memory portions of this address space are  
arranged in a hierarchical structure to provide a good cost/per-  
formance balance of some very fast, low-latency on-chip  
memory as cache or SRAM, and larger, lower-cost and perfor-  
mance off-chip memory systems. See Figure 3 on Page 6, and  
Figure 4 on Page 6.  
The 40-bit shifter can perform shifts and rotates and is used to  
support normalization, field extract, and field deposit  
instructions.  
Rev. PrE  
|
Page 4 of 64  
|
July 2005  
Preliminary Technical Data  
ADSP-BF536/BF537  
ADDRESS ARITHMETIC UNIT  
SP  
FP  
P5  
P4  
P3  
P2  
P1  
P0  
I3  
I2  
I1  
I0  
L3  
L2  
L1  
L0  
B3  
B2  
B1  
B0  
M3  
M2  
M1  
M0  
DAG1  
DAG0  
DA1 32  
DA0 32  
32  
PREG  
32  
RAB  
SD 32  
LD1 32  
LD0 32  
ASTAT  
32  
32  
SEQUENCER  
ALIGN  
R7.H  
R6.H  
R5.H  
R4.H  
R3.H  
R2.H  
R1.H  
R0.H  
R7.L  
R6.L  
R5.L  
R4.L  
R3.L  
R2.L  
R1.H  
R0.L  
16  
16  
8
8
8
8
DECODE  
BARREL  
SHIFTER  
LOOP BUFFER  
40  
40  
40 40  
A0  
A1  
CONTROL  
UNIT  
32  
32  
DATA ARITHMETIC UNIT  
Figure 2. Blackfin Processor Core  
The on-chip L1 memory system is the highest-performance  
memory available to the Blackfin processor. The off-chip mem-  
ory system, accessed through the External Bus Interface Unit  
(EBIU), provides expansion with SDRAM, flash memory, and  
SRAM, optionally accessing up to 516M bytes of physical  
memory.  
The third memory block is a 4K byte scratchpad SRAM which  
runs at the same speed as the L1 memories, but is only accessible  
as data SRAM and cannot be configured as cache memory.  
External (Off-Chip) Memory  
External memory is accessed via the EBIU. This 16-bit interface  
provides a glueless connection to a bank of synchronous DRAM  
(SDRAM) as well as up to four banks of asynchronous memory  
devices including flash, EPROM, ROM, SRAM, and memory  
mapped I/O devices.  
The memory DMA controller provides high-bandwidth data-  
movement capability. It can perform block transfers of code or  
data between the internal memory and the external memory  
spaces.  
The PC133-compliant SDRAM controller can be programmed  
to interface to up to 512M bytes of SDRAM. A separate row can  
be open for each SDRAM internal bank and the SDRAM con-  
troller supports up to 4 internal SDRAM banks, improving  
overall performance.  
Internal (On-chip) Memory  
The ADSP-BF536/BF537 processor has three blocks of on-chip  
memory providing high-bandwidth access to the core.  
The first block is the L1 instruction memory, consisting of  
64K bytes SRAM, of which 16K bytes can be configured as a  
four-way set-associative cache. This memory is accessed at full  
processor speed.  
The asynchronous memory controller can be programmed to  
control up to four banks of devices with very flexible timing  
parameters for a wide variety of devices. Each bank occupies a  
1M byte segment regardless of the size of the devices used, so  
that these banks will only be contiguous if each is fully popu-  
lated with 1M byte of memory.  
The second on-chip memory block is the L1 data memory, con-  
sisting of up to two banks of up to 32K bytes each. Each memory  
bank is configurable, offering both Cache and SRAM function-  
ality. This memory block is accessed at full processor speed.  
Rev. PrE  
|
Page 5 of 64  
|
July 2005  
ADSP-BF536/BF537  
Preliminary Technical Data  
0xFFFF FFFF  
0xFFFF FFFF  
0xFFE0 0000  
0xFFC0 0000  
0xFFB0 1000  
0xFFB0 0000  
0xFFA1 4000  
0xFFA1 0000  
0xFFA0 C000  
0xFFA0 8000  
CORE MMR REGISTERS (2M BYTE)  
CORE MMR REGISTERS (2M BYTE)  
SYSTEM MMR REGISTERS (2M BYTE)  
RESERVED  
0xFFE0 0000  
0xFFC0 0000  
0xFFB0 1000  
0xFFB0 0000  
0xFFA1 4000  
0xFFA1 0000  
0xFFA0 C000  
0xFFA0 8000  
SYSTEM MMR REGISTERS (2M BYTE)  
RESERVED  
SCRATCHPAD SRAM (4K BYTE)  
RESERVED  
SCRATCHPAD SRAM (4K BYTE)  
RESERVED  
INSTRUCTION SRAM / CACHE (16K BYTE)  
RESERVED  
INSTRUCTION SRAM / CACHE (16K BYTE)  
RESERVED  
INSTRUCTION BANK B SRAM (16K BYTE)  
INSTRUCTION BANK A SRAM (32K BYTE)  
RESERVED  
INSTRUCTION BANK B SRAM (16K BYTE)  
INSTRUCTION BANK A SRAM (32K BYTE)  
RESERVED  
0xFFA0 0000  
0xFF90 8000  
0xFF90 4000  
0xFF90 0000  
0xFF80 8000  
0xFF80 4000  
0xFF80 0000  
0xEF00 0800  
0xEF00 0000  
0x2040 0000  
0x2030 0000  
0x2020 0000  
0x2010 0000  
0x2000 0000  
0x0000 0000  
0xFFA0 0000  
0xFF90 8000  
0xFF90 4000  
0xFF90 0000  
0xFF80 8000  
0xFF80 4000  
0xFF80 0000  
0xEF00 0800  
0xEF00 0000  
DATA BANK B SRAM / CACHE (16K BYTE)  
RESERVED  
DATA BANK B SRAM / CACHE (16K BYTE)  
DATA BANK B SRAM (16K BYTE)  
RESERVED  
RESERVED  
DATA BANK A SRAM / CACHE (16K BYTE)  
DATA BANK A SRAM / CACHE (16K BYTE)  
DATA BANK A SRAM (16K BYTE)  
RESERVED  
RESERVED  
RESERVED  
BOOT ROM (2K BYTE)  
BOOT ROM (2K BYTE)  
RESERVED  
RESERVED  
0x2040 0000  
0x2030 0000  
0x2020 0000  
0x2010 0000  
0x2000 0000  
0x0000 0000  
ASYNC MEMORY BANK 3 (1M BYTE)  
ASYNC MEMORY BANK 2 (1M BYTE)  
ASYNC MEMORY BANK 1 (1M BYTE)  
ASYNC MEMORY BANK 0 (1M BYTE)  
SDRAM MEMORY (16M BYTE - 512M BYTE)  
ASYNC MEMORY BANK 3 (1M BYTE)  
ASYNC MEMORY BANK 2 (1M BYTE)  
ASYNC MEMORY BANK 1 (1M BYTE)  
ASYNC MEMORY BANK 0 (1M BYTE)  
SDRAM MEMORY (16M BYTE - 512M BYTE)  
Figure 3. ADSP-BF536 Internal/External Memory Map  
Figure 4. ADSP-BF537 Internal/External Memory Map  
oritization ensures that servicing of a higher-priority event takes  
precedence over servicing of a lower-priority event. The con-  
troller provides support for five different types of events:  
I/O Memory Space  
The ADSP-BF536/BF537 processors do not define a separate  
I/O space. All resources are mapped through the flat 32-bit  
address space. On-chip I/O devices have their control registers  
mapped into memory-mapped registers (MMRs) at addresses  
near the top of the 4G byte address space. These are separated  
into two smaller blocks, one which contains the control MMRs  
for all core functions, and the other which contains the registers  
needed for setup and control of the on-chip peripherals outside  
of the core. The MMRs are accessible only in supervisor mode  
and appear as reserved space to on-chip peripherals.  
• Emulation – An emulation event causes the processor to  
enter emulation mode, allowing command and control of  
the processor via the JTAG interface.  
• Reset – This event resets the processor.  
• Non-Maskable Interrupt (NMI) – The NMI event can be  
generated by the software watchdog timer or by the NMI  
input signal to the processor. The NMI event is frequently  
used as a power-down indicator to initiate an orderly shut-  
down of the system.  
Booting  
• Exceptions – Events that occur synchronously to program  
flow (i.e., the exception will be taken before the instruction  
is allowed to complete). Conditions such as data alignment  
violations and undefined instructions cause exceptions.  
The ADSP-BF536/BF537 processor contains a small on-chip  
Boot Kernel, which configures the appropriate peripheral for  
booting. If the ADSP-BF536/BF537 processor is configured to  
boot from Boot ROM memory space, the processor starts exe-  
cuting from the on-chip Boot ROM. For more information, see  
Booting Modes on Page 16.  
• Interrupts – Events that occur asynchronously to program  
flow. They are caused by input pins, timers, and other  
peripherals, as well as by an explicit software instruction.  
Event Handling  
Each event type has an associated register to hold the return  
address and an associated return-from-event instruction. When  
an event is triggered, the state of the processor is saved on the  
supervisor stack.  
The event controller on the ADSP-BF536/BF537 processor han-  
dles all asynchronous and synchronous events to the processor.  
The ADSP-BF536/BF537 processor provides event handling  
that supports both nesting and prioritization. Nesting allows  
multiple event service routines to be active simultaneously. Pri-  
Rev. PrE  
|
Page 6 of 64  
|
July 2005  
Preliminary Technical Data  
ADSP-BF536/BF537  
The ADSP-BF536/BF537 processor Event Controller consists of  
two stages, the Core Event Controller (CEC) and the System  
Interrupt Controller (SIC). The Core Event Controller works  
with the System Interrupt Controller to prioritize and control all  
system events. Conceptually, interrupts from the peripherals  
enter into the SIC, and are then routed directly into the general-  
purpose interrupts of the CEC.  
Table 3. System Interrupt Controller (SIC)  
Peripheral Interrupt Event  
Default  
Peripheral  
Interrupt ID  
Mapping  
PLL Wakeup  
IVG7  
IVG7  
IVG7  
IVG7  
IVG7  
IVG7  
IVG7  
IVG7  
IVG7  
IVG7  
IVG7  
IVG7  
IVG7  
IVG7  
IVG8  
IVG8  
IVG9  
IVG9  
IVG9  
IVG9  
IVG10  
IVG10  
IVG10  
IVG10  
IVG10  
IVG10  
IVG11  
IVG11  
IVG11  
IVG11  
IVG11  
0
DMA Error (generic)  
DMAR0 Block Interrupt  
DMAR1 Block Interrupt  
DMAR0 Overflow Error  
DMAR1 Overflow Error  
CAN Error  
1
1
1
Core Event Controller (CEC)  
1
The CEC supports nine general-purpose interrupts (IVG15–7),  
in addition to the dedicated interrupt and exception events. Of  
these general-purpose interrupts, the two lowest-priority inter-  
rupts (IVG15–14) are recommended to be reserved for software  
interrupt handlers, leaving seven prioritized interrupt inputs to  
support the peripherals of the ADSP-BF536/BF537 processor.  
Table 2 describes the inputs to the CEC, identifies their names  
in the Event Vector Table (EVT), and lists their priorities.  
1
2
Ethernet Error  
2
SPORT 0 Error  
2
SPORT 1 Error  
2
PPI Error  
2
SPI Error  
2
Table 2. Core Event Controller (CEC)  
UART0 Error  
2
UART1 Error  
2
Priority  
Event Class  
EVT Entry  
Real-Time Clock  
3
(0 is Highest)  
DMA Channel 0 (PPI)  
DMA Channel 3 (SPORT 0 RX)  
DMA Channel 4 (SPORT 0 TX)  
DMA Channel 5 (SPORT 1 RX)  
DMA Channel 6 (SPORT 1 TX)  
TWI  
4
0
Emulation/Test Control EMU  
Reset RST  
Non-Maskable Interrupt NMI  
5
1
6
2
7
3
Exception  
EVX  
8
4
Reserved  
9
5
Hardware Error  
IVHW  
IVTMR  
IVG7  
DMA Channel 7 (SPI)  
DMA Channel 8 (UART0 RX)  
DMA Channel 9 (UART0 TX)  
DMA Channel 10 (UART1 RX)  
DMA Channel 11 (UART1 TX)  
CAN RX  
10  
11  
12  
13  
14  
15  
16  
17  
17  
18  
6
Core Timer  
7
General Interrupt 7  
General Interrupt 8  
General Interrupt 9  
General Interrupt 10  
General Interrupt 11  
General Interrupt 12  
General Interrupt 13  
General Interrupt 14  
General Interrupt 15  
8
IVG8  
9
IVG9  
10  
11  
12  
13  
14  
15  
IVG10  
IVG11  
IVG12  
IVG13  
IVG14  
IVG15  
CAN TX  
DMA Channel 1 (Ethernet RX)  
Port H Interrupt A  
DMA Channel 2 (Ethernet TX)  
System Interrupt Controller (SIC)  
The System Interrupt Controller provides the mapping and  
routing of events from the many peripheral interrupt sources to  
the prioritized general-purpose interrupt inputs of the CEC.  
Although the ADSP-BF536/BF537 processor provides a default  
mapping, the user can alter the mappings and priorities of  
interrupt events by writing the appropriate values into the Inter-  
rupt Assignment Registers (IAR). Table 3 describes the inputs  
into the SIC and the default mappings into the CEC.  
Rev. PrE  
|
Page 7 of 64  
|
July 2005  
ADSP-BF536/BF537  
Preliminary Technical Data  
Table 3. System Interrupt Controller (SIC) (Continued)  
The SIC allows further control of event processing by providing  
three 32-bit interrupt control and status registers. Each register  
contains a bit corresponding to each of the peripheral interrupt  
events shown in Table 3 on Page 7.  
Peripheral Interrupt Event  
Default  
Peripheral  
Mapping  
Interrupt ID  
Port H Interrupt B  
Timer 0  
IVG11  
IVG12  
IVG12  
IVG12  
IVG12  
IVG12  
IVG12  
IVG12  
IVG12  
IVG12  
IVG12  
IVG13  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
• SIC Interrupt Mask Register (SIC_IMASK)– This register  
controls the masking and unmasking of each peripheral  
interrupt event. When a bit is set in the register, that  
peripheral event is unmasked and will be processed by the  
system when asserted. A cleared bit in the register masks  
the peripheral event, preventing the processor from servic-  
ing the event.  
Timer 1  
Timer 2  
Timer 3  
Timer 4  
Timer 5  
• SIC Interrupt Status Register (SIC_ISR) – As multiple  
peripherals can be mapped to a single event, this register  
allows the software to determine which peripheral event  
source triggered the interrupt. A set bit indicates the  
peripheral is asserting the interrupt, and a cleared bit indi-  
cates the peripheral is not asserting the event.  
Timer 6  
Timer 7  
Port F, G Interrupt A  
Port G Interrupt B  
DMA Channels 12 and 13  
(Memory DMA Stream 0)  
• SIC Interrupt Wakeup Enable Register (SIC_IWR) – By  
enabling the corresponding bit in this register, a peripheral  
can be configured to wake up the processor, should the  
core be idled when the event is generated. (For more infor-  
mation, see Dynamic Power Management on Page 13.)  
DMA Channels 14 and 15  
(Memory DMA Stream 1)  
IVG13  
30  
Software Watchdog Timer  
Port F Interrupt B  
IVG13  
IVG13  
31  
31  
Because multiple interrupt sources can map to a single general-  
purpose interrupt, multiple pulse assertions can occur simulta-  
neously, before or during interrupt processing for an interrupt  
event already detected on this interrupt input. The IPEND reg-  
ister contents are monitored by the SIC as the interrupt  
acknowledgement.  
Event Control  
The ADSP-BF536/BF537 processor provides the user with a  
very flexible mechanism to control the processing of events. In  
the CEC, three registers are used to coordinate and control  
events. Each register is 16 bits wide:  
The appropriate ILAT register bit is set when an interrupt rising  
edge is detected (detection requires two core clock cycles). The  
bit is cleared when the respective IPEND register bit is set. The  
IPEND bit indicates that the event has entered into the proces-  
sor pipeline. At this point the CEC will recognize and queue the  
next rising edge event on the corresponding event input. The  
minimum latency from the rising edge transition of the general-  
purpose interrupt to the IPEND output asserted is three core  
clock cycles; however, the latency can be much higher, depend-  
ing on the activity within and the state of the processor.  
• CEC Interrupt Latch Register (ILAT) – The ILAT register  
indicates when events have been latched. The appropriate  
bit is set when the processor has latched the event and  
cleared when the event has been accepted into the system.  
This register is updated automatically by the controller, but  
it may be written only when its corresponding IMASK bit  
is cleared.  
• CEC Interrupt Mask Register (IMASK) – The IMASK reg-  
ister controls the masking and unmasking of individual  
events. When a bit is set in the IMASK register, that event is  
unmasked and will be processed by the CEC when asserted.  
A cleared bit in the IMASK register masks the event, pre-  
venting the processor from servicing the event even though  
the event may be latched in the ILAT register. This register  
may be read or written while in supervisor mode. (Note  
that general-purpose interrupts can be globally enabled and  
disabled with the STI and CLI instructions, respectively.)  
DMA CONTROLLERS  
The ADSP-BF536/BF537 processor has multiple, independent  
DMA controllers that support automated data transfers with  
minimal overhead for the processor core. DMA transfers can  
occur between the ADSP-BF536/BF537 processor's internal  
memories and any of its DMA-capable peripherals. Addition-  
ally, DMA transfers can be accomplished between any of the  
DMA-capable peripherals and external devices connected to the  
external memory interfaces, including the SDRAM controller  
and the asynchronous memory controller. DMA-capable  
peripherals include the Ethernet MAC, SPORTs, SPI port,  
UARTs, and PPI. Each individual DMA-capable peripheral has  
at least one dedicated DMA channel.  
• CEC Interrupt Pending Register (IPEND) – The IPEND  
register keeps track of all nested events. A set bit in the  
IPEND register indicates the event is currently active or  
nested at some level. This register is updated automatically  
by the controller but may be read while in supervisor mode.  
The ADSP-BF536/BF537 processor DMA controller supports  
both 1-dimensional (1D) and 2-dimensional (2D) DMA trans-  
fers. DMA transfer initialization can be implemented from  
registers or from sets of parameters called descriptor blocks.  
Rev. PrE  
|
Page 8 of 64  
|
July 2005  
Preliminary Technical Data  
ADSP-BF536/BF537  
The 2D DMA capability supports arbitrary row and column  
sizes up to 64K elements by 64K elements, and arbitrary row  
and column step sizes up to 32K elements. Furthermore, the  
column step size can be less than the row step size, allowing  
implementation of interleaved data streams. This feature is  
especially useful in video applications where data can be de-  
interleaved on the fly.  
When enabled, the alarm function generates an interrupt when  
the output of the timer matches the programmed value in the  
alarm control register. There are two alarms: The first alarm is  
for a time of day. The second alarm is for a day and time of that  
day.  
The stopwatch function counts down from a programmed  
value, with one-second resolution. When the stopwatch is  
enabled and the counter underflows, an interrupt is generated.  
Examples of DMA types supported by the ADSP-BF536/BF537  
processor DMA controller include:  
Like the other peripherals, the RTC can wake up the ADSP-  
BF536/BF537 processor from Sleep mode upon generation of  
any RTC wakeup event. Additionally, an RTC wakeup event can  
wake up the ADSP-BF536/BF537 processor from Deep Sleep  
mode, and wake up the on-chip internal voltage regulator from  
the Hibernate operating mode.  
• A single, linear buffer that stops upon completion  
• A circular, auto-refreshing buffer that interrupts on each  
full or fractionally full buffer  
• 1-D or 2-D DMA using a linked list of descriptors  
• 2-D DMA using an array of descriptors, specifying only the  
base DMA address within a common page  
Connect RTC pins RTXI and RTXO with external components  
as shown in Figure 5.  
In addition to the dedicated peripheral DMA channels, there are  
two memory DMA channels provided for transfers between the  
various memories of the ADSP-BF536/BF537 processor system.  
This enables transfers of blocks of data between any of the  
memories—including external SDRAM, ROM, SRAM, and  
flash memory—with minimal processor intervention. Memory  
DMA transfers can be controlled by a very flexible descriptor-  
based methodology or by a standard register-based autobuffer  
mechanism.  
RTXI  
RTXO  
R1  
X1  
C1  
C2  
The ADSP-BF536/BF537 processors also include an external  
DMA controller capability via dual external DMA request pins  
when used in conjunction with the External Bus Interface Unit  
(EBIU). This functionality can be used when a high speed inter-  
face is required for external FIFOs and high bandwidth  
communications peripherals such as USB 2.0. It allows control  
of the number of data transfers for memDMA. The number of  
transfers per edge is programmable. This feature can be pro-  
grammed to allow memDMA to have an increased priority on  
the external bus relative to the core.  
SUGGESTED COMPONENTS:  
ECLIPTEK EC38J (THROUGH-HOLE PACKAGE)  
EPSON MC405 12 PF LOAD (SURFACE MOUNT PACKAGE)  
C1 = 22 PF  
C2 = 22 PF  
R1 = 10 M  
NOTE: C1 AND C2 ARE SPECIFIC TO CRYSTAL SPECIFIED FOR X1.  
CONTACT CRYSTAL MANUFACTURER FOR DETAILS. C1 AND C2  
SPECIFICATIONS ASSUME BOARD TRACE CAPACITANCE OF 3 PF.  
Figure 5. External Components for RTC  
WATCHDOG TIMER  
REAL-TIME CLOCK  
The ADSP-BF536/BF537 processor includes a 32-bit timer that  
can be used to implement a software watchdog function. A soft-  
ware watchdog can improve system availability by forcing the  
processor to a known state through generation of a hardware  
reset, non-maskable interrupt (NMI), or general-purpose inter-  
rupt, if the timer expires before being reset by software. The  
programmer initializes the count value of the timer, enables the  
appropriate interrupt, then enables the timer. Thereafter, the  
software must reload the counter before it counts to zero from  
the programmed value. This protects the system from remain-  
ing in an unknown state where software, which would normally  
reset the timer, has stopped running due to an external noise  
condition or software error.  
The ADSP-BF536/BF537 processor Real-Time Clock (RTC)  
provides a robust set of digital watch features, including current  
time, stopwatch, and alarm. The RTC is clocked by a  
32.768 KHz crystal external to the ADSP-BF536/BF537 proces-  
sor. The RTC peripheral has dedicated power supply pins so  
that it can remain powered up and clocked even when the rest of  
the processor is in a low-power state. The RTC provides several  
programmable interrupt options, including interrupt per sec-  
ond, minute, hour, or day clock ticks, interrupt on  
programmable stopwatch countdown, or interrupt at a pro-  
grammed alarm time.  
The 32.768 KHz input clock frequency is divided down to a  
1 Hz signal by a prescaler. The counter function of the timer  
consists of four counters: a 60-second counter, a 60-minute  
counter, a 24-hour counter, and an 32,768-day counter.  
If configured to generate a hardware reset, the watchdog timer  
resets both the core and the ADSP-BF536/BF537 processor  
peripherals. After a reset, software can determine if the watch-  
dog was the source of the hardware reset by interrogating a  
status bit in the watchdog timer control register.  
Rev. PrE  
|
Page 9 of 64  
|
July 2005  
ADSP-BF536/BF537  
Preliminary Technical Data  
The timer is clocked by the system clock (SCLK), at a maximum  
• DMA operations with single-cycle overhead – Each SPORT  
can automatically receive and transmit multiple buffers of  
memory data. The processor can link or chain sequences of  
DMA transfers between a SPORT and memory.  
frequency of fSCLK  
.
TIMERS  
There are nine general-purpose programmable timer units in  
the ADSP-BF536/BF537 processor. Eight timers have an exter-  
nal pin that can be configured either as a Pulse Width  
Modulator (PWM) or timer output, as an input to clock the  
timer, or as a mechanism for measuring pulse widths and peri-  
ods of external events. These timers can be synchronized to an  
external clock input to the several other associated PF pins, an  
external clock input to the PPI_CLK input pin, or to the internal  
SCLK.  
• Interrupts – Each transmit and receive port generates an  
interrupt upon completing the transfer of a data word or  
after transferring an entire data buffer or buffers through  
DMA.  
• Multichannel capability – Each SPORT supports 128 chan-  
nels out of a 1024-channel window and is compatible with  
the H.100, H.110, MVIP-90, and HMVIP standards.  
SERIAL PERIPHERAL INTERFACE (SPI) PORT  
The timer units can be used in conjunction with the two UARTs  
and the CAN controller to measure the width of the pulses in  
the data stream to provide a software auto-baud detect function  
for the respective serial channels.  
The ADSP-BF536/BF537 processor has an SPI-compatible port  
that enables the processor to communicate with multiple SPI-  
compatible devices.  
The SPI interface uses three pins for transferring data: two data  
pins (Master Output-Slave Input, MOSI, and Master Input-  
Slave Output, MISO) and a clock pin (Serial Clock, SCK). An  
SPI chip select input pin (SPISS) lets other SPI devices select the  
processor, and seven SPI chip select output pins (SPISEL7–1) let  
the processor select other SPI devices. The SPI select pins are  
reconfigured Programmable Flag pins. Using these pins, the SPI  
port provides a full-duplex, synchronous serial interface, which  
supports both master/slave modes and multimaster  
environments.  
The timers can generate interrupts to the processor core provid-  
ing periodic events for synchronization, either to the system  
clock or to a count of external signals.  
In addition to the eight general-purpose programmable timers,  
a ninth timer is also provided. This extra timer is clocked by the  
internal processor clock and is typically used as a system tick  
clock for generation of operating system periodic interrupts.  
SERIAL PORTS (SPORTS)  
The ADSP-BF536/BF537 processor incorporates two dual-  
channel synchronous serial ports (SPORT0 and SPORT1) for  
serial and multiprocessor communications. The SPORTs sup-  
port the following features:  
The SPI port’s baud rate and clock phase/polarities are pro-  
grammable, and it has an integrated DMA controller,  
configurable to support transmit or receive data streams. The  
SPI’s DMA controller can only service unidirectional accesses at  
any given time.  
• I2S capable operation.  
The SPI port’s clock rate is calculated as:  
• Bidirectional operation – Each SPORT has two sets of inde-  
pendent transmit and receive pins, enabling eight channels  
of I2S stereo audio.  
f
SCLK  
SPI Clock Rate = ---------------------------------  
2 × SPI_Baud  
• Buffered (8-deep) transmit and receive ports – Each port  
has a data register for transferring data words to and from  
other processor components and shift registers for shifting  
data in and out of the data registers.  
Where the 16-bit SPI_Baud register contains a value of 2 to  
65,535.  
During transfers, the SPI port simultaneously transmits and  
receives by serially shifting data in and out on its two serial data  
lines. The serial clock line synchronizes the shifting and sam-  
pling of data on the two serial data lines.  
• Clocking – Each transmit and receive port can either use an  
external serial clock or generate its own, in frequencies  
ranging from (fSCLK/131,070) Hz to (fSCLK/2) Hz.  
• Word length – Each SPORT supports serial data words  
from 3 to 32 bits in length, transferred most-significant-bit  
first or least-significant-bit first.  
• Framing – Each transmit and receive port can run with or  
without frame sync signals for each data word. Frame sync  
signals can be generated internally or externally, active high  
or low, and with either of two pulsewidths and early or late  
frame sync.  
• Companding in hardware – Each SPORT can perform  
A-law or µ-law companding according to ITU recommen-  
dation G.711. Companding can be selected on the transmit  
and/or receive channel of the SPORT without additional  
latencies.  
Rev. PrE  
|
Page 10 of 64  
|
July 2005  
Preliminary Technical Data  
ADSP-BF536/BF537  
The ADSP-BF536/BF537 CAN controller offers the following  
features:  
UART PORTS (UARTS)  
The ADSP-BF536/BF537 processor provides two full-duplex  
Universal Asynchronous Receiver/Transmitter (UART) ports,  
which are fully compatible with PC-standard UARTs. Each  
UART port provides a simplified UART interface to other  
peripherals or hosts, supporting full-duplex, DMA-supported,  
asynchronous transfers of serial data. A UART port includes  
support for 5 to 8 data bits, 1 or 2 stop bits, and none, even, or  
odd parity. Each UART port supports two modes of operation:  
• 32 mailboxes (8 receive only, 8 transmit only, 16 config-  
urable for receive or transmit).  
• Dedicated acceptance masks for each mailbox.  
• Additional data filtering on first two bytes.  
• Support for both the standard (11-bit) and extended (29-  
bit) identifier (ID) message formats.  
• Support for remote frames.  
• PIO (Programmed I/O) – The processor sends or receives  
data by writing or reading I/O-mapped UART registers.  
The data is double-buffered on both transmit and receive.  
• Active or passive network support.  
• CAN wakeup from Hibernation Mode (lowest static power  
consumption mode).  
• DMA (Direct Memory Access) – The DMA controller  
transfers both transmit and receive data. This reduces the  
number and frequency of interrupts required to transfer  
data to and from memory. The UART has two dedicated  
DMA channels, one for transmit and one for receive. These  
DMA channels have lower default priority than most DMA  
channels because of their relatively low service rates.  
• Interrupts, including: TX Complete, RX Complete, Error,  
Global.  
The electrical characteristics of each network connection are  
very demanding so the CAN interface is typically divided into  
two parts: a controller and a transceiver. This allows a single  
controller to support different drivers and CAN networks. The  
ADSP-BF536/BF537 CAN module represents only the control-  
ler part of the interface. The controller interface supports  
connection to 3.3V high-speed, fault-tolerant, single-wire  
transceivers.  
Each UART port's baud rate, serial data format, error code gen-  
eration and status, and interrupts are programmable:  
• Supporting bit rates ranging from (fSCLK/ 1,048,576) to  
(fSCLK/16) bits per second.  
• Supporting data formats from 7 to12 bits per frame.  
TWI CONTROLLER INTERFACE  
• Both transmit and receive operations can be configured to  
generate maskable interrupts to the processor.  
The ADSP-BF536/BF537 processor includes a Two Wire Inter-  
face (TWI) module for providing a simple exchange method of  
control data between multiple devices. The TWI is compatible  
with the widely used I2C bus standard. The TWI module offers  
the capabilities of simultaneous Master and Slave operation,  
support for both 7-bit addressing and multimedia data arbitra-  
tion. The TWI interface utilizes two pins for transferring clock  
(SCL) and data (SDA) and supports the protocol at speeds up to  
400k bits/sec. The TWI interface pins are compatible with 5 V  
logic levels.  
The UART port’s clock rate is calculated as:  
f
SCLK  
UART Clock Rate = ------------------------------------------------  
16 × UART_Divisor  
Where the 16-bit UART_Divisor comes from the DLH register  
(most significant 8 bits) and DLL register (least significant  
8 bits).  
In conjunction with the general-purpose timer functions, auto-  
baud detection is supported.  
Additionally, the ADSP-BF536/BF537 processor’s TWI module  
is fully compatible with Serial Camera Control Bus (SCCB)  
functionality for easier control of various CMOS camera sensor  
devices.  
The capabilities of the UARTs are further extended with sup-  
port for the Infrared Data Association (IrDA®) Serial Infrared  
Physical Layer Link Specification (SIR) protocol.  
10/100 ETHERNET MAC  
CONTROLLER AREA NETWORK (CAN)  
The ADSP-BF536/BF537 processor offers the capability to  
directly connect to a network by way of an embedded Fast  
Ethernet Medium Access Controller (MAC) that supports both  
10-BaseT (10Mbits/sec) and 100-BaseT (100Mbits/sec) opera-  
tion. The 10/100 Ethernet MAC peripheral on the ADSP-  
BF536/BF537 is fully compliant to the IEEE 802.3-2002 stan-  
dard and it provides programmable features designed to  
minimize supervision, bus utilization, or message processing by  
the rest of the processor system.  
The ADSP-BF536/BF537 processor offers a CAN controller that  
is a communication controller implementing the Controller  
Area Network (CAN) 2.0B (active) protocol. This protocol is an  
asynchronous communications protocol used in both industrial  
and automotive control systems. The CAN protocol is well  
suited for control applications due to its capability to communi-  
cate reliably over a network since the protocol incorporates  
CRC checking message error tracking, and fault node  
confinement.  
Some standard features are:  
• Support of MII and RMII protocols for external PHYs.  
• Full Duplex and Half Duplex modes.  
Rev. PrE  
|
Page 11 of 64 | July 2005  
ADSP-BF536/BF537  
Preliminary Technical Data  
• Data framing and encapsulation: generation and detection  
of preamble, length padding, and FCS.  
• Programmable MDC clock rate and preamble suppression.  
• In RMII operation, 7 unused pins may be configured as  
GPIO pins for other purposes.  
• Media access management (in Half-Duplex operation): col-  
lision and contention handling, including control of  
retransmission of collision frames and of back-off timing.  
PORTS  
Because of the rich set of peripherals, the ADSP-BF536/BF537  
processor groups the many peripheral signals to four ports—  
Port F, Port G, Port H, and Port J. Most of the associated pins  
are shared by multiple signals. The ports function as multiplexer  
controls. Eight of the pins (Port F7–0) offer high source/high  
sink current capabilities.  
• Flow control (in Full-Duplex operation): generation and  
detection of PAUSE frames.  
• Station management: generation of MDC/MDIO frames  
for read-write access to PHY registers.  
• SCLK operating range down to 25MHz (Active and Sleep  
operating modes).  
General-Purpose I/O (GPIO)  
• Internal loopback from TX to RX.  
Some advanced features are:  
The ADSP-BF536/BF537 processor has 48 bi-directional, gen-  
eral-purpose I/O (GPIO) pins allocated across three separate  
GPIO modules—PORTFIO, PORTGIO, and PORTHIO, asso-  
ciated with Port F, Port G, and Port H, respectively. Port J does  
not provide GPIO functionality. Each GPIO-capable pin shares  
functionality with other ADSP-BF536/BF537 processor periph-  
erals via a multiplexing scheme; however, the GPIO  
functionality is the default state of the device upon power-up.  
Neither GPIO output or input drivers are active by default. Each  
general-purpose port pin can be individually controlled by  
manipulation of the port control, status, and interrupt registers:  
• Buffered crystal output to external PHY for support of a  
single crystal system.  
• Automatic checksum computation of IP header and IP  
payload fields of RX frames.  
• Independent 32-bit descriptor-driven RX and TX DMA  
channels.  
• Frame status delivery to memory via DMA, including  
frame completion semaphores, for efficient buffer queue  
management in software.  
• GPIO Direction Control Register – Specifies the direction  
of each individual GPIO pin as input or output.  
• TX DMA support for separate descriptors for MAC header  
and payload to eliminate buffer copy operations.  
• GPIO Control and Status Registers – The ADSP-  
BF536/BF537 processor employs a “write one to modify”  
mechanism that allows any combination of individual  
GPIO pins to be modified in a single instruction, without  
affecting the level of any other GPIO pins. Four control  
registers are provided. One register is written in order to set  
pin values, one register is written in order to clear pin val-  
ues, one register is written in order to toggle pin values, and  
one register is written in order to specify a pin value. Read-  
ing the GPIO status register allows software to interrogate  
the sense of the pins.  
• Convenient frame alignment modes support even 32-bit  
alignment of encapsulated RX or TX IP packet data in  
memory after the 14-byte MAC header.  
• Programmable Ethernet event interrupt supports any com-  
bination of:  
• Any selected RX or TX frame status conditions.  
• PHY interrupt condition.  
• Wakeup frame detected.  
• Any selected MAC management counter(s) at half-  
full.  
• GPIO Interrupt Mask Registers – The two GPIO Interrupt  
Mask registers allow each individual GPIO pin to function  
as an interrupt to the processor. Similar to the two GPIO  
Control Registers that are used to set and clear individual  
pin values, one GPIO Interrupt Mask Register sets bits to  
enable interrupt function, and the other GPIO Interrupt  
Mask register clears bits to disable interrupt function.  
GPIO pins defined as inputs can be configured to generate  
hardware interrupts, while output pins can be triggered by  
software interrupts.  
• DMA descriptor error.  
• 47 MAC management statistics counters with selectable  
clear-on-read behavior and programmable interrupts on  
half maximum value.  
• Programmable RX address filters, including a 64-bin  
address hash table for multicast and/or unicast frames, and  
programmable filter modes for broadcast, multicast, uni-  
cast, control, and damaged frames.  
• GPIO Interrupt Sensitivity Registers – The two GPIO  
Interrupt Sensitivity Registers specify whether individual  
pins are level- or edge-sensitive and specify—if edge-sensi-  
tive—whether just the rising edge or both the rising and  
falling edges of the signal are significant. One register  
selects the type of sensitivity, and one register selects which  
edges are significant for edge-sensitivity.  
• Advanced power management supporting unattended  
transfer of RX and TX frames and status to/from external  
memory via DMA during low-power Sleep mode.  
• System wakeup from Sleep operating mode upon magic  
packet or any of four user-definable wakeup frame filters.  
• Support for 802.3Q tagged VLAN frames.  
Rev. PrE  
|
Page 12 of 64  
|
July 2005  
Preliminary Technical Data  
ADSP-BF536/BF537  
further reducing power dissipation. Control of clocking to each  
of the ADSP-BF536/BF537 processor peripherals also reduces  
power consumption. See Table 4 for a summary of the power  
settings for each mode.  
PARALLEL PERIPHERAL INTERFACE (PPI)  
The ADSP-BF536/BF537 processor provides a Parallel Periph-  
eral Interface (PPI) that can connect directly to parallel A/D and  
D/A converters, ITU-R-601/656 video encoders and decoders,  
and other general-purpose peripherals. The PPI consists of a  
dedicated input clock pin, up to 3 frame synchronization pins,  
and up to 16 data pins.  
Full-On Operating Mode – Maximum Performance  
In the Full-On mode, the PLL is enabled and is not bypassed,  
providing capability for maximum operational frequency. This  
is the power-up default execution state in which maximum per-  
formance can be achieved. The processor core and all enabled  
peripherals run at full speed.  
In ITU-R-656 modes, the PPI receives and parses a data stream  
of 8-bit or 10-bit data elements. On-chip decode of embedded  
preamble control and synchronization information is  
supported.  
Active Operating Mode – Moderate Power Savings  
Three distinct ITU-R-656 modes are supported:  
In the Active mode, the PLL is enabled but bypassed. Because  
the PLL is bypassed, the processor’s core clock (CCLK) and sys-  
tem clock (SCLK) run at the input clock (CLKIN) frequency. In  
this mode, the CLKIN to CCLK multiplier ratio can be changed,  
although the changes are not realized until the Full-On mode is  
entered. DMA access is available to appropriately configured L1  
memories.  
• Active Video Only Mode—The PPI does not read in any  
data between the End of Active Video (EAV) and Start of  
Active Video (SAV) preamble symbols, or any data present  
during the vertical blanking intervals. In this mode, the  
control byte sequences are not stored to memory; they are  
filtered by the PPI.  
• Vertical Blanking Only Mode—The PPI only transfers Ver-  
tical Blanking Interval (VBI) data, as well as horizontal  
blanking information and control byte sequences on VBI  
lines.  
In the Active mode, it is possible to disable the PLL through the  
PLL Control register (PLL_CTL). If disabled, the PLL must be  
re-enabled before transitioning to the Full-On or Sleep modes.  
• Entire Field Mode—The entire incoming bitstream is read  
in through the PPI. This includes active video, control pre-  
amble sequences, and ancillary data that may be embedded  
in horizontal and vertical blanking intervals.  
Table 4. Power Settings  
Though not explicitly supported, ITU-R-656 output functional-  
ity can be achieved by setting up the entire frame structure  
(including active video, blanking, and control information) in  
memory and streaming the data out the PPI in a frame sync-less  
mode. The processor’s 2D DMA features facilitate this transfer  
by allowing the static frame buffer (blanking and control codes)  
to be placed in memory once, and simply updating the active  
video information on a per-frame basis.  
Full On  
Active  
Enabled  
No  
Enabled Enabled On  
Enabled Enabled On  
Enabled/ Yes  
Disabled  
Sleep  
Enabled  
-
-
-
Disabled Enabled On  
Disabled Disabled On  
Disabled Disabled Off  
Deep Sleep Disabled  
Hibernate Disabled  
The general-purpose modes of the PPI are intended to suit a  
wide variety of data capture and transmission applications. The  
modes are divided into four main categories, each allowing up  
to 16 bits of data transfer per PPI_CLK cycle:  
Sleep Operating Mode – High Dynamic Power Savings  
The Sleep mode reduces dynamic power dissipation by dis-  
abling the clock to the processor core (CCLK). The PLL and  
system clock (SCLK), however, continue to operate in this  
mode. Typically an external event or RTC activity will wake up  
the processor. When in the Sleep mode, assertion of wakeup will  
cause the processor to sense the value of the BYPASS bit in the  
PLL Control register (PLL_CTL). If BYPASS is disabled, the  
processor will transition to the Full On mode. If BYPASS is  
enabled, the processor will transition to the Active mode.  
• Data Receive with Internally Generated Frame Syncs.  
• Data Receive with Externally Generated Frame Syncs.  
• Data Transmit with Internally Generated Frame Syncs  
• Data Transmit with Externally Generated Frame Syncs  
These modes support ADC/DAC connections, as well as video  
communication with hardware signalling. Many of the modes  
support more than one level of frame synchronization. If  
desired, a programmable delay can be inserted between asser-  
tion of a frame sync and reception/transmission of data.  
When in the Sleep mode, system DMA access to L1 memory is  
not supported.  
Deep Sleep Operating Mode – Maximum Dynamic Power  
Savings  
DYNAMIC POWER MANAGEMENT  
The ADSP-BF536/BF537 processor provides five operating  
modes, each with a different performance/power profile. In  
addition, Dynamic Power Management provides the control  
functions to dynamically alter the processor core supply voltage,  
The Deep Sleep mode maximizes dynamic power savings by  
disabling the clocks to the processor core (CCLK) and to all syn-  
chronous peripherals (SCLK). Asynchronous peripherals, such  
as the RTC, may still be running but will not be able to access  
Rev. PrE  
|
Page 13 of 64 | July 2005  
ADSP-BF536/BF537  
Preliminary Technical Data  
internal resources or external memory. This powered-down  
mode can only be exited by assertion of the reset interrupt  
(RESET) or by an asynchronous interrupt generated by the  
RTC. When in Deep Sleep mode, an RTC asynchronous inter-  
rupt causes the processor to transition to the Active mode.  
Assertion of RESET while in Deep Sleep mode causes the pro-  
cessor to transition to the Full On mode.  
results in a 25% reduction in power dissipation, while reducing  
the voltage by 25% reduces power dissipation by more than  
40%. Further, these power savings are additive, in that if the  
clock frequency and supply voltage are both reduced, the power  
savings can be dramatic.  
The Dynamic Power Management feature of the ADSP-  
BF536/BF537 processor allows both the processor’s input volt-  
age (VDDINT) and clock frequency (fCCLK) to be dynamically  
controlled.  
Hibernate Operating Mode – Maximum Static Power  
Savings  
As explained above, the savings in power dissipation can be  
modeled by the following equations:  
The hibernate mode maximizes static power savings by dis-  
abling the voltage and clocks to the processor core (CCLK) and  
to all the synchronous peripherals (SCLK). The internal voltage  
regulator for the processor can be shut off by writing b#00 to the  
FREQ bits of the VR_CTL register. This disables both CCLK  
and SCLK. Furthermore, it sets the internal power supply volt-  
age (VDDINT) to 0V to provide the greatest power savings mode.  
Any critical information stored internally (memory contents,  
register contents, etc.) must be written to a non-volatile storage  
device prior to removing power if the processor state is to be  
preserved.  
Power Savings Factor  
2
f
V
T
CCLKRED  
DDINTRED  
RED  
-------------------------------  
--------------------------------------  
-----------------  
=
×
×
f
V
T
CCLKNOM  
DDINTNOM  
NOM  
% Power Savings = (1 Power Savings Factor) × 100%  
Since VDDEXT is still supplied in this mode, all of the external  
pins tri-state, unless otherwise specified. This allows other  
devices that may be connected to the processor to have power  
still applied without drawing unwanted current.  
where the variables in the equations are:  
• fCCLKNOM is the nominal core clock frequency  
• fCCLKRED is the reduced core clock frequency  
• VDDINTNOM is the nominal internal supply voltage  
• VDDINTRED is the reduced internal supply voltage  
• TNOM is the duration running at fCCLKNOM  
• TRED is the duration running at fCCLKRED  
The internal supply regulator can be woken up by CAN or by  
Ethernet. It can also be woken up by a Real-Time Clock wakeup  
event or by asserting the RESET pin, both of which initiate the  
hardware reset sequence.  
With the exception of the VR_CTL and the RTC registers, all  
internal registers and memories lose their content in hibernate  
state. State variables may be held in external SRAM or SDRAM.  
The CKELOW bit in the VR_CTL register controls whether  
SDRAM operates in self-refresh mode to retain its content while  
the processor is in reset.  
VOLTAGE REGULATION  
The ADSP-BF536/BF537 processor provides an on-chip voltage  
regulator that can generate processor core voltage levels (0.85V  
to 1.2V guaranteed from -5% to 10%) from an external 2.25 V to  
3.6 V supply. Figure 6 shows the typical external components  
required to complete the power management system. The regu-  
lator controls the internal logic voltage levels and is  
programmable with the Voltage Regulator Control Register  
(VR_CTL) in increments of 50 mV. To reduce standby power  
consumption, the internal voltage regulator can be programmed  
to remove power to the processor core while keeping I/O power  
supplied. While in Hibernate mode, VDDEXT can still be applied,  
eliminating the need for external buffers. The voltage regulator  
can be activated from this power down state by assertion of the  
RESET pin, which will then initiate a boot sequence. The regula-  
tor can also be disabled and bypassed at the user’s discretion.  
Power Savings  
As shown in Table 5, the ADSP-BF536/BF537 processor sup-  
ports three different power domains. The use of multiple power  
domains maximizes flexibility, while maintaining compliance  
with industry standards and conventions. By isolating the inter-  
nal logic of the ADSP-BF536/BF537 processor into its own  
power domain, separate from the RTC and other I/O, the pro-  
cessor can take advantage of Dynamic Power Management,  
without affecting the RTC or other I/O devices. There are no  
sequencing requirements for the various power domains.  
Table 5. Power Domains  
CLOCK SIGNALS  
Power Domain  
VDD Range  
VDDINT  
The ADSP-BF536/BF537 processor can be clocked by an exter-  
nal crystal, a sine wave input, or a buffered, shaped clock  
derived from an external clock oscillator.  
All internal logic, except RTC  
RTC internal logic and crystal I/O  
All other I/O  
VDDRTC  
If an external clock is used, it should be a TTL compatible signal  
and must not be halted, changed, or operated below the speci-  
fied frequency during normal operation. This signal is  
connected to the processor’s CLKIN pin. When an external  
clock is used, the XTAL pin must be left unconnected.  
VDDEXT  
The power dissipated by a processor is largely a function of the  
clock frequency of the processor and the square of the operating  
voltage. For example, reducing the clock frequency by 25%  
Rev. PrE  
|
Page 14 of 64  
|
July 2005  
Preliminary Technical Data  
ADSP-BF536/BF537  
If the user prefers, a third-overtone crystal can be used ar fre-  
quencies above 25 MHz. The circuit is then modified to ensure  
crystal operation only at the third overtone, by adding a tuned  
inductor circuit as shown in Figure 7. A design procedure for  
third-overtone operation is discussed in detail in application  
note EE-168.  
V
DDEXT  
100 µF  
2.25V - 3.6V  
INPUT VOLTAGE  
RANGE  
10 µH  
0.1 µF  
ZHCS1000  
V
DDINT  
FDS9431A  
The CLKBUF pin is an output pin, and is a buffer version of the  
input clock. This pin is particularly useful in Ethernet applica-  
tions to limit the number of required clock sources in the  
system. In this type of application, a single 25 MHz or 50 MHz  
crystal may be applied directly to the ADSP-BF536/BF537 pro-  
cessor. The 25 MHz or 50 MHz output of CLKBUF can then be  
connected to an external Ethernet MII or RMII PHY device.  
Note that on the ADSP-BF536, due to the default 10x PLL mul-  
tiplier, providing a 50 MHz CLKIN would exceed the  
100 µF  
1 µF  
VR  
1-0  
OUT  
EXTERNAL COMPONENTS  
1-0 SHOULD BE TIED TOGETHER EXTERNALLY  
NOTE: VR  
OUT  
AND DESIGNER SHOULD MINIMIZE TRACE LENGTH TO FDS9431A.  
recommended operating conditions of the 300 MHz and  
400 MHz speed grades. Because of this restriction, the RMII  
PHY cannot be clocked directly from the CLKBUF pin. A sepa-  
rate 50 MHz clock source would need to be provided. The  
CLKBUF output is active by default and can be disabled by the  
VR_CTL register for power savings  
Figure 6. Voltage Regulator Circuit  
Alternatively, because the ADSP-BF536/BF537 processor  
includes an on-chip oscillator circuit, an external crystal may be  
used. For fundamental frequency operation, use the circuit  
shown in Figure 7. A parallel-resonant, fundamental frequency,  
microprocessor-grade crystal is connected across the CLKIN  
and XTAL pins. The on-chip resistance between CLKIN and the  
XTAL pin is in the 500 kOhm range. Further parallel resistors  
are typically not recommended. The two capacitors and the  
series resistor shown in Figure 7 fine tune phase and amplitude  
of the sine frequency.  
The Blackfin core is running at a different clock rate than the  
on-chip peripherals. As shown in Figure 8 on Page 15, the core  
clock (CCLK) and system peripheral clock (SCLK) are derived  
from the input clock (CLKIN) signal. An on-chip PLL is capable  
of multiplying the CLKIN signal by a user programmable 1x to  
63x multiplication factor (bounded by specified minimum and  
maximum VCO frequencies). The default multiplier is 10x, but  
it can be modified by a software instruction sequence in the  
PLL_CTL register.  
The capacitor and resistor values shown in Figure 7 are typical  
values only. The capacitor values are dependent upon the crystal  
manufacturers’ load capacitance recommendations and the PCB  
physical layout. The resistor value depends on the drive level  
specified by the crystal manufacturer. The user should verify the  
customized values based on careful investigations on multiple  
devices over temperature range.  
On-the-fly CCLK and SCLK frequency changes can be effected  
by simply writing to the PLL_DIV register. Whereas the maxi-  
mum allowed CCLK and SCLK rates depend on the applied  
voltages VDDINT and VDDEXT, the VCO is always permitted to run  
up to the frequency specified by the part’s speed grade. The  
CLKOUT pin reflects the SCLK frequency to the off-chip world.  
It belongs to the SDRAM interface, but it functions as reference  
signal in other timing specifications as well. While active by  
default, it can be disabled by the EBIU_SDGCTL and  
EBIU_AMGCTL registers.  
BLACKFIN  
CLKOUT  
TO PLL CIRCUITRY  
EN  
CLKBUF  
DYNAMIC MODIFICATION  
REQUIRES PLL SEQUENCING  
DYNAMIC MODIFICATION  
ON-THE-FLY  
EN  
CLKIN  
18 pF*  
XTAL  
330  
*
+ 1, 2, 4, 8  
+ 1:15  
CCLK  
SCLK  
FOR OVERTONE  
OPERATION ONLY:  
PLL  
.5x - 64x  
CLKIN  
VCO  
18 pF*  
NOTE: VALUES MARKED WITH * MUST BE CUSTOMIZED  
DEPENDING ON THE CRYSTAL AND LAYOUT. PLEASE  
ANALYZE CAREFULLY.  
SCLK CCLK  
SCLK 133 MHZ  
Figure 7. External Crystal Connections  
Figure 8. Frequency Modification Methods  
Rev. PrE  
|
Page 15 of 64  
|
July 2005  
ADSP-BF536/BF537  
Preliminary Technical Data  
All on-chip peripherals are clocked by the system clock (SCLK).  
The system clock frequency is programmable by means of the  
SSEL3–0 bits of the PLL_DIV register. The values programmed  
into the SSEL fields define a divide ratio between the PLL output  
(VCO) and the system clock. SCLK divider values are 1 through  
15. Table 6 illustrates typical system clock ratios:  
Table 8. Booting Modes  
BMODE2–0  
100  
Description  
Boot from SPI host (slave mode)  
101  
Boot from serial TWI memory  
(EEPROM/flash)  
110  
111  
Boot from TWI host (slave mode)  
Boot from UART host (slave mode)  
Table 6. Example System Clock Ratios  
Signal Name Divider Ratio Example Frequency Ratios  
The BMODE pins of the Reset Configuration Register, sampled  
during power-on resets and software-initiated resets, imple-  
ment the following modes:  
SSEL3–0  
VCO/SCLK  
(MHz)  
VCO  
100  
SCLK  
100  
50  
0001  
0110  
1010  
1:1  
• Execute from 16-bit external memory – Execution starts  
from address 0x2000 0000 with 16-bit packing. The Boot  
ROM is bypassed in this mode. All configuration settings  
are set for the slowest device possible (3-cycle hold time;  
15-cycle R/W access times; 4-cycle setup).  
6:1  
300  
10:1  
500  
50  
Note that the divisor ratio must be chosen to limit the system  
clock frequency to its maximum of fSCLK. The SSEL value can be  
changed dynamically without any PLL lock latencies by writing  
the appropriate values to the PLL divisor register (PLL_DIV).  
• Boot from 8-bit and 16-bit external flash memory – The  
8-bit or 16-bit flash boot routine located in Boot ROM  
memory space is set up using Asynchronous Memory Bank  
0. All configuration settings are set for the slowest device  
possible (3-cycle hold time; 15-cycle R/W access times;  
4-cycle setup). The Boot ROM evaluates the first byte of the  
boot stream at address 0x2000 0000. If it is 0x40, 8-bit boot  
is performed. A 0x60 byte assumes a 16-bit memory device  
and performs 8-bit DMA. A 0x20 byte also assumes 16-bit  
memory but performs 16-bit DMA.  
The core clock (CCLK) frequency can also be dynamically  
changed by means of the CSEL1–0 bits of the PLL_DIV register.  
Supported CCLK divider ratios are 1, 2, 4, and 8, as shown in  
Table 7. This programmable core clock capability is useful for  
fast core frequency modifications.  
Table 7. Core Clock Ratios  
• Boot from serial SPI memory (EEPROM or flash). Eight-,  
16-, or 24-bit addressable devices are supported as well as  
AT45DB041, AT45DB081, AT45DB161, AT45DB321,  
AT45DB642, and AT45DB1282 DataFlash® devices from  
Atmel. The SPI uses the PF10/SPI SSEL1 output pin to  
select a single SPI EEPROM/flash device, submits a read  
command and successive address bytes (0x00) until a valid  
8-, 16-, or 24-bit, or Atmel addressable device is detected,  
and begins clocking data into the processor.  
Signal Name Divider Ratio Example Frequency Ratios  
CSEL1–0  
VCO/CCLK  
VCO  
300  
300  
500  
200  
CCLK  
300  
150  
125  
25  
00  
01  
10  
11  
1:1  
2:1  
4:1  
8:1  
The maximum CCLK frequency not only depends on the part's  
speed grade (see page 64), it also depends on the applied VDDINT  
voltage. See Table 10 - Table 13 for details. The maximal system  
clock rate (SCLK) depends on the chip package and the applied  
• Boot from SPI host device – The Blackfin processor oper-  
ates in SPI slave mode and is configured to receive the bytes  
of the .LDR file from an SPI host (master) agent. To hold  
off the host device from transmitting while the Boot ROM  
is busy, the Blackfin processor will assert a GPIO pin, called  
host wait (HWAIT), to signal the host device not to send  
any more bytes until the flag is de-asserted. The flag is cho-  
sen by the user and this information will be transferred to  
the Blackfin processor via bits 10:5 of the FLAG header.  
VDDEXT voltage (see Table 15).  
BOOTING MODES  
The ADSP-BF536/BF537 processor has six mechanisms (listed  
in Table 8) for automatically loading internal and external  
memory after a reset. A seventh mode is provided to execute  
from external memory, bypassing the boot sequence.  
• Boot from UART – Using an autobaud handshake  
sequence, a boot-stream-formatted program is downloaded  
by the Host. The Host agent selects a baud rate within the  
UART’s clocking capabilities. When performing the auto-  
baud, the UART expects a “@” (boot stream) character  
(eight bits data, one start bit, one stop bit, no parity bit) on  
the RXD pin to determine the bit rate. It then replies with  
an acknowledgement which is composed of 4 bytes: 0xBF,  
the value of UART_DLL, the value of UART_DLH, 0x00.  
Table 8. Booting Modes  
BMODE2–0  
Description  
000  
Execute from 16-bit external memory  
(Bypass Boot ROM)  
001  
Boot from 8-bit or 16-bit memory  
(EPROM/flash)  
010  
011  
Reserved  
Boot from serial SPI memory (EEPROM/flash)  
Rev. PrE  
|
Page 16 of 64  
|
July 2005  
Preliminary Technical Data  
ADSP-BF536/BF537  
The Host can then download the boot stream. When the  
processor needs to hold off the Host, it de-asserts CTS.  
Therefore, the Host must monitor this signal.  
The assembly language, which takes advantage of the proces-  
sor’s unique architecture, offers the following advantages:  
• Seamlessly integrated DSP/MCU features are optimized for  
both 8-bit and 16-bit operations.  
• Boot from serial TWI memory (EEPROM/flash) – The  
Blackfin processor operates in master mode and selects the  
TWI slave with the unique id 0xA0. It submits successive  
read commands to the memory device starting at two byte  
internal address 0x0000 and begins clocking data into the  
processor. The TWI memory device should comply with  
Philips I2C Bus Specification version 2.1 and have the capa-  
bility to auto-increment its internal address counter such  
that the contents of the memory device can be read  
sequentially.  
• A multi-issue load/store modified-Harvard architecture,  
which supports two 16-bit MAC or four 8-bit ALU + two  
load/store + two pointer updates per cycle.  
• All registers, I/O, and memory are mapped into a unified  
4G byte memory space, providing a simplified program-  
ming model.  
• Microcontroller features, such as arbitrary bit and bit-field  
manipulation, insertion, and extraction; integer operations  
on 8-, 16-, and 32-bit data-types; and separate user and  
supervisor stack pointers.  
• Boot from TWI Host – The TWI Host agent selects the  
slave with the unique id 0x5F. The processor replies with an  
acknowledgement and the Host can then download the  
boot stream. The TWI Host agent should comply with  
Philips I2C Bus Specification version 2.1. An I2C multi-  
plexer can be used to select one processor at a time when  
booting multiple processors from a single TWI.  
• Code density enhancements, which include intermixing of  
16- and 32-bit instructions (no mode switching, no code  
segregation). Frequently used instructions are encoded in  
16 bits.  
DEVELOPMENT TOOLS  
For each of the boot modes, a 10-byte header is first brought in  
from an external device. The header specifies the number of  
bytes to be transferred and the memory destination address.  
Multiple memory blocks may be loaded by any boot sequence.  
Once all blocks are loaded, program execution commences from  
the start of L1 instruction SRAM.  
The ADSP-BF536/BF537 processor is supported with a com-  
plete set of CROSSCORE® software and hardware development  
tools, including Analog Devices emulators and VisualDSP++®  
development environment. The same emulator hardware that  
supports other Blackfin processors also fully emulates the  
ADSP-BF536/BF537 processor.  
In addition, bit 4 of the Reset Configuration Register can be set  
by application code to bypass the normal boot sequence during  
a software reset. For this case, the processor jumps directly to  
the beginning of L1 instruction memory.  
EZ-KIT Lite Evaluation Board  
For evaluation of ADSP-BF536/BF537 processors, use the  
ADSP-BF537 EZ-KIT Lite board available from Analog Devices.  
Order part number ADDS-BF537-EZLITE. The board comes  
with on-chip emulation capabilities and is equipped to enable  
software development. Multiple daughter cards are available.  
To augment the boot modes, a secondary software loader can be  
added to provide additional booting mechanisms. This second-  
ary loader could provide the capability to boot from flash,  
variable baud rate, and other sources. In all boot modes except  
Bypass, program execution starts from on-chip L1 memory  
address 0xFFA0 0000.  
DESIGNING AN EMULATOR-COMPATIBLE  
PROCESSOR BOARD (TARGET)  
The Analog Devices family of emulators are tools that every sys-  
tem developer needs to test and debug hardware and software  
systems. Analog Devices has supplied an IEEE 1149.1 JTAG  
Test Access Port (TAP) on each JTAG processor. The emulator  
uses the TAP to access the internal features of the processor,  
allowing the developer to load code, set breakpoints, observe  
variables, observe memory, and examine registers. The proces-  
sor must be halted to send data and commands, but once an  
operation has been completed by the emulator, the processor  
system is set running at full speed with no impact on system  
timing.  
INSTRUCTION SET DESCRIPTION  
The Blackfin processor family assembly language instruction set  
employs an algebraic syntax designed for ease of coding and  
readability. The instructions have been specifically tuned to pro-  
vide a flexible, densely encoded instruction set that compiles to  
a very small final memory size. The instruction set also provides  
fully featured multifunction instructions that allow the pro-  
grammer to use many of the processor core resources in a single  
instruction. Coupled with many features more often seen on  
microcontrollers, this instruction set is very efficient when com-  
piling C and C++ source code. In addition, the architecture  
supports both user (algorithm/application code) and supervisor  
(O/S kernel, device drivers, debuggers, ISRs) modes of opera-  
tion, allowing multiple levels of access to core processor  
resources.  
To use these emulators, the target board must include a header  
that connects the processor’s JTAG port to the emulator.  
For details on target board design issues including mechanical  
layout, single processor connections, multiprocessor scan  
chains, signal buffering, signal termination, and emulator pod  
logic, see Analog Devices JTAG Emulation Technical Reference  
Rev. PrE  
|
Page 17 of 64 | July 2005  
ADSP-BF536/BF537  
Preliminary Technical Data  
(EE-68) on the Analog Devices web site under  
www.analog.com/ee-notes. This document is updated regularly  
to keep pace with improvements to emulator support.  
RELATED DOCUMENTS  
The following publications that describe the ADSP-  
BF536/BF537 processors (and related processors) can be  
ordered from any Analog Devices sales office or accessed elec-  
tronically on our web site:  
Getting Started With Blackfin Processors  
ADSP-BF537 Blackfin Processor Hardware Reference  
ADSP-BF53x/BF56x Blackfin Processor Programming  
Reference  
ADSP-BF536 Blackfin Processor Anomaly List  
ADSP-BF537 Blackfin Processor Anomaly List  
Rev. PrE  
|
Page 18 of 64  
|
July 2005  
Preliminary Technical Data  
PIN DESCRIPTIONS  
ADSP-BF536/BF537 processor pin definitions are listed in  
Table 9. In order to maintain maximum functionality and  
reduce package size and pin count, some pins have dual, multi-  
plexed functionality. In cases where pin functionality is  
reconfigurable, the default state is shown in plain text, while  
alternate functionality is shown in italics. Pins shown with an  
asterisk after their name (*) offer high source/high sink current  
capabilities.  
ADSP-BF536/BF537  
All pins are tristated during and immediately after reset with the  
exception of the external memory interface. On the external  
memory interface, the control and address lines are driven high  
during reset unless the BR pin is asserted.  
All I/O pins have their input buffers disabled with the exception  
of the pins noted in the data sheet that need pullups or pull-  
downs if unused.  
Table 9. Pin Descriptions  
Pin Name  
I/O  
Function  
Driver Type1  
Memory Interface  
ADDR19–1  
O
I/O  
O
I
Address Bus for Async Access  
Data Bus for Async/Sync Access  
Byte Enables/Data Masks for Async/Sync Access  
Bus Request  
A
A
A
DATA15–0  
ABE1–0/SDQM1–0  
BR2  
BG  
O
O
Bus Grant  
A
A
BGH  
Bus Grant Hang  
Asynchronous Memory Control  
AMS3–0  
O
I
Bank Select  
A
ARDY  
Hardware Ready Control  
Output Enable  
Read Enable  
AOE  
O
O
O
A
A
A
ARE  
AWE  
Write Enable  
Synchronous Memory Control  
SRAS  
SCAS  
SWE  
O
O
O
O
O
O
O
Row Address Strobe  
Column Address Strobe  
Write Enable  
A
A
A
A
B
SCKE  
CLKOUT  
SA10  
SMS  
Clock Enable  
Clock Output  
A10 Pin  
A
A
Bank Select  
Rev. PrE  
|
Page 19 of 64 | July 2005  
ADSP-BF536/BF537  
Preliminary Technical Data  
Table 9. Pin Descriptions (Continued)  
Pin Name  
I/O  
Function  
Driver Type1  
Port F: GPIO/UART1–0/Timer7–0/SPI/External DMA Request (* = High Source/High Sink Pin)  
PF0* - GPIO/UART0 TX/DMAR0  
PF1* - GPIO/UART0 RX/DMAR1/TACI1  
PF2* - GPIO/UART1 TX/TMR7  
PF3* - GPIO/UART1 RX/TMR6/TACI6  
PF4* - GPIO/TMR5/SPI SSEL6  
PF5* - GPIO/TMR4/SPI SSEL5  
PF6* - GPIO/TMR3/SPI SSEL4  
PF7* - GPIO/TMR2/PPI FS3  
PF8 - GPIO/TMR1/PPI FS2  
PF9 - GPIO/TMR0/PPI FS1  
PF10 - GPIO/SPI SSEL1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GPIO/UART0 Transmit/DMA Request 0  
C
GPIO/UART0 Receive/DMA Request 1/Timer1 Alternate Input Capture  
GPIO/UART1 Transmit/Timer7  
C
C
C
C
C
C
C
D
D
D
D
D
D
D
D
GPIO/UART1 Receive/Timer6/Timer6 Alternate Input Capture  
GPIO/Timer5/SPI Slave Select Enable 6  
GPIO/Timer4/SPI Slave Select Enable 5  
GPIO/Timer3/SPI Slave Select Enable 4  
GPIO/Timer2/PPI Frame Sync 3  
GPIO/Timer1/PPI Frame Sync 2  
GPIO/Timer0/PPI Frame Sync 1  
GPIO/SPI Slave Select Enable 1  
PF11 - GPIO/SPI MOSI  
PF12 - GPIO/SPI MISO3  
GPIO/SPI Master Out Slave In  
GPIO/SPI Master In Slave Out  
PF13 - GPIO/SPI SCK  
GPIO/SPI Clock  
PF14 - GPIO/SPI SS/TACLK0  
PF15 - GPIO/PPI CLK/TMRCLK  
Port G: GPIO/PPI/SPORT1  
PG0 - GPIO/PPI D0  
GPIO/SPI Slave Select/Alternate Timer0 Clock Input  
GPIO/PPI Clock/External Timer Reference  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GPIO/PPI Data 0  
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
PG1 - GPIO/PPI D1  
GPIO/PPI Data 1  
PG2 - GPIO/PPI D2  
GPIO/PPI Data 2  
PG3 - GPIO/PPI D3  
GPIO/PPI Data 3  
PG4 - GPIO/PPI D4  
GPIO/PPI Data 4  
PG5 - GPIO/PPI D5  
GPIO/PPI Data 5  
PG6 - GPIO/PPI D6  
GPIO/PPI Data 6  
PG7 - GPIO/PPI D7  
GPIO/PPI Data 7  
PG8 - GPIO/PPI D8/DR1SEC  
PG9 - GPIO/PPI D9/DT1SEC  
PG10 - GPIO/PPI D10/RSCLK1  
PG11 - GPIO/PPI D11/RFS1  
PG12 - GPIO/PPI D12/DR1PRI  
PG13 - GPIO/PPI D13/TSCLK1  
PG14 - GPIO/PPI D14/TFS1  
PG15 - GPIO/PPI D15/DT1PRI  
Port H: GPIO/10/100 Ethernet MAC  
PH0 - GPIO/ETxD0  
GPIO/PPI Data 8/SPORT1 Receive Data Secondary  
GPIO/PPI Data 9/SPORT1 Transmit Data Secondary  
GPIO/PPI Data 10/SPORT1 Receive Serial Clock  
GPIO/PPI Data 11/SPORT1 Receive Frame Sync  
GPIO/PPI Data 12/SPORT1 Receive Data Primary  
GPIO/PPI Data 13/SPORT1 Transmit Serial Clock  
GPIO/PPI Data 14/SPORT1 Transmit Frame Sync  
GPIO/PPI Data 15/SPORT1 Transmit Data Primary  
I/O  
I/O  
I/O  
I/O  
I/O  
GPIO/Ethernet MII or RMII Transmit D0  
GPIO/Ethernet MII or RMII Transmit D1  
GPIO/Ethernet MII Transmit D2  
D
D
D
D
D
PH1 - GPIO/ETxD1  
PH2 - GPIO/ETxD2  
PH3 - GPIO/ETxD3  
GPIO/Ethernet MII Transmit D3  
PH4 - GPIO/ETxEN  
GPIO/Ethernet MII or RMII Transmit Enable  
Rev. PrE  
|
Page 20 of 64  
|
July 2005  
Preliminary Technical Data  
ADSP-BF536/BF537  
Table 9. Pin Descriptions (Continued)  
Pin Name  
I/O  
Function  
Driver Type1  
Port H: GPIO/10/100 Ethernet MAC, continued  
PH5 - GPIO/MII TxCLK/RMII REF_CLK  
PH6 - GPIO/MII PHYINT/RMII MDINT  
PH7 - GPIO/COL  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GPIO/Ethernet MII Transmit Clock/RMII Reference Clock  
D
GPIO/Ethernet MII PHY Interrupt/RMII Management Data Interrupt  
GPIO/Ethernet Collision  
D
D
D
D
D
D
D
D
D
PH8 - GPIO/ERxD0  
GPIO/Ethernet MII or RMII Receive D0  
PH9 - GPIO/ERxD1  
GPIO/Ethernet MII or RMII Receive D1  
PH10 - GPIO/ERxD2  
GPIO/Ethernet MII Receive D2  
PH11 - GPIO/ERxD3  
GPIO/Ethernet MII Receive D3  
PH12 - GPIO/ERxDV/TACLK5  
PH13 - GPIO/ERxCLK/TACLK6  
PH14 - GPIO/ERxER/TACLK7  
PH15 - GPIO/MII CRS/RMII CRS_DV  
GPIO/Ethernet MII Receive Data Valid/Alternate Timer5 Input Clock  
GPIO/Ethernet MII Receive Clock/Alternate Timer6 Input Clock  
GPIO/Ethernet MII or RMII Receive Error/Alternate Timer7 Input Clock  
GPIO/Ethernet MII Carrier Sense/Ethernet RMII Carrier Sense and Receive D  
Data Valid  
Port J: SPORT0/TWI/SPI Select/CAN  
PJ0 - MDC  
O
Ethernet Management Channel Clock  
Ethernet Management Channel Serial Data  
TWI Serial Clock  
D
D
D
D
PJ1 - MDIO  
I/O  
I/O  
I/O  
I
PJ2 - SCL  
PJ3 - SDA  
TWI Serial Data  
PJ4 - DR0SEC/CANRX/TACI0  
SPORT0 Receive Data Secondary/CAN Receive/Timer0 Alternate Input  
Capture  
PJ5 - DT0SEC/CANTX/SPI SSEL7  
O
SPORT0 Transmit Data Secondary/CAN Transmit/SPI Slave Select  
D
Enable 7  
PJ6 - RSCLK0/TACLK2  
I/O  
I/O  
I
SPORT0 Receive Serial Clock/Alternate Timer2 Clock Input  
SPORT0 Receive Frame Sync/Alternate Timer3 Clock Input  
SPORT0 Receive Data Primary/Alternate Timer4 Clock Input  
SPORT0 Transmit Serial Clock/Alternate Timer1 Clock Input  
SPORT0 Transmit Frame Sync/SPI Slave Select Enable 3  
SPORT0 Transmit Data Primary/SPI Slave Select Enable 2  
E
PJ7 - RFS0/TACLK3  
D
PJ8 - DR0PRI/TACLK4  
PJ9 - TSCLK0/TACLK1  
I/O  
I/O  
O
E
PJ10 - TFS0/SPI SSEL3  
D
D
PJ11 - DT0PRI/SPI SSEL2  
Real Time Clock  
RTXI4  
I
RTC Crystal Input  
RTXO  
O
RTC Crystal Output  
JTAG Port  
TCK  
I
JTAG Clock  
TDO  
O
I
JTAG Serial Data Out  
JTAG Serial Data In  
JTAG Mode Select  
JTAG Reset  
D
D
TDI  
TMS  
TRST5  
I
I
EMU  
O
Emulation Output  
Clock  
CLKIN  
I
Clock/Crystal Input  
Crystal Output  
XTAL  
O
O
CLKBUF  
Mode Controls  
RESET  
Buffered XTAL Output  
I
I
I
Reset  
NMI6  
Non-maskable Interrupt  
Boot Mode Strap 2-0  
BMODE2–0  
Rev. PrE  
|
Page 21 of 64 | July 2005  
ADSP-BF536/BF537  
Preliminary Technical Data  
Table 9. Pin Descriptions (Continued)  
Pin Name  
Voltage Regulator  
VROUT0  
VROUT1  
Supplies  
VDDEXT  
I/O  
Function  
Driver Type1  
O
O
External FET Drive  
External FET Drive  
P
P
P
G
I/O Power Supply  
VDDINT  
Internal Power Supply (regulated from 2.25V to 3.6V)  
Real Time Clock Power Supply  
VDDRTC  
GND  
External Ground  
1 See “Output Drive Currents” on page 52 for more information about each driver types.  
2 This pin should be pulled HIGH when not used.  
3 This pin should always be pulled HIGH through a 4.7 K Ohms resistor if booting via the SPI port.  
4 This pin should always be pulled LOW when not used.  
5 This pin should be pulled LOW if the JTAG port will not be used.  
6 This pin should always be pulled HIGH when not used.  
Rev. PrE  
|
Page 22 of 64  
|
July 2005  
Preliminary Technical Data  
SPECIFICATIONS  
ADSP-BF536/BF537  
Note that component specifications are subject to change  
without notice.  
RECOMMENDED OPERATING CONDITIONS  
Parameter1  
Minimum  
0.8  
Nominal  
1.2  
Maximum  
1.32  
1.32  
3.6  
Unit  
V
VDDINT  
VDDINT  
VDDEXT  
VDDRTC  
VIH  
Internal Supply Voltage2 (ADSP-BF536)  
Internal Supply Voltage2 (ADSP-BF537)  
External Supply Voltage  
0.8  
1.26  
V
2.25  
2.25  
2.0  
2.5 or 3.3  
V
Real Time Clock Power Supply Voltage  
High Level Input Voltage3, 4, @ VDDEXT =maximum  
High Level Input Voltage5, @ VDDEXT =maximum  
High Level Input Voltage6, @ VDDEXT =maximum  
Low Level Input Voltage3, 7, @ VDDEXT =minimum  
Low Level Input Voltage6, @ VDDEXT =minimum  
Ambient Operating Temperature  
3.6  
V
3.6  
V
VIHCLKIN  
VIH5V  
VIL  
2.2  
3.6  
V
2.0  
5.0  
V
–0.3  
–0.3  
0.6  
V
VIL5V  
TA  
0.8  
V
Industrial  
–40  
85  
ºC  
1 Specifications subject to change without notice.  
2 Voltage regulator output is guaranteed from -5% to 10% of specified values.  
3 The ADSP-BF536/BF537 processor is 3.3 V tolerant (always accepts up to 3.6 V maximum VIH), but voltage compliance (on outputs, VOH) depends on the input VDDEXT  
,
because VOH (maximum) approximately equals VDDEXT (maximum). This 3.3 V tolerance applies to bi-directional pins (DATA15–0, PF15–0, PG15–0, PH15–0, TFS0, TCLK0,  
RSCLK0, RFS0, MDIO) and input only pins (BR, ARDY, DR0PRI, DR0SEC, RTXI, TCK, TDI, TMS, TRST, CLKIN, RESET, NMI, and BMODE2–0).  
4 Parameter value applies to all input and bi-directional pins except CLKIN, SDA, and SCL.  
5 Parameter value applies to CLKIN pin only.  
6 Certain ADSP-BF536/BF537 processor pins are 5.0 V tolerant (always accept up to 5.5 V maximum VIH), but voltage compliance (on outputs, VOH) depends on the input  
V
DDEXT, because VOH (maximum) approximately equals VDDEXT (maximum). This 5.0 V tolerance applies to SDA and SCL pins only. The SDA and SCL pins are open drain  
and therefore require a pullup resistor. Consult the I2C specification version 2.1 for the proper resistor value.  
7 Parameter value applies to all input and bi-directional pins except SDA and SCL.  
Rev. PrE  
|
Page 23 of 64 | July 2005  
ADSP-BF536/BF537  
Preliminary Technical Data  
ELECTRICAL CHARACTERISTICS  
Parameter1  
Test Conditions  
Min  
Max Unit  
VOH  
Port F7–0  
High Level Output Voltage2  
@ VDDEXT = 3.3V +/- 10%, IOH = –10 mA  
@ VDDEXT = 2.5V +/- 10%, IOH = –6 mA  
VDDEXT – 0.5V  
V
V
V
V
DDEXT – 0.5V  
Port F15–8, Port G, Port H  
I
OH = –1 mA  
VDDEXT – 0.5V  
Max Combined for Port F7–0  
TBD  
TBD  
V
V
Max Total for all Port F, Port G,  
and Port H Pins  
VOL  
Low Level Output Voltage2  
Port F7–0  
@ VDDEXT = 3.3V +/- 10%, IOL = 10 mA  
@ VDDEXT = 2.5V +/- 10%, IOL = 6 mA  
0.5V  
0.5V  
0.5V  
V
V
V
V
V
Port F15–8, Port G, Port H  
IOL = 2 mA  
Max Combined for Port F7–0  
TBD  
TBD  
Max Total for all Port F, Port G,  
and Port H Pins  
IIH  
High Level Input Current3 @ VDDEXT =maximum, VIN = VDD maximum  
TBD µA  
TBD µA  
TBD µA  
IIL  
Low Level Input Current4  
@ VDDEXT =maximum, VIN = 0 V  
IOZH  
Three-State Leakage  
Current4  
@ VDDEXT = maximum, VIN = VDD maximum  
IOZL  
Three-State Leakage  
Current5  
@ VDDEXT = maximum, VIN = 0 V  
TBD µA  
TBD mA  
TBD pF  
Max Total Current for all Port F,  
Port G, and Port H Pins  
CIN  
Input Capacitance5, 6  
fIN = 1 MHz, TAMBIENT = 25°C, VIN = 2.5 V  
1 Specifications subject to change without notice.  
2 Applies to output and bidirectional pins.  
3 Applies to input pins.  
4 Applies to three-statable pins.  
5 Applies to all signal pins.  
6 Guaranteed, but not tested.  
Rev. PrE  
|
Page 24 of 64  
|
July 2005  
Preliminary Technical Data  
ADSP-BF536/BF537  
ABSOLUTE MAXIMUM RATINGS  
Internal (Core) Supply Voltage1 (VDDINT  
)
–0.3 V to +1.4 V  
–0.3 V to +3.8 V  
–0.5 V to +3.6 V  
–0.5 V to VDDEXT +0.5 V  
200 pF  
a
External (I/O) Supply Voltage1 (VDDEXT  
Input Voltage1  
)
ADSP-BF537  
PRODUCT  
KBCZ-6A1  
K = TEMP RANGE  
BC = MINI BGA  
Z = LEAD FREE  
Output Voltage Swing1  
Load Capacitance1,2  
367334.1 0.2  
LOT NUMBER  
DATE CODE  
6 = SPEED GRADE  
A1= PACKAGE TYPE  
0440 SINGAPORE  
Storage Temperature Range1  
Junction Temperature Underbias1  
–65ºC to +150ºC  
SILICON REVISION  
ASSEMBLY  
B
+125ºC  
1 Stresses greater than those listed above may cause permanent damage to the device. These  
are stress ratings only. Functional operation of the device at these or any other conditions  
greaterthanthoseindicatedintheoperationalsectionsofthisspecificationisnotimplied.  
Exposure to absolute maximum rating conditions for extended periods may affect device  
reliability.  
Figure 9. Product Information on Package  
2 ForproperSDRAMcontrolleroperation, themaximumloadcapacitanceis50pF(at3.3V)  
or 30 pF (at 2.5V) for ADDR19–1, DATA15–0, ABE1–0/SDQM1–0, CLKOUT, SCKE,  
SA10, SRAS, SCAS, SWE, and SMS.  
ESD SENSITIVITY  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000V readily  
accumulate on the human body and test equipment and can discharge without detection. Although  
the ADSP-BF536/BF537 processor features proprietary ESD protection circuitry, permanent damage  
may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
Rev. PrE  
|
Page 25 of 64 | July 2005  
ADSP-BF536/BF537  
Preliminary Technical Data  
TIMING SPECIFICATIONS  
Table 10 through Table 13 describe the timing requirements for  
the ADSP-BF536/BF537 processor clocks. Take care in selecting  
MSEL, SSEL, and CSEL ratios so as not to exceed the maximum  
core clock and system clock. Table 14 describes Phase-Locked  
Loop operating conditions.  
Table 10. Core Clock Requirements—600 MHz Speed Grade1  
Parameter  
Minimum  
Maximum  
600  
Unit  
MHz  
MHz  
MHz  
MHz  
MHz  
fCCLK  
fCCLK  
fCCLK  
fCCLK  
fCCLK  
Core Clock Frequency (VDDINT =1.2 V minimum)  
Core Clock Frequency (VDDINT =1.045 V minimum)  
Core Clock Frequency (VDDINT =0.95 V minimum)  
Core Clock Frequency (VDDINT =0.85 V minimum)  
Core Clock Frequency (VDDINT =0.8 V )  
TBD  
TBD  
TBD  
TBD  
1 The speed grade of a given part is printed on the chip’s package as shown in Figure 9 on Page 25 and can also be seen on the “Ordering Guide” on page 64. It stands for the  
Maximum allowed CCLK frequency at VDDINT = 1.2V and the maximum allowed VCO frequency at any supply voltage.  
Table 11. Core Clock Requirements—500 MHz Speed Grade1  
Parameter  
fCCLK  
Minimum  
Maximum  
500  
Unit  
MHz  
MHz  
MHz  
MHz  
MHz  
Core Clock Frequency (VDDINT =1.2 V minimum)  
Core Clock Frequency (VDDINT =1.045 V minimum)  
Core Clock Frequency (VDDINT =0.95 V minimum)  
Core Clock Frequency (VDDINT =0.85 V minimum)  
Core Clock Frequency (VDDINT =0.8 V )  
fCCLK  
TBD  
fCCLK  
TBD  
fCCLK  
TBD  
fCCLK  
TBD  
1 The speed grade of a given part is printed on the chip’s package as shown in Figure 9 on Page 25 and can also be seen on the “Ordering Guide” on page 64. It stands for the  
Maximum allowed CCLK frequency at VDDINT = 1.2V and the maximum allowed VCO frequency at any supply voltage.  
Table 12. Core Clock Requirements—400 MHz Speed Grade1  
Parameter  
fCCLK  
Minimum  
Maximum  
400  
Unit  
MHz  
MHz  
MHz  
MHz  
MHz  
Core Clock Frequency (VDDINT =1.14 V minimum)  
Core Clock Frequency (VDDINT =1.045 V minimum)  
Core Clock Frequency (VDDINT =0.95 V minimum)  
Core Clock Frequency (VDDINT =0.85 V minimum)  
Core Clock Frequency (VDDINT =0.8 V )  
fCCLK  
TBD  
fCCLK  
TBD  
fCCLK  
TBD  
fCCLK  
TBD  
1 The speed grade of a given part is printed on the chip’s package as shown in Figure 9 on Page 25 and can also be seen on the “Ordering Guide” on page 64. It stands for the  
Maximum allowed CCLK frequency at VDDINT = 1.2V and the maximum allowed VCO frequency at any supply voltage.  
Table 13. Core Clock Requirements—300 MHz Speed Grade1  
Parameter  
fCCLK  
Minimum  
Maximum  
300  
Unit  
MHz  
MHz  
MHz  
MHz  
MHz  
Core Clock Frequency (VDDINT =1.14 V minimum)  
Core Clock Frequency (VDDINT =1.045 V minimum)  
Core Clock Frequency (VDDINT =0.95 V minimum)  
Core Clock Frequency (VDDINT =0.85 V minimum)  
Core Clock Frequency (VDDINT =0.8 V )  
fCCLK  
TBD  
fCCLK  
TBD  
fCCLK  
TBD  
fCCLK  
TBD  
1 The speed grade of a given part is printed on the chip’s package as shown in Figure 9 on Page 25 and can also be seen on the “Ordering Guide” on page 64. It stands for the  
Maximum allowed CCLK frequency at VDDINT = 1.2V and the maximum allowed VCO frequency at any supply voltage.  
Rev. PrE  
|
Page 26 of 64  
|
July 2005  
Preliminary Technical Data  
ADSP-BF536/BF537  
Table 14. Phase-Locked Loop Operating Conditions  
Parameter  
Minimum  
Maximum  
Speed Grade1 MHz  
Unit  
fVCO  
Voltage Controlled Oscillator (VCO) Frequency  
50  
1 The speed grade of a given part is printed on the chip’s package as shown in Figure 9 on Page 25 and can also be seen on the “Ordering Guide” on page 64. It stands for the  
Maximum allowed CCLK frequency at VDDINT = 1.2V and the maximum allowed VCO frequency at any supply voltage.  
Table 15. System Clock Requirements  
Parameter  
Condition  
Minimum  
Maximum  
Unit  
182 MBGA  
fSCLK  
VDDEXT = 3.3 V, VDDINT >= TBD V  
VDDEXT = 3.3 V, VDDINT < TBD V  
VDDEXT = 2.5 V, VDDINT >= TBD V  
VDDEXT = 2.5 V, VDDINT < TBD V  
TBD  
TBD  
TBD  
TBD  
MHz  
MHz  
MHz  
MHz  
fSCLK  
fSCLK  
fSCLK  
208 MBGA  
fSCLK  
VDDEXT = 3.3 V, VDDINT >= TBD V  
VDDEXT = 3.3 V, VDDINT < TBD V  
VDDEXT = 2.5 V, VDDINT >= TBD V  
VDDEXT = 2.5 V, VDDINT < TBD V  
TBD  
TBD  
TBD  
TBD  
MHz  
MHz  
MHz  
MHz  
fSCLK  
fSCLK  
fSCLK  
Table 16. Clock Input and Reset Timing  
Parameter  
Minimum  
Maximum  
Unit  
Timing Requirements  
tCKIN  
CLKIN Period1  
CLKIN Low Pulse2  
CLKIN High Pulse2  
25.0  
10.0  
10.0  
100.0  
TBD  
ns  
ns  
ns  
ns  
ns  
tCKINL  
tCKINH  
tBUFDLAY  
tWRST  
CLKIN to CLKBUF delay  
RESET Asserted Pulsewidth Low3  
11 tCKIN  
1 Combinations of the CLKIN frequency and the PLL clock multiplier must not exceed the allowed fVCO, fCCLK, and fSCLK settings discussed in Table 10 through Table 15. Since  
by default the PLL is multiplying the CLKIN frequency by 10, 300 MHz and 400MHz speed grade parts can not use the full CLKIN period range.  
2 Applies to bypass mode and non-bypass mode.  
3 Applies after power-up sequence is complete. At power-up, the processor’s internal phase-locked loop requires no more than 2000 CLKIN cycles, while RESET is asserted,  
assuming stable power supplies and CLKIN (not including start-up time of external clock oscillator).  
tCKIN  
CLKIN  
tCKINL  
tCKINH  
tBUFDLAY  
tBUFDLAY  
CLKBUF  
tWRST  
RESET  
Figure 10. Clock and Reset Timing  
Rev. PrE  
|
Page 27 of 64 | July 2005  
ADSP-BF536/BF537  
Preliminary Technical Data  
Asynchronous Memory Read Cycle Timing  
Table 17. Asynchronous Memory Read Cycle Timing  
Parameter  
Minimum  
Maximum  
Unit  
Timing Requirements  
tSDAT  
DATA15–0 Setup Before CLKOUT  
DATA15–0 Hold After CLKOUT  
ARDY Setup Before CLKOUT  
ARDY Hold After CLKOUT  
2.1  
0.8  
4.0  
0.0  
ns  
ns  
ns  
ns  
tHDAT  
tSARDY  
tHARDY  
Switching Characteristic  
tDO  
tHO  
Output Delay After CLKOUT1  
Output Hold After CLKOUT 1  
6.0  
ns  
ns  
0.8  
1 Output pins include AMS3–0, ABE1–0, ADDR19–1, AOE, ARE.  
HOLD  
1 CYCLE  
SETUP  
2 CYCLES  
PROGRAMMED READ ACCESS  
4 CYCLES  
ACCESS EXTENDED  
3 CYCLES  
CLKOUT  
AMSx  
tDO  
tHO  
ABE1–0  
BE, ADDRESS  
ADDR19–1  
AOE  
tDO  
tHO  
ARE  
tHARDY  
tSARDY  
tHARDY  
ARDY  
tSARDY  
tSDAT  
tHDAT  
DATA15–0  
READ  
Figure 11. Asynchronous Memory Read Cycle Timing  
Rev. PrE  
|
Page 28 of 64  
|
July 2005  
Preliminary Technical Data  
ADSP-BF536/BF537  
Asynchronous Memory Write Cycle Timing  
Table 18. Asynchronous Memory Write Cycle Timing  
Parameter  
Minimum  
Maximum  
Unit  
Timing Requirements  
tSARDY  
tHARDY  
ARDY Setup Before CLKOUT  
ARDY Hold After CLKOUT  
4.0  
0.0  
ns  
ns  
Switching Characteristic  
tDDAT  
tENDAT  
tDO  
DATA15–0 Disable After CLKOUT  
6.0  
6.0  
ns  
ns  
ns  
ns  
DATA15–0 Enable After CLKOUT  
Output Delay After CLKOUT1  
Output Hold After CLKOUT 1  
1.0  
0.8  
tHO  
1 Output pins include AMS3–0, ABE1–0, ADDR19–1, DATA15–0, AOE, AWE.  
ACCESS  
EXTENDED  
1 CYCLE  
SETUP  
2 CYCLES  
HOLD  
1 CYCLE  
PROGRAMMED WRITE  
ACCESS 2 CYCLES  
CLKOUT  
AMSx  
tDO  
tHO  
ABE1–0  
BE, ADDRESS  
ADDR19–1  
tDO  
tHO  
AWE  
tHARDY  
tSARDY  
ARDY  
tSARDY  
tENDAT  
tDDAT  
DATA15–0  
WRITE DATA  
Figure 12. Asynchronous Memory Write Cycle Timing  
Rev. PrE  
|
Page 29 of 64 | July 2005  
ADSP-BF536/BF537  
Preliminary Technical Data  
SDRAM Interface Timing  
Table 19. SDRAM Interface Timing (VDDINT = 1.2 V)  
Parameter  
Minimum  
Maximum  
Unit  
Timing Requirement  
tSSDAT  
tHSDAT  
DATA Setup Before CLKOUT  
DATA Hold After CLKOUT  
2.1  
0.8  
ns  
ns  
Switching Characteristic  
tSCLK  
CLKOUT Period1  
7.5  
2.5  
2.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tSCLKH  
tSCLKL  
tDCAD  
tHCAD  
tDSDAT  
tENSDAT  
CLKOUT Width High  
CLKOUT Width Low  
Command, ADDR, Data Delay After CLKOUT2  
Command, ADDR, Data Hold After CLKOUT2  
Data Disable After CLKOUT  
6.0  
6.0  
0.8  
Data Enable After CLKOUT  
1.0  
1 The tSCLK value is the inverse of the fSCLK specification discussed in Table 15. Package type and reduced supply voltages affect the best-case value of 7.5ns listed here.  
2 Command pins include: SRAS, SCAS, SWE, SDQM, SMS, SA10, SCKE.  
tSCLK  
tSCLKH  
CLKOUT  
tSSDAT  
tSCLKL  
tHSDAT  
DATA (IN)  
tDCAD  
tDSDAT  
tENSDAT  
tHCAD  
DATA(OUT)  
tDCAD  
CMND ADDR  
(OUT)  
tHCAD  
NOTE: COMMAND = SRAS, SCAS, SWE, SDQM, SMS, SA10, SCKE.  
Figure 13. SDRAM Interface Timing  
Rev. PrE  
|
Page 30 of 64  
|
July 2005  
Preliminary Technical Data  
ADSP-BF536/BF537  
External Port Bus Request and Grant Cycle Timing  
Table 20 and Figure 14 describe external port bus request and  
bus grant operations.  
Table 20. External Port Bus Request and Grant Cycle Timing  
Parameter 1, 2  
Minimum  
Maximum  
Unit  
Timing Requirements  
tBS  
BR asserted to CLKOUT high setup  
4.6  
0.0  
ns  
ns  
tBH  
CLKOUT high to BR de-asserted hold time  
Switching Characteristics  
tSD  
CLKOUT low to xMS, address, and RD/WR disable  
4.5  
4.5  
3.6  
3.6  
3.6  
3.6  
ns  
ns  
ns  
ns  
ns  
ns  
tSE  
CLKOUT low to xMS, address, and RD/WR enable  
CLKOUT high to BG asserted setup  
tDBG  
tEBG  
tDBH  
tEBH  
CLKOUT high to BG de-asserted hold time  
CLKOUT high to BGH asserted setup  
CLKOUT high to BGH de-asserted hold time  
1 These are preliminary timing parameters that are based on worst-case operating conditions.  
2 The pad loads for these timing parameters are 20 pF.  
CLKOUT  
tBS  
tBH  
BR  
tSD  
tSE  
AMSx  
tSD  
tSE  
ADDR19-1  
ABE1-0  
tSD  
tSE  
AWE  
ARE  
tDBG  
tEBG  
BG  
tDBH  
tEBH  
BGH  
Figure 14. External Port Bus Request and Grant Cycle Timing  
Rev. PrE  
|
Page 31 of 64 | July 2005  
ADSP-BF536/BF537  
Preliminary Technical Data  
External DMA Request Timing  
Table 21 and Figure 15 describe the External DMA Request  
operations.  
Table 21. External DMA Request Timing  
Parameter  
Minimum  
Maximum  
Unit  
Timing Parameters  
tDR  
tDH  
DMARx asserted to CLKOUT high setup  
TBD  
TBD  
TBD  
TBD  
ns  
ns  
CLKOUT high to DMARx de-asserted hold time  
Switching Characteristics  
tDO  
tHO  
Output delay after CLKOUT1  
Output hold after CLKOUT1  
TBD  
TBD  
TBD  
TBD  
ns  
ns  
1 System Outputs=DATA15–0, ADDR19–1, ABE1–0, AOE, ARE, AWE, AMS3–0, SRAS, SCAS, SWE, SCKE, CLKOUT, SA10, SMS, SCL, SDA, TSCLK0, TFS0, RFS0, RSCLK0,  
DT0PRI, DT0SEC, PF15–0, PG15–0, PH15–0, MDC, MDIO, RTX0, TD0, EMU, XTAL, CLKBUF, VROUT.  
CLKOUT  
tDR  
tDH  
DMAR0/1  
tDO  
tHO  
AMSx  
Figure 15. External DMA Request Timing  
Rev. PrE  
|
Page 32 of 64  
|
July 2005  
Preliminary Technical Data  
ADSP-BF536/BF537  
Parallel Peripheral Interface Timing  
Table 22 and Figure 16 on Page 33, Figure 17 on Page 36, and  
Figure 18 on Page 37 describe Parallel Peripheral Interface  
operations.  
Table 22. Parallel Peripheral Interface Timing  
Parameter  
Minimum  
Maximum  
Unit  
Timing Requirements  
tPCLKW  
tPCLK  
PPI_CLK Width1  
PPI_CLK Period1  
6.0  
ns  
ns  
15.0  
Timing Requirements - GP Input and Frame Capture Modes  
tSFSPE  
tHFSPE  
tSDRPE  
tHDRPE  
External Frame Sync Setup Before PPI_CLK  
External Frame Sync Hold After PPI_CLK  
Receive Data Setup Before PPI_CLK  
Receive Data Hold After PPI_CLK  
3.0  
3.0  
2.0  
4.0  
ns  
ns  
ns  
ns  
Switching Characteristics - GP Output and Frame Capture Modes  
tDFSPE  
tHOFSPE  
tDDTPE  
tHDTPE  
Internal Frame Sync Delay After PPI_CLK  
Internal Frame Sync Hold After PPI_CLK  
Transmit Data Delay After PPI_CLK  
Transmit Data Hold After PPI_CLK  
10.0  
10.0  
ns  
ns  
ns  
ns  
0.0  
0.0  
1 PPI_CLK frequency cannot exceed fSCLK/2  
DRIVE  
EDGE  
SAMPLE  
EDGE  
tPCLKW  
PPI_CLK  
tDFSPE  
tHOFSPE  
tSFSPE  
tHFSPE  
PPI_FS1  
PPI_FS2  
tDDTPE  
tSDRPE  
tHDRPE  
tHDTPE  
PPIx  
Figure 16. Parallel Peripheral Interface Timing  
Rev. PrE  
|
Page 33 of 64 | July 2005  
ADSP-BF536/BF537  
Preliminary Technical Data  
Serial Ports  
Table 23 through Table 28 on Page 35 and Figure 17 on Page 36  
through Figure 19 on Page 38 describe Serial Port operations.  
Table 23. Serial Ports—External Clock  
Parameter  
Minimum  
Maximum  
Unit  
Timing Requirements  
tSFSE  
TFS/RFS Setup Before TSCLK/RSCLK1  
TFS/RFS Hold After TSCLK/RSCLK1  
Receive Data Setup Before RSCLK1  
Receive Data Hold After RSCLK1  
TSCLK/RSCLK Width  
3.0  
3.0  
3.0  
3.0  
4.5  
15.0  
ns  
ns  
ns  
ns  
ns  
ns  
tHFSE  
tSDRE  
tHDRE  
tSCLKEW  
tSCLKE  
TSCLK/RSCLK Period  
1 Referenced to sample edge.  
Table 24. Serial Ports—Internal Clock  
Parameter  
Minimum  
Maximum  
Unit  
Timing Requirements  
tSFSI  
TFS/RFS Setup Before TSCLK/RSCLK1  
8.0  
ns  
ns  
ns  
ns  
ns  
ns  
tHFSI  
TFS/RFS Hold After TSCLK/RSCLK1  
Receive Data Setup Before RSCLK1  
Receive Data Hold After RSCLK1  
TSCLK/RSCLK Width  
–2.0  
6.0  
tSDRI  
tHDRI  
tSCLKEW  
tSCLKE  
0.0  
4.5  
TSCLK/RSCLK Period  
15.0  
1 Referenced to sample edge.  
Table 25. Serial Ports—External Clock  
Parameter  
Minimum  
Maximum  
10.0  
Unit  
Switching Characteristics  
tDFSE  
tHOFSE  
tDDTE  
tHDTE  
TFS/RFS Delay After TSCLK/RSCLK (Internally Generated TFS/RFS)1  
TFS/RFS Hold After TSCLK/RSCLK (Internally Generated TFS/RFS)1  
Transmit Data Delay After TSCLK1  
ns  
ns  
ns  
ns  
0.0  
0.0  
10.0  
Transmit Data Hold After TSCLK1  
1 Referenced to drive edge.  
Table 26. Serial Ports—Internal Clock  
Parameter  
Minimum  
Maximum  
Unit  
Switching Characteristics  
tDFS  
TFS/RFS Delay After TSCLK/RSCLK (Internally Generated TFS/RFS)1  
TFS/RFS Hold After TSCLK/RSCLK (Internally Generated TFS/RFS)1  
Transmit Data Delay After TSCLK1  
3.0  
3.0  
ns  
ns  
ns  
ns  
ns  
I
tHOFS  
1.0  
I
tDDT  
I
tHDT  
Transmit Data Hold After TSCLK1  
2.0  
I
tSCLKIW  
TSCLK/RSCLK Width  
4.5  
1 Referenced to drive edge.  
Rev. PrE  
|
Page 34 of 64  
|
July 2005  
Preliminary Technical Data  
ADSP-BF536/BF537  
Table 27. Serial Ports—Enable and Three-State  
Parameter  
Minimum  
0.0  
Maximum Unit  
Switching Characteristics  
tDTENE  
tDDTTE  
tDTENI  
tDDTTI  
Data Enable Delay from External TSCLK1  
Data Disable Delay from External TSCLK1  
Data Enable Delay from Internal TSCLK1  
Data Disable Delay from Internal TSCLK1  
ns  
10.0  
3.0  
ns  
ns  
ns  
–2.0  
1 Referenced to drive edge.  
Table 28. External Late Frame Sync  
Parameter  
Minimum  
Maximum Unit  
Switching Characteristics  
tDDTLFSE  
Data Delay from Late External TFS or External RFS with MCE = 1, MFD = 01,2  
Data Enable from late FS or MCE = 1, MFD = 01,2  
10.0  
ns  
ns  
tDTENLFSE  
0.0  
1 MCE = 1, TFS enable and TFS valid follow tDDTENFS and tDDTLFSE  
2 If external RFS/TFS setup to RSCLK/TSCLK > tSCLKE/2 then tDDTLSCK and tDTENLSCK apply, otherwise tDDTLFSE and tDTENLFS apply.  
.
Rev. PrE  
|
Page 35 of 64 | July 2005  
ADSP-BF536/BF537  
Preliminary Technical Data  
DATA RECEIVE- INTERNAL CLOCK  
DATA RECEIVE- EXTERNAL CLOCK  
DRIVE  
EDGE  
SAMPLE  
EDGE  
DRIVE  
EDGE  
SAMPLE  
EDGE  
tSCLKIW  
tSCLKEW  
RSCLK  
RSCLK  
tDFSE  
tDFSE  
tHOFSE  
tSFSI  
tHFSI  
tHOFSE  
tSFSE  
tHFSE  
RFS  
RFS  
tSDRI  
tHDRI  
tSDRE  
tHDRE  
DR  
DR  
NOTE: EITHER THE RISING EDGE OR FALLING EDGE OF RCLK, TCLK CAN BE USED AS THE ACTIVE SAMPLING EDGE.  
DATA TRANSMIT- INTERNAL CLOCK  
DATA TRANSMIT- EXTERNAL CLOCK  
DRIVE  
EDGE  
SAMPLE  
EDGE  
DRIVE  
EDGE  
SAMPLE  
EDGE  
tSCLKIW  
tSCLKEW  
TSCLK  
TSCLK  
tDFSI  
tDFSE  
tHOFSI  
tSFSI  
tHFSI  
tHOFSE  
tSFSE  
tHFSE  
TFS  
TFS  
tDDTI  
tDDTE  
tHDTI  
tHDTE  
DT  
DT  
NOTE: EITHER THE RISING EDGE OR FALLING EDGE OF RCLK OR TCLK CAN BE USED AS THE ACTIVE SAMPLING EDGE.  
DRIVE  
EDGE  
DRIVE  
EDGE  
TSCLK (EXT)  
TFS ("LATE", EXT.)  
TSCLK / RSCLK  
tDDTTE  
tDDTENE  
DT  
DRIVE  
EDGE  
DRIVE  
EDGE  
TSCLK (INT)  
TFS ("LATE", INT.)  
TSCLK / RSCLK  
tDDTENI  
tDDTTI  
DT  
Figure 17. Serial Ports  
Rev. PrE  
|
Page 36 of 64  
|
July 2005  
Preliminary Technical Data  
ADSP-BF536/BF537  
EXTERNAL RFS WITH MCE = 1, MFD = 0  
DRIVE  
SAMPLE  
DRIVE  
RSCLK  
RFS  
tHOFSE/I  
tSFSE/I  
tDDTE/I  
tDTENLFSE  
tHDTE/I  
1ST BIT  
2ND BIT  
DT  
tDDTLFSE  
LATE EXTERNAL TFS  
DRIVE  
SAMPLE  
DRIVE  
TSCLK  
TFS  
tSFSE/I  
tHOFSE/I  
tDDTE/I  
tDTENLFSE  
tHDTE/I  
DT  
1ST BIT  
2ND BIT  
tDDTLFSE  
Figure 18. External Late Frame Sync (Frame Sync Setup < tSCLKE/2)  
Rev. PrE  
|
Page 37 of 64 | July 2005  
ADSP-BF536/BF537  
Preliminary Technical Data  
EXTERNAL RFS WITH MCE=1, MFD=0  
DRIVE  
SAMPLE  
DRIVE  
RSCLK  
RFS  
tSFSE/I  
tHOFSE/I  
tDDTE/I  
tHDTE/I  
tDTENLSCK  
1ST BIT  
DT  
2ND BIT  
tDDTLSCK  
LATE EXTERNAL TFS  
DRIVE  
SAMPLE  
DRIVE  
TSCLK  
TFS  
tSFSE/I  
tHOFSE/I  
tDDTE/I  
tHDTE/I  
tDTENLSCK  
DT  
1ST BIT  
2ND BIT  
tDDTLSCK  
Figure 19. External Late Frame Sync (Frame Sync Setup > tSCLKE/2)  
Rev. PrE  
|
Page 38 of 64  
|
July 2005  
Preliminary Technical Data  
ADSP-BF536/BF537  
Serial Peripheral Interface (SPI) Port—Master Timing  
Table 29 and Figure 20 describe SPI port master operations.  
Table 29. Serial Peripheral Interface (SPI) Port—Master Timing  
Parameter  
Minimum  
Maximum  
Unit  
Timing Requirements  
tSSPIDM  
tHSPIDM  
Data input valid to SCK edge (data input setup)  
SCK sampling edge to data input invalid  
7.5  
ns  
ns  
–1.5  
Switching Characteristics  
tSDSCIM  
tSPICHM  
tSPICLM  
tSPICLK  
SPISELx low to first SCK edge (x=0 or 1)  
2tSCLK 1.5  
2tSCLK 1.5  
2tSCLK 1.5  
4tSCLK 1.5  
2tSCLK 1.5  
2tSCLK 1.5  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Serial clock high period  
Serial clock low period  
Serial clock period  
tHDSM  
Last SCK edge to SPISELx high (x=0 or 1)  
Sequential transfer delay  
tSPITDM  
tDDSPIDM  
tHDSPIDM  
SCK edge to data out valid (data out delay)  
SCK edge to data out invalid (data out hold)  
6
–1.0  
4.0  
SPISELx  
(OUTPUT)  
tSPICLK  
tHDSM  
tSPITDM  
tSDSCIM  
tSPICHM  
tSPICLM  
SCK  
(CPOL = 0)  
(OUTPUT)  
tSPICLM  
tSPICHM  
SCK  
(CPOL = 1)  
(OUTPUT)  
tDDSPIDM  
tHDSPIDM  
MOSI  
(OUTPUT)  
MSB  
LSB  
CPHA=1  
tSSPIDM  
tHSPIDM  
tSSPIDM  
tHSPIDM  
MISO  
(INPUT)  
MSB VALID  
LSB VALID  
tDDSPIDM  
tHDSPIDM  
MOSI  
(OUTPUT)  
MSB  
LSB  
CPHA=0  
tSSPIDM  
tHSPIDM  
MISO  
(INPUT)  
MSB VALID  
LSB VALID  
Figure 20. Serial Peripheral Interface (SPI) Port—Master Timing  
Rev. PrE  
|
Page 39 of 64 | July 2005  
ADSP-BF536/BF537  
Preliminary Technical Data  
Serial Peripheral Interface (SPI) Port—Slave Timing  
Table 30 and Figure 21 describe SPI port slave operations.  
Table 30. Serial Peripheral Interface (SPI) Port—Slave Timing  
Parameter  
Minimum  
Maximum  
Unit  
Timing Requirements  
tSPICHS  
tSPICLS  
tSPICLK  
tHDS  
Serial clock high period  
2tSCLK 1.5  
2tSCLK 1.5  
4tSCLK 1.5  
2tSCLK 1.5  
2tSCLK 1.5  
2tSCLK 1.5  
1.6  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Serial clock low period  
Serial clock period  
Last SCK edge to SPISS not asserted  
Sequential Transfer Delay  
tSPITDS  
tSDSCI  
tSSPID  
tHSPID  
SPISS assertion to first SCK edge  
Data input valid to SCK edge (data input setup)  
SCK sampling edge to data input invalid  
1.6  
Switching Characteristics  
tDSOE  
SPISS assertion to data out active  
0
0
0
0
8
ns  
ns  
ns  
ns  
tDSDHI  
tDDSPID  
tHDSPID  
SPISS deassertion to data high impedance  
SCK edge to data out valid (data out delay)  
SCK edge to data out invalid (data out hold)  
8
10  
10  
SPISS  
(INPUT)  
tSPICHS  
tSPICLS  
tSPICLK  
tHDS  
tSPITDS  
SCK  
(CPOL = 0)  
(INPUT)  
tSDSCI  
tSPICLS  
tSPICHS  
SCK  
(CPOL = 1)  
(INPUT)  
tDSOE  
tDDSPID  
tHDSPID  
MSB  
tDDSPID  
tDSDHI  
LSB  
MISO  
(OUTPUT)  
tHSPID  
tSSPID  
CPHA=1  
tSSPID  
tHSPID  
MOSI  
(INPUT)  
MSB VALID  
LSB VALID  
tDSOE  
tDDSPID  
tDSDHI  
MISO  
(OUTPUT)  
MSB  
LSB  
tHSPID  
CPHA=0  
tSSPID  
MOSI  
(INPUT)  
MSB VALID  
LSB VALID  
Figure 21. Serial Peripheral Interface (SPI) Port—Slave Timing  
Rev. PrE  
|
Page 40 of 64  
|
July 2005  
Preliminary Technical Data  
ADSP-BF536/BF537  
Universal Asynchronous Receiver-Transmitter  
(UART) Ports—Receive and Transmit Timing  
Figure 22 describes the UART ports receive and transmit opera-  
tions. The maximum baud rate is SCLK/16. As shown in  
Figure 22, there is some latency between the generation of inter-  
nal UART interrupts and the external data operations. These  
latencies are negligible at the data transmission rates for the  
UART.  
CLKOUT  
(SAMPLE CLOCK)  
UARTX RX  
RECEIVE  
DATA(5–8)  
STOP  
INTERNAL  
UART RECEIVE  
INTERRUPT  
UART RECEIVE BIT SET BY DATA STOP;  
CLEARED BY FIFO READ  
START  
UARTX TX  
DATA(5–8)  
STOP (1–2)  
TRANSMIT  
INTERNAL  
UART TRANSMIT  
INTERRUPT  
UART TRANSMIT BIT SET BY PROGRAM;  
CLEARED BY WRITE TO TRANSMIT  
Figure 22. UART Ports—Receive and Transmit Timing  
Rev. PrE  
|
Page 41 of 64 | July 2005  
ADSP-BF536/BF537  
Preliminary Technical Data  
General-Purpose Port Timing  
Table 31 and Figure 23 describe general-purpose port  
operations.  
Table 31. General-Purpose Port Timing  
Parameter  
Minimum  
Maximum  
Unit  
Timing Requirement  
tWFI  
General-purpose port pin input pulsewidth  
General-purpose port pin input setup  
General-purpose port pin input hold  
tSCLK + 1  
TBD  
ns  
ns  
ns  
tGPPIS  
tGPPIH  
Switching Characteristic  
tGPOD General-purpose port pin output delay from CLKOUT low  
TBD  
0
6
ns  
CLKOUT  
tGPOD  
GPP OUTPUT  
tGPPIS  
tGPPIH  
GPP INPUT  
tWFI  
Figure 23. General-Purpose Port Timing  
Rev. PrE  
|
Page 42 of 64  
|
July 2005  
Preliminary Technical Data  
ADSP-BF536/BF537  
Timer Cycle Timing  
Table 32 and Figure 24 describe timer expired operations. The  
input signal is asynchronous in “width capture mode” and  
“external clock mode” and has an absolute maximum input fre-  
quency of fSCLK/2 MHz.  
Table 32. Timer Cycle Timing  
Parameter  
Minimum  
Maximum  
Unit  
Timing Characteristics  
tWL  
tWH  
tTIS  
tTIH  
Timer pulsewidth input low1 (measured in SCLK cycles)  
Timer pulsewidth input high1 (measured in SCLK cycles)  
Timer input setup time before CLKOUT low  
1
SCLK  
SCLK  
ns  
1
TBD  
TBD  
Timer input hold time after CLKOUT low  
ns  
Switching Characteristic  
tHTO  
Timer pulsewidth output2 (measured in SCLK cycles)  
tTOD Timer output update delay after CLKOUT low  
1
0
(232–1)  
TBD  
SCLK  
ns  
1 The minimum pulsewidths apply for TMRx signals in width capture and external clock modes. They also apply to the PF15 or PPI_CLK signals in PWM output mode.  
2 The minimum time for tHTO is one cycle, and the maximum time for tHTO equals (232–1) cycles.  
CLKOUT  
tTOD  
TIMER OUTPUT  
tTIS  
tTIH  
TIMER INPUT  
Figure 24. Timer Cycle Timing  
Rev. PrE  
|
Page 43 of 64 | July 2005  
ADSP-BF536/BF537  
Preliminary Technical Data  
JTAG Test And Emulation Port Timing  
Table 33 and Figure 25 describe JTAG port operations.  
Table 33. JTAG Port Timing  
Parameter  
Minimum  
Maximum  
Unit  
Timing Parameters  
tTCK  
TCK Period  
20  
4
ns  
tSTAP  
tHTAP  
tSSYS  
tHSYS  
tTRSTW  
TDI, TMS Setup Before TCK High  
TDI, TMS Hold After TCK High  
System Inputs Setup Before TCK High1  
System Inputs Hold After TCK High1  
TRST Pulsewidth2 (measured in TCK cycles)  
ns  
4
ns  
4
ns  
5
ns  
4
TCK  
Switching Characteristics  
tDTDO TDO Delay from TCK Low  
tDSYS  
System Outputs Delay After TCK Low3  
10  
12  
ns  
ns  
0
1 System Inputs=DATA15–0, BR, ARDY, SCL, SDA, TFS0, TSCLK0, RSCLK0, RFS0, DR0PRI, DR0SEC, PF15–0, PG15–0, PH15–0, MDIO, RTXI, TCK, TD1, TMS, TRST,  
CLKIN, RESET, NMI, BMODE2–0.  
2 50 MHz Maximum  
3 System Outputs=DATA15–0, ADDR19–1, ABE1–0, AOE, ARE, AWE, AMS3–0, SRAS, SCAS, SWE, SCKE, CLKOUT, SA10, SMS, SCL, SDA, TSCLK0, TFS0, RFS0, RSCLK0,  
DT0PRI, DT0SEC, PF15–0, PG15–0, PH15–0, MDC, MDIO, RTX0, TD0, EMU, XTAL, CLKBUF, VROUT.  
tTCK  
TCK  
tSTAP  
tHTAP  
TMS  
TDI  
tDTDO  
TDO  
tSSYS  
tHSYS  
SYSTEM  
INPUTS  
tDSYS  
SYSTEM  
OUTPUTS  
Figure 25. JTAG Port Timing  
Rev. PrE  
|
Page 44 of 64  
|
July 2005  
Preliminary Technical Data  
ADSP-BF536/BF537  
TWI Controller Timing  
Table 34 through Table 41 and Figure 26 through Figure 29  
describe the TWI Controller operations.  
Table 34. TWI Controller Timing: Bus Start/Stop Bits, Slave Mode, 100 kHz  
Parameter  
Minimum  
TBD  
Maximum  
Unit  
ns  
tSU:STA  
tHD:STA  
tSU:STO  
tHD:STO  
Start condition setup time  
Start condition hold time  
Stop condition setup time  
Stop condition hold time  
-
-
-
-
TBD  
ns  
TBD  
ns  
TBD  
ns  
Table 35. TWI Controller Timing: Bus Start/Stop Bits, Slave Mode, 400 kHz  
Parameter  
Minimum  
TBD  
Maximum  
Unit  
ns  
tSU:STA  
tHD:STA  
tSU:STO  
tHD:STO  
Start condition setup time  
Start condition hold time  
Stop condition setup time  
Stop condition hold time  
-
-
-
-
TBD  
ns  
TBD  
ns  
TBD  
ns  
Table 36. TWI Controller Timing: Bus Data Requirements, Slave Mode, 100 kHz  
Parameter  
Minimum  
Maximum  
Unit  
µs  
µs  
ns  
ns  
µs  
µs  
ns  
ns  
µs  
ns  
µs  
pF  
tHIGH  
tLOW  
tR  
Clock high time  
TBD  
TBD  
-
-
Clock low time  
-
SDA and SCL rise time  
SDA and SCL fall time  
Start condition setup time  
Start condition hold time  
Data input hold time  
Data input setup time1  
Stop condition setup time  
Output valid from clock2  
Bus free time  
TBD  
tF  
-
TBD  
tSU:STA  
tHD:STA  
tHD:DAT  
tSU:DAT  
tSU:STO  
tTAA  
TBD  
TBD  
TBD  
TBD  
TBD  
-
-
-
-
-
-
TBD  
-
tBUF  
TBD  
-
CB  
Bus capacitive loading  
TBD  
1 As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. TBD ns) of the falling edge of SCL to avoid unintended  
generation of START or STOP conditions.  
2 A Fast mode TWI bus device can be used in a Standard mode TWI bus system, but the requirement TSU:DAT >= 250 ns must then be met. This will automatically be the case if  
the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA  
line. Before the SCL line is released, TR max. + TSU:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I2C bus specification).  
Rev. PrE  
|
Page 45 of 64 | July 2005  
ADSP-BF536/BF537  
Preliminary Technical Data  
Table 37. TWI Controller Timing: Bus Data Requirements, Slave Mode, 400 kHz  
Parameter  
Minimum  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
-
Maximum  
Unit  
µs  
µs  
ns  
ns  
µs  
µs  
µs  
ns  
µs  
ns  
µs  
pF  
tHIGH  
tLOW  
tR  
Clock high time  
-
Clock low time  
-
SDA and SCL rise time  
SDA and SCL fall time  
Start condition setup time  
Start condition hold time  
Data input hold time  
Data input setup time1  
Stop condition setup time  
Output valid from clock  
Bus free time  
TBD  
tF  
TBD  
tSU:STA  
tHD:STA  
tHD:DAT  
tSU:DAT  
tSU:STO  
tTAA  
-
-
TBD  
-
-
-
tBUF  
TBD  
-
CB  
Bus capacitive loading  
-
TBD  
1 As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. TBD ns) of the falling edge of SCL to avoid unintended  
generation of START or STOP conditions.  
Table 38. TWI Controller Timing: Bus Start/Stop Bits, Master Mode, 100 kHz  
Parameter  
tSU:STA  
Minimum  
TBD  
Maximum  
Unit  
ns  
Start condition setup time  
Start condition hold time  
Stop condition setup time  
Stop condition hold time  
-
-
-
-
tHD:STA  
TBD  
ns  
tSU:STO  
TBD  
ns  
tHD:STO  
TBD  
ns  
Table 39. TWI Controller Timing: Bus Start/Stop Bits, Master Mode, 400 kHz  
Parameter  
Minimum  
TBD  
Maximum  
Unit  
ns  
tSU:STA  
tHD:STA  
tSU:STO  
tHD:STO  
Start condition setup time  
Start condition hold time  
Stop condition setup time  
Stop condition hold time  
-
-
-
-
TBD  
ns  
TBD  
ns  
TBD  
ns  
Table 40. TWI Controller Timing: Bus Data Requirements, Master Mode, 100 kHz  
Parameter  
Minimum  
Maximum  
Unit  
ms  
ms  
ns  
tHIGH  
tLOW  
tR  
Clock high time  
TBD  
TBD  
-
-
Clock low time  
-
SDA and SCL rise time  
SDA and SCL fall time  
Start condition setup time  
Start condition hold time  
Data input hold time  
Data input setup time1  
Stop condition setup time  
Output valid from clock  
Bus free time  
TBD  
tF  
-
TBD  
ns  
tSU:STA  
tHD:STA  
tHD:DAT  
tSU:DAT  
tSU:STO  
tTAA  
TBD  
TBD  
TBD  
TBD  
TBD  
-
-
ms  
ms  
ns  
-
-
-
ns  
-
ms  
ns  
TBD  
-
tBUF  
TBD  
ms  
CB  
Bus capacitive loading  
-
TBD  
pF  
1 A Fast mode TWI bus device can be used in a Standard mode TWI bus system, but the requirement TSU:DAT >= 250 ns must then be met. This will automatically be the case if  
the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA  
line. Before the SCL line is released, TR max. + TSU:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I2C bus specification).  
Rev. PrE  
|
Page 46 of 64  
|
July 2005  
Preliminary Technical Data  
ADSP-BF536/BF537  
Table 41. TWI Controller Timing: Bus Data Requirements, Master Mode, 400 kHz  
Parameter  
Minimum  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
-
Maximum  
Unit  
ms  
ms  
ns  
tHIGH  
tLOW  
tR  
Clock high time  
-
Clock low time  
-
SDA and SCL rise time  
SDA and SCL fall time  
Start condition setup time  
Start condition hold time  
Data input hold time  
Data input setup time1  
Stop condition setup time  
Output valid from clock  
Bus free time  
TBD  
tF  
TBD  
ns  
tSU:STA  
tHD:STA  
tHD:DAT  
tSU:DAT  
tSU:STO  
tTAA  
-
ms  
ms  
ns  
-
TBD  
-
ns  
-
ms  
ns  
-
tBUF  
TBD  
-
ms  
CB  
Bus capacitive loading  
-
TBD  
pF  
1 A Fast mode TWI bus device can be used in a Standard mode TWI bus system, but the requirement TSU:DAT >= 250 ns must then be met. This will automatically be the case if  
the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA  
line. Before the SCL line is released, TR max. + TSU:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I2C bus specification).  
SCL  
tHD:STA  
tHD:STO  
tSU:STA  
tSU:STO  
SDA  
STOP  
START  
Figure 26. TWI Controller Timing: Bus Start/Stop Bits, Slave Mode  
tF  
tR  
tHIGH  
tLO W  
SCL  
tSU:S TA  
tHD:STA  
tHD:DAT  
tS U:DAT  
tS U:STO  
SDA  
(I N)  
tAA  
tBUF  
tAA  
SDA  
(OUT)  
Figure 27. TWI Controller Timing: Bus Data, Slave Mode  
Rev. PrE  
|
Page 47 of 64 | July 2005  
ADSP-BF536/BF537  
Preliminary Technical Data  
SCL  
SDA  
tHD:STA  
tHD:STO  
tSU:STA  
tSU:STO  
STOP  
START  
Figure 28. TWI Controller Timing: Bus Start/Stop Bits, Master Mode  
tF  
tR  
tHIGH  
tLO W  
SCL  
tSU:S TA  
tHD:STA  
tHD:DAT  
tS U:DAT  
tS U:STO  
SDA  
(I N)  
tAA  
tBUF  
tAA  
SDA  
(OUT)  
Figure 29. TWI Controller Timing: Bus Data, Master Mode  
Rev. PrE  
|
Page 48 of 64  
|
July 2005  
Preliminary Technical Data  
ADSP-BF536/BF537  
10/100 Ethernet MAC Controller Timing  
Table 42 through Table 47 and Figure 30 through Figure 35  
describe the 10/100 Ethernet MAC Controller operations.  
Table 42. 10/100 Ethernet MAC Controller Timing: MII Receive Signal  
Parameter 1  
Minimum  
Maximum  
Unit  
tERXCLKF  
ERxCLK frequency (fsclk = SCLK frequency)  
None  
25 MHz + 1% ns  
fSCLK + 1%  
tERXCLKW  
tERXCLKIS  
tERXCLKIH  
ERxCLK width (tERxCLK = ERxCLK period)  
tERxCLK x 35% tERxCLK x 65% ns  
Rx input valid to ERxCLK rising edge (data in setup)  
7.5  
7.5  
-
-
ns  
ns  
ERxCLK rising edge to Rx input invalid (data in hold)  
1 MII inputs synchronous to ERxCLK are ERxD3–0, ERxDV, and ERxER.  
Table 43. 10/100 Ethernet MAC Controller Timing: MII Transmit Signal  
Parameter 1  
Minimum  
Maximum  
Unit  
tETF  
ETxCLK frequency (fsclk = SCLK frequency)  
None  
25 MHz + 1% ns  
fSCLK + 1%  
tETXCLKW  
tETXCLKOV  
tETXCLKOH  
ETxCLK width (tETxCLK = ETxCLK period)  
tETxCLK x 35% tETxCLK x 65% ns  
ETxCLK rising edge to Tx output valid (data out valid)  
-
20  
-
ns  
ns  
ETxCLK rising edge to Tx output invalid (data out hold)  
0
1 MII outputs synchronous to ETxCLK are ETxD3–0.  
Table 44. 10/100 Ethernet MAC Controller Timing: RMII Receive Signal  
Parameter 1  
Minimum  
Maximum  
Unit  
tEREFCLKF  
REF_CLK frequency (fsclk = SCLK frequency)  
None  
50 MHz + 1% ns  
2 x fSCLK + 1%  
tEREFCLKW  
tEREFCLKIS  
tEREFCLKIH  
EREF_CLK width (tEREFCLK = EREFCLK period)  
tEREFCLK x 35% tEREFCLK x 65% ns  
Rx input valid to RMII REF_CLK rising edge (data in setup)  
4
2
-
-
ns  
ns  
RMII REF_CLK rising edge to Rx input invalid (data in hold)  
1 RMII inputs synchronous to RMII REF_CLK are ERxD1–0, RMII CRS_DV, and ERxER.  
Table 45. 10/100 Ethernet MAC Controller Timing: RMII Transmit Signal  
Parameter 1  
Minimum  
Maximum  
Unit  
ns  
tEREFCLKOV  
RMII REF_CLK rising edge to Tx output valid (data out valid)  
RMII REF_CLK rising edge to Tx output invalid (data out hold)  
-
4
-
tEREFCLKOH  
2
ns  
1 RMII outputs synchronous to RMII REF_CLK are ETxD1–0.  
Table 46. 10/100 Ethernet MAC Controller Timing: MII/RMII Asynchronous Signal  
Parameter 1, 2  
Minimum  
Maximum  
Unit  
tECOLH  
COL pulse width high  
COL pulse width low  
tETxCLK x 1.5  
tERxCLK x 1.5  
-
ns  
tECOLL  
tETxCLK x 1.5  
tERxCLK x 1.5  
-
ns  
tECRSH  
tECRSL  
CRS pulse width high  
CRS pulse width low  
tETxCLK x 1.5  
-
-
ns  
ns  
tETxCLK x 1.5  
1 MII/RMII asynchronous signals are COL, CRS. These signals are applicable in both MII and RMII modes. The asynchronous COL input is synchronized separately to both  
the ETxCLK and the ERxCLK, and must have a minimum pulse width high or low at least 1.5 times the period of the slower of the two clocks.  
2 The asynchronous CRS input is synchronized to the ETxCLK, and must have a minimum pulse width high or low at least 1.5 times the period of ETxCLK.  
Rev. PrE  
|
Page 49 of 64 | July 2005  
ADSP-BF536/BF537  
Preliminary Technical Data  
Table 47. 10/100 Ethernet MAC Controller Timing: MII Station Management  
Parameter 1  
Minimum  
Maximum  
Unit  
ns  
tMDIOS  
tMDCIH  
tMDCOV  
tMDCOH  
MDIO input valid to MDC rising edge (setup)  
MDC rising edge to MDIO input invalid (hold)  
MDC falling edge to MDIO output valid  
10  
10  
25  
0
-
-
-
-
ns  
ns  
MDC falling edge to MDIO output invalid (hold)  
ns  
1 MDC/MDIO is a 2-wire serial bidirectional port for controlling one or more external PHYs. MDC is an output clock whose minimum period is programmable as a multiple  
of the system clock SCLK. MDIO is a bidirectional data line.  
tERXCLK  
ERxCLK  
tERXCLKW  
ERxD3-0  
ERxDV  
ERxER  
tERXCLKIS  
tERXCLKIH  
Figure 30. 10/100 Ethernet MAC Controller Timing: MII Receive Signal  
tETXCLK  
MII TxCLK  
tETXCLKW  
tETXCLKOH  
ETxD3-0  
ETxEN  
tETXCLKOV  
Figure 31. 10/100 Ethernet MAC Controller Timing: MII Transmit Signal  
tREFCLK  
ERxCLK  
tREFCLKW  
ERxD1-0  
ERxDV  
ERxER  
tERXCLKIS  
tERXCLKIH  
Figure 32. 10/100 Ethernet MAC Controller Timing: RMII Receive Signal  
Rev. PrE  
|
Page 50 of 64  
|
July 2005  
Preliminary Technical Data  
ADSP-BF536/BF537  
tREFCLK  
RMII REF_CLK  
tEREFCLKOH  
ETxD1-0  
ETxEN  
tEREFCLKOV  
Figure 33. 10/100 Ethernet MAC Controller Timing: RMII Transmit Signal  
MII CRS, COL  
tECRSH  
tECOLH  
tECRSL  
tECOLL  
Figure 34. 10/100 Ethernet MAC Controller Timing: Asynchronous Signal  
MDC (OUTPUT)  
MDIO (OUTPUT)  
tMDCOH  
tMDCOV  
MDIO (INPUT)  
tMDIOS tMDCIH  
Figure 35. 10/100 Ethernet MAC Controller Timing: MII Station Management  
Rev. PrE  
|
Page 51 of 64 | July 2005  
ADSP-BF536/BF537  
Preliminary Technical Data  
OUTPUT DRIVE CURRENTS  
Figure 36 through Figure 45 show typical current-voltage char-  
acteristics for the output drivers of the ADSP-BF536/BF537  
processor. The curves represent the current drive capability of  
the output drivers as a function of output voltage. See Table 9 on  
page 19 for information about which driver type corresponds to  
a particular pin.  
150  
100  
50  
0
–50  
TBD  
150  
100  
50  
–100  
–150  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
SOURCE VOLTAGE (V)  
0
TBD  
Figure 38. Drive Current B (Low VDDEXT  
)
–50  
–100  
–150  
150  
100  
50  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
SOURCE VOLTAGE (V)  
Figure 36. Drive Current A (Low VDDEXT  
)
0
–50  
TBD  
150  
100  
50  
–100  
–150  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
SOURCE VOLTAGE (V)  
0
–50  
TBD  
Figure 39. Drive Current B (High VDDEXT  
)
–100  
–150  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
SOURCE VOLTAGE (V)  
Figure 37. Drive Current A (High VDDEXT  
)
Rev. PrE  
|
Page 52 of 64  
|
July 2005  
Preliminary Technical Data  
ADSP-BF536/BF537  
150  
100  
50  
150  
100  
50  
0
0
–50  
TBD  
TBD  
–50  
–100  
–150  
–100  
–150  
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
SOURCE VOLTAGE (V)  
SOURCE VOLTAGE (V)  
Figure 40. Drive Current C (Low VDDEXT  
)
Figure 42. Drive Current D (Low VDDEXT)  
150  
100  
50  
150  
100  
50  
0
–50  
0
–50  
TBD  
TBD  
–100  
–150  
–100  
–150  
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
SOURCE VOLTAGE (V)  
SOURCE VOLTAGE (V)  
Figure 41. Drive Current C (High VDDEXT  
)
Figure 43. Drive Current D (High VDDEXT)  
Rev. PrE  
|
Page 53 of 64 | July 2005  
ADSP-BF536/BF537  
Preliminary Technical Data  
150  
100  
50  
0
TBD  
–50  
–100  
–150  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
SOURCE VOLTAGE (V)  
Figure 44. Drive Current E (Low VDDEXT  
)
150  
100  
50  
0
–50  
TBD  
–100  
–150  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
SOURCE VOLTAGE (V)  
Figure 45. Drive Current E (High VDDEXT  
)
Rev. PrE  
|
Page 54 of 64  
|
July 2005  
Preliminary Technical Data  
ADSP-BF536/BF537  
The frequency f includes driving the load high and then back  
low. For example: DATA15–0 pins can drive high and low at a  
maximum rate of 1/(2
؋
 tSCLK) while in SDRAM burst mode.  
POWER DISSIPATION  
Total power dissipation has two components: one due to inter-  
nal circuitry (PINT) and one due to the switching of external  
output drivers (PEXT). Table 48 shows the power dissipation for  
internal circuitry (VDDINT). Internal power dissipation is depen-  
dent on the instruction execution sequence and the data  
operands involved.  
A typical power consumption can now be calculated for these  
conditions by adding a typical internal power dissipation:  
P
= P  
+ (I  
× V  
)
TOTAL  
EXT  
DD  
DDINT  
The external component of total power dissipation is caused by  
the switching of output pins. Its magnitude depends on:  
Note that the conditions causing a worst-case PEXT differ from  
those causing a worst-case PINT . Maximum PINT cannot occur  
while 100% of the output pins are switching from all ones (1s) to  
all zeros (0s). Note, as well, that it is not common for an applica-  
tion to have 100% or even 50% of the outputs switching  
simultaneously.  
• Maximum frequency (f0) at which all output pins can  
switch during each cycle  
• Load capacitance (C0) of all switching output pins  
• Their voltage swing (VDDEXT  
)
The external component is calculated using:  
TEST CONDITIONS  
2
All timing parameters appearing in this data sheet were mea-  
sured under the conditions described in this section.  
P
= V  
×
C
f
EXT  
DDEXT  
0
0
Output Enable Time  
Table 48. Internal Power Dissipation  
Output pins are considered to be enabled when they have made  
a transition from a high impedance state to the point when they  
start driving. The output enable time tENA is the interval from  
the point when a reference signal reaches a high or low voltage  
level to the point when the output starts driving as shown in the  
Output Enable/Disable diagram (Figure 46). The time  
Test Conditions1  
Parameter fCCLK  
=
fCCLK  
=
fCCLK  
=
fCCLK  
=
Unit  
50 MHz 150 MHz 250 MHz 400 MHz  
VDDINT  
0.8 V  
=
VDDINT  
0.9 V  
=
VDDINT  
1.0 V  
=
VDDINT  
1.2 V  
=
2
t
ENA_MEASURED is the interval from when the reference signal  
IDDTYP  
TBD  
TBD  
TBD  
TBD  
50  
TBD  
TBD  
TBD  
TBD  
50  
TBD  
TBD  
TBD  
TBD  
50  
TBD  
TBD  
TBD  
TBD  
50  
mA  
mA  
mA  
mA  
µA  
3
switches to when the output voltage reaches 2.0 V (output high)  
or 1.0 V (output low). Time tTRIP is the interval from when the  
output starts driving to when the output reaches the 1.0 V or  
2.0 V trip voltage. Time tENA is calculated as shown in the  
equation:  
IDDEFR  
45  
IDDSLEEP  
IDDDEEPSLEEP  
IDDHIBERNATE  
4
5
Parameter  
fCCLK  
=
fCCLK  
=
fCCLK  
=
Unit  
200 MHz 400 MHz 500 MHz  
t
= t  
t  
ENA_MEASURED TRIP  
ENA  
VDDINT  
0.9 V  
=
VDDINT  
1.0 V  
=
VDDINT  
1.2 V  
=
If multiple pins (such as the data bus) are enabled, the measure-  
ment value is that of the first pin to start driving.  
2
IDDTYP  
-
-
-
-
-
TBD  
TBD  
TBD  
TBD  
50  
TBD  
TBD  
TBD  
TBD  
50  
TBD  
TBD  
TBD  
TBD  
50  
mA  
mA  
mA  
mA  
µA  
3
IDDEFR  
45  
Output Disable Time  
IDDSLEEP  
4
IDDDEEPSLEEP  
Output pins are considered to be disabled when they stop driv-  
ing, go into a high impedance state, and start to decay from their  
output high or low voltage. The time for the voltage on the bus  
to decay by V is dependent on the capacitive load, CL and the  
load current, IL. This decay time can be approximated by the  
equation:  
5
IDDHIBERNATE  
Parameter  
fCCLK  
=
Unit  
600 MHz  
VDDINT  
1.2 V  
=
2
IDDTYP  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
TBD  
TBD  
TBD  
TBD  
50  
mA  
mA  
mA  
mA  
µA  
3
t
= (C V) ⁄ I  
IDDEFR  
DECAY  
L
L
45  
IDDSLEEP  
4
The output disable time tDIS is the difference between  
DIS_MEASURED and tDECAY as shown in Figure 46. The time  
IDDDEEPSLEEP  
t
5
IDDHIBERNATE  
tDIS_MEASURED is the interval from when the reference signal  
switches to when the output voltage decays V from the mea-  
sured output high or output low voltage. The time tDECAY is  
calculated with test loads CL and IL, and with V equal to 0.5 V.  
1 IDD data is specified for typical process parameters. All data at 25ºC.  
2 Processor executing 75% dual Mac, 25% ADD with moderate data bus activity.  
3 Implementation of Enhanced Full Rate (EFR) GSM algorithm.  
4 See the ADSP-BF537 Blackfin Processor Hardware Reference Manual for defini-  
tions of Sleep and Deep Sleep operating modes.  
5 IDDHIBERNATE is measured @ VDDEXT = 3.65 V with VR off (VDDCORE = 0 V).  
Rev. PrE  
|
Page 55 of 64 | July 2005  
ADSP-BF536/BF537  
Preliminary Technical Data  
requiring the hold time. A typical V will be 0.4 V. CL is the total  
bus capacitance (per data line), and IL is the total leakage or  
three-state current (per data line). The hold time will be tDECAY  
plus the minimum disable time (for example, tDSDAT for an  
SDRAM write cycle).  
REFERENCE  
SIGNAL  
tDIS_MEASURED  
tENA-MEASURED  
tDIS  
VOH  
tENA  
VOH  
(MEASURED)  
VOH (MEASURED) ؊ ⌬V  
VOL (MEASURED) + V  
2.0V  
1.0V  
(MEASURED)  
50  
TO  
1.5V  
OUTPUT  
PIN  
VOL  
VOL  
(MEASURED)  
(MEASURED)  
tDECAY  
tTRIP  
30pF  
OUTPUT STOPS DRIVING  
OUTPUT STARTS DRIVING  
HIGH IMPEDANCE STATE.  
Figure 47. Equivalent Device Loading for AC Measurements  
(Includes All Fixtures)  
TEST CONDITIONS CAUSE THIS  
VOLTAGE TO BE APPROXIMATELY 1.5V.  
Figure 46. Output Enable/Disable  
INPUT  
1.5V  
1.5V  
OR  
OUTPUT  
Example System Hold Time Calculation  
To determine the data output hold time in a particular system,  
first calculate tDECAY using the equation given above. Choose V  
to be the difference between the ADSP-BF536/BF537 proces-  
sor’s output voltage and the input threshold for the device  
Figure 48. Voltage Reference Levels for AC  
Measurements (Except Output Enable/Disable)  
ENVIRONMENTAL CONDITIONS  
To determine the junction temperature on the application  
printed circuit board use:  
In Table 49, airflow measurements comply with JEDEC stan-  
dards JESD51-2 and JESD51-6, and the junction-to-board  
measurement complies with JESD51-8. The junction-to-case  
measurement complies with MIL-STD-883 (Method 1012.1).  
All measurements use a 2S2P JEDEC test board.  
T
= T  
+ (Ψ × P )  
JT  
J
CASE  
D
where:  
TJ = Junction temperature (؇C)  
Table 49. Thermal Characteristics  
Parameter Condition  
Typical Unit  
؇C/W  
TCASE = Case temperature (؇C) measured by customer at top  
center of package.  
θJA  
0 linear m/s air flow  
θJMA  
θJMA  
θJB  
1 linear m/s air flow  
2 linear m/s air flow  
؇C/W  
Ψ = From Table 49  
JT  
؇C/W  
PD = Power dissipation (see Power Dissipation on Page 55 for  
the method to calculate PD)  
؇C/W  
θJC  
؇C/W  
Values of θJA are provided for package comparison and printed  
circuit board design considerations. θJA can be used for a first  
order approximation of TJ by the equation:  
Ψ
JT  
0 linear m/s air flow  
؇C/W  
T
= T + (θ × P )  
JA  
J
A
D
where:  
TA = Ambient temperature (؇C)  
Values of θJC are provided for package comparison and printed  
circuit board design considerations when an external heatsink is  
required.  
Values of θJB are provided for package comparison and printed  
circuit board design considerations.  
Rev. PrE  
|
Page 56 of 64  
|
July 2005  
Preliminary Technical Data  
182-BALL MINI-BGA PINOUT  
ADSP-BF536/BF537  
Table 50 lists the mini-BGA pinout by signal mnemonic.  
Table 51 on Page 58 lists the mini-BGA pinout by ball number.  
Table 50. 182-Ball Mini-BGA Ball Assignment (Alphabetically by Signal Mnemonic)  
Mnemonic Ball no.  
Mnemonic Ball no.  
Mnemonic Ball no.  
Mnemonic Ball no.  
Mnemonic Ball no.  
ABE0  
H13  
H12  
J14  
CLKOUT  
DATA0  
DATA1  
DATA10  
DATA11  
DATA12  
DATA13  
DATA14  
DATA15  
DATA2  
DATA3  
DATA4  
DATA5  
DATA6  
DATA7  
DATA8  
DATA9  
EMU  
B14  
M9  
N9  
N6  
P6  
GND  
GND  
GND  
GND  
GND  
GND  
NMI  
PF0  
L6  
PG8  
PG9  
PH0  
PH1  
PH10  
PH11  
PH12  
PH13  
PH14  
PH15  
PH2  
PH3  
PH4  
PH5  
PH6  
PH7  
PH8  
PH9  
PJ0  
E3  
SRAS  
D13  
D12  
P2  
ABE1  
L8  
E4  
SWE  
ADDR1  
ADDR10  
ADDR11  
ADDR12  
ADDR13  
ADDR14  
ADDR15  
ADDR16  
ADDR17  
ADDR18  
ADDR19  
ADDR2  
ADDR3  
ADDR4  
ADDR5  
ADDR6  
ADDR7  
ADDR8  
ADDR9  
AMS0  
L10  
M4  
M10  
P14  
B10  
M1  
L1  
C2  
TCK  
M13  
M14  
N14  
N13  
N12  
M11  
N11  
P13  
P12  
P11  
K14  
L14  
J13  
C3  
TDI  
M3  
N3  
B6  
TDO  
M5  
N5  
P5  
A2  
A3  
A4  
A5  
A6  
C4  
TMS  
N2  
TRST  
N1  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDINT  
VDDINT  
VDDINT  
VDDINT  
VDDINT  
VDDINT  
VDDINT  
VDDRTC  
VROUT0  
VROUT1  
XTAL  
A1  
P4  
PF1  
C12  
E6  
P9  
PF10  
PF11  
PF12  
PF13  
PF14  
PF15  
PF2  
J2  
M8  
N8  
P8  
J3  
E11  
F4  
H1  
H2  
H3  
H4  
L2  
C5  
C6  
F12  
H5  
M7  
N7  
P7  
B1  
B2  
H10  
J11  
J12  
K7  
B3  
K13  
L13  
K12  
L12  
M12  
E14  
F14  
F13  
G12  
G13  
E13  
G14  
H14  
P10  
N10  
N4  
M6  
M2  
A10  
A14  
D4  
E7  
PF3  
L3  
B4  
PF4  
L4  
B5  
GND  
PF5  
K1  
K2  
K3  
K4  
J1  
C7  
K9  
GND  
PF6  
PJ1  
B7  
L7  
GND  
PF7  
PJ10  
PJ11  
PJ2  
D10  
D11  
B11  
C11  
D7  
D8  
C8  
L9  
GND  
PF8  
L11  
P1  
AMS1  
GND  
E9  
PF9  
AMS2  
GND  
F5  
PG0  
PG1  
PG10  
PG11  
PG12  
PG13  
PG14  
PG15  
PG2  
PG3  
PG4  
PG5  
PG6  
PG7  
G1  
G2  
D1  
D2  
D3  
D5  
D6  
C1  
G3  
F1  
PJ3  
E5  
AMS3  
GND  
F6  
PJ4  
E8  
AOE  
GND  
F10  
F11  
G4  
G5  
G11  
H11  
J4  
PJ5  
E10  
G10  
K5  
ARDY  
GND  
PJ6  
ARE  
GND  
PJ7  
B8  
AWE  
GND  
PJ8  
D9  
C9  
K8  
BG  
GND  
PJ9  
K10  
B9  
BGH  
GND  
RESET  
RTXO  
RTXI  
SA10  
SCAS  
SCKE  
SMS  
C10  
A8  
A9  
E12  
C14  
B13  
C13  
BMODE0  
BMODE1  
BMODE2  
BR  
GND  
A13  
B12  
A11  
P3  
GND  
J5  
L5  
GND  
J9  
F2  
D14  
A7  
GND  
J10  
K6  
F3  
CLKBUF  
CLKIN  
GND  
E1  
A12  
GND  
K11  
E2  
Rev. PrE  
|
Page 57 of 64 | July 2005  
ADSP-BF536/BF537  
Preliminary Technical Data  
Table 51 lists the mini-BGA pinout by ball number. Table 50 on  
Page 57 lists the mini-BGA pinout by signal mnemonic.  
Table 51. 182-Ball Mini-BGA Ball Assignment (Numerically by Ball Number)  
Ball no.  
A1  
Mnemonic Ball no.  
Mnemonic Ball no.  
Mnemonic Ball no.  
Mnemonic Ball no.  
Mnemonic  
DATA0  
GND  
VDDEXT  
PH11  
PH12  
PH13  
PH14  
PH15  
CLKBUF  
RTXO  
RTXI  
C10  
C11  
C12  
C13  
C14  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
D10  
D11  
D12  
D13  
D14  
E1  
RESET  
PJ3  
F5  
GND  
J14  
K1  
ADDR1  
PF5  
M9  
M10  
M11  
M12  
M13  
M14  
N1  
A2  
F6  
GND  
A3  
VDDEXT  
SMS  
F10  
F11  
F12  
F13  
F14  
G1  
GND  
K2  
PF6  
ADDR15  
ADDR9  
ADDR10  
ADDR11  
TRST  
A4  
GND  
K3  
PF7  
A5  
SCAS  
PG10  
PG11  
PG12  
GND  
PG13  
PG14  
PJ4  
VDDEXT  
AMS2  
AMS1  
PG0  
K4  
PF8  
A6  
K5  
VDDINT  
GND  
A7  
K6  
A8  
K7  
VDDEXT  
VDDINT  
VDDEXT  
VDDINT  
GND  
N2  
TMS  
A9  
G2  
PG1  
K8  
N3  
TDO  
A10  
A11  
A12  
A13  
A14  
B1  
GND  
XTAL  
CLKIN  
VROUT0  
GND  
PH5  
G3  
PG2  
K9  
N4  
BMODE0  
DATA13  
DATA10  
DATA7  
DATA4  
DATA1  
BGH  
G4  
GND  
K10  
K11  
K12  
K13  
K14  
L1  
N5  
G5  
GND  
N6  
PJ5  
G10  
G11  
G12  
G13  
G14  
H1  
VDDINT  
GND  
ADDR7  
ADDR5  
ADDR2  
PF1  
N7  
PJ8  
N8  
PJ10  
AMS3  
AOE  
N9  
B2  
PH6  
PJ11  
N10  
N11  
N12  
N13  
N14  
P1  
B3  
PH7  
SWE  
ARE  
L2  
PF2  
ADDR16  
ADDR14  
ADDR13  
ADDR12  
VDDEXT  
TCK  
B4  
PH8  
SRAS  
BR  
PF12  
PF13  
PF14  
PF15  
VDDEXT  
VDDEXT  
GND  
L3  
PF3  
B5  
PH9  
H2  
L4  
PF4  
B6  
PH10  
PJ1  
PG6  
H3  
L5  
BMODE2  
GND  
B7  
E2  
PG7  
H4  
L6  
B8  
PJ7  
E3  
PG8  
H5  
L7  
VDDEXT  
GND  
P2  
B9  
VDDRTC  
NMI  
E4  
PG9  
H10  
H11  
H12  
H13  
H14  
J1  
L8  
P3  
BMODE1  
DATA15  
DATA14  
DATA11  
DATA8  
DATA5  
DATA2  
BG  
B10  
B11  
B12  
B13  
B14  
C1  
E5  
VDDINT  
VDDEXT  
GND  
VDDINT  
GND  
VDDINT  
VDDEXT  
SA10  
ARDY  
AMS0  
PG3  
L9  
VDDEXT  
GND  
P4  
PJ2  
E6  
ABE1  
ABE0  
AWE  
L10  
L11  
L12  
L13  
L14  
M1  
M2  
M3  
M4  
M5  
M6  
M7  
M8  
P5  
VROUT1  
SCKE  
CLKOUT  
PG15  
PH0  
E7  
VDDEXT  
ADDR8  
ADDR6  
ADDR3  
PF0  
P6  
E8  
P7  
E9  
PF9  
P8  
E10  
E11  
E12  
E13  
E14  
F1  
J2  
PF10  
PF11  
GND  
P9  
C2  
J3  
P10  
P11  
P12  
P13  
P14  
C3  
PH1  
J4  
EMU  
ADDR19  
ADDR18  
ADDR17  
GND  
C4  
PH2  
J5  
GND  
TDI  
C5  
PH3  
J9  
GND  
GND  
C6  
PH4  
J10  
J11  
J12  
J13  
GND  
DATA12  
DATA9  
DATA6  
DATA3  
C7  
PJ0  
F2  
PG4  
VDDEXT  
VDDEXT  
ADDR4  
C8  
PJ6  
F3  
PG5  
C9  
PJ9  
F4  
VDDEXT  
Rev. PrE  
|
Page 58 of 64  
|
July 2005  
Preliminary Technical Data  
ADSP-BF536/BF537  
Figure 49 shows the top view of the mini-BGA ball configura-  
tion. Figure 50 shows the bottom view of the mini-BGA ball  
configuration.  
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
A
B
C
D
E
F
G
H
J
K
L
M
N
P
KEY:  
VDDINT  
VDDEXT  
VDDRTC  
VROUT  
GND  
I/O  
Figure 49. 182-Ball Mini-BGA Ball Configuration (Top View)  
14 13 12 11 10  
9
8
7
6
5
4
3
2
1
A
B
C
D
E
F
G
H
J
K
L
M
N
P
KEY:  
VDDINT  
VDDRTC  
VROUT  
GND  
VDDEXT  
I/O  
Figure 50. 182-Ball Mini-BGA Ball Configuration (Bottom View)  
Rev. PrE  
|
Page 59 of 64 | July 2005  
ADSP-BF536/BF537  
Preliminary Technical Data  
208-BALL SPARSE MINI-BGA PINOUT  
Table 52 lists the sparse mini-BGA pinout by signal mnemonic.  
Table 53 on Page 61 lists the sparse mini-BGA pinout by ball  
number.  
Table 52. 208-Ball Sparse Mini-BGA Ball Assignment (Alphabetically by Signal Mnemonic)  
Mnemonic Ball no. Mnemonic Ball no. Mnemonic Ball no. Mnemonic Ball no.  
Mnemonic Ball no.  
ABE0  
P19  
P20  
R19  
W18  
Y18  
W17  
Y17  
W16  
Y16  
W15  
Y15  
W14  
Y14  
T20  
T19  
U20  
U19  
V20  
V19  
W20  
Y19  
M20  
M19  
G20  
G19  
N20  
J19  
DATA12  
DATA13  
DATA14  
DATA15  
DATA2  
DATA3  
DATA4  
DATA5  
DATA6  
DATA7  
DATA8  
DATA9  
EMU  
Y4  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
NMI  
PF0  
M13  
N9  
N10  
N11  
N12  
N13  
P11  
V2  
PG6  
PG7  
PG8  
PG9  
PH0  
PH1  
PH10  
PH11  
PH12  
PH13  
PH14  
PH15  
PH2  
PH3  
PH4  
PH5  
PH6  
PH7  
PH8  
PH9  
PJ0  
E2  
TDI  
V1  
ABE1  
W4  
Y3  
D1  
TDO  
Y2  
ADDR1  
ADDR10  
ADDR11  
ADDR12  
ADDR13  
ADDR14  
ADDR15  
ADDR16  
ADDR17  
ADDR18  
ADDR19  
ADDR2  
ADDR3  
ADDR4  
ADDR5  
ADDR6  
ADDR7  
ADDR8  
ADDR9  
AMS0  
D2  
TMS  
U2  
W3  
Y9  
C1  
TRST  
U1  
B4  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDINT  
VDDINT  
VDDINT  
VDDINT  
VDDINT  
VDDINT  
VDDINT  
VDDINT  
VDDINT  
VDDINT  
VDDINT  
VDDINT  
VDDRTC  
VROUT0  
VROUT1  
XTAL  
G7  
W9  
Y8  
A5  
G8  
B9  
G9  
W8  
Y7  
A10  
B10  
A11  
B11  
A12  
B5  
G10  
H7  
W2  
W19  
Y1  
W7  
Y6  
H8  
J7  
W6  
T1  
Y13  
Y20  
C20  
T2  
J8  
K7  
GND  
A1  
A6  
K8  
GND  
A13  
A20  
B2  
B6  
L7  
GND  
PF1  
R1  
A7  
L8  
GND  
PF10  
PF11  
PF12  
PF13  
PF14  
PF15  
PF2  
L2  
B7  
M7  
M8  
N7  
GND  
G11  
H9  
K1  
A8  
GND  
K2  
B8  
GND  
H10  
H11  
H12  
H13  
J9  
J1  
A9  
N8  
GND  
J2  
B12  
B13  
B19  
C19  
D19  
E19  
B18  
A19  
B15  
B16  
B17  
B20  
D20  
A15  
A14  
L20  
K20  
H20  
J20  
K19  
L19  
W1  
P7  
GND  
H1  
R2  
PJ1  
P8  
AMS1  
GND  
PJ10  
PJ11  
PJ2  
P9  
AMS2  
GND  
PF3  
P1  
P10  
G12  
G13  
G14  
H14  
J14  
K14  
L14  
M14  
N14  
P12  
P13  
P14  
A16  
E20  
F20  
A17  
AMS3  
GND  
J10  
J11  
J12  
J13  
K9  
PF4  
P2  
AOE  
GND  
PF5  
N1  
N2  
M1  
M2  
L1  
PJ3  
ARDY  
GND  
PF6  
PJ4  
ARE  
N19  
R20  
Y11  
Y12  
W13  
W12  
W11  
F19  
B14  
A18  
H19  
Y10  
W10  
Y5  
GND  
PF7  
PJ5  
AWE  
GND  
PF8  
PJ6  
BG  
GND  
K10  
K11  
K12  
K13  
L9  
PF9  
PJ7  
BGH  
GND  
PG0  
H2  
G1  
C2  
PJ8  
BMODE0  
BMODE1  
BMODE2  
BR  
GND  
PG1  
PJ9  
GND  
PG10  
PG11  
PG12  
PG13  
PG14  
PG15  
PG2  
RESET  
RTXO  
RTXI  
SA10  
SCAS  
SCKE  
SMS  
SRAS  
SWE  
TCK  
GND  
B1  
GND  
L10  
L11  
L12  
L13  
M9  
M10  
M11  
M12  
A2  
A3  
B3  
CLKBUF  
CLKIN  
GND  
GND  
CLKOUT  
DATA0  
DATA1  
DATA10  
DATA11  
GND  
A4  
G2  
F1  
GND  
GND  
PG3  
GND  
PG4  
F2  
W5  
GND  
PG5  
E1  
Rev. PrE  
|
Page 60 of 64  
|
July 2005  
Preliminary Technical Data  
ADSP-BF536/BF537  
Table 53 lists the sparse mini-BGA pinout by ball number.  
Table 52 on Page 60 lists the sparse mini-BGA pinout by signal  
mnemonic.  
Table 53. 208-Ball Sparse Mini-BGA Ball Assignment (Numerically by Ball Number)  
Ball no.  
A1  
Mnemonic Ball no.  
Mnemonic Ball no.  
Mnemonic Ball no.  
Mnemonic Ball no.  
Mnemonic  
TCK  
GND  
PG12  
PG13  
PG15  
PH1  
C19  
C20  
D1  
PJ11  
J9  
GND  
M19  
M20  
N1  
AMS1  
AMS0  
PF5  
W1  
W2  
W3  
W4  
W5  
W6  
W7  
W8  
W9  
W10  
W11  
W12  
W13  
W14  
W15  
W16  
W17  
W18  
W19  
W20  
Y1  
A2  
NMI  
J10  
J11  
J12  
J13  
J14  
J19  
J20  
K1  
GND  
GND  
A3  
PG7  
GND  
DATA15  
DATA13  
DATA11  
DATA9  
DATA7  
DATA5  
DATA3  
DATA1  
BMODE2  
BMODE1  
BMODE0  
ADDR18  
ADDR16  
ADDR14  
ADDR12  
ADDR10  
GND  
A4  
D2  
PG8  
GND  
N2  
PF6  
A5  
D19  
D20  
E1  
PJ2  
GND  
N7  
VDDEXT  
VDDEXT  
GND  
A6  
PH3  
RESET  
PG5  
VDDINT  
ARDY  
SMS  
N8  
A7  
PH5  
N9  
A8  
PH7  
E2  
PG6  
N10  
N11  
N12  
N13  
N14  
N19  
N20  
P1  
GND  
A9  
PH9  
E19  
E20  
F1  
PJ3  
PF11  
GND  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
B1  
PH11  
PH13  
PH15  
GND  
RTXI  
RTXO  
VDDRTC  
XTAL  
CLKIN  
PJ5  
VROUT0  
PG3  
K2  
PF12  
GND  
K7  
VDDEXT  
VDDEXT  
GND  
GND  
F2  
PG4  
K8  
VDDINT  
ARE  
F19  
F20  
G1  
BR  
K9  
VROUT1  
PG1  
K10  
K11  
K12  
K13  
K14  
K19  
K20  
L1  
GND  
AOE  
GND  
PF3  
G2  
PG2  
GND  
P2  
PF4  
G7  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
GND  
GND  
P7  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
GND  
G8  
VDDINT  
SRAS  
SCAS  
PF9  
P8  
G9  
P9  
GND  
PG11  
GND  
PG14  
PH0  
G10  
G11  
G12  
G13  
G14  
G19  
G20  
H1  
P10  
P11  
P12  
P13  
P14  
P19  
P20  
R1  
ADDR8  
GND  
B2  
VDDINT  
VDDINT  
VDDINT  
AMS3  
AMS2  
PF15  
L2  
PF10  
VDDINT  
VDDINT  
VDDINT  
ABE0  
Y2  
TDO  
B3  
L7  
VDDEXT  
VDDEXT  
GND  
Y3  
DATA14  
DATA12  
DATA10  
DATA8  
DATA6  
DATA4  
DATA2  
DATA0  
BG  
B4  
L8  
Y4  
B5  
PH2  
L9  
Y5  
B6  
PH4  
L10  
L11  
L12  
L13  
L14  
L19  
L20  
M1  
M2  
M7  
M8  
M9  
M10  
M11  
M12  
M13  
M14  
GND  
ABE1  
Y6  
B7  
PH6  
GND  
PF1  
Y7  
B8  
PH8  
H2  
PG0  
GND  
R2  
PF2  
Y8  
B9  
PH10  
PH12  
PH14  
PJ0  
H7  
VDDEXT  
VDDEXT  
GND  
GND  
R19  
R20  
T1  
ADDR1  
AWE  
Y9  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
B20  
C1  
H8  
VDDINT  
SWE  
Y10  
Y11  
Y12  
Y13  
Y14  
Y15  
Y16  
Y17  
Y18  
Y19  
Y20  
H9  
EMU  
H10  
H11  
H12  
H13  
H14  
H19  
H20  
J1  
GND  
SA10  
PF7  
T2  
PF0  
BGH  
PJ1  
GND  
T19  
T20  
U1  
ADDR3  
ADDR2  
TRST  
GND  
CLKBUF  
PJ6  
GND  
PF8  
ADDR19  
ADDR17  
ADDR15  
ADDR13  
ADDR11  
ADDR9  
GND  
GND  
VDDEXT  
VDDEXT  
GND  
PJ7  
VDDINT  
CLKOUT  
SCKE  
U2  
TMS  
PJ8  
U19  
U20  
V1  
ADDR5  
ADDR4  
TDI  
PJ4  
GND  
PJ10  
PJ9  
PF13  
GND  
J2  
PF14  
GND  
V2  
GND  
PG9  
J7  
VDDEXT  
VDDEXT  
GND  
V19  
V20  
ADDR7  
ADDR6  
C2  
PG10  
J8  
VDDINT  
Rev. PrE  
|
Page 61 of 64 | July 2005  
ADSP-BF536/BF537  
Preliminary Technical Data  
Figure 51 shows the top view of the sparse mini-BGA ball con-  
figuration. Figure 52 shows the bottom view of the sparse mini-  
BGA ball configuration.  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
KEY:  
V
V
GND  
I/O  
NC  
DDINT  
DDRTC  
V
ROUT  
V
DDEXT  
Figure 51. 208-Ball Mini-BGA Ball Configuration (Top View)  
20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
KEY:  
VDDINT  
VDDEXT  
VDDRTC  
VROUT  
GND  
I/O  
NC  
Figure 52. 208-Ball Mini-BGA Ball Configuration (Bottom View)  
Rev. PrE  
|
Page 62 of 64  
|
July 2005  
Preliminary Technical Data  
OUTLINE DIMENSIONS  
ADSP-BF536/BF537  
Dimensions in Figure 53182-Ball Mini-BGA and Figure 54—  
208-Ball Sparse Mini-BGA are shown in millimeters.  
A1 CORNER  
INDEX AREA  
12.00 BSC SQ  
13  
14 12 10  
9
7
5
3
1
11  
8
6
4
2
A
B
C
D
E
F
PIN A1  
INDICATOR  
10.40  
BSC  
SQ  
LOCATION  
G
H
J
K
L
0.80  
BSC  
TYP  
M
N
P
TOP VIEW  
BOTTOM VIEW  
1.70  
1.56  
1.35  
DETAIL A  
1.31  
1.21  
1.10  
0.35 NOM  
0.25 MIN  
NOTES:  
1. DIMENSIONS ARE IN MILLIMETERS.  
0.50  
2. COMPLIANT TO JEDEC STANDARD MO-205-AE,  
EXCEPT FOR BALL DIAMETER.  
3. CENTER DIMENSIONS ARE NOMINAL.  
4. THE ACTUAL POSITION OF THE BALL GRID IS  
WITHIN 0.15 OF ITS IDEAL POSITION RELATIVE  
TO THE PACKAGE EDGES.  
0.12  
COPLANARITY  
SEATING  
PLANE  
0.45  
0.40  
(BALL  
DIAMETER)  
DETAIL A  
5. RECOMMENDED SOLDER MASK OPENING IS 0.40mm,  
RECOMMENDED BALL PAD SIZE IS 0.55mm.  
Figure 53. 182-Ball Mini-BGA  
A1 CORNER  
INDEX AREA  
17.00 BSC SQ  
20 18 16 14 12 10  
19 17 15 13 11  
8
6
4
2
3 1  
9
7
5
A
B
C
D
E
F
PIN A1  
INDICATOR  
15.20  
BSC  
SQ  
G
LOCATION  
H
J
K
L
M
N
P
R
T
0.80  
BSC  
TYP  
U
V
W
Y
BOTTOM VIEW  
TOP VIEW  
1.70  
1.61  
1.46  
1.36  
1.26  
1.16  
DETAILA  
0.35 NOM  
0.30 MIN  
NOTES:  
1. DIMENSIONS ARE IN MILLIMETERS.  
0.50  
0.45  
2. COMPLIANT TO JEDEC STANDARD MO-205-AM,  
EXCEPT FOR BALL DIAMETER.  
0.12  
COPLANARITY  
SEATING  
PLANE  
0.40  
3. CENTER DIMENSIONS ARE NOMINAL.  
4. THE ACTUAL POSITION OF THE BALL GRID IS  
WITHIN 0.15 OF ITS IDEAL POSITION RELATIVE  
TO THE PACKAGE EDGES.  
(BALL  
DIAMETER)  
DETAIL A  
5. RECOMMENDED SOLDER MASK OPENING IS 0.40mm,  
RECOMMENDED BALL PAD SIZE IS 0.55mm.  
Figure 54. 208-Ball Sparse Mini-BGA  
Rev. PrE  
|
Page 63 of 64 | July 2005  
ADSP-BF536/BF537  
Preliminary Technical Data  
ORDERING GUIDE  
Part numbers that include “A1” are 182-Ball mini-BGA. Part numbers that include “B1” are 208-Ball Sparse mini-BGA. Part numbers that  
include “Z” are lead free. See Figure 9 on Page 25 for more information about product information on the package.  
Part Number  
Temperature Range (Ambient)  
–40ºC to 85ºC  
Speed Grade (Max)  
300 MHz  
Operating Voltage (Nominal)  
1.2 V internal, 2.5 V or 3.3 V I/O  
1.2 V internal, 2.5 V or 3.3 V I/O  
1.2 V internal, 2.5 V or 3.3 V I/O  
1.2 V internal, 2.5 V or 3.3 V I/O  
1.2 V internal, 2.5 V or 3.3 V I/O  
1.2 V internal, 2.5 V or 3.3 V I/O  
ADSP-BF536BBC-3A1  
ADSP-BF536BBCZ-3A1  
ADSP-BF536BBCZ-3B1  
ADSP-BF536BBC-4A1  
ADSP-BF536BBCZ-4A1  
ADSP-BF536BBCZ-4B1  
–40ºC to 85ºC  
300 MHz  
–40ºC to 85ºC  
300 MHz  
–40ºC to 85ºC  
400 MHz  
–40ºC to 85ºC  
400 MHz  
–40ºC to 85ºC  
400 MHz  
ADSP-BF537BBC-5A1  
ADSP-BF537BBCZ-5A1  
ADSP-BF537BBCZ-5B1  
ADSP-BF537KBC-6A1  
ADSP-BF537KBCZ-6A1  
ADSP-BF537KBCZ-6B1  
–40ºC to 85ºC  
–40ºC to 85ºC  
–40ºC to 85ºC  
0ºC to 70ºC  
500 MHz  
500 MHz  
500 MHz  
600 MHz  
600 MHz  
600 MHz  
1.26 V internal, 2.5 V or 3.3 V I/O  
1.26 V internal, 2.5 V or 3.3 V I/O  
1.26 V internal, 2.5 V or 3.3 V I/O  
1.26 V internal, 2.5 V or 3.3 V I/O  
1.26 V internal, 2.5 V or 3.3 V I/O  
1.26 V internal, 2.5 V or 3.3 V I/O  
0ºC to 70ºC  
0ºC to 70ºC  
©
2005 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
PR05370-0-7/05(PrE)  
Rev. PrE  
|
Page 64 of 64  
|
July 2005  

相关型号:

ADSP-BF536BBCZ3BRL

Blackfin Processor with Embedded Network Connectivity
ADI

ADSP-BF536_15

Blackfin Embedded Processor
ADI

ADSP-BF537

Blackfin Embedded Processor
ADI

ADSP-BF537BBC-5A

Blackfin Embedded Processor
ADI

ADSP-BF537BBC-5A1

IC 16-BIT, 40 MHz, OTHER DSP, PBGA182, MO-205AE, MBGA-182, Digital Signal Processor
ADI

ADSP-BF537BBCZ-5A

Blackfin Embedded Processor
ADI

ADSP-BF537BBCZ-5A1

IC 16-BIT, 40 MHz, OTHER DSP, PBGA182, LEAD FREE, MO-205AE, MBGA-182, Digital Signal Processor
ADI

ADSP-BF537BBCZ-5AV

Blackfin Embedded Processor
ADI

ADSP-BF537BBCZ-5B

Blackfin Embedded Processor
ADI

ADSP-BF537BBCZ-5B1

IC 16-BIT, 40 MHz, OTHER DSP, PBGA208, LEAD FREE, MO-205AM, MBGA-208, Digital Signal Processor
ADI

ADSP-BF537BBCZ-5BV

Blackfin Embedded Processor
ADI

ADSP-BF537KBC-6A

Blackfin Embedded Processor
ADI