ADSP-BF536BBCZ3BRL [ADI]

Blackfin Processor with Embedded Network Connectivity;
ADSP-BF536BBCZ3BRL
型号: ADSP-BF536BBCZ3BRL
厂家: ADI    ADI
描述:

Blackfin Processor with Embedded Network Connectivity

时钟 外围集成电路
文件: 总68页 (文件大小:2212K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Blackfin  
Embedded Processor  
ADSP-BF534/ADSP-BF536/ADSP-BF537  
FEATURES  
PERIPHERALS  
Up to 600 MHz high performance Blackfin processor  
Two 16-bit MACs, two 40-bit ALUs, four 8-bit video ALUs,  
40-bit shifter  
RISC-like register and instruction model for ease of  
programming and compiler-friendly support  
Advanced debug, trace, and performance monitoring  
Wide range of operating voltages (see Operating Conditions  
on Page 23)  
Qualified for Automotive Applications (see Automotive Prod-  
ucts on Page 66)  
Programmable on-chip voltage regulator  
182-ball and 208-ball CSP_BGA packages  
IEEE 802.3-compliant 10/100 Ethernet MAC (ADSP-BF536 and  
ADSP-BF537 only)  
Controller area network (CAN) 2.0B interface  
Parallel peripheral interface (PPI), supporting ITU-R 656  
video data formats  
2 dual-channel, full-duplex synchronous serial ports  
(SPORTs), supporting 8 stereo I2S channels  
12 peripheral DMAs, 2 mastered by the Ethernet MAC  
2 memory-to-memory DMAs with external request lines  
Event handler with 32 interrupt inputs  
Serial peripheral interface (SPI) compatible  
2 UARTs with IrDA support  
2-wire interface (TWI) controller  
MEMORY  
Eight 32-bit timer/counters with PWM support  
Real-time clock (RTC) and watchdog timer  
32-bit core timer  
48 general-purpose I/Os (GPIOs), 8 with high current drivers  
On-chip PLL capable of frequency multiplication  
Debug/JTAG interface  
Up to 132K bytes of on-chip memory  
Instruction SRAM/cache and instruction SRAM  
Data SRAM/cache plus additional dedicated data SRAM  
Scratchpad SRAM (see Table 1 on Page 3 for available  
memory configurations)  
External memory controller with glueless support for SDRAM  
and asynchronous 8-bit and 16-bit memories  
Flexible booting options from external flash, SPI and TWI  
memory or from SPI, TWI, and UART host devices  
Memory management unit providing memory protection  
VOLTAGE REGULATOR  
JTAG TEST AND EMULATION  
PERIPHERAL ACCESS BUS  
WATCHDOG TIMER  
RTC  
INTERRUPT  
CONTROLLER  
CAN  
B
TWI  
PORT J  
SPORT0  
SPORT1  
PPI  
L1  
L1  
DATA  
DMA  
CONTROLLER  
INSTRUCTION  
MEMORY  
GPIO  
PORT G  
MEMORY  
UART0-1  
SPI  
DMA CORE BUS  
EXTERNAL ACCESS BUS  
GPIO  
PORT F  
EXTERNAL PORT  
FLASH, SDRAM CONTROL  
TIMER7-0  
ETHERNET MAC  
(See Table 1)  
GPIO  
PORT H  
16  
BOOT ROM  
Figure 1. Functional Block Diagram  
Blackfin and the Blackfin logo are registered trademarks of Analog Devices, Inc.  
Rev. J Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective companies.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2014 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
ADSP-BF534/ADSP-BF536/ADSP-BF537  
TABLE OF CONTENTS  
Features ................................................................. 1  
Memory ................................................................ 1  
Peripherals ............................................................. 1  
General Description ................................................. 3  
Portable Low Power Architecture ............................. 3  
Booting Modes ................................................... 16  
Instruction Set Description .................................... 17  
Development Tools .............................................. 17  
Additional Information ........................................ 18  
Related Signal Chains ........................................... 18  
System Integration ................................................ 3  
Blackfin Processor Peripherals ................................. 3  
Blackfin Processor Core .......................................... 4  
Memory Architecture ............................................ 5  
DMA Controllers .................................................. 8  
Real-Time Clock ................................................... 9  
Watchdog Timer .................................................. 9  
Timers ............................................................... 9  
Serial Ports (SPORTs) .......................................... 10  
Serial Peripheral Interface (SPI) Port ....................... 10  
UART Ports ...................................................... 10  
Controller Area Network (CAN) ............................ 11  
TWI Controller Interface ...................................... 11  
10/100 Ethernet MAC .......................................... 11  
Ports ................................................................ 12  
Parallel Peripheral Interface (PPI) ........................... 12  
Dynamic Power Management ................................ 13  
Voltage Regulation .............................................. 14  
Clock Signals ..................................................... 15  
Pin Descriptions .................................................... 19  
Specifications ........................................................ 23  
Operating Conditions ........................................... 23  
Electrical Characteristics ....................................... 25  
Absolute Maximum Ratings ................................... 29  
ESD Sensitivity ................................................... 29  
Package Information ............................................ 29  
Timing Specifications ........................................... 30  
Output Drive Currents ......................................... 50  
Test Conditions .................................................. 52  
Thermal Characteristics ........................................ 56  
182-Ball CSP_BGA Ball Assignment ........................... 57  
208-Ball CSP_BGA Ball Assignment ........................... 60  
Outline Dimensions ................................................ 63  
Surface-Mount Design .......................................... 65  
Automotive Products .............................................. 66  
Ordering Guide ..................................................... 67  
REVISION HISTORY  
2/14—Rev. I to Rev. J  
Corrected typographical error from Three 16-bit MACs to Two  
16-bit MACs in Features ............................................ 1  
Updated Development Tools .................................... 17  
Added tHDRE parameter to Serial Port Timing ................ 38  
Added footnotes in Serial Port Timing ........................ 38  
Rev. J  
|
Page 2 of 68  
|
February 2014  
ADSP-BF534/ADSP-BF536/ADSP-BF537  
GENERAL DESCRIPTION  
The ADSP-BF534/ADSP-BF536/ADSP-BF537 processors are  
members of the Blackfin® family of products, incorporating the  
Analog Devices, Inc./Intel Micro Signal Architecture (MSA).  
Blackfin processors combine a dual-MAC, state-of-the-art sig-  
nal processing engine, the advantages of a clean, orthogonal  
RISC-like microprocessor instruction set, and single-instruc-  
tion, multiple-data (SIMD) multimedia capabilities into a single  
instruction-set architecture.  
PORTABLE LOW POWER ARCHITECTURE  
Blackfin processors provide world-class power management  
and performance. They are produced with a low power and low  
voltage design methodology and feature on-chip dynamic  
power management, which is the ability to vary both the voltage  
and frequency of operation to significantly lower overall power  
consumption. This capability can result in a substantial reduc-  
tion in power consumption, compared with just varying the  
frequency of operation. This allows longer battery life for  
portable appliances.  
The ADSP-BF534/ADSP-BF536/ADSP-BF537 processors are  
completely code and pin compatible. They differ only with  
respect to their performance, on-chip memory, and presence of  
the Ethernet MAC module. Specific performance, memory, and  
feature configurations are shown in Table 1.  
SYSTEM INTEGRATION  
The Blackfin processor is a highly integrated system-on-a-chip  
solution for the next generation of embedded network-con-  
nected applications. By combining industry-standard interfaces  
with a high performance signal processing core, cost-effective  
applications can be developed quickly, without the need for  
costly external components. The system peripherals include an  
IEEE-compliant 802.3 10/100 Ethernet MAC (ADSP-BF536 and  
ADSP-BF537 only), a CAN 2.0B controller, a TWI controller,  
two UART ports, an SPI port, two serial ports (SPORTs), nine  
general-purpose 32-bit timers (eight with PWM capability), a  
real-time clock, a watchdog timer, and a parallel peripheral  
interface (PPI).  
Table 1. Processor Comparison  
Features  
Ethernet MAC  
1
1
1
1
2
2
1
8
1
1
1
48  
1
1
1
2
2
1
8
1
1
1
48  
CAN  
TWI  
1
SPORTs  
2
BLACKFIN PROCESSOR PERIPHERALS  
UARTs  
2
The ADSP-BF534/ADSP-BF536/ADSP-BF537 processors con-  
tain a rich set of peripherals connected to the core via several  
high bandwidth buses, providing flexibility in system configura-  
tion as well as excellent overall system performance (see  
Figure 1). The processors contain dedicated network communi-  
cation modules and high speed serial and parallel ports, an  
interrupt controller for flexible management of interrupts from  
the on-chip peripherals or external sources, and power manage-  
ment control functions to tailor the performance and power  
characteristics of the processor and system to many application  
scenarios.  
SPI  
1
GP Timers  
8
Watchdog Timers  
1
RTC  
1
Parallel Peripheral Interface  
GPIOs  
1
48  
L1 Instruction 16K bytes 16K bytes 16K bytes  
SRAM/Cache  
L1 Instruction 48K bytes 48K bytes 48K bytes  
SRAM  
Memory  
Configuration  
All of the peripherals, except for the general-purpose I/O, CAN,  
TWI, real-time clock, and timers, are supported by a flexible  
DMA structure. There are also separate memory DMA channels  
dedicated to data transfers between the processor’s various  
memory spaces, including external SDRAM and asynchronous  
memory. Multiple on-chip buses running at up to 133 MHz  
provide enough bandwidth to keep the processor core running  
along with activity on all of the on-chip and external  
peripherals.  
L1 Data  
32K bytes 32K bytes 32K bytes  
SRAM/Cache  
L1 Data SRAM 32K bytes  
L1 Scratchpad 4K bytes  
L3 Boot ROM 2K bytes  
32K bytes  
4K bytes 4K bytes  
2K bytes 2K bytes  
400 MHz 600 MHz  
Maximum Speed Grade  
500 MHz  
Package Options:  
CSP_BGA  
CSP_BGA  
208-Ball  
182-Ball  
208-Ball 208-Ball  
182-Ball 182-Ball  
The Blackfin processors include an on-chip voltage regulator in  
support of the processors’ dynamic power management capabil-  
ity. The voltage regulator provides a range of core voltage levels  
when supplied from VDDEXT. The voltage regulator can be  
bypassed at the user’s discretion.  
By integrating a rich set of industry-leading system peripherals  
and memory, the Blackfin processors are the platform of choice  
for next-generation applications that require RISC-like pro-  
grammability, multimedia support, and leading-edge signal  
processing in one integrated package.  
Rev. J  
|
Page 3 of 68  
|
February 2014  
 
ADSP-BF534/ADSP-BF536/ADSP-BF537  
instructions include byte alignment and packing operations,  
BLACKFIN PROCESSOR CORE  
16-bit and 8-bit adds with clipping, 8-bit average operations,  
and 8-bit subtract/absolute value/accumulate (SAA) operations.  
Also provided are the compare/select and vector search  
instructions.  
As shown in Figure 2, the Blackfin processor core contains two  
16-bit multipliers, two 40-bit accumulators, two 40-bit ALUs,  
four video ALUs, and a 40-bit shifter. The computation units  
process 8-, 16-, or 32-bit data from the register file.  
For certain instructions, two 16-bit ALU operations can be per-  
formed simultaneously on register pairs (a 16-bit high half and  
16-bit low half of a compute register). If the second ALU is used,  
quad 16-bit operations are possible.  
The compute register file contains eight 32-bit registers. When  
performing compute operations on 16-bit operand data, the  
register file operates as 16 independent 16-bit registers. All  
operands for compute operations come from the multiported  
register file and instruction constant fields.  
The 40-bit shifter can perform shifts and rotates, and is used to  
support normalization, field extract, and field deposit  
instructions.  
Each MAC can perform a 16-bit by 16-bit multiply in each  
cycle, accumulating the results into the 40-bit accumulators.  
Signed and unsigned formats, rounding, and saturation  
are supported.  
The program sequencer controls the flow of instruction execu-  
tion, including instruction alignment and decoding. For  
program flow control, the sequencer supports PC relative and  
indirect conditional jumps (with static branch prediction), and  
subroutine calls. Hardware is provided to support zero-over-  
head looping. The architecture is fully interlocked, meaning that  
the programmer need not manage the pipeline when executing  
instructions with data dependencies.  
The ALUs perform a traditional set of arithmetic and logical  
operations on 16-bit or 32-bit data. In addition, many special  
instructions are included to accelerate various signal processing  
tasks. These include bit operations such as field extract and pop-  
ulation count, modulo 232 multiply, divide primitives, saturation  
and rounding, and sign/exponent detection. The set of video  
ADDRESS ARITHMETIC UNIT  
SP  
FP  
P5  
P4  
I3  
I2  
I1  
I0  
L3  
L2  
L1  
L0  
B3  
B2  
B1  
B0  
M3  
M2  
M1  
M0  
DAG1  
P3  
DAG0  
P2  
P1  
P0  
DA1 32  
DA0 32  
32  
PREG  
32  
RAB  
SD 32  
LD1 32  
LD0 32  
ASTAT  
32  
32  
SEQUENCER  
R7.H  
R6.H  
R5.H  
R4.H  
R3.H  
R2.H  
R1.H  
R0.H  
R7.L  
R6.L  
R5.L  
R4.L  
R3.L  
R2.L  
R1.L  
R0.L  
ALIGN  
16  
16  
8
8
8
8
DECODE  
BARREL  
SHIFTER  
LOOP BUFFER  
40  
40  
40 40  
A0  
A1  
CONTROL  
UNIT  
32  
32  
DATAARITHMETIC UNIT  
Figure 2. Blackfin Processor Core  
Rev. J  
|
Page 4 of 68  
|
February 2014  
 
ADSP-BF534/ADSP-BF536/ADSP-BF537  
The address arithmetic unit provides two addresses for simulta-  
The memory DMA controller provides high bandwidth data-  
movement capability. It can perform block transfers of code or  
data between the internal memory and the external  
memory spaces.  
neous dual fetches from memory. It contains a multiported  
register file consisting of four sets of 32-bit index, modify,  
length, and base registers (for circular buffering), and eight  
additional 32-bit pointer registers (for C-style indexed stack  
manipulation).  
Internal (On-Chip) Memory  
The ADSP-BF534/ADSP-BF536/ADSP-BF537 processors have  
three blocks of on-chip memory providing high-bandwidth  
access to the core.  
Blackfin processors support a modified Harvard architecture in  
combination with a hierarchical memory structure. Level 1 (L1)  
memories are those that typically operate at the full processor  
speed with little or no latency. At the L1 level, the instruction  
memory holds instructions only. The two data memories hold  
data, and a dedicated scratchpad data memory stores stack and  
local variable information.  
The first block is the L1 instruction memory, consisting of  
64K bytes SRAM, of which 16K bytes can be configured as a  
four-way set-associative cache. This memory is accessed at full  
processor speed.  
In addition, multiple L1 memory blocks are provided, offering a  
configurable mix of SRAM and cache. The memory manage-  
ment unit (MMU) provides memory protection for individual  
tasks that may be operating on the core and can protect system  
registers from unintended access.  
The second on-chip memory block is the L1 data memory, con-  
sisting of up to two banks of up to 32K bytes each. Each memory  
bank is configurable, offering both cache and SRAM functional-  
ity. This memory block is accessed at full processor speed.  
The third memory block is a 4K byte scratchpad SRAM, which  
runs at the same speed as the L1 memories, but is only accessible  
as data SRAM, and cannot be configured as cache memory.  
The architecture provides three modes of operation: user mode,  
supervisor mode, and emulation mode. User mode has  
restricted access to certain system resources, thus providing a  
protected software environment, while supervisor mode has  
unrestricted access to the system and core resources.  
External (Off-Chip) Memory  
External memory is accessed via the EBIU. This 16-bit interface  
provides a glueless connection to a bank of synchronous DRAM  
(SDRAM) as well as up to four banks of asynchronous memory  
devices including flash, EPROM, ROM, SRAM, and memory  
mapped I/O devices.  
The Blackfin processor instruction set has been optimized so  
that 16-bit opcodes represent the most frequently used instruc-  
tions, resulting in excellent compiled code density. Complex  
DSP instructions are encoded into 32-bit opcodes, representing  
fully featured multifunction instructions. Blackfin processors  
support a limited multi-issue capability, where a 32-bit instruc-  
tion can be issued in parallel with two 16-bit instructions,  
allowing the programmer to use many of the core resources in a  
single instruction cycle.  
The PC133-compliant SDRAM controller can be programmed  
to interface to up to 128M bytes of SDRAM. A separate row can  
be open for each SDRAM internal bank, and the SDRAM con-  
troller supports up to 4 internal SDRAM banks, improving  
overall performance.  
The Blackfin processor assembly language uses an algebraic syn-  
tax for ease of coding and readability. The architecture has been  
optimized for use in conjunction with the C/C++ compiler,  
resulting in fast and efficient software implementations.  
The asynchronous memory controller can be programmed to  
control up to four banks of devices with very flexible timing  
parameters for a wide variety of devices. Each bank occupies a  
1M byte segment regardless of the size of the devices used, so  
that these banks are only contiguous if each is fully populated  
with 1M byte of memory.  
MEMORY ARCHITECTURE  
The ADSP-BF534/ADSP-BF536/ADSP-BF537 processors view  
memory as a single unified 4G byte address space, using 32-bit  
addresses. All resources, including internal memory, external  
memory, and I/O control registers, occupy separate sections of  
this common address space. The memory portions of this  
address space are arranged in a hierarchical structure to provide  
a good cost/performance balance of some very fast, low latency  
on-chip memory as cache or SRAM, and larger, lower cost, and  
performance off-chip memory systems. (See Figure 3).  
I/O Memory Space  
The ADSP-BF534/ADSP-BF536/ADSP-BF537 processors do  
not define a separate I/O space. All resources are mapped  
through the flat 32-bit address space. On-chip I/O devices have  
their control registers mapped into memory-mapped registers  
(MMRs) at addresses near the top of the 4G byte address space.  
These are separated into two smaller blocks, one which contains  
the control MMRs for all core functions, and the other which  
contains the registers needed for setup and control of the on-  
chip peripherals outside of the core. The MMRs are accessible  
only in supervisor mode and appear as reserved space to on-  
chip peripherals.  
The on-chip L1 memory system is the highest performance  
memory available to the Blackfin processor. The off-chip mem-  
ory system, accessed through the external bus interface unit  
(EBIU), provides expansion with SDRAM, flash memory, and  
SRAM, optionally accessing up to 516M bytes of  
physical memory.  
Booting  
The Blackfin processor contains a small on-chip boot kernel,  
which configures the appropriate peripheral for booting. If the  
Blackfin processor is configured to boot from boot ROM  
Rev. J  
|
Page 5 of 68  
|
February 2014  
ADSP-BF534/ADSP-BF536/ADSP-BF537  
ADSP-BF534/ADSP-BF537 MEMORY MAP  
ADSP-BF536 MEMORY MAP  
0xFFFF FFFF  
0xFFFF FFFF  
0xFFE0 0000  
CORE MMR REGISTERS (2M BYTES)  
SYSTEM MMR REGISTERS (2M BYTES)  
RESERVED  
CORE MMR REGISTERS (2M BYTES)  
SYSTEM MMR REGISTERS (2M BYTES)  
RESERVED  
0xFFE0 0000  
0xFFC0 0000  
0xFFB0 1000  
0xFFB0 0000  
0xFFA1 4000  
0xFFA1 0000  
0xFFA0 C000  
0xFFA0 8000  
0xFFC0 0000  
0xFFB0 1000  
SCRATCHPAD SRAM (4K BYTES)  
RESERVED  
SCRATCHPAD SRAM (4K BYTES)  
RESERVED  
0xFFB0 0000  
0xFFA1 4000  
INSTRUCTION SRAM/CACHE (16K BYTES)  
RESERVED  
INSTRUCTION SRAM/CACHE (16K BYTES)  
RESERVED  
0xFFA1 0000  
0xFFA0 C000  
INSTRUCTION BANK B SRAM (16K BYTES)  
INSTRUCTION BANK A SRAM (32K BYTES)  
RESERVED  
INSTRUCTION BANK B SRAM (16K BYTES)  
INSTRUCTION BANK A SRAM (32K BYTES)  
RESERVED  
0xFFA0 8000  
0xFFA0 0000  
0xFF90 8000  
0xFF90 4000  
0xFF90 0000  
0xFF80 8000  
0xFF80 4000  
0xFF80 0000  
0xEF00 0800  
0xEF00 0000  
0x2040 0000  
0x2030 0000  
0x2020 0000  
0x2010 0000  
0x2000 0000  
0x0000 0000  
0xFFA0 0000  
0xFF90 8000  
DATA BANK B SRAM/CACHE (16K BYTES)  
RESERVED  
DATA BANK B SRAM/CACHE (16K BYTES)  
DATA BANK B SRAM (16K BYTES)  
RESERVED  
0xFF90 4000  
0xFF90 0000  
0xFF80 8000  
0xFF80 4000  
RESERVED  
DATA BANK A SRAM/CACHE (16K BYTES)  
DATA BANK A SRAM/CACHE (16K BYTES)  
DATA BANK A SRAM (16K BYTES)  
RESERVED  
RESERVED  
0xFF80 0000  
0xEF00 0800  
0xEF00 0000  
RESERVED  
BOOT ROM (2K BYTES)  
BOOT ROM (2K BYTES)  
RESERVED  
RESERVED  
0x2040 0000  
0x2030 0000  
ASYNC MEMORY BANK 3 (1M BYTES)  
ASYNC MEMORY BANK 2 (1M BYTES)  
ASYNC MEMORY BANK 1 (1M BYTES)  
ASYNC MEMORY BANK 0 (1M BYTES)  
ASYNC MEMORY BANK 3 (1M BYTES)  
ASYNC MEMORY BANK 2 (1M BYTES)  
ASYNC MEMORY BANK 1 (1M BYTES)  
ASYNC MEMORY BANK 0 (1M BYTES)  
SDRAM MEMORY (16M BYTES TO 512M BYTES)  
0x2020 0000  
0x2010 0000  
0x2000 0000  
0x0000 0000  
SDRAM MEMORY (16M BYTES TO 512M BYTES)  
Figure 3. ADSP-BF534/ADSP-BF536/ADSP-BF537 Memory Maps  
memory space, the processor starts executing from the on-chip  
boot ROM. For more information, see Booting Modes on  
Page 16.  
• Exceptions – Events that occur synchronously to program  
flow (in other words, the exception is taken before the  
instruction is allowed to complete). Conditions such as  
data alignment violations and undefined instructions cause  
exceptions.  
Event Handling  
The event controller on the Blackfin processor handles all asyn-  
chronous and synchronous events to the processor. The  
Blackfin processor provides event handling that supports both  
nesting and prioritization. Nesting allows multiple event service  
routines to be active simultaneously. Prioritization ensures that  
servicing of a higher priority event takes precedence over servic-  
ing of a lower priority event. The controller provides support for  
five different types of events:  
• Interrupts – Events that occur asynchronously to program  
flow. They are caused by input pins, timers, and other  
peripherals, as well as by an explicit software instruction.  
Each event type has an associated register to hold the return  
address and an associated return-from-event instruction. When  
an event is triggered, the state of the processor is saved on the  
supervisor stack.  
The Blackfin processor event controller consists of two stages:  
the core event controller (CEC) and the system interrupt con-  
troller (SIC). The core event controller works with the system  
interrupt controller to prioritize and control all system events.  
Conceptually, interrupts from the peripherals enter into the  
SIC, and are then routed directly into the general-purpose inter-  
rupts of the CEC.  
• Emulation – An emulation event causes the processor to  
enter emulation mode, allowing command and control of  
the processor via the JTAG interface.  
• Reset – This event resets the processor.  
• Nonmaskable Interrupt (NMI) – The NMI event can be  
generated by the software watchdog timer or by the NMI  
input signal to the processor. The NMI event is frequently  
used as a power-down indicator to initiate an orderly shut-  
down of the system.  
Rev. J  
|
Page 6 of 68  
|
February 2014  
ADSP-BF534/ADSP-BF536/ADSP-BF537  
Table 3. System Interrupt Controller (SIC)  
Core Event Controller (CEC)  
The CEC supports nine general-purpose interrupts (IVG15–7),  
in addition to the dedicated interrupt and exception events. Of  
these general-purpose interrupts, the two lowest priority  
interrupts (IVG15–14) are recommended to be reserved for  
software interrupt handlers, leaving seven prioritized interrupt  
inputs to support the peripherals of the Blackfin processor.  
Table 2 describes the inputs to the CEC, identifies their names  
in the event vector table (EVT), and lists their priorities.  
Default  
Mapping  
Peripheral  
Interrupt ID  
Peripheral Interrupt Event  
PLL Wakeup  
IVG7  
IVG7  
IVG7  
IVG7  
IVG7  
IVG7  
IVG7  
IVG7  
0
1
1
1
1
1
2
2
DMA Error (Generic)  
DMAR0 Block Interrupt  
DMAR1 Block Interrupt  
DMAR0 Overflow Error  
DMAR1 Overflow Error  
CAN Error  
Table 2. Core Event Controller (CEC)  
Priority  
Ethernet Error (ADSP-BF536 and  
ADSP-BF537 only)  
(0 Is Highest) Event Class  
EVT Entry  
EMU  
0
Emulation/Test Control  
SPORT 0 Error  
IVG7  
2
1
Reset  
RST  
SPORT 1 Error  
IVG7  
2
2
Nonmaskable Interrupt  
Exception  
NMI  
PPI Error  
IVG7  
2
3
EVX  
SPI Error  
IVG7  
2
4
Reserved  
UART0 Error  
IVG7  
2
5
Hardware Error  
IVHW  
IVTMR  
IVG7  
UART1 Error  
IVG7  
2
6
Core Timer  
Real-Time Clock  
IVG8  
3
7
General-Purpose Interrupt 7  
General-Purpose Interrupt 8  
General-Purpose Interrupt 9  
General-Purpose Interrupt 10  
General-Purpose Interrupt 11  
General-Purpose Interrupt 12  
General-Purpose Interrupt 13  
General-Purpose Interrupt 14  
General-Purpose Interrupt 15  
DMA Channel 0 (PPI)  
DMA Channel 3 (SPORT 0 Rx)  
DMA Channel 4 (SPORT 0 Tx)  
DMA Channel 5 (SPORT 1 Rx)  
DMA Channel 6 (SPORT 1 Tx)  
TWI  
IVG8  
4
8
IVG8  
IVG9  
5
9
IVG9  
IVG9  
6
10  
11  
12  
13  
14  
15  
IVG10  
IVG11  
IVG12  
IVG13  
IVG14  
IVG15  
IVG9  
7
IVG9  
8
IVG10  
IVG10  
IVG10  
IVG10  
IVG10  
IVG10  
IVG11  
IVG11  
IVG11  
9
DMA Channel 7 (SPI)  
DMA Channel 8 (UART0 Rx)  
DMA Channel 9 (UART0 Tx)  
DMA Channel 10 (UART1 Rx)  
DMA Channel 11 (UART1 Tx)  
CAN Rx  
10  
11  
12  
13  
14  
15  
16  
17  
System Interrupt Controller (SIC)  
The system interrupt controller provides the mapping and rout-  
ing of events from the many peripheral interrupt sources to the  
prioritized general-purpose interrupt inputs of the CEC.  
Although the processor provides a default mapping, the user  
can alter the mappings and priorities of interrupt events by writ-  
ing the appropriate values into the interrupt assignment  
registers (IAR). Table 3 describes the inputs into the SIC and the  
default mappings into the CEC.  
CAN Tx  
DMA Channel 1 (Ethernet Rx,  
ADSP-BF536 and ADSP-BF537 only)  
Port H Interrupt A  
IVG11  
IVG11  
17  
18  
DMA Channel 2 (Ethernet Tx,  
ADSP-BF536 and ADSP-BF537 only)  
Port H Interrupt B  
Timer 0  
IVG11  
IVG12  
IVG12  
IVG12  
IVG12  
IVG12  
IVG12  
IVG12  
IVG12  
IVG12  
IVG12  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
Timer 1  
Timer 2  
Timer 3  
Timer 4  
Timer 5  
Timer 6  
Timer 7  
Port F, G Interrupt A  
Port G Interrupt B  
Rev. J  
|
Page 7 of 68  
|
February 2014  
 
 
ADSP-BF534/ADSP-BF536/ADSP-BF537  
Table 3. System Interrupt Controller (SIC) (Continued)  
• SIC interrupt wake-up enable register (SIC_IWR) – By  
enabling the corresponding bit in this register, a peripheral  
can be configured to wake up the processor, should the  
core be idled when the event is generated. (For more infor-  
mation, see Dynamic Power Management on Page 13.)  
Default  
Mapping  
Peripheral  
Interrupt ID  
Peripheral Interrupt Event  
DMA Channels 12 and 13  
(Memory DMA Stream 0)  
IVG13  
IVG13  
29  
30  
Because multiple interrupt sources can map to a single general-  
purpose interrupt, multiple pulse assertions can occur simulta-  
neously, before or during interrupt processing for an interrupt  
event already detected on this interrupt input. The IPEND reg-  
ister contents are monitored by the SIC as the interrupt  
acknowledgement.  
DMA Channels 14 and 15  
(Memory DMA Stream 1)  
Software Watchdog Timer  
Port F Interrupt B  
IVG13  
IVG13  
31  
31  
Event Control  
The appropriate ILAT register bit is set when an interrupt rising  
edge is detected (detection requires two core clock cycles). The  
bit is cleared when the respective IPEND register bit is set. The  
IPEND bit indicates that the event has entered into the proces-  
sor pipeline. At this point the CEC recognizes and queues the  
next rising edge event on the corresponding event input. The  
minimum latency from the rising edge transition of the general-  
purpose interrupt to the IPEND output asserted is three core  
clock cycles; however, the latency can be much higher, depend-  
ing on the activity within and the state of the processor.  
The Blackfin processor provides a very flexible mechanism to  
control the processing of events. In the CEC, three registers are  
used to coordinate and control events. Each register is  
32 bits wide:  
• CEC interrupt latch register (ILAT) – Indicates when  
events have been latched. The appropriate bit is set when  
the processor has latched the event and cleared when the  
event has been accepted into the system. This register is  
updated automatically by the controller, but it can be writ-  
ten only when its corresponding IMASK bit is cleared.  
DMA CONTROLLERS  
• CEC interrupt mask register (IMASK) – Controls the  
masking and unmasking of individual events. When a bit is  
set in the IMASK register, that event is unmasked and is  
processed by the CEC when asserted. A cleared bit in the  
IMASK register masks the event, preventing the processor  
from servicing the event even though the event may be  
latched in the ILAT register. This register can be read or  
written while in supervisor mode. (Note that general-pur-  
pose interrupts can be globally enabled and disabled with  
the STI and CLI instructions, respectively.)  
The Blackfin processors have multiple, independent DMA  
channels that support automated data transfers with minimal  
overhead for the processor core. DMA transfers can occur  
between the processor’s internal memories and any of its DMA-  
capable peripherals. Additionally, DMA transfers can be accom-  
plished between any of the DMA-capable peripherals and  
external devices connected to the external memory interfaces,  
including the SDRAM controller and the asynchronous mem-  
ory controller. DMA-capable peripherals include the Ethernet  
MAC (ADSP-BF536 and ADSP-BF537 only), SPORTs, SPI port,  
UARTs, and PPI. Each individual DMA-capable peripheral has  
at least one dedicated DMA channel.  
• CEC interrupt pending register (IPEND) – The IPEND  
register keeps track of all nested events. A set bit in the  
IPEND register indicates the event is currently active or  
nested at some level. This register is updated automatically  
by the controller but can be read while in supervisor mode.  
The DMA controller supports both one-dimensional (1-D) and  
two-dimensional (2-D) DMA transfers. DMA transfer initial-  
ization can be implemented from registers or from sets of  
parameters called descriptor blocks.  
The SIC allows further control of event processing by providing  
three 32-bit interrupt control and status registers. Each register  
contains a bit corresponding to each of the peripheral interrupt  
events shown in Table 3 on Page 7.  
The 2-D DMA capability supports arbitrary row and column  
sizes up to 64K elements by 64K elements, and arbitrary row  
and column step sizes up to 32K elements. Furthermore, the  
column step size can be less than the row step size, allowing  
implementation of interleaved data streams. This feature is  
especially useful in video applications where data can be de-  
interleaved on the fly.  
• SIC interrupt mask register (SIC_IMASK) – Controls the  
masking and unmasking of each peripheral interrupt event.  
When a bit is set in the register, that peripheral event is  
unmasked and is processed by the system when asserted. A  
cleared bit in the register masks the peripheral event, pre-  
venting the processor from servicing the event.  
Examples of DMA types supported by the DMA controller  
include  
• SIC interrupt status register (SIC_ISR) – As multiple  
peripherals can be mapped to a single event, this register  
allows the software to determine which peripheral event  
source triggered the interrupt. A set bit indicates the  
peripheral is asserting the interrupt, and a cleared bit indi-  
cates the peripheral is not asserting the event.  
• A single, linear buffer that stops upon completion  
• A circular, auto-refreshing buffer that interrupts on each  
full or fractionally full buffer  
• 1-D or 2-D DMA using a linked list of descriptors  
• 2-D DMA using an array of descriptors, specifying only the  
base DMA address within a common page.  
Rev. J  
|
Page 8 of 68  
|
February 2014  
ADSP-BF534/ADSP-BF536/ADSP-BF537  
In addition to the dedicated peripheral DMA channels, there are  
two memory DMA channels provided for transfers between the  
various memories of the processor system. This enables trans-  
fers of blocks of data between any of the memories—including  
external SDRAM, ROM, SRAM, and flash memory—with mini-  
mal processor intervention. Memory DMA transfers can be  
controlled by a very flexible descriptor-based methodology or  
by a standard register-based autobuffer mechanism.  
RTXI  
RTXO  
R1  
X1  
C1  
C2  
The ADSP-BF534/ADSP-BF536/ADSP-BF537 processors also  
have an external DMA controller capability via dual external  
DMA request pins when used in conjunction with the external  
bus interface unit (EBIU). This functionality can be used when a  
high speed interface is required for external FIFOs and high  
bandwidth communications peripherals such as USB 2.0. It  
allows control of the number of data transfers for memDMA.  
The number of transfers per edge is programmable. This feature  
can be programmed to allow memDMA to have an increased  
priority on the external bus relative to the core.  
SUGGESTED COMPONENTS:  
X1 = ECLIPTEK EC38J (THROUGH-HOLE PACKAGE) OR  
EPSON MC405 12 pF LOAD (SURFACE-MOUNT PACKAGE)  
C1 = 22 pF  
C2 = 22 pF  
R1 = 10 M:  
NOTE: C1 AND C2 ARE SPECIFIC TO CRYSTAL SPECIFIED FOR X1.  
CONTACT CRYSTAL MANUFACTURER FOR DETAILS. C1 AND C2  
SPECIFICATIONS ASSUME BOARD TRACE CAPACITANCE OF 3 pF.  
Figure 4. External Components for RTC  
REAL-TIME CLOCK  
general-purpose interrupt, if the timer expires before being reset  
by software. The programmer initializes the count value of the  
timer, enables the appropriate interrupt, then enables the timer.  
Thereafter, the software must reload the counter before it  
counts to zero from the programmed value. This protects the  
system from remaining in an unknown state where software,  
which would normally reset the timer, has stopped running due  
to an external noise condition or software error.  
The real-time clock (RTC) provides a robust set of digital watch  
features, including current time, stopwatch, and alarm. The  
RTC is clocked by a 32.768 kHz crystal external to the  
processor. The RTC peripheral has dedicated power supply pins  
so that it can remain powered up and clocked even when the  
rest of the processor is in a low power state. The RTC provides  
several programmable interrupt options, including interrupt  
per second, minute, hour, or day clock ticks, interrupt on pro-  
grammable stopwatch countdown, or interrupt at a  
programmed alarm time.  
If configured to generate a hardware reset, the watchdog timer  
resets both the core and the processor peripherals. After a reset,  
software can determine if the watchdog was the source of the  
hardware reset by interrogating a status bit in the watchdog  
timer control register.  
The 32.768 kHz input clock frequency is divided down to a 1 Hz  
signal by a prescaler. The counter function of the timer consists  
of four counters: a 60-second counter, a 60-minute counter, a  
24-hour counter, and an 32,768-day counter.  
The timer is clocked by the system clock (SCLK), at a maximum  
frequency of fSCLK  
.
When enabled, the alarm function generates an interrupt when  
the output of the timer matches the programmed value in the  
alarm control register. There are two alarms: The first alarm is  
for a time of day, while the second alarm is for a day and time of  
that day.  
TIMERS  
There are nine general-purpose programmable timer units in  
the processor. Eight timers have an external pin that can be con-  
figured either as a pulse-width modulator (PWM) or timer  
output, as an input to clock the timer, or as a mechanism for  
measuring pulse widths and periods of external events. These  
timers can be synchronized to an external clock input to the sev-  
eral other associated PF pins, to an external clock input to the  
PPI_CLK input pin, or to the internal SCLK.  
The stopwatch function counts down from a programmed  
value, with one-second resolution. When the stopwatch is  
enabled and the counter underflows, an interrupt is generated.  
Like the other peripherals, the RTC can wake up the processor  
from sleep mode upon generation of any RTC wake-up event.  
Additionally, an RTC wake-up event can wake up the processor  
from deep sleep mode, and wake up the on-chip internal voltage  
regulator from the hibernate operating mode.  
The timer units can be used in conjunction with the two UARTs  
and the CAN controller to measure the width of the pulses in  
the data stream to provide a software auto-baud detect function  
for the respective serial channels.  
Connect RTC pins RTXI and RTXO with external components  
as shown in Figure 4.  
The timers can generate interrupts to the processor core provid-  
ing periodic events for synchronization, either to the system  
clock or to a count of external signals.  
WATCHDOG TIMER  
In addition to the eight general-purpose programmable timers,  
a ninth timer is also provided. This extra timer is clocked by the  
internal processor clock and is typically used as a system tick  
clock for generating periodic interrupts in an operating system.  
The ADSP-BF534/ADSP-BF536/ADSP-BF537 processors  
include a 32-bit timer that can be used to implement a software  
watchdog function. A software watchdog can improve system  
availability by forcing the processor to a known state through  
generation of a system reset, nonmaskable interrupt (NMI), or  
Rev. J  
|
Page 9 of 68  
|
February 2014  
 
ADSP-BF534/ADSP-BF536/ADSP-BF537  
port provides a full-duplex, synchronous serial interface, which  
supports both master/slave modes and multimaster  
environments.  
SERIAL PORTS (SPORTs)  
The ADSP-BF534/ADSP-BF536/ADSP-BF537 processors  
incorporate two dual-channel synchronous serial ports  
(SPORT0 and SPORT1) for serial and multiprocessor commu-  
nications. The SPORTs support the following features:  
The SPI port’s baud rate and clock phase/polarities are pro-  
grammable, and it has an integrated DMA controller,  
configurable to support transmit or receive data streams. The  
SPI’s DMA controller can only service unidirectional accesses at  
any given time.  
• I2S capable operation.  
• Bidirectional operation – Each SPORT has two sets of inde-  
pendent transmit and receive pins, enabling eight channels  
of I2S stereo audio.  
The SPI port’s clock rate is calculated as:  
fSCLK  
SPI Clock Rate = -----------------------------------  
2 SPI_BAUD  
• Buffered (8-deep) transmit and receive ports – Each port  
has a data register for transferring data words to and from  
other processor components and shift registers for shifting  
data in and out of the data registers.  
where the 16-bit SPI_BAUD register contains a value of 2  
to 65,535.  
• Clocking – Each transmit and receive port can either use an  
external serial clock or generate its own, in frequencies  
ranging from (fSCLK/131,070) Hz to (fSCLK/2) Hz.  
During transfers, the SPI port simultaneously transmits and  
receives by serially shifting data in and out on its two serial data  
lines. The serial clock line synchronizes the shifting and sam-  
pling of data on the two serial data lines.  
• Word length – Each SPORT supports serial data words  
from 3 bits to 32 bits in length, transferred most significant  
bit first or least significant bit first.  
UART PORTS  
• Framing – Each transmit and receive port can run with or  
without frame sync signals for each data word. Frame sync  
signals can be generated internally or externally, active high  
or low, and with either of two pulse widths and early or late  
frame sync.  
The ADSP-BF534/ADSP-BF536/ADSP-BF537 processors pro-  
vide two full-duplex universal asynchronous receiver and  
transmitter (UART) ports, which are fully compatible with PC-  
standard UARTs. Each UART port provides a simplified UART  
interface to other peripherals or hosts, supporting full-duplex,  
DMA-supported, asynchronous transfers of serial data. A  
UART port includes support for five to eight data bits, one or  
two stop bits, and none, even, or odd parity. Each UART port  
supports two modes of operation:  
• Companding in hardware – Each SPORT can perform  
A-law or μ-law companding according to ITU recommen-  
dation G.711. Companding can be selected on the transmit  
and/or receive channel of the SPORT without additional  
latencies.  
• PIO (programmed I/O) – The processor sends or receives  
data by writing or reading I/O mapped UART registers.  
The data is double-buffered on both transmit and receive.  
• DMA operations with single-cycle overhead – Each SPORT  
can automatically receive and transmit multiple buffers of  
memory data. The processor can link or chain sequences of  
DMA transfers between a SPORT and memory.  
• DMA (direct memory access) – The DMA controller trans-  
fers both transmit and receive data. This reduces the  
number and frequency of interrupts required to transfer  
data to and from memory. The UART has two dedicated  
DMA channels, one for transmit and one for receive. These  
DMA channels have lower default priority than most DMA  
channels because of their relatively low service rates.  
• Interrupts – Each transmit and receive port generates an  
interrupt upon completing the transfer of a data word or  
after transferring an entire data buffer, or buffers,  
through DMA.  
• Multichannel capability – Each SPORT supports 128 chan-  
nels out of a 1024-channel window and is compatible with  
the H.100, H.110, MVIP-90, and HMVIP standards.  
Each UART port’s baud rate, serial data format, error code gen-  
eration and status, and interrupts are programmable:  
• Supporting bit rates ranging from (fSCLK/1,048,576) to  
(fSCLK/16) bits per second.  
SERIAL PERIPHERAL INTERFACE (SPI) PORT  
The ADSP-BF534/ADSP-BF536/ADSP-BF537 processors have  
an SPI-compatible port that enables the processor to communi-  
cate with multiple SPI-compatible devices.  
• Supporting data formats from 7 bits to 12 bits per frame.  
• Both transmit and receive operations can be configured to  
generate maskable interrupts to the processor.  
The SPI interface uses three pins for transferring data: two data  
pins (Master Output-Slave Input, MOSI, and Master Input-  
Slave Output, MISO) and a clock pin (serial clock, SCK). An SPI  
chip select input pin (SPISS) lets other SPI devices select the  
processor, and seven SPI chip select output pins (SPISEL7–1) let  
the processor select other SPI devices. The SPI select pins are  
reconfigured programmable flag pins. Using these pins, the SPI  
The UART port’s clock rate is calculated as:  
fSCLK  
UART Clock Rate = --------------------------------------------------  
16 UARTx_Divisor  
where the 16-bit UARTx_Divisor comes from the UARTx_DLH  
register (most significant 8 bits) and UARTx_DLL register (least  
significant 8 bits).  
Rev. J  
|
Page 10 of 68  
|
February 2014  
ADSP-BF534/ADSP-BF536/ADSP-BF537  
In conjunction with the general-purpose timer functions, auto-  
baud detection is supported.  
10/100 ETHERNET MAC  
The ADSP-BF536 and ADSP-BF537 processors offer the capa-  
bility to directly connect to a network by way of an embedded  
fast Ethernet Media Access Controller (MAC) that supports  
both 10-BaseT (10 Mbps) and 100-BaseT (100 Mbps) operation.  
The 10/100 Ethernet MAC peripheral is fully compliant to the  
IEEE 802.3-2002 standard, and it provides programmable fea-  
tures designed to minimize supervision, bus use, or message  
processing by the rest of the processor system.  
The capabilities of the UARTs are further extended with sup-  
port for the infrared data association (IrDA®) serial infrared  
physical layer link specification (SIR) protocol.  
CONTROLLER AREA NETWORK (CAN)  
The ADSP-BF534/ADSP-BF536/ADSP-BF537 processors offer  
a CAN controller that is a communication controller imple-  
menting the CAN 2.0B (active) protocol. This protocol is an  
asynchronous communications protocol used in both industrial  
and automotive control systems. The CAN protocol is well-  
suited for control applications due to its capability to communi-  
cate reliably over a network, since the protocol incorporates  
CRC checking message error tracking, and fault node  
confinement.  
Some standard features are  
• Support of MII and RMII protocols for external PHYs.  
• Full duplex and half duplex modes.  
• Data framing and encapsulation: generation and detection  
of preamble, length padding, and FCS.  
• Media access management (in half-duplex operation): col-  
lision and contention handling, including control of  
retransmission of collision frames and of back-off timing.  
The CAN controller offers the following features:  
• 32 mailboxes (eight receive only, eight transmit only, 16  
configurable for receive or transmit).  
• Flow control (in full-duplex operation): generation and  
detection of PAUSE frames.  
• Dedicated acceptance masks for each mailbox.  
• Additional data filtering on first two bytes.  
• Station management: generation of MDC/MDIO frames  
for read-write access to PHY registers.  
• Support for both the standard (11-bit) and extended  
(29-bit) identifier (ID) message formats.  
• SCLK operating range down to 25 MHz (active and sleep  
operating modes).  
• Support for remote frames.  
• Internal loopback from Tx to Rx.  
Some advanced features are  
• Active or passive network support.  
• CAN wake-up from hibernation mode (lowest static power  
consumption mode).  
• Buffered crystal output to external PHY for support of a  
single crystal system.  
• Interrupts, including: Tx complete, Rx complete, error,  
global.  
• Automatic checksum computation of IP header and IP  
payload fields of Rx frames.  
The electrical characteristics of each network connection are  
very demanding so the CAN interface is typically divided into  
two parts: a controller and a transceiver. This allows a single  
controller to support different drivers and CAN networks. The  
CAN module represents only the controller part of the interface.  
The controller interface supports connection to 3.3 V high-  
speed, fault-tolerant, single-wire transceivers.  
• Independent 32-bit descriptor-driven Rx and Tx DMA  
channels.  
• Frame status delivery to memory via DMA, including  
frame completion semaphores, for efficient buffer queue  
management in software.  
• Tx DMA support for separate descriptors for MAC header  
and payload to eliminate buffer copy operations.  
TWI CONTROLLER INTERFACE  
The ADSP-BF534/ADSP-BF536/ADSP-BF537 processors  
include a 2-wire interface (TWI) module for providing a simple  
exchange method of control data between multiple devices. The  
TWI is compatible with the widely used I2C® bus standard. The  
TWI module offers the capabilities of simultaneous master and  
slave operation, support for both 7-bit addressing and multime-  
dia data arbitration. The TWI interface utilizes two pins for  
transferring clock (SCL) and data (SDA) and supports the  
protocol at speeds up to 400 kbps. The TWI interface pins are  
compatible with 5 V logic levels.  
• Convenient frame alignment modes support even 32-bit  
alignment of encapsulated Rx or Tx IP packet data in mem-  
ory after the 14-byte MAC header.  
• Programmable Ethernet event interrupt supports any com-  
bination of  
• Any selected Rx or Tx frame status conditions.  
• PHY interrupt condition.  
• Wake-up frame detected.  
• Any selected MAC management counter(s) at  
half-full.  
Additionally, the processor’s TWI module is fully compatible  
with serial camera control bus (SCCB) functionality for easier  
control of various CMOS camera sensor devices.  
• DMA descriptor error.  
• 47 MAC management statistics counters with selectable  
clear-on-read behavior and programmable interrupts on  
half maximum value.  
Rev. J  
|
Page 11 of 68  
|
February 2014  
ADSP-BF534/ADSP-BF536/ADSP-BF537  
• Programmable Rx address filters, including a 64-bit  
address hash table for multicast and/or unicast frames, and  
programmable filter modes for broadcast, multicast, uni-  
cast, control, and damaged frames.  
GPIO pins defined as inputs can be configured to generate  
hardware interrupts, while output pins can be triggered by  
software interrupts.  
• GPIO interrupt sensitivity registers – The two GPIO inter-  
rupt sensitivity registers specify whether individual pins are  
level- or edge-sensitive and specify—if edge-sensitive—  
whether just the rising edge or both the rising and falling  
edges of the signal are significant. One register selects the  
type of sensitivity, and one register selects which edges are  
significant for edge-sensitivity.  
• Advanced power management supporting unattended  
transfer of Rx and Tx frames and status to/from external  
memory via DMA during low power sleep mode.  
• System wake-up from sleep operating mode upon magic  
packet or any of four user-definable wake-up frame filters.  
• Support for 802.3Q tagged VLAN frames.  
PARALLEL PERIPHERAL INTERFACE (PPI)  
• Programmable MDC clock rate and preamble suppression.  
The processor provides a parallel peripheral interface (PPI) that  
can connect directly to parallel ADC and DAC converters, video  
encoders and decoders, and other general-purpose peripherals.  
The PPI consists of a dedicated input clock pin, up to three  
frame synchronization pins, and up to 16 data pins. The input  
clock supports parallel data rates up to half the system clock rate  
and the synchronization signals can be configured as either  
inputs or outputs.  
• In RMII operation, 7 unused pins can be configured as  
GPIO pins for other purposes.  
PORTS  
The ADSP-BF534/ADSP-BF536/ADSP-BF537 processors  
group the many peripheral signals to four ports—Port F, Port G,  
Port H, and Port J. Most of the associated pins are shared by  
multiple signals. The ports function as multiplexer controls.  
Eight of the pins (Port F7–0) offer high source/high sink current  
capabilities.  
The PPI supports a variety of general-purpose and ITU-R 656  
modes of operation. In general-purpose mode, the PPI provides  
half-duplex, bidirectional data transfer with up to 16 bits of  
data. Up to three frame synchronization signals are also pro-  
vided. In ITU-R 656 mode, the PPI provides half-duplex  
bidirectional transfer of 8- or 10-bit video data. Additionally,  
on-chip decode of embedded start-of-line (SOL) and start-of-  
field (SOF) preamble packets is supported.  
General-Purpose I/O (GPIO)  
The processors have 48 bidirectional, general-purpose I/O  
(GPIO) pins allocated across three separate GPIO modules—  
PORTFIO, PORTGIO, and PORTHIO, associated with Port F,  
Port G, and Port H, respectively. Port J does not provide GPIO  
functionality. Each GPIO-capable pin shares functionality with  
other processor peripherals via a multiplexing scheme; however,  
the GPIO functionality is the default state of the device upon  
power-up. Neither GPIO output or input drivers are active by  
default. Each general-purpose port pin can be individually con-  
trolled by manipulation of the port control, status, and interrupt  
registers:  
General-Purpose Mode Descriptions  
The general-purpose modes of the PPI are intended to suit a  
wide variety of data capture and transmission applications.  
Three distinct submodes are supported:  
1. Input mode – Frame syncs and data are inputs into the PPI.  
2. Frame capture mode – Frame syncs are outputs from the  
PPI, but data are inputs.  
• GPIO direction control register – Specifies the direction of  
each individual GPIO pin as input or output.  
3. Output mode – Frame syncs and data are outputs from the  
PPI.  
• GPIO control and status registers – The processors employ  
a “write one to modify” mechanism that allows any combi-  
nation of individual GPIO pins to be modified in a single  
instruction, without affecting the level of any other GPIO  
pins. Four control registers are provided. One register is  
written in order to set pin values, one register is written in  
order to clear pin values, one register is written in order to  
toggle pin values, and one register is written in order to  
specify a pin value. Reading the GPIO status register allows  
software to interrogate the sense of the pins.  
Input Mode  
Input mode is intended for ADC applications, as well as video  
communication with hardware signaling. In its simplest form,  
PPI_FS1 is an external frame sync input that controls when to  
read data. The PPI_DELAY MMR allows for a delay (in PPI_  
CLK cycles) between reception of this frame sync and the initia-  
tion of data reads. The number of input data samples is user  
programmable and defined by the contents of the PPI_COUNT  
register. The PPI supports 8-bit and 10-bit through 16-bit data,  
programmable in the PPI_CONTROL register.  
• GPIO interrupt mask registers – The two GPIO interrupt  
mask registers allow each individual GPIO pin to function  
as an interrupt to the processor. Similar to the two GPIO  
control registers that are used to set and clear individual  
pin values, one GPIO interrupt mask register sets bits to  
enable interrupt function, and the other GPIO interrupt  
mask register clears bits to disable interrupt function.  
Frame Capture Mode  
Frame capture mode allows the video source(s) to act as a slave  
(for frame capture for example). The ADSP-BF534/  
ADSP-BF536/ADSP-BF537 processors control when to read  
from the video source(s). PPI_FS1 is an HSYNC output and  
PPI_FS2 is a VSYNC output.  
Rev. J  
|
Page 12 of 68  
|
February 2014  
ADSP-BF534/ADSP-BF536/ADSP-BF537  
Output Mode  
Active Operating Mode—Moderate Dynamic Power  
Savings  
Output mode is used for transmitting video or other data with  
up to three output frame syncs. Typically, a single frame sync is  
appropriate for data converter applications, whereas two or  
three frame syncs could be used for sending video with hard-  
ware signaling.  
In the active mode, the PLL is enabled but bypassed. Because the  
PLL is bypassed, the processor’s core clock (CCLK) and system  
clock (SCLK) run at the input clock (CLKIN) frequency. In this  
mode, the CLKIN to CCLK multiplier ratio can be changed,  
although the changes are not realized until the full-on mode is  
entered. DMA access is available to appropriately configured  
L1 memories.  
ITU-R 656 Mode Descriptions  
The ITU-R 656 modes of the PPI are intended to suit a wide  
variety of video capture, processing, and transmission applica-  
tions. Three distinct submodes are supported:  
In the active mode, it is possible to disable the PLL through the  
PLL control register (PLL_CTL). If disabled, the PLL must be  
re-enabled before transitioning to the full-on or sleep modes.  
1. Active video only mode  
2. Vertical blanking only mode  
3. Entire field mode  
Sleep Operating Mode—High Dynamic Power Savings  
The sleep mode reduces dynamic power dissipation by disabling  
the clock to the processor core (CCLK). The PLL and system  
clock (SCLK), however, continue to operate in this mode. Typi-  
cally an external event or RTC activity wakes up the processor.  
When in the sleep mode, asserting wake-up causes the processor  
to sense the value of the BYPASS bit in the PLL control register  
(PLL_CTL). If BYPASS is disabled, the processor transitions to  
the full on mode. If BYPASS is enabled, the processor transi-  
tions to the active mode.  
Active Video Mode  
Active video only mode is used when only the active video por-  
tion of a field is of interest and not any of the blanking intervals.  
The PPI does not read in any data between the end of active  
video (EAV) and start of active video (SAV) preamble symbols,  
or any data present during the vertical blanking intervals. In this  
mode, the control byte sequences are not stored to memory;  
they are filtered by the PPI. After synchronizing to the start of  
Field 1, the PPI ignores incoming samples until it sees an SAV  
code. The user specifies the number of active video lines per  
frame (in PPI_COUNT register).  
System DMA access to L1 memory is not supported in  
sleep mode.  
Table 4. Power Settings  
Vertical Blanking Interval Mode  
Core  
Clock  
System Internal  
Clock Power  
In this mode, the PPI only transfers vertical blanking interval  
(VBI) data.  
PLL  
Mode  
Full On  
Active  
PLL  
Bypassed (CCLK) (SCLK) (VDDINT)  
Entire Field Mode  
Enabled No  
Enabled Enabled On  
Enabled Enabled On  
Enabled/ Yes  
Disabled  
In this mode, the entire incoming bit stream is read in through  
the PPI. This includes active video, control preamble sequences,  
and ancillary data that may be embedded in horizontal and ver-  
tical blanking intervals. Data transfer starts immediately after  
synchronization to Field 1. Data is transferred to or from the  
synchronous channels through eight DMA engines that work  
autonomously from the processor core.  
Sleep  
Enabled  
Disabled  
Disabled Enabled On  
Disabled Disabled On  
Deep  
Sleep  
Hibernate Disabled  
Disabled Disabled Off  
Deep Sleep Operating Mode—Maximum Dynamic Power  
Savings  
DYNAMIC POWER MANAGEMENT  
The ADSP-BF534/ADSP-BF536/ADSP-BF537 processors pro-  
vide five operating modes, each with a different performance  
and power profile. In addition, dynamic power management  
provides the control functions to dynamically alter the proces-  
sor core supply voltage, further reducing power dissipation.  
Control of clocking to each of the peripherals also reduces  
power consumption. See Table 4 for a summary of the power  
settings for each mode. Also, see Table 16, Table 15 and  
Table 17.  
The deep sleep mode maximizes dynamic power savings by dis-  
abling the clocks to the processor core (CCLK) and to all  
synchronous peripherals (SCLK). Asynchronous peripherals,  
such as the RTC, may still be running but cannot access internal  
resources or external memory. This powered-down mode can  
only be exited by assertion of the reset interrupt (RESET) or by  
an asynchronous interrupt generated by the RTC. When in deep  
sleep mode, an RTC asynchronous interrupt causes the  
processor to transition to the active mode. Assertion of RESET  
while in deep sleep mode causes the processor to transition to  
the full-on mode.  
Full-On Operating Mode—Maximum Performance  
In the full-on mode, the PLL is enabled and is not bypassed,  
providing capability for maximum operational frequency. This  
is the power-up default execution state in which maximum per-  
formance can be achieved. The processor core and all enabled  
peripherals run at full speed.  
Rev. J  
|
Page 13 of 68  
|
February 2014  
 
ADSP-BF534/ADSP-BF536/ADSP-BF537  
these power savings are additive, in that if the clock frequency  
Hibernate State—Maximum Static Power Savings  
and supply voltage are both reduced, the power savings can be  
dramatic, as shown in the following equations.  
The hibernate state maximizes static power savings by disabling  
the voltage and clocks to the processor core (CCLK) and to all of  
the synchronous peripherals (SCLK). The internal voltage regu-  
lator for the processor can be shut off by writing b#00 to the  
FREQ bits of the VR_CTL register. This disables both CCLK  
and SCLK. Furthermore, it sets the internal power supply volt-  
age (VDDINT) to 0 V to provide the greatest power savings. To  
preserve the processor state, prior to removing power, any criti-  
cal information stored internally (memory contents, register  
contents, etc.) must be written to a nonvolatile storage device.  
The power savings factor (PSF) is calculated as:  
2
fCCLKRED  
---------------------  
fCCLKNOM  
VDDINTRED  
--------------------------  
VDDINTNOM  
tRED  
----------  
tNOM  
PSF =  
where:  
f
CCLKNOM is the nominal core clock frequency  
CCLKRED is the reduced core clock frequency  
Since VDDEXT is still supplied in this state, all of the external pins  
three-state, unless otherwise specified. This allows other devices  
that are connected to the processor to still have power applied  
without drawing unwanted current.  
f
V
V
DDINTNOM is the nominal internal supply voltage  
DDINTRED is the reduced internal supply voltage  
t
t
NOM is the duration running at fCCLKNOM  
RED is the duration running at fCCLKRED  
The Ethernet or CAN modules can wake up the internal supply  
regulator. If the PH6 pin does not connect as the PHYINT sig-  
nal to an external PHY device, it can be pulled low by any other  
device to wake the processor up. The regulator can also be  
woken up by a real-time clock wake-up event or by asserting the  
RESET pin. All hibernate wake-up events initiate the hardware  
reset sequence. Individual sources are enabled by the VR_CTL  
register.  
The percent power savings is calculated as  
% power savings = 1 PSF  100%  
VOLTAGE REGULATION  
With the exception of the VR_CTL and the RTC registers, all  
internal registers and memories lose their content in the hiber-  
nate state. State variables can be held in external SRAM or  
SDRAM. The SCKELOW bit in the VR_CTL register provides a  
means of waking from hibernate state without disrupting a self-  
refreshing SDRAM, provided that there is also an external pull-  
down on the SCKE pin.  
The ADSP-BF534/ADSP-BF536/ADSP-BF537 processors pro-  
vide an on-chip voltage regulator that can generate appropriate  
VDDINT voltage levels from the VDDEXT supply. See Operating  
Conditions on Page 23 for regulator tolerances and acceptable  
VDDEXT ranges for specific models.  
SET OF DECOUPLING  
CAPACITORS  
V
DDEXT  
(LOW-INDUCTANCE)  
Power Savings  
V
V
DDEXT  
DDINT  
As shown in Table 5, the processors support three different  
power domains which maximizes flexibility, while maintaining  
compliance with industry standards and conventions. By isolat-  
ing the internal logic of the processor into its own power  
domain, separate from the RTC and other I/O, the processor  
can take advantage of dynamic power management, without  
affecting the RTC or other I/O devices. There are no sequencing  
requirements for the various power domains.  
+
100μF  
10μH  
100nF  
+
+
100μF  
FDS9431A  
100μF  
10μF  
ZHCS1000  
LOW ESR  
VR  
VR  
OUT  
Table 5. Power Domains  
SHORT AND LOW-  
INDUCTANCE WIRE  
OUT  
Power Domain  
VDD Range  
VDDINT  
All internal logic, except RTC  
RTC internal logic and crystal I/O  
All other I/O  
NOTE: DESIGNER SHOULD MINIMIZE  
TRACE LENGTH TO FDS9431A.  
GND  
VDDRTC  
VDDEXT  
Figure 5. Voltage Regulator Circuit  
The dynamic power management feature allows both the pro-  
cessor’s input voltage (VDDINT) and clock frequency (fCCLK) to be  
dynamically controlled.  
Figure 5 shows the typical external components required to  
complete the power management system. The regulator con-  
trols the internal logic voltage levels and is programmable with  
the voltage regulator control register (VR_CTL) in increments  
of 50 mV. To reduce standby power consumption, the internal  
voltage regulator can be programmed to remove power to the  
processor core while keeping I/O power supplied. While in  
The power dissipated by a processor is largely a function of its  
clock frequency and the square of the operating voltage. For  
example, reducing the clock frequency by 25% results in a 25%  
reduction in power dissipation, while reducing the voltage by  
25% reduces power dissipation by more than 40%. Further,  
Rev. J  
|
Page 14 of 68  
|
February 2014  
 
 
ADSP-BF534/ADSP-BF536/ADSP-BF537  
hibernate state, VDDEXT can still be applied, eliminating the need  
shown in Figure 6. A design procedure for third-overtone oper-  
ation is discussed in detail in the application note Using Third  
Overtone Crystals with the ADSP-218x DSP (EE-168).  
for external buffers. The voltage regulator can be activated from  
this power-down state by asserting the RESET pin, which then  
initiates a boot sequence. The regulator can also be disabled and  
bypassed at the user’s discretion. For additional information on  
voltage regulation, see Switching Regulator Design Consider-  
ations for the ADSP-BF533 Blackfin Processors (EE-228).  
The CLKBUF pin is an output pin, and is a buffer version of the  
input clock. This pin is particularly useful in Ethernet applica-  
tions to limit the number of required clock sources in the  
system. In this type of application, a single 25 MHz or 50 MHz  
crystal can be applied directly to the processors. The 25 MHz or  
50 MHz output of CLKBUF can then be connected to an exter-  
nal Ethernet MII or RMII PHY device.  
CLOCK SIGNALS  
The ADSP-BF534/ADSP-BF536/ADSP-BF537 processors can  
be clocked by an external crystal, a sine wave input, or a buff-  
ered, shaped clock derived from an external clock oscillator.  
Because of the default 10× PLL multiplier, providing a 50 MHz  
CLKIN exceeds the recommended operating conditions of the  
lower speed grades. Because of this restriction, an RMII PHY  
requiring a 50 MHz clock input cannot be clocked directly from  
the CLKBUF pin for the lower speed grades. In this case, either  
provide a separate 50 MHz clock source, or use an RMII PHY  
with 25 MHz clock input options. The CLKBUF output is active  
by default and can be disabled using the VR_CTL register for  
power savings.  
If an external clock is used, it should be a TTL compatible signal  
and must not be halted, changed, or operated below the speci-  
fied frequency during normal operation. This signal is  
connected to the processor’s CLKIN pin. When an external  
clock is used, the XTAL pin must be left unconnected.  
Alternatively, because the processors include an on-chip oscilla-  
tor circuit, an external crystal can be used. For fundamental  
frequency operation, use the circuit shown in Figure 6. A  
parallel-resonant, fundamental frequency, microprocessor-  
grade crystal is connected across the CLKIN and XTAL pins.  
The on-chip resistance between CLKIN and the XTAL pin is in  
the 500 krange. Further parallel resistors are typically not rec-  
ommended. The two capacitors and the series resistor shown in  
Figure 6 fine-tune phase and amplitude of the sine frequency.  
The Blackfin core runs at a different clock rate than the on-chip  
peripherals. As shown in Figure 7, the core clock (CCLK) and  
system peripheral clock (SCLK) are derived from the input  
clock (CLKIN) signal. An on-chip PLL is capable of multiplying  
the CLKIN signal by a programmable 0.5× to 64× multiplication  
factor (bounded by specified minimum and maximum VCO  
frequencies). The default multiplier is 10×, but it can be modi-  
fied by a software instruction sequence in the PLL_CTL register.  
The capacitor and resistor values shown in Figure 6 are typical  
values only. The capacitor values are dependent upon the crystal  
manufacturers’ load capacitance recommendations and the PCB  
physical layout. The resistor value depends on the drive level  
specified by the crystal manufacturer. The user should verify the  
customized values based on careful investigations of multiple  
devices over temperature range.  
“FINE” ADJUSTMENT  
REQUIRES PLL SEQUENCING  
“COARSE” ADJUSTMENT  
ON-THE-FLY  
CCLK  
SCLK  
÷ 1, 2, 4, 8  
÷ 1 to 15  
PLL  
0.5u to 64u  
CLKIN  
VCO  
BLACKFIN  
CLKOUT  
TO PLL CIRCUITRY  
EN  
SCLK d CCLK  
SCLK d 133 MHz  
CLKBUF  
Figure 7. Frequency Modification Methods  
350ꢀ  
EN  
On-the-fly CCLK and SCLK frequency changes can be effected  
by simply writing to the PLL_DIV register. Whereas the maxi-  
mum allowed CCLK and SCLK rates depend on the applied  
voltages VDDINT and VDDEXT, the VCO is always permitted to run  
up to the frequency specified by the part’s speed grade. The  
CLKOUT pin reflects the SCLK frequency to the off-chip world.  
It belongs to the SDRAM interface, but it functions as a refer-  
ence signal in other timing specifications as well. While active  
by default, it can be disabled using the EBIU_SDGCTL and  
EBIU_AMGCTL registers.  
XTAL  
1Mꢀ  
V
DDEXT  
CLKIN  
18 pF *  
330*  
FOR OVERTONE  
OPERATION ONLY:  
18 pF *  
NOTE: VALUES MARKED WITH * MUST BE CUSTOMIZED, DEPENDING  
ON THE CRYSTAL AND LAYOUT. PLEASE ANALYZE CAREFULLY.  
Figure 6. External Crystal Connections  
All on-chip peripherals are clocked by the system clock (SCLK).  
The system clock frequency is programmable by means of the  
SSEL3–0 bits of the PLL_DIV register. The values programmed  
into the SSEL fields define a divide ratio between the PLL output  
A third-overtone crystal can be used for frequencies above  
25 MHz. The circuit is then modified to ensure crystal operation  
only at the third overtone, by adding a tuned inductor circuit as  
Rev. J  
|
Page 15 of 68  
|
February 2014  
 
 
ADSP-BF534/ADSP-BF536/ADSP-BF537  
(VCO) and the system clock. SCLK divider values are 1 through  
15. Table 6 illustrates typical system clock ratios.  
Table 8. Booting Modes (Continued)  
BMODE2–0  
101  
Description  
Table 6. Example System Clock Ratios  
Boot from serial TWI memory (EEPROM/flash)  
Boot from TWI host (slave mode)  
Boot from UART host (slave mode)  
110  
Example Frequency Ratios  
111  
(MHz)  
Signal Name Divider Ratio  
SSEL3–0  
VCO:SCLK  
VCO  
100  
300  
500  
SCLK  
The BMODE pins of the reset configuration register, sampled  
during power-on resets and software-initiated resets, imple-  
ment the following modes:  
0001  
1:1  
100  
50  
0110  
6:1  
1010  
10:1  
50  
• Execute from 16-bit external memory – Execution starts  
from address 0x2000 0000 with 16-bit packing. The boot  
ROM is bypassed in this mode. All configuration settings  
are set for the slowest device possible (3-cycle hold time;  
15-cycle R/W access times; 4-cycle setup).  
Note that the divisor ratio must be chosen to limit the system  
clock frequency to its maximum of fSCLK. The SSEL value can be  
changed dynamically without any PLL lock latencies by writing  
the appropriate values to the PLL divisor register (PLL_DIV).  
• Boot from 8-bit and 16-bit external flash memory – The  
8-bit or 16-bit flash boot routine located in Boot ROM  
memory space is set up using asynchronous memory  
bank 0. All configuration settings are set for the slowest  
device possible (3-cycle hold time; 15-cycle R/W access  
times; 4-cycle setup). The Boot ROM evaluates the first  
byte of the boot stream at address 0x2000 0000. If it is 0x40,  
8-bit boot is performed. A 0x60 byte assumes a 16-bit  
memory device and performs 8-bit DMA. A 0x20 byte also  
assumes 16-bit memory but performs 16-bit DMA.  
The core clock (CCLK) frequency can also be dynamically  
changed by means of the CSEL1–0 bits of the PLL_DIV register.  
Supported CCLK divider ratios are 1, 2, 4, and 8, as shown in  
Table 7. This programmable core clock capability is useful for  
fast core frequency modifications.  
Table 7. Core Clock Ratios  
Example Frequency Ratios  
(MHz)  
Signal Name Divider Ratio  
• Boot from serial SPI memory (EEPROM or flash) – 8-, 16-,  
or 24-bit addressable devices are supported as well as  
AT45DB041, AT45DB081, AT45DB161, AT45DB321,  
AT45DB642, and AT45DB1282 DataFlash® devices from  
Atmel. The SPI uses the PF10/SPI SSEL1 output pin to  
select a single SPI EEPROM/flash device, submits a read  
command and successive address bytes (0x00) until a valid  
8-, 16-, or 24-bit, or Atmel addressable device is detected,  
and begins clocking data into the processor.  
CSEL1–0  
VCO:CCLK  
VCO  
300  
300  
500  
200  
CCLK  
00  
01  
10  
11  
1:1  
2:1  
4:1  
8:1  
300  
150  
125  
25  
The maximum CCLK frequency not only depends on the part’s  
speed grade (see Ordering Guide on Page 67), it also depends on  
the applied VDDINT voltage (see Table 10, Table 11, and Table 12  
on Page 24 for details). The maximal system clock rate (SCLK)  
depends on the chip package and the applied VDDEXT voltage (see  
Table 14 on Page 24).  
• Boot from SPI host device – The Blackfin processor oper-  
ates in SPI slave mode and is configured to receive the bytes  
of the .LDR file from an SPI host (master) agent. To hold  
off the host device from transmitting while the boot ROM  
is busy, the Blackfin processor asserts a GPIO pin, called  
host wait (HWAIT), to signal the host device not to send  
any more bytes until the flag is deasserted. The flag is cho-  
sen by the user and this information is transferred to the  
Blackfin processor via bits 10:5 of the FLAG header.  
BOOTING MODES  
The ADSP-BF534/ADSP-BF536/ADSP-BF537 processor has six  
mechanisms (listed in Table 8) for automatically loading inter-  
nal and external memory after a reset. A seventh mode is  
provided to execute from external memory, bypassing the boot  
sequence.  
• Boot from UART – Using an autobaud handshake  
sequence, a boot-stream-formatted program is downloaded  
by the host. The host agent selects a baud rate within the  
UART’s clocking capabilities. When performing the auto-  
baud, the UART expects an “@” (boot stream) character  
(8 bits data, 1 start bit, 1 stop bit, no parity bit) on the RXD  
pin to determine the bit rate. It then replies with an  
acknowledgement that is composed of 4 bytes: 0xBF, the  
value of UART_DLL, the value of UART_DLH, and 0x00.  
The host can then download the boot stream. When the  
processor needs to hold off the host, it deasserts CTS.  
Therefore, the host must monitor this signal.  
Table 8. Booting Modes  
BMODE2–0  
Description  
000  
Executefrom16-bitexternalmemory(bypass  
boot ROM)  
001  
Boot from 8-bit or 16-bit memory  
(EPROM/flash)  
010  
011  
100  
Reserved  
Boot from serial SPI memory (EEPROM/flash)  
Boot from SPI host (slave mode)  
Rev. J  
|
Page 16 of 68  
|
February 2014  
 
 
 
ADSP-BF534/ADSP-BF536/ADSP-BF537  
• Boot from serial TWI memory (EEPROM/flash) – The  
• All registers, I/O, and memory are mapped into a unified  
Blackfin processor operates in master mode and selects the  
TWI slave with the unique ID 0xA0. It submits successive  
read commands to the memory device starting at 2-byte  
internal address 0x0000 and begins clocking data into the  
processor. The TWI memory device should comply with  
Philips I2C Bus Specification version 2.1 and have the capa-  
bility to auto-increment its internal address counter such  
that the contents of the memory device can be read  
sequentially.  
4G byte memory space, providing a simplified program-  
ming model.  
• Microcontroller features, such as arbitrary bit and bit-field  
manipulation, insertion, and extraction; integer operations  
on 8-, 16-, and 32-bit data-types; and separate user and  
supervisor stack pointers.  
• Code density enhancements, which include intermixing of  
16-bit and 32-bit instructions (no mode switching, no code  
segregation). Frequently used instructions are encoded  
in 16 bits.  
• Boot from TWI host – The TWI host agent selects the slave  
with the unique ID 0x5F. The processor replies with an  
acknowledgement and the host can then download the  
boot stream. The TWI host agent should comply with  
Philips I2C Bus Specification version 2.1. An I2C multi-  
plexer can be used to select one processor at a time when  
booting multiple processors from a single TWI.  
DEVELOPMENT TOOLS  
Analog Devices supports its processors with a complete line of  
software and hardware development tools, including integrated  
development environments (which include CrossCore® Embed-  
ded Studio and/or VisualDSP++®), evaluation products,  
emulators, and a wide variety of software add-ins.  
For each of the boot modes, a 10-byte header is first brought in  
from an external device. The header specifies the number of  
bytes to be transferred and the memory destination address.  
Multiple memory blocks can be loaded by any boot sequence.  
Once all blocks are loaded, program execution commences from  
the start of L1 instruction SRAM.  
Integrated Development Environments (IDEs)  
For C/C++ software writing and editing, code generation, and  
debug support, Analog Devices offers two IDEs.  
The newest IDE, CrossCore Embedded Studio, is based on the  
TM  
In addition, Bit 4 of the reset configuration register can be set by  
application code to bypass the normal boot sequence during a  
software reset. For this case, the processor jumps directly to the  
beginning of L1 instruction memory.  
Eclipse framework. Supporting most Analog Devices proces-  
sor families, it is the IDE of choice for future processors,  
including multicore devices. CrossCore Embedded Studio  
seamlessly integrates available software add-ins to support real  
time operating systems, file systems, TCP/IP stacks, USB stacks,  
algorithmic software modules, and evaluation hardware board  
support packages. For more information visit  
To augment the boot modes, a secondary software loader can be  
added to provide additional booting mechanisms. This second-  
ary loader could provide the capability to boot from flash,  
variable baud rate, and other sources. In all boot modes except  
bypass, program execution starts from on-chip L1 memory  
address 0xFFA0 0000.  
www.analog.com/cces.  
The other Analog Devices IDE, VisualDSP++, supports proces-  
sor families introduced prior to the release of CrossCore  
Embedded Studio. This IDE includes the Analog Devices VDK  
real time operating system and an open source TCP/IP stack.  
For more information visit www.analog.com/visualdsp. Note  
that VisualDSP++ will not support future Analog Devices  
processors.  
INSTRUCTION SET DESCRIPTION  
The Blackfin processor family assembly language instruction set  
employs an algebraic syntax designed for ease of coding and  
readability. The instructions have been specifically tuned to pro-  
vide a flexible, densely encoded instruction set that compiles to  
a very small final memory size. The instruction set also provides  
fully featured multifunction instructions that allow the  
programmer to use many of the processor core resources in a  
single instruction. Coupled with many features more often seen  
on microcontrollers, this instruction set is very efficient when  
compiling C and C++ source code. In addition, the architecture  
supports both user (algorithm/application code) and supervisor  
(O/S kernel, device drivers, debuggers, ISRs) modes of opera-  
tion, allowing multiple levels of access to core processor  
resources.  
EZ-KIT Lite Evaluation Board  
For processor evaluation, Analog Devices provides wide range  
of EZ-KIT Lite® evaluation boards. Including the processor and  
key peripherals, the evaluation board also supports on-chip  
emulation capabilities and other evaluation and development  
features. Also available are various EZ-Extenders®, which are  
daughter cards delivering additional specialized functionality,  
including audio and video processing. For more information  
visit www.analog.com and search on “ezkit” or “ezextender”.  
EZ-KIT Lite Evaluation Kits  
The assembly language, which takes advantage of the proces-  
sor’s unique architecture, offers the following advantages:  
For a cost-effective way to learn more about developing with  
Analog Devices processors, Analog Devices offer a range of EZ-  
KIT Lite evaluation kits. Each evaluation kit includes an EZ-KIT  
Lite evaluation board, directions for downloading an evaluation  
version of the available IDE(s), a USB cable, and a power supply.  
The USB controller on the EZ-KIT Lite board connects to the  
USB port of the user’s PC, enabling the chosen IDE evaluation  
• Seamlessly integrated DSP/MCU features are optimized for  
both 8-bit and 16-bit operations.  
• A multi-issue load/store modified-Harvard architecture,  
which supports two 16-bit MAC or four 8-bit ALU + two  
load/store + two pointer updates per cycle.  
Rev. J  
|
Page 17 of 68  
|
February 2014  
ADSP-BF534/ADSP-BF536/ADSP-BF537  
suite to emulate the on-board processor in-circuit. This permits  
the customer to download, execute, and debug programs for the  
EZ-KIT Lite system. It also supports in-circuit programming of  
the on-board Flash device to store user-specific boot code,  
enabling standalone operation. With the full version of Cross-  
Core Embedded Studio or VisualDSP++ installed (sold  
separately), engineers can develop software for supported EZ-  
KITs or any custom system utilizing supported Analog Devices  
processors.  
an operation is completed by the emulator, the DSP system is set  
to run at full speed with no impact on system timing. The emu-  
lators require the target board to include a header that supports  
connection of the DSP’s JTAG port to the emulator.  
For details on target board design issues including mechanical  
layout, single processor connections, signal buffering, signal ter-  
mination, and emulator pod logic, see the Engineer-to-Engineer  
Note “Analog Devices JTAG Emulation Technical Reference”  
(EE-68) on the Analog Devices website (www.analog.com)—use  
site search on “EE-68.” This document is updated regularly to  
keep pace with improvements to emulator support.  
Software Add-Ins for CrossCore Embedded Studio  
Analog Devices offers software add-ins which seamlessly inte-  
grate with CrossCore Embedded Studio to extend its capabilities  
and reduce development time. Add-ins include board support  
packages for evaluation hardware, various middleware pack-  
ages, and algorithmic modules. Documentation, help,  
configuration dialogs, and coding examples present in these  
add-ins are viewable through the CrossCore Embedded Studio  
IDE once the add-in is installed.  
ADDITIONAL INFORMATION  
The following publications that describe the ADSP-BF534/  
ADSP-BF536/ADSP-BF537 processors (and related processors)  
can be ordered from any Analog Devices sales office or accessed  
electronically on our website:  
Getting Started with Blackfin Processors  
ADSP-BF537 Blackfin Processor Hardware Reference  
Board Support Packages for Evaluation Hardware  
ADSP-BF53x/ADSP-BF56x Blackfin Processor Program-  
ming Reference  
Software support for the EZ-KIT Lite evaluation boards and EZ-  
Extender daughter cards is provided by software add-ins called  
Board Support Packages (BSPs). The BSPs contain the required  
drivers, pertinent release notes, and select example code for the  
given evaluation hardware. A download link for a specific BSP is  
located on the web page for the associated EZ-KIT or EZ-  
Extender product. The link is found in the Product Download  
area of the product web page.  
ADSP-BF534/ADSP-BF536/ADSP-BF537 Blackfin Proces-  
sor Anomaly List  
RELATED SIGNAL CHAINS  
A signal chain is a series of signal-conditioning electronic com-  
ponents that receive input (data acquired from sampling either  
real-time phenomena or from stored data) in tandem, with the  
output of one portion of the chain supplying input to the next.  
Signal chains are often used in signal processing applications to  
gather and process data or to apply system controls based on  
analysis of real-time phenomena. For more information about  
this term and related topics, see the "signal chain" entry in  
Wikipedia or the Glossary of EE Terms on the Analog Devices  
website.  
Middleware Packages  
Analog Devices separately offers middleware add-ins such as  
real time operating systems, file systems, USB stacks, and  
TCP/IP stacks. For more information see the following web  
pages:  
www.analog.com/ucos3  
www.analog.com/ucfs  
www.analog.com/ucusbd  
www.analog.com/lwip  
Analog Devices eases signal processing system development by  
providing signal processing components that are designed to  
work together well. A tool for viewing relationships between  
specific applications and related components is available on the  
www.analog.com website.  
Algorithmic Modules  
To speed development, Analog Devices offers add-ins that per-  
form popular audio and video processing algorithms. These are  
available for use with both CrossCore Embedded Studio and  
VisualDSP++. For more information visit www.analog.com and  
search on “Blackfin software modules” or “SHARC software  
modules”.  
The Application Signal Chains page in the Circuits from the  
TM  
Lab site (http://www.analog.com/signalchains) provides:  
• Graphical circuit block diagram presentation of signal  
chains for a variety of circuit types and applications  
• Drill down links for components in each chain to selection  
guides and application information  
Designing an Emulator-Compatible DSP Board (Target)  
• Reference designs applying best practice design techniques  
For embedded system test and debug, Analog Devices provides  
a family of emulators. On each JTAG DSP, Analog Devices sup-  
plies an IEEE 1149.1 JTAG Test Access Port (TAP). In-circuit  
emulation is facilitated by use of this JTAG interface. The emu-  
lator accesses the processor’s internal features via the  
processor’s TAP, allowing the developer to load code, set break-  
points, and view variables, memory, and registers. The  
processor must be halted to send data and commands, but once  
Rev. J  
|
Page 18 of 68  
|
February 2014  
ADSP-BF534/ADSP-BF536/ADSP-BF537  
PIN DESCRIPTIONS  
The ADSP-BF534/ADSP-BF536/ADSP-BF537 processors pin  
definitions are listed in Table 9. In order to maintain maximum  
functionality and reduce package size and pin count, some pins  
have dual, multiplexed functions. In cases where pin function is  
reconfigurable, the default state is shown in plain text, while the  
alternate function is shown in italics. Pins shown with an aster-  
isk after their name (*) offer high source/high sink current  
capabilities.  
control and address lines are driven high, with the exception of  
CLKOUT, which toggles at the system clock rate. If BR is active  
(whether or not RESET is asserted), the memory pins are also  
three-stated. During hibernate, all outputs are three-stated  
unless otherwise noted in Table 9.  
All I/O pins have their input buffers disabled with the exception  
of the pins noted in the data sheet that need pull-ups or pull-  
downs if unused.  
All pins are three-stated during and immediately after reset,  
with the exception of the external memory interface, asynchro-  
nous and synchronous memory control, and the buffered XTAL  
output pin (CLKBUF). On the external memory interface, the  
The SDA (serial data) and SCL (serial clock) pins are open drain  
and therefore require a pull-up resistor. Consult version 2.1 of  
the I2C specification for the proper resistor value.  
Table 9. Pin Descriptions  
Driver  
Type1  
Pin Name  
Type Function  
Memory Interface  
ADDR19–1  
O
Address Bus for Async Access  
Data Bus for Async/Sync Access  
A
A
A
DATA15–0  
I/O  
O
I
ABE1–0/SDQM1–0  
Byte Enables/Data Masks for Async/Sync Access  
Bus Request (This pin should be pulled high when not used.)  
Bus Grant  
BR  
BG  
O
O
A
A
BGH  
Bus Grant Hang  
Asynchronous Memory Control  
AMS3–0  
O
I
Bank Select (Require pull-ups if hibernate is used.)  
Hardware Ready Control  
Output Enable  
A
ARDY  
AOE  
O
O
O
A
A
A
ARE  
Read Enable  
AWE  
Write Enable  
Synchronous Memory Control  
SRAS  
SCAS  
SWE  
O
O
O
O
Row Address Strobe  
Column Address Strobe  
Write Enable  
A
A
A
A
SCKE  
Clock Enable(Requires a pull-down if hibernate with SDRAM self-refresh is  
used.)  
CLKOUT  
SA10  
O
O
O
Clock Output  
A10 Pin  
B
A
A
SMS  
Bank Select  
Rev. J  
|
Page 19 of 68  
|
February 2014  
 
ADSP-BF534/ADSP-BF536/ADSP-BF537  
Table 9. Pin Descriptions (Continued)  
Driver  
Type1  
Pin Name  
Type Function  
Port F: GPIO/UART1–0/Timer7–0/SPI/  
External DMA Request/PPI  
(* = High Source/High Sink Pin)  
PF0* – GPIO/UART0 TX/DMAR0  
I/O  
GPIO/UART0 Transmit/DMA Request 0  
C
C
C
C
C
C
C
C
C
C
C
C
C
PF1* – GPIO/UART0 RX/DMAR1/TACI1 I/O  
GPIO/UART0 Receive/DMA Request 1/Timer1 Alternate Input Capture  
GPIO/UART1 Transmit/Timer7  
PF2* – GPIO/UART1 TX/TMR7  
PF3* – GPIO/UART1 RX/TMR6/TACI6  
PF4* – GPIO/TMR5/SPI SSEL6  
PF5* – GPIO/TMR4/SPI SSEL5  
PF6* – GPIO/TMR3/SPI SSEL4  
PF7* – GPIO/TMR2/PPI FS3  
PF8 – GPIO/TMR1/PPI FS2  
PF9 – GPIO/TMR0/PPI FS1  
PF10 – GPIO/SPI SSEL1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GPIO/UART1 Receive/Timer6/Timer6 Alternate Input Capture  
GPIO/Timer5/SPI Slave Select Enable 6  
GPIO/Timer4/SPI Slave Select Enable 5  
GPIO/Timer3/SPI Slave Select Enable 4  
GPIO/Timer2/PPI Frame Sync 3  
GPIO/Timer1/PPI Frame Sync 2  
GPIO/Timer0/PPI Frame Sync 1  
GPIO/SPI Slave Select Enable 1  
PF11 – GPIO/SPI MOSI  
GPIO/SPI Master Out Slave In  
PF12 – GPIO/SPI MISO  
GPIO/SPI Master In Slave Out (This pin should be pulled high through a 4.7 k  
resistor if booting via the SPI port.)  
PF13 – GPIO/SPI SCK  
PF14 – GPIO/SPI SS/TACLK0  
PF15 – GPIO/PPI CLK/TMRCLK  
Port G: GPIO/PPI/SPORT1  
PG0 – GPIO/PPI D0  
I/O  
I/O  
I/O  
GPIO/SPI Clock  
D
C
C
GPIO/SPI Slave Select/Alternate Timer0 Clock Input  
GPIO/PPI Clock/External Timer Reference  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GPIO/PPI Data 0  
C
C
C
C
C
C
C
C
C
C
D
C
C
D
C
C
PG1 – GPIO/PPI D1  
GPIO/PPI Data 1  
PG2 – GPIO/PPI D2  
GPIO/PPI Data 2  
PG3 – GPIO/PPI D3  
GPIO/PPI Data 3  
PG4 – GPIO/PPI D4  
GPIO/PPI Data 4  
PG5 – GPIO/PPI D5  
GPIO/PPI Data 5  
PG6 – GPIO/PPI D6  
GPIO/PPI Data 6  
PG7 – GPIO/PPI D7  
GPIO/PPI Data 7  
PG8 – GPIO/PPI D8/DR1SEC  
PG9 – GPIO/PPI D9/DT1SEC  
PG10 – GPIO/PPI D10/RSCLK1  
PG11 – GPIO/PPI D11/RFS1  
PG12 – GPIO/PPI D12/DR1PRI  
PG13 – GPIO/PPI D13/TSCLK1  
PG14 – GPIO/PPI D14/TFS1  
PG15 – GPIO/PPI D15/DT1PRI  
GPIO/PPI Data 8/SPORT1 Receive Data Secondary  
GPIO/PPI Data 9/SPORT1 Transmit Data Secondary  
GPIO/PPI Data 10/SPORT1 Receive Serial Clock  
GPIO/PPI Data 11/SPORT1 Receive Frame Sync  
GPIO/PPI Data 12/SPORT1 Receive Data Primary  
GPIO/PPI Data 13/SPORT1 Transmit Serial Clock  
GPIO/PPI Data 14/SPORT1 Transmit Frame Sync  
GPIO/PPI Data 15/SPORT1 Transmit Data Primary  
Rev. J  
|
Page 20 of 68  
|
February 2014  
ADSP-BF534/ADSP-BF536/ADSP-BF537  
Table 9. Pin Descriptions (Continued)  
Driver  
Type1  
Pin Name  
Type Function  
Port H: GPIO/10/100 Ethernet MAC (On  
ADSP-BF534, these pins are GPIO only)  
PH0 – GPIO/ETxD0  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GPIO/Ethernet MII or RMII Transmit D0  
E
E
E
E
E
E
E
PH1 – GPIO/ETxD1  
GPIO/Ethernet MII or RMII Transmit D1  
GPIO/Ethernet MII Transmit D2  
PH2 – GPIO/ETxD2  
PH3 – GPIO/ETxD3  
GPIO/Ethernet MII Transmit D3  
PH4 – GPIO/ETxEN  
GPIO/Ethernet MII or RMII Transmit Enable  
GPIO/Ethernet MII Transmit Clock/RMII Reference Clock  
PH5 – GPIO/MII TxCLK/RMII REF_CLK  
PH6 – GPIO/MII PHYINT/RMII MDINT  
GPIO/Ethernet MII PHY Interrupt/RMII Management Data Interrupt (This pin  
should be pulled high when used as a hibernate wake-up.)  
PH7 – GPIO/COL  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GPIO/Ethernet Collision  
E
E
E
E
E
E
E
E
E
PH8 – GPIO/ERxD0  
GPIO/Ethernet MII or RMII Receive D0  
PH9 – GPIO/ERxD1  
GPIO/Ethernet MII or RMII Receive D1  
PH10 – GPIO/ERxD2  
GPIO/Ethernet MII Receive D2  
PH11 – GPIO/ERxD3  
GPIO/Ethernet MII Receive D3  
PH12 – GPIO/ERxDV/TACLK5  
PH13 – GPIO/ERxCLK/TACLK6  
PH14 – GPIO/ERxER/TACLK7  
PH15 – GPIO/MII CRS/RMII CRS_DV  
GPIO/Ethernet MII Receive Data Valid/Alternate Timer5 Input Clock  
GPIO/Ethernet MII Receive Clock/Alternate Timer6 Input Clock  
GPIO/Ethernet MII or RMII Receive Error/Alternate Timer7 Input Clock  
GPIO/Ethernet MII Carrier Sense/Ethernet RMII Carrier Sense and Receive Data  
Valid  
Port J: SPORT0/TWI/SPI Select/CAN  
PJ0 – MDC  
O
Ethernet Management Channel Clock (On ADSP-BF534 processors, do not  
connect this pin.)  
E
PJ1 – MDIO  
PJ2 – SCL  
PJ3 – SDA  
I/O  
I/O  
I/O  
EthernetManagement ChannelSerialData(OnADSP-BF534processors, tie this E  
pin to ground.)  
TWI Serial Clock (This pin is an open-drain output and requires a pull-up  
resistor.)  
F
TWI Serial Data (This pin is an open-drain output and requires a pull-up  
resistor.)  
F
PJ4 – DR0SEC/CANRX/TACI0  
I
SPORT0 Receive Data Secondary/CAN Receive/Timer0 Alternate Input Capture  
SPORT0 Transmit Data Secondary/CAN Transmit/SPI Slave Select Enable 7  
SPORT0 Receive Serial Clock/Alternate Timer2 Clock Input  
SPORT0 Receive Frame Sync/Alternate Timer3 Clock Input  
SPORT0 Receive Data Primary/Alternate Timer4 Clock Input  
SPORT0 Transmit Serial Clock/Alternate Timer1 Clock Input  
SPORT0 Transmit Frame Sync/SPI Slave Select Enable 3  
PJ5 – DT0SEC/CANTX/SPI SSEL7  
O
C
D
C
PJ6 – RSCLK0/TACLK2  
I/O  
I/O  
I
PJ7 – RFS0/TACLK3  
PJ8 – DR0PRI/TACLK4  
PJ9 – TSCLK0/TACLK1  
I/O  
I/O  
O
D
C
C
PJ10 – TFS0/SPI SSEL3  
PJ11 – DT0PRI/SPI SSEL2  
SPORT0 Transmit Data Primary/SPI Slave Select Enable 2  
Real-Time Clock  
RTXI  
I
RTC Crystal Input (This pin should be pulled low when not used.)  
RTC Crystal Output (Does not three-state in hibernate.)  
RTXO  
JTAG Port  
TCK  
O
I
JTAG Clock  
TDO  
O
I
JTAG Serial Data Out  
C
C
TDI  
JTAG Serial Data In  
TMS  
I
JTAG Mode Select  
TRST  
I
JTAG Reset (This pin should be pulled low if the JTAG port is not used.)  
Emulation Output  
EMU  
O
Rev. J  
|
Page 21 of 68  
|
February 2014  
ADSP-BF534/ADSP-BF536/ADSP-BF537  
Table 9. Pin Descriptions (Continued)  
Driver  
Type1  
Pin Name  
Clock  
Type Function  
CLKIN  
I
Clock/Crystal Input  
XTAL  
O
O
Crystal Output (If CLKBUF is enabled, does not three-state during hibernate.)  
Buffered XTAL Output (If enabled, does not three-state during hibernate.)  
CLKBUF  
Mode Controls  
RESET  
E
I
I
I
Reset  
NMI  
Nonmaskable Interrupt (This pin should be pulled high when not used.)  
BMODE2–0  
Boot Mode Strap 2-0 (These pins must be pulled to the state required for the  
desired boot mode.)  
Voltage Regulator  
VROUT1–0  
O
External FET Drive (These pins should be left unconnected when not used and  
are driven high during hibernate.)  
Supplies  
VDDEXT  
VDDINT  
P
P
P
I/O Power Supply  
Internal Power Supply  
VDDRTC  
Real-Time Clock Power Supply (This pin should be connected to VDDEXT when  
not used and should remain powered at all times.)  
GND  
G
External Ground  
1 See Output Drive Currents on Page 50 for more information about each driver types.  
Rev. J  
|
Page 22 of 68  
|
February 2014  
ADSP-BF534/ADSP-BF536/ADSP-BF537  
SPECIFICATIONS  
Note that component specifications are subject to change  
without notice.  
OPERATING CONDITIONS  
Parameter  
Conditions  
Min  
Nominal Max  
Unit  
VDDINT Internal Supply Voltage1  
Nonautomotive 300 MHz, 400 MHz, and 500 MHz speed 0.8  
grade models2  
1.2  
1.32  
V
VDDINT Internal Supply Voltage1  
VDDINT Internal Supply Voltage1  
VDDINT Internal Supply Voltage1  
Nonautomotive 533 MHz speed grade models2  
Nonautomotive 600 MHz speed grade models2  
0.8  
1.25  
1.3  
1.375  
1.43  
1.32  
V
V
V
0.8  
Automotive grade models and +105°C nonautomotive  
grade models2  
0.95  
1.2  
VDDEXT External Supply Voltage  
VDDEXT External Supply Voltage  
Nonautomotive grade models2  
2.25  
2.7  
2.5 or 3.3 3.6  
3.0 or 3.3 3.6  
V
V
Automotive grade models and +105°C nonautomotive  
grade models2  
VDDRTC Real-Time Clock Power  
Supply Voltage  
2.25  
3.6  
V
VIH  
VIHCLKIN High Level Input Voltage5 VDDEXT = Maximum  
High Level Input Voltage3, 4 VDDEXT = Maximum  
2.0  
V
V
V
2.2  
VIH5V  
5.0 V Tolerant Pins, High  
Level Input Voltage6  
0.7 × VDDEXT  
VIH5V  
5.0 V Tolerant Pins, High  
Level Input Voltage7  
VDDEXT = Maximum  
2.0  
V
VIL  
Low Level Input Voltage3, 8 VDDEXT = Minimum  
+0.6  
V
V
VIL5V  
5.0 V Tolerant Pins, Low  
Level Input Voltage6  
0.3 × VDDEXT  
VIL5V  
TJ  
5.0 V Tolerant Pins, Low  
Level Input Voltage7  
VDDEXT = Minimum  
+0.8  
V
Junction Temperature  
Junction Temperature  
Junction Temperature  
Junction Temperature  
Junction Temperature  
208-Ball Chip Scale Package Ball Grid Array (CSP_BGA) @ –40  
TAMBIENT = –40°C to +105°C  
+120  
°C  
°C  
°C  
°C  
°C  
TJ  
208-Ball Chip Scale Package Ball Grid Array (CSP_BGA) @ –40  
TAMBIENT = –40°C to +85°C  
+105  
TJ  
208-Ball Chip Scale Package Ball Grid Array (CSP_BGA) @  
TAMBIENT = 0°C to +70°C  
0
+95  
TJ  
182-Ball Chip Scale Package Ball Grid Array (CSP_BGA) @ –40  
TAMBIENT = –40°C to +85°C  
+105  
TJ  
182-Ball Chip Scale Package Ball Grid Array (CSP_BGA) @  
TAMBIENT = 0°C to +70°C  
0
+100  
1 The regulator can generate VDDINT at levels of 0.85 V to 1.2 V with –5% to +10% tolerance, 1.25 V with –4% to +10% tolerance, and 1.3 V with –0% to +10% tolerance. The  
required VDDINT is a function of speed grade and operating frequency. See Table 10, Table 11, and Table 12 for details.  
2 See Ordering Guide on Page 67.  
3 Bidirectional pins (DATA15–0, PF15–0, PG15–0, PH15–0, TFS0, TSCLK0, RSCLK0, RFS0, MDIO) and input pins (BR, ARDY, DR0PRI, DR0SEC, RTXI, TCK, TDI, TMS,  
TRST, CLKIN, RESET, NMI, and BMODE2–0) of the ADSP-BF534/ADSP-BF536/ADSP-BF537 are 3.3 V-tolerant (always accept up to 3.6 V maximum VIH). Voltage  
compliance (on outputs, VOH) is limited by the VDDEXT supply voltage.  
4 Parameter value applies to all input and bidirectional pins except CLKIN, SDA, and SCL.  
5 Parameter value applies to CLKIN pin only.  
6 Applies to pins PJ2/SCL and PJ3/SDA which are 5.0 V tolerant (always accept up to 5.5 V maximum VIH). Voltage compliance (on outputs, VOH) is limited by the VDDEXT supply  
voltage.  
7 Applies to pin PJ4/DR0SEC/CANRX/TACI0 which is 5.0 V tolerant (always accepts up to 5.5 V maximum VIH). Voltage compliance (on outputs, VOH) is limited by the VDDEXT  
supply voltage.  
8 Parameter value applies to all input and bidirectional pins except SDA and SCL.  
Rev. J  
|
Page 23 of 68  
|
February 2014  
 
 
 
 
 
 
 
ADSP-BF534/ADSP-BF536/ADSP-BF537  
Table 10 through Table 12 describe the voltage/frequency  
requirements for the ADSP-BF534/ADSP-BF536/ADSP-BF537  
processor clocks. Take care in selecting MSEL, SSEL, and CSEL  
ratios so as not to exceed the maximum core clock and system  
clock. Table 13 describes phase-locked loop operating  
conditions.  
Table 10. Core Clock Requirements—500 MHz, 533 MHz, and 600 MHz Speed Grades1  
Parameter Internal Regulator Setting  
Max  
600  
533  
500  
444  
400  
333  
250  
Unit  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
fCCLK  
fCCLK  
fCCLK  
fCCLK  
fCCLK  
fCCLK  
fCCLK  
Core Clock Frequency (VDDINT =1.30 V Minimum)2  
1.30 V  
1.25 V  
1.20 V  
1.10 V  
1.00 V  
0.90 V  
0.85 V  
Core Clock Frequency (VDDINT = 1.20 V Minimum)3  
Core Clock Frequency (VDDINT =1.14 V Minimum)  
Core Clock Frequency (VDDINT =1.045 V Minimum)  
Core Clock Frequency (VDDINT = 0.95 V Minimum)  
Core Clock Frequency (VDDINT = 0.85 V Minimum)  
Core Clock Frequency (VDDINT = 0.8 V Minimum)  
1 See Ordering Guide on Page 67.  
2 Applies to 600 MHz models only. See Ordering Guide on Page 67.  
3 Applies to 533 MHz and 600 MHz models only. See Ordering Guide on Page 67.  
Table 11. Core Clock Requirements—400 MHz Speed Grade1  
120°C TJ 105°C  
Internal Regulator Setting Max  
All2 Other TJ  
Max  
Parameter  
Unit  
fCCLK Core Clock Frequency (VDDINT =1.14 V Minimum) 1.20 V  
fCCLK Core Clock Frequency (VDDINT =1.045 V Minimum) 1.10 V  
fCCLK Core Clock Frequency (VDDINT = 0.95 V Minimum) 1.00 V  
fCCLK Core Clock Frequency (VDDINT = 0.85 V Minimum) 0.90 V  
fCCLK Core Clock Frequency (VDDINT = 0.8 V Minimum) 0.85 V  
400  
333  
295  
400  
363  
333  
280  
250  
MHz  
MHz  
MHz  
MHz  
MHz  
1 See Ordering Guide on Page 67.  
2 See Operating Conditions on Page 23.  
Table 12. Core Clock Requirements—300 MHz Speed Grade1  
Parameter  
Internal Regulator Setting  
Max  
Unit  
MHz  
MHz  
MHz  
MHz  
MHz  
fCCLK  
fCCLK  
fCCLK  
fCCLK  
fCCLK  
Core Clock Frequency (VDDINT =1.14 V Minimum)  
Core Clock Frequency (VDDINT =1.045 V Minimum)  
Core Clock Frequency (VDDINT = 0.95 V Minimum)  
Core Clock Frequency (VDDINT = 0.85 V Minimum)  
Core Clock Frequency (VDDINT = 0.8 V Minimum)  
1.20 V  
1.10 V  
1.00 V  
0.90 V  
0.85 V  
300  
255  
210  
180  
160  
1 See Ordering Guide on Page 67.  
Table 13. Phase-Locked Loop Operating Conditions  
Parameter  
Min  
Max  
Max fCCLK  
Unit  
fVCO  
Voltage Controlled Oscillator (VCO) Frequency  
50  
MHz  
Table 14. System Clock Requirements  
Parameter  
Condition  
Max  
1332  
100  
Unit  
MHz  
MHz  
1
fSCLK  
VDDEXT 3.3 V or 2.5 V, VDDINT 1.14 V  
VDDEXT 3.3 V or 2.5 V, VDDINT 1.14 V  
1
fSCLK  
1 fSCLK must be less than or equal to fCCLK and is subject to additional restrictions for SDRAM interface operation. See Table 27 on Page 34.  
2 Rounded number. Actual test specification is SCLK period of 7.5 ns. See Table 27 on Page 34.  
Rev. J  
|
Page 24 of 68  
|
February 2014  
 
 
 
 
 
ADSP-BF534/ADSP-BF536/ADSP-BF537  
ELECTRICAL CHARACTERISTICS  
300 MHz/400 MHz1  
500 MHz/533 MHz/600 MHz2  
Parameter  
Test Conditions  
VDDEXT = 2.5 V/3.0 V/  
Output Voltage 3.3 V 10%,  
OH = –0.5 mA  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
3
VOH  
High Level  
VDDEXT – 0.5  
VDDEXT – 0.5  
V
I
4
VOH  
VDDEXT = 3.3 V 10%, VDDEXT – 0.5  
IOH = –8 mA  
VDDEXT = 2.5 V/3.0 V  
10%, IOH = –6 mA  
VDDEXT – 0.5  
V
V
V
V
DDEXT – 0.5  
V
DDEXT – 0.5  
5
VOH  
VDDEXT = 2.5 V/3.0 V/  
3.3 V 10%,  
V
DDEXT – 0.5  
VDDEXT – 0.5  
IOH = –2.0 mA  
6
IOH  
High Level  
Output Current  
VOH = VDDEXT – 0.5 V Min  
VOH = VDDEXT – 0.5 V Min  
VDDEXT = 2.5 V/3.0 V/  
–64  
–144  
0.4  
–64  
–144  
0.4  
mA  
mA  
V
7
IOH  
3
VOL  
Low Level  
Output Voltage 3.3 V 10%,  
IOL = 2.0 mA  
4
VOL  
VDDEXT = 3.3 V 10%,  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
V
V
V
IOL = 8 mA  
VDDEXT = 2.5 V/3.0 V  
10%, IOL = 6 mA  
5
VOL  
VDDEXT = 2.5 V/3.0 V/  
3.3 V 10%,  
IOL = 2.0 mA  
6
IOL  
Low Level  
VOL = 0.5 V Max  
64  
64  
mA  
Output Current  
7
IOL  
VOL = 0.5 V Max  
144  
10  
144  
10  
mA  
μA  
IIH  
High Level Input VDDEXT =3.6 V, VIN = 3.6 V  
Current8  
IIH5V  
IIL  
IIHP  
IOZH  
High Level Input VDDEXT =3.6 V, VIN = 5.5 V  
Current9  
10  
10  
50  
10  
10  
10  
50  
10  
μA  
μA  
μA  
μA  
Low Level Input VDDEXT =3.6 V, VIN = 0 V  
Current2  
High Level Input VDDEXT = 3.6 V, VIN = 3.6 V  
Current JTAG10  
Three-State  
Leakage  
VDDEXT = 3.6 V, VIN = 3.6 V  
VDDEXT =3.6 V, VIN = 5.5 V  
VDDEXT = 3.6 V, VIN = 0 V  
Current11  
IOZH5V  
Three-State  
Leakage  
10  
10  
10  
10  
μA  
μA  
Current12  
IOZL  
Three-State  
Leakage  
Current5  
Rev. J  
|
Page 25 of 68  
|
February 2014  
 
ADSP-BF534/ADSP-BF536/ADSP-BF537  
300 MHz/400 MHz1  
500 MHz/533 MHz/600 MHz2  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
CIN  
Input  
fIN = 1 MHz,  
8
8
pF  
Capacitance13, 14 TAMBIENT = 25°C,  
VIN = 2.5 V  
IDD-IDLE  
IDD-TYP  
IDD-TYP  
VDDINT Current in VDDINT = 1.0 V,  
14  
24  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
A  
Idle  
fCCLK = 50 MHz,  
TJ = 25°C, ASF = 0.43  
VDDINT Current  
VDDINT = 1.14 V,  
100  
125  
6
113  
138  
16  
fCCLK = 300 MHz,  
TJ = 25°C, ASF = 1.00  
VDDINT Current  
VDDINT = 1.14 V,  
fCCLK = 400 MHz,  
TJ = 25°C, ASF = 1.00  
15  
IDDDEEPSLEEP  
VDDINT Current in VDDINT = 1.0 V,  
Deep Sleep  
Mode  
fCCLK = 0 MHz,  
TJ = 25°C, ASF = 0.00  
IDDSLEEP  
IDD-TYP  
IDD-TYP  
VDDINT Current in VDDINT = 1.0 V,  
9.5  
19.5  
185  
227  
50  
Sleep Mode  
fSCLK = 25 MHz,  
TJ = 25°C  
VDDINT Current  
VDDINT = 1.20 V,  
fCCLK = 533 MHz,  
TJ = 25°C, ASF = 1.00  
VDDINT Current  
VDDINT = 1.30 V,  
fCCLK = 600 MHz,  
TJ = 25°C, ASF = 1.00  
15, 16  
IDDHIBERNATE  
VDDEXT Current in VDDEXT = 3.60 V,  
Hibernate State CLKIN=0 MHz,  
50  
20  
100  
100  
TJ = maximum, with  
voltage regulator off  
(VDDINT = 0 V)  
IDDRTC  
VDDRTC Current  
VDDRTC = 3.3 V, TJ= 25°C  
20  
A  
mA  
15  
IDDDEEPSLEEP  
VDDINT Current in fCCLK = 0 MHz,  
Table 16  
Table 15  
Deep Sleep  
Mode  
fSCLK =0 MHz  
15, 17  
IDDSLEEP  
VDDINT Current in fCCLK = 0 MHz,  
I
DDDEEPSLEEP + (0.14  
× VDDINT × fSCLK  
IDDSLEEP  
(Table 18 × ASF)  
I
DDDEEPSLEEP + (0.14 mA  
× VDDINT × fSCLK  
IDDSLEEP  
(Table 18 × ASF)  
Sleep Mode  
fSCLK 0 MHz  
fCCLK 0 MHz,  
fSCLK 0 MHz  
)
)
18  
IDDINT  
VDDINT Current  
+
+
mA  
1 Applies to all 300 MHz and 400 MHz speed grade models. See Ordering Guide on Page 67.  
2 Applies to all 500 MHz, 533 MHz, and 600 MHz speed grade models. See Ordering Guide on Page 67.  
3 Applies to all output and bidirectional pins except port F pins, port G pins, and port H pins.  
4 Applies to port F pins PF7–0.  
5 Applies to port F pins PF15–8, all port G pins, and all port H pins.  
6 Maximum combined current for Port F7–0.  
7 Maximum total current for all port F, port G, and port H pins.  
8 Applies to all input pins except PJ4.  
9 Applies to input pin PJ4 only.  
10Applies to JTAG input pins (TCK, TDI, TMS, TRST).  
11Applies to three-statable pins.  
12Applies to bidirectional pins PJ2 and PJ3.  
13Applies to all signal pins.  
14Guaranteed, but not tested.  
15See the ADSP-BF537 Blackfin Processor Hardware Reference Manual for definition of sleep, deep sleep, and hibernate operating modes.  
16CLKIN must be tied to VDDEXT or GND during hibernate.  
17In the equations, the fSCLK parameter is the system clock in MHz.  
18See Table 17 for the list of IDDINT power vectors covered.  
Rev. J  
|
Page 26 of 68  
|
February 2014  
 
ADSP-BF534/ADSP-BF536/ADSP-BF537  
System designers should refer to Estimating Power for the  
current dissipation for internal circuitry (VDDINT). IDDDEEPSLEEP  
ADSP-BF534/BF536/BF537 Blackfin Processors (EE-297), which  
provides detailed information for optimizing designs for lowest  
power. All topics discussed in this section are described in detail  
in EE-297. Total power dissipation has two components:  
specifies static power dissipation as a function of voltage  
(VDDINT) and temperature (see Table 16 or Table 15), and IDDINT  
specifies the total power specification for the listed test condi-  
tions, including the dynamic component as a function of voltage  
(VDDINT) and frequency (Table 18).  
1. Static, including leakage current  
The dynamic component is also subject to an Activity Scaling  
Factor (ASF) which represents application code running on the  
processor (Table 17).  
2. Dynamic, due to transistor switching characteristics  
Many operating conditions can also affect power dissipation,  
including temperature, voltage, operating frequency, and pro-  
cessor activity. Electrical Characteristics on Page 25 shows the  
Table 15. Static Current–500 MHz, 533 MHz, and 600 MHz Speed Grade Devices (mA)1  
Voltage (VDDINT  
0.80 V 0.85 V 0.90 V 0.95 V 1.00 V 1.05 V 1.10 V 1.15 V 1.20 V 1.25 V 1.30 V 1.32 V 1.375 V 1.43 V  
)
TJ (°C)  
–40  
0
3.9  
4.7  
6.8  
8.2  
9.9  
12.0  
14.6  
17.3  
20.3  
24.1  
27.1  
28.6  
36.3  
44.4  
17.0  
35.0  
53.0  
76.7  
110.1  
150.1  
202.3  
223.8  
19.2  
39.2  
59.2  
84.6  
120.0  
164.5  
219.2  
241.4  
21.9  
44.3  
65.3  
93.6  
130.9  
178.7  
236.5  
260.4  
25.0  
28.2  
32.1  
36.9  
41.8  
47.7  
53.8  
61.0  
63.8  
73.2  
84.1  
25  
50.8  
56.1  
63.3  
69.1  
76.4  
84.7  
93.5  
104.5  
142.6  
194.4  
259.8  
341.1  
440.4  
477.8  
109.1  
148.5  
201.4  
268.8  
351.2  
453.4  
492.2  
123.4  
166.5  
223.7  
295.9  
384.6  
494.3  
535.1  
138.8  
185.6  
247.5  
325.2  
420.3  
538.2  
581.5  
40  
71.9  
79.1  
88.0  
96.6  
108.0  
148.3  
201.7  
268.8  
351.2  
381.7  
120.0  
162.8  
220.6  
291.4  
378.8  
410.8  
130.7  
178.4  
239.7  
314.1  
407.5  
443.6  
55  
103.1  
142.2  
193.2  
255.8  
282.0  
113.7  
156.5  
210.4  
277.8  
303.4  
123.9  
171.3  
228.9  
299.8  
328.7  
136.3  
185.2  
247.7  
323.8  
354.5  
70  
85  
100  
105  
1 Values are guaranteed maximum IDDDEEPSLEEP specifications.  
Table 16. Static Current–300 MHz and 400 MHz Speed Grade Devices (mA)1  
Voltage (VDDINT  
)
TJ (°C)  
–40  
0
0.80 V  
2.6  
0.85 V  
3.2  
0.90 V  
3.7  
0.95 V  
4.5  
1.00 V  
5.5  
1.05 V  
1.10 V  
7.9  
1.15 V  
1.20 V  
1.25 V  
1.30 V  
1.32 V  
14.8  
6.6  
9.3  
10.5  
12.5  
13.9  
6.6  
7.8  
8.4  
9.9  
10.9  
12.3  
19.9  
28.2  
41.4  
58.6  
82.9  
112.5  
123.0  
148.5  
163.7  
13.8  
15.5  
25.6  
34.9  
50.0  
69.7  
98.4  
130.6  
143.3  
171.4  
189.3  
17.5  
19.6  
21.7  
23.1  
25  
12.2  
17.2  
25.7  
37.6  
53.7  
75.1  
84.5  
103.8  
115.5  
13.5  
19.0  
27.8  
41.3  
58.3  
82.3  
91.2  
111.8  
123.6  
14.8  
20.6  
30.9  
44.8  
63.7  
88.5  
98.2  
120.3  
132.2  
16.4  
22.9  
33.7  
48.9  
69.0  
95.8  
106.0  
127.6  
141.9  
18.2  
22.7  
28.4  
31.8  
35.7  
37.2  
40  
25.9  
31.6  
38.9  
42.9  
47.6  
49.5  
55  
37.3  
44.8  
54.8  
59.4  
66.1  
68.4  
70  
53.9  
63.9  
76.9  
84.0  
92.2  
94.9  
85  
75.9  
90.5  
106.4  
141.3  
155.0  
184.6  
202.8  
115.3  
153.2  
167.4  
198.8  
217.7  
124.6  
164.8  
179.8  
213.4  
232.3  
128.1  
169.7  
185.4  
219.6  
238.6  
100  
105  
1152  
1202  
104.0  
114.2  
138.0  
152.3  
121.8  
132.4  
159.6  
175.6  
1 Values are guaranteed maximum IDDDEEPSLEEP specifications.  
2 Applies to automotive grade models only.  
Rev. J  
|
Page 27 of 68  
|
February 2014  
 
 
 
ADSP-BF534/ADSP-BF536/ADSP-BF537  
Table 17. Activity Scaling Factors  
IDDINT Power Vector1  
Activity Scaling Factor (ASF)2  
IDD-PEAK  
1.33  
1.29  
1.00  
0.88  
0.72  
0.43  
IDD-HIGH  
IDD-TYP  
IDD-APP  
IDD-NOP  
IDD-IDLE  
1 See EE-297 for power vector definitions.  
2 All ASF values determined using a 10:1 CCLK:SCLK ratio.  
Table 18. Dynamic Current (mA, with ASF = 1.0)1  
Voltage (VDDINT  
)
Frequency  
(MHz)  
0.80 V 0.85 V 0.90 V 0.95 V 1.00 V 1.05 V 1.10 V 1.15 V 1.20 V 1.25 V 1.30 V 1.32 V 1.375 V 1.43 V  
50  
11.0  
27.9  
36.9  
N/A  
N/A  
N/A  
N/A  
N/A  
13.7  
22.7  
42.6  
61.5  
N/A  
N/A  
N/A  
N/A  
19.13 18.2  
18.67 19.13 19.6  
21.2  
35.3  
62.9  
90.7  
24.1  
37.8  
67.0  
94.3  
25.5  
40.6  
69.7  
99.1  
28.5  
43.5  
73.0  
28.6  
43.7  
74.0  
28.85  
44.1  
75.7  
29.2  
100  
200  
300  
400  
500  
533  
600  
30.8  
55.0  
79.2  
N/A  
N/A  
N/A  
N/A  
28.4  
49.2  
70.4  
92.4  
N/A  
N/A  
N/A  
29.3  
51.5  
74.6  
97.2  
N/A  
N/A  
N/A  
30.8  
55.0  
79.2  
32.9  
58.3  
84.4  
45.8  
80.7  
103.9 105.5 108.0  
113.4  
145.1  
176.9  
187.9  
210.0  
104.3 109.8 116.5 121.9 128.0 134.6 136.6 139.8  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
142.3 149.3 157.5 164.7 166.7 169.8  
N/A  
N/A  
158.6 167.0 174.3 176.6 180.1  
N/A N/A 193.7 196.5 200.7  
1 The values are not guaranteed as stand-alone maximum specifications, they must be combined with static current per the equations of Electrical Characteristics on Page 25.  
Rev. J  
|
Page 28 of 68  
|
February 2014  
ADSP-BF534/ADSP-BF536/ADSP-BF537  
ABSOLUTE MAXIMUM RATINGS  
PACKAGE INFORMATION  
Stresses greater than those listed in Table 19 may cause perma-  
nent damage to the device. These are stress ratings only.  
Functional operation of the device at these or any other condi-  
tions greater than those indicated in the operational sections of  
this specification is not implied. Exposure to absolute maximum  
rating conditions for extended periods may affect device  
reliability.  
The information presented in Figure 8 and Table 21 provide  
details about the package branding for the Blackfin processors.  
For a complete listing of product availability, see Ordering  
Guide on Page 67.  
a
ADSP-BF53x  
tppZccc  
Table 19. Absolute Maximum Ratings  
Parameter  
Rating  
vvvvvv.x n.n  
#yyww country_of_origin  
Internal (Core) Supply Voltage (VDDINT  
)
0.3 V to +1.43 V  
0.3 V to +3.8 V  
0.5 V to +3.6 V  
0.5 V to +5.5 V  
0.5 V to VDDEXT + 0.5 V  
65°C to +150°C  
+125°C  
External (I/O) Supply Voltage (VDDEXT  
Input Voltage1  
)
B
Input Voltage1, 2  
Figure 8. Product Information on Package  
Output Voltage Swing  
Table 21. Package Brand Information1  
Storage Temperature Range  
Junction Temperature While Biased  
Brand Key  
Field Description  
Temperature Range  
Package Type  
1 Applies only when VDDEXT is within specifications. When VDDEXT is outside speci-  
fications, the range is VDDEXT 0.2 V.  
t
pp  
2 Applies to 5 V tolerant pins SCL, SDA, and PJ4. For duty cycles, see Table 20.  
Z
RoHS Compliant Designation  
See Ordering Guide  
Assembly Lot Code  
Silicon Revision  
Table 20. Maximum Duty Cycle for Input1 Transient Voltage  
ccc  
vvvvvv.x  
n.n  
VIN Min (V)2  
–0.50  
VIN Max (V)2  
+3.80  
Maximum Duty Cycle3  
100%  
40%  
25%  
15%  
10%  
#
RoHS Compliant Designation  
Date Code  
–0.70  
+4.00  
yyww  
–0.80  
+4.10  
1 Nonautomotive only. For branding information specific to Automotive  
products, contact Analog Devices Inc.  
–0.90  
+4.20  
–1.00  
+4.30  
1 Applies to all signal pins with the exception of CLKIN, XTAL, and VROUT1–0.  
2 The individual values cannot be combined for analysis of a single instance of  
overshoot or undershoot. The worst case observed value must fall within one of  
the voltages specified and the total duration of the overshoot or undershoot  
(exceeding the 100% case) must be less than or equal to the corresponding  
duty cycle.  
3 Duty cycle refers to the percentage of time the signal exceeds the value for the  
100% case. This is equivalent to the measured duration of a single instance of  
overshoot or undershoot as a percentage of the period of occurrence.  
ESD SENSITIVITY  
ESD (electrostatic discharge) sensitive device.  
Charged devices and circuit boards can discharge  
without detection. Although this product features  
patented or proprietary protection circuitry, damage  
may occur on devices subjected to high energy ESD.  
Therefore, proper ESD precautions should be taken to  
avoid performance degradation or loss of functionality.  
Rev. J  
|
Page 29 of 68  
|
February 2014  
 
 
 
 
 
 
ADSP-BF534/ADSP-BF536/ADSP-BF537  
TIMING SPECIFICATIONS  
Component specifications are subject to change  
without notice.  
Clock and Reset Timing  
Table 22. Clock Input and Reset Timing  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tCKIN  
CLKIN Period1, 2, 3, 4  
20.0  
8.0  
100.0  
ns  
ns  
ns  
ns  
ns  
ns  
tCKINL  
CLKIN Low Pulse  
tCKINH  
tBUFDLAY  
tWRST  
CLKIN High Pulse  
8.0  
CLKIN to CLKBUF Delay  
10  
RESET Asserted Pulse Width Low  
RESET Deassertion to First External Access Delay5  
11 × tCKIN  
3 × tCKIN  
tNOBOOT  
5 × tCKIN  
1 Combinations of the CLKIN frequency and the PLL clock multiplier must not exceed the allowed fVCO, fCCLK, and fSCLK settings discussed in Table 10 through Table 14. Since  
by default the PLL is multiplying the CLKIN frequency by 10 MHz, 300 MHz, and 400 MHz speed grade parts can not use the full CLKIN period range.  
2 Applies to PLL bypass mode and PLL non bypass mode.  
3 CLKIN frequency must not change on the fly.  
4 If the DF bit in the PLL_CTL register is set, then the maximum tCKIN period is 50 ns.  
5 Applies when processor is configured in No Boot Mode (BMODE2-0 = b#000).  
tCKIN  
CLKIN  
tBUFDLAY  
tCKINL  
tCKINH  
tBUFDLAY  
CLKBUF  
tWRST  
RESET  
Figure 9. Clock and Reset Timing  
Table 23. Power-Up Reset Timing  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tRST_IN_PWR RESET Deasserted After the VDDINT, VDDEXT, VDDRTC, and CLKIN Pins Are Stable and 3500 × tCKIN  
Within Specification  
ns  
tRST_IN_PWR  
RESET  
CLKIN  
V
DD_SUPPLIES  
In Figure 10, VDD_SUPPLIES is VDDINT, VDDEXT, VDDRTC  
Figure 10. Power-Up Reset Timing  
Rev. J  
|
Page 30 of 68  
|
February 2014  
 
ADSP-BF534/ADSP-BF536/ADSP-BF537  
Asynchronous Memory Read Cycle Timing  
Table 24. Asynchronous Memory Read Cycle Timing  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tSDAT  
DATA15–0 Setup Before CLKOUT  
DATA15–0 Hold After CLKOUT  
ARDY Setup Before CLKOUT  
ARDY Hold After CLKOUT  
2.1  
0.8  
4.0  
0.0  
ns  
ns  
ns  
ns  
tHDAT  
tSARDY  
tHARDY  
Switching Characteristics  
tDO  
tHO  
Output Delay After CLKOUT1  
Output Hold After CLKOUT 1  
6.0  
ns  
ns  
0.8  
1 Output pins include AMS3–0, ABE1–0, ADDR19–1, AOE, ARE.  
SETUP  
PROGRAMMED READ  
ACCESS 4 CYCLES  
ACCESS EXTENDED  
3 CYCLES  
HOLD  
1 CYCLE  
2 CYCLES  
CLKOUT  
tDO  
tHO  
AMSx  
ABE1–0  
ADDR19–1  
AOE  
ARE  
tDO  
tHO  
tSARDY  
tHARDY  
ARDY  
tSARDY  
tHARDY  
tSDAT  
tHDAT  
DATA 15–0  
Figure 11. Asynchronous Memory Read Cycle Timing  
Rev. J  
|
Page 31 of 68  
|
February 2014  
ADSP-BF534/ADSP-BF536/ADSP-BF537  
Asynchronous Memory Write Cycle Timing  
Table 25. Asynchronous Memory Write Cycle Timing  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tSARDY  
tHARDY  
ARDY Setup Before CLKOUT  
ARDY Hold After CLKOUT  
4.0  
0.0  
ns  
ns  
Switching Characteristics  
tDDAT  
tENDAT  
tDO  
DATA15–0 Disable After CLKOUT  
6.0  
6.0  
ns  
ns  
ns  
ns  
DATA15–0 Enable After CLKOUT  
Output Delay After CLKOUT1  
Output Hold After CLKOUT 1  
1.0  
0.8  
tHO  
1 Output pins include AMS3–0, ABE1–0, ADDR19–1, AOE, AWE.  
PROGRAMMED  
WRITE  
ACCESS  
2 CYCLES  
ACCESS  
EXTEND HOLD  
1 CYCLE 1 CYCLE  
SETUP  
2 CYCLES  
CLKOUT  
AMSx  
tDO  
tHO  
ABE1–0  
ADDR19–1  
tDO  
tHO  
AWE  
ARDY  
tSARDY  
tHARDY  
tENDAT  
tHARDY  
tDDAT  
tSARDY  
DATA 15–0  
Figure 12. Asynchronous Memory Write Cycle Timing  
Rev. J  
|
Page 32 of 68  
|
February 2014  
ADSP-BF534/ADSP-BF536/ADSP-BF537  
External Port Bus Request and Grant Cycle Timing  
Table 26 and Figure 13 describe external port bus request and  
bus grant operations.  
Table 26. External Port Bus Request and Grant Cycle Timing  
Parameter1, 2  
Min  
Max  
Unit  
Timing Requirements  
tBS  
BR Asserted to CLKOUT Low Setup  
4.6  
0.0  
ns  
ns  
tBH  
CLKOUT Low to BR Deasserted Hold Time  
Switching Characteristics  
tSD  
CLKOUT Low to AMSx, Address, and ARE/AWE Disable  
4.5  
4.5  
3.6  
3.6  
3.6  
3.6  
ns  
ns  
ns  
ns  
ns  
ns  
tSE  
CLKOUT Low to AMSx, Address, and ARE/AWE Enable  
CLKOUT High to BG Asserted Setup  
tDBG  
tEBG  
tDBH  
tEBH  
CLKOUT High to BG Deasserted Hold Time  
CLKOUT High to BGH Asserted Setup  
CLKOUT High to BGH Deasserted Hold Time  
1 These timing parameters are based on worst-case operating conditions.  
2 The pad loads for these timing parameters are 20 pF.  
CLKOUT  
tBH  
tBS  
BR  
tSD  
tSE  
AMSx  
tSD  
tSE  
ADDR 19-1  
ABE1-0  
tSD  
tSE  
AWE  
ARE  
tDBG  
tEBG  
BG  
tDBH  
tEBH  
BGH  
Figure 13. External Port Bus Request and Grant Cycle Timing  
Rev. J  
|
Page 33 of 68  
|
February 2014  
 
 
ADSP-BF534/ADSP-BF536/ADSP-BF537  
SDRAM Interface Timing  
Table 27. SDRAM Interface Timing  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tSSDAT  
tHSDAT  
DATA15–0 Setup Before CLKOUT  
DATA15–0 Hold After CLKOUT  
1.5  
0.8  
ns  
ns  
Switching Characteristics  
tDCAD  
tHCAD  
tDSDAT  
tENSDAT  
COMMAND1, ADDR19–1, DATA15–0 Delay After CLKOUT  
4.0  
6.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
COMMAND1, ADDR19–1, DATA15–0 Hold After CLKOUT  
DATA15–0 Disable After CLKOUT  
DATA15–0 Enable After CLKOUT  
CLKOUT Period when TJ +105°C  
CLKOUT Period when TJ +105°C  
CLKOUT Width High  
1.0  
0.5  
7.5  
10  
2
tSCLK  
2
tSCLK  
tSCLKH  
2.5  
2.5  
tSCLKL  
CLKOUT Width Low  
1 Command pins include: SRAS, SCAS, SWE, SDQM, SMS, SA10, SCKE.  
2 These limits are specific to the SDRAM interface only. In addition, CLKOUT must always comply with the limits in Table 14 on Page 24.  
tSCLK  
CLKOUT  
tSSDAT  
tHSDAT  
tSCLKL  
tSCLKH  
DATA (IN)  
tDCAD  
tDSDAT  
tENSDAT  
tHCAD  
DATA (OUT)  
tDCAD  
tHCAD  
COMMAND,  
ADDRESS  
(OUT)  
NOTE: COMMAND = SRAS, SCAS, SWE, SDQM, SMS, SA10, SCKE.  
Figure 14. SDRAM Interface Timing  
Rev. J  
|
Page 34 of 68  
|
February 2014  
 
 
ADSP-BF534/ADSP-BF536/ADSP-BF537  
External DMA Request Timing  
Table 28 and Figure 15 describe the external DMA request  
operations.  
Table 28. External DMA Request Timing  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tDS  
DMARx Asserted to CLKOUT High Setup  
CLKOUT High to DMARx Deasserted Hold Time  
DMARx Active Pulse Width  
6.0  
ns  
ns  
ns  
ns  
tDH  
0.0  
tDMARACT  
tDMARINACT  
1.0 × tSCLK  
1.75 × tSCLK  
DMARx Inactive Pulse Width  
CLKOUT  
tDS  
tDH  
DMAR0/1  
(ACTIVE LOW)  
tDMARACT  
tDMARINACT  
DMAR0/1  
(ACTIVE HIGH)  
Figure 15. External DMA Request Timing  
Rev. J  
|
Page 35 of 68  
|
February 2014  
 
 
ADSP-BF534/ADSP-BF536/ADSP-BF537  
Parallel Peripheral Interface Timing  
Table 29 and Figure 16 on Page 36, Figure 20 on Page 39, and  
Figure 23 on Page 41 describe parallel peripheral interface  
operations.  
Table 29. Parallel Peripheral Interface Timing  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tPCLKW  
tPCLK  
PPI_CLK Width1  
PPI_CLK Period1  
6.0  
ns  
ns  
15.0  
Timing Requirements—GP Input and Frame Capture Modes  
tSFSPE  
tHFSPE  
tSDRPE  
tHDRPE  
External Frame Sync Setup Before PPI_CLK  
External Frame Sync Hold After PPI_CLK  
Receive Data Setup Before PPI_CLK  
Receive Data Hold After PPI_CLK  
6.7  
1.0  
3.5  
1.5  
ns  
ns  
ns  
ns  
Switching Characteristics—GP Output and Frame Capture Modes  
tDFSPE  
tHOFSPE  
tDDTPE  
tHDTPE  
Internal Frame Sync Delay After PPI_CLK  
Internal Frame Sync Hold After PPI_CLK  
Transmit Data Delay After PPI_CLK  
Transmit Data Hold After PPI_CLK  
8.0  
8.0  
ns  
ns  
ns  
ns  
1.7  
1.8  
1 PPI_CLK frequency cannot exceed fSCLK/2.  
FRAME SYNC  
DRIVEN  
DATA  
SAMPLED  
PPI_CLK  
PPI_FS1/2  
PPI_DATA  
tDFSPE  
tPCLKW  
tHOFSPE  
tPCLK  
tSDRPE  
tHDRPE  
Figure 16. PPI GP Rx Mode with Internal Frame Sync Timing  
DATA SAMPLED /  
FRAME SYNC SAMPLED  
DATA SAMPLED /  
FRAME SYNC SAMPLED  
PPI_CLK  
tPCLKW  
tSFSPE  
tHFSPE  
tPCLK  
PPI_FS1/2  
PPI_DATA  
tSDRPE  
tHDRPE  
Figure 17. PPI GP Rx Mode with External Frame Sync Timing  
Rev. J  
|
Page 36 of 68  
|
February 2014  
 
 
ADSP-BF534/ADSP-BF536/ADSP-BF537  
FRAME SYNC  
DRIVEN  
DATA  
DRIVEN  
tPCLK  
DATA  
DRIVEN  
PPI_CLK  
PPI_FS1/2  
PPI_DATA  
tDFSPE  
tPCLKW  
tHOFSPE  
tDDTPE  
tHDTPE  
Figure 18. PPI GP Tx Mode with Internal Frame Sync Timing  
DATA DRIVEN /  
FRAME SYNC SAMPLED  
PPI_CLK  
PPI_FS1/2  
PPI_DATA  
tSFSPE  
tHFSPE  
tPCLKW  
tPCLK  
tDDTPE  
tHDTPE  
Figure 19. PPI GP Tx Mode with External Frame Sync Timing  
Rev. J  
|
Page 37 of 68  
|
February 2014  
ADSP-BF534/ADSP-BF536/ADSP-BF537  
Serial Port Timing  
Table 30 through Table 33 on Page 41 and Figure 20 on Page 39  
through Figure 23 on Page 41 describe serial port operations.  
Table 30. Serial Ports—External Clock  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tSFSE  
TFSx/RFSx Setup Before TSCLKx/RSCLKx1  
TFSx/RFSx Hold After TSCLKx/RSCLKx1  
Receive Data Setup Before RSCLKx1  
Receive Data Hold After RSCLKx1  
3.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tHFSE  
3.0  
tSDRE  
3.0  
tHDRE  
tSCLKEW  
tSCLKE  
tSUDTE  
tSUDRE  
3.0  
TSCLKx/RSCLKx Width  
4.5  
TSCLKx/RSCLKx Period  
15.0  
Start-Up Delay From SPORT Enable To First External TFSx2  
Start-Up Delay From SPORT Enable To First External RFSx2  
4.0 × tSCLKE  
4.0 × tSCLKE  
Switching Characteristics  
tDFSE  
tHOFSE  
tDDTE  
tHDTE  
TFSx/RFSx Delay After TSCLKx/RSCLK (Internally Generated TFSx/RFSx)3  
TFSx/RFSx Hold After TSCLKx/RSCLK (Internally Generated TFSx/RFSx)2  
Transmit Data Delay After TSCLKx2  
10.0  
10.0  
ns  
ns  
ns  
ns  
0
0
Transmit Data Hold After TSCLKx2  
1 Referenced to sample edge.  
2 Verified in design but untested. After being enabled, the serial port requires external clock pulses—before the first external frame sync edge—to initialize the serial port.  
3 Referenced to drive edge.  
Table 31. Serial Ports—Internal Clock  
2.25 V VDDEXT < 2.70 V  
or  
0.80 V VDDINT < 0.95 V1  
2.70 V VDDEXT 3.60 V  
and  
0.95 V VDDINT 1.43 V2, 3  
Parameter  
Min  
Max  
Min  
Max  
Unit  
Timing Requirements  
tSFSI  
tHFSI  
tSDRI  
tHDRI  
TFSx/RFSx Setup Before TSCLKx/RSCLKx4  
8.5  
8.0  
ns  
ns  
ns  
ns  
TFSx/RFSx Hold After TSCLKx/RSCLKx4  
Receive Data Setup Before RSCLKx4  
Receive Data Hold After RSCLKx4  
–1.5  
8.5  
–1.5  
8.0  
–1.5  
–1.5  
Switching Characteristics  
tDFSI  
TFSx/RFSx Delay After TSCLKx/RSCLKx (Internally Generated  
TFSx/RFSx)5  
3.0  
3.0  
3.0  
3.0  
ns  
ns  
tHOFSI  
TFSx/RFSx Hold After TSCLKx/RSCLKx (Internally Generated 1.0  
1.0  
TFSx/RFSx)5  
tDDTI  
Transmit Data Delay After TSCLKx5  
Transmit Data Hold After TSCLKx5  
ns  
ns  
ns  
tHDTI  
1.0  
4.5  
1.0  
4.5  
tSCLKIW  
TSCLKx/RSCLKx Width  
1 Applies to all nonautomotive-grade devices when operated within either of these voltage ranges.  
2 Applies to all nonautomotive-grade devices when operated within these voltage ranges.  
3 All automotive-grade devices are within these specifications.  
4 Referenced to sample edge.  
5 Referenced to drive edge.  
Rev. J  
|
Page 38 of 68  
|
February 2014  
 
 
 
 
ADSP-BF534/ADSP-BF536/ADSP-BF537  
DATA RECEIVE—INTERNAL CLOCK  
DATA RECEIVE—EXTERNAL CLOCK  
DRIVE EDGE  
SAMPLE EDGE  
DRIVE EDGE  
SAMPLE EDGE  
tSCLKE  
tSCLKIW  
tSCLKEW  
RSCLKx  
RSCLKx  
tDFSI  
tDFSE  
tHOFSI  
tHOFSE  
RFSx  
RFSx  
(OUTPUT)  
(OUTPUT)  
tSFSI  
tHFSI  
tSFSE  
tHFSE  
RFSx  
RFSx  
(INPUT)  
(INPUT)  
tHDRE  
tSDRI  
tHDRI  
tSDRE  
DRx  
DRx  
DATA TRANSMIT—INTERNAL CLOCK  
DRIVE EDGE  
DATA TRANSMIT—EXTERNAL CLOCK  
DRIVE EDGE SAMPLE EDGE  
SAMPLE EDGE  
tSCLKE  
tSCLKIW  
tSCLKEW  
TSCLKx  
TSCLKx  
tDFSI  
tDFSE  
tHOFSI  
tHOFSE  
TFSx  
TFSx  
(OUTPUT)  
(OUTPUT)  
tSFSI  
tHFSI  
tSFSE  
tHFSE  
TFSx  
TFSx  
(INPUT)  
(INPUT)  
tDDTI  
tDDTE  
tHDTI  
tHDTE  
DTx  
DTx  
Figure 20. Serial Ports  
TSCLKx  
(INPUT)  
tSUDTE  
TFSx  
(INPUT)  
RSCLKx  
(INPUT)  
tSUDRE  
RFSx  
(INPUT)  
FIRST  
TSCLKx/RSCLKx  
EDGE AFTER  
SPORT ENABLED  
Figure 21. Serial Port Start Up with External Clock and Frame Sync  
Rev. J  
|
Page 39 of 68  
|
February 2014  
ADSP-BF534/ADSP-BF536/ADSP-BF537  
Table 32. Serial Ports—Enable and Three-State  
Parameter  
Min  
0
Max  
Unit  
Switching Characteristics  
tDTENE  
tDDTTE  
tDTENI  
tDDTTI  
Data Enable Delay from External TSCLKx1  
Data Disable Delay from External TSCLKx1, 2  
Data Enable Delay from Internal TSCLKx1  
Data Disable Delay from Internal TSCLKx1, 2  
ns  
ns  
ns  
ns  
10.0  
3.0  
–2.0  
1 Referenced to drive edge.  
2 Applicable to multichannel mode only. TSCLKx is tied to RSCLKx.  
DRIVE EDGE  
TSCLKx  
DRIVE EDGE  
tDTENE/I  
tDDTTE/I  
DTx  
Figure 22. Enable and Three-State  
Rev. J  
|
Page 40 of 68  
|
February 2014  
 
 
ADSP-BF534/ADSP-BF536/ADSP-BF537  
Table 33. External Late Frame Sync  
Parameter  
Min  
Max  
Unit  
Switching Characteristics  
tDDTLFSE  
tDTENLFS  
Data Delay from Late External TFSx or External RFSx with MCMEN = 1, MFD = 01, 2  
Data Enable from Late FS or MCMEN = 1, MFD = 01, 2  
10.0  
ns  
ns  
0
1 MCMEN = 1, TFSx enable and TFSx valid follow tDDTENFS and tDDTLFS  
.
2 If external RFSx/TFSx setup to RSCLKx/TSCLKx > tSCLKE/2, then tDDTE/I and tDTENE/I apply, otherwise tDDTLFSE and tDTENLFS apply.  
EXTERNAL RFSx IN MULTI-CHANNEL MODE  
DRIVE  
EDGE  
SAMPLE  
EDGE  
DRIVE  
EDGE  
RSCLKx  
RFSx  
tDDTLFSE  
tDTENLFSE  
DTx  
1ST BIT  
LATE EXTERNAL TFSx  
DRIVE  
EDGE  
SAMPLE  
EDGE  
DRIVE  
EDGE  
TSCLKx  
TFSx  
tDDTLFSE  
DTx  
1ST BIT  
Figure 23. External Late Frame Sync  
Rev. J  
|
Page 41 of 68  
|
February 2014  
ADSP-BF534/ADSP-BF536/ADSP-BF537  
Serial Peripheral Interface Port—Master Timing  
Table 34 and Figure 24 describe SPI port master operations.  
Table 34. Serial Peripheral Interface (SPI) Port—Master Timing  
2.25 V VDDEXT 2.70 V  
2.70 V VDDEXT 3.60 V  
and  
0.95 V VDDINT 1.43 V2, 3  
or  
0.80 V VDDINT 0.95 V1  
Parameter  
Min  
Max  
Min  
Max  
Unit  
Timing Requirements  
tSSPIDM  
tHSPIDM  
Switching Characteristics  
Data Input Valid to SCK Edge (Data Input Setup)  
8.7  
7.5  
ns  
ns  
SCK Sampling Edge to Data Input Invalid  
–1.5  
–1.5  
tSDSCIM  
tSPICHM  
tSPICLM  
tSPICLK  
SPISELx Low to First SCK Edge  
2 × tSCLK 1.5  
2 × tSCLK 1.5  
2 × tSCLK 1.5  
4 × tSCLK 1.5  
2 × tSCLK 1.5  
2 × tSCLK 1.5  
2 × tSCLK 1.5  
2 × tSCLK 1.5  
2 × tSCLK 1.5  
4 × tSCLK 1.5  
2 × tSCLK 1.5  
2 × tSCLK 1.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Serial Clock High Period  
Serial Clock Low Period  
Serial Clock Period  
tHDSM  
Last SCK Edge to SPISELx High  
Sequential Transfer Delay  
tSPITDM  
tDDSPIDM  
tHDSPIDM  
SCK Edge to Data Out Valid (Data Out Delay)  
6
6
SCK Edge to Data Out Invalid (Data Out Hold)  
–1.0  
–1.0  
1 Applies to all nonautomotive-grade devices when operated within either of these voltage ranges.  
2 Applies to all nonautomotive-grade devices when operated within these voltage ranges.  
3 All automotive-grade devices are within these specifications.  
SPIxSELy  
(OUTPUT)  
tSDSCIM  
tSPICLM  
tSPICHM  
tSPICLK  
tHDSM  
tSPITDM  
SPIxSCK  
(OUTPUT)  
tHDSPIDM  
tDDSPIDM  
SPIxMOSI  
(OUTPUT)  
tSSPIDM  
CPHA = 1  
tHSPIDM  
SPIxMISO  
(INPUT)  
tHDSPIDM  
tDDSPIDM  
SPIxMOSI  
(OUTPUT)  
tSSPIDM  
tHSPIDM  
CPHA = 0  
SPIxMISO  
(INPUT)  
Figure 24. Serial Peripheral Interface (SPI) Port—Master Timing  
Rev. J  
|
Page 42 of 68  
|
February 2014  
 
 
ADSP-BF534/ADSP-BF536/ADSP-BF537  
Serial Peripheral Interface Port—Slave Timing  
Table 35 and Figure 25 describe SPI port slave operations.  
Table 35. Serial Peripheral Interface (SPI) Port—Slave Timing  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tSPICHS  
tSPICLS  
tSPICLK  
tHDS  
Serial Clock High Period  
2 × tSCLK 1.5  
2 × tSCLK 1.5  
4 × tSCLK  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Serial Clock Low Period  
Serial Clock Period  
Last SCK Edge to SPISS Not Asserted  
Sequential Transfer Delay  
2 × tSCLK 1.5  
2 × tSCLK 1.5  
2 × tSCLK 1.5  
1.6  
tSPITDS  
tSDSCI  
tSSPID  
tHSPID  
SPISS Assertion to First SCK Edge  
Data Input Valid to SCK Edge (Data Input Setup)  
SCK Sampling Edge to Data Input Invalid  
1.6  
Switching Characteristics  
tDSOE  
SPISS Assertion to Data Out Active  
0
0
8
ns  
ns  
ns  
ns  
tDSDHI  
tDDSPID  
tHDSPID  
SPISS Deassertion to Data High Impedance  
SCK Edge to Data Out Valid (Data Out Delay)  
SCK Edge to Data Out Invalid (Data Out Hold)  
8
10  
0
SPIxSS  
(INPUT)  
tSDSCI  
tSPICLS  
tSPICHS  
tSPICLK  
tHDS  
tSPITDS  
SPIxSCK  
(INPUT)  
tDSOE  
tDDSPID  
tHDSPID  
tDDSPID  
tDSDHI  
SPIxMISO  
(OUTPUT)  
CPHA = 1  
tSSPID  
tHSPID  
SPIxMOSI  
(INPUT)  
tDSOE  
tHDSPID  
tDDSPID  
tDSDHI  
SPIxMISO  
(OUTPUT)  
tHSPID  
CPHA = 0  
tSSPID  
SPIxMOSI  
(INPUT)  
Figure 25. Serial Peripheral Interface (SPI) Port—Slave Timing  
Rev. J  
|
Page 43 of 68  
|
February 2014  
 
 
ADSP-BF534/ADSP-BF536/ADSP-BF537  
General-Purpose Port Timing  
Table 36 and Figure 26 describe general-purpose  
port operations.  
Table 36. General-Purpose Port Timing  
Parameter  
Min  
tSCLK + 1  
0
Max  
Unit  
ns  
Timing Requirement  
tWFI  
Switching Characteristic  
tGPOD General-Purpose Port Pin Output Delay from CLKOUT Low  
General-Purpose Port Pin Input Pulse Width  
6
ns  
CLKOUT  
GPIO OUTPUT  
GPIO INPUT  
tGPOD  
tWFI  
Figure 26. General-Purpose Port Timing  
Universal Asynchronous Receiver-Transmitter  
(UART) Ports—Receive and Transmit Timing  
For information on the UART port receive and transmit opera-  
tions, see the ADSP-BF537 Blackfin Processor Hardware  
Reference.  
Rev. J  
|
Page 44 of 68  
|
February 2014  
 
 
ADSP-BF534/ADSP-BF536/ADSP-BF537  
Timer Clock Timing  
Table 37 and Figure 27 describe timer clock timing.  
Table 37. Timer Clock Timing  
Parameter  
Min  
Max  
Unit  
Switching Characteristic  
tTODP  
Timer Output Update Delay After PPI_CLK High  
12  
ns  
PPI_CLK  
tTODP  
TMRx OUTPUT  
Figure 27. Timer Clock Timing  
Timer Cycle Timing  
Table 38 and Figure 28 describe timer expired operations. The  
input signal is asynchronous in “width capture mode” and  
“external clock mode” and has an absolute maximum input fre-  
quency of (fSCLK/2) MHz.  
Table 38. Timer Cycle Timing  
2.25 V VDDEXT 2.70 V  
or  
0.80 V VDDINT 0.95 V1  
2.70 V VDDEXT 3.60 V  
and  
0.95 V VDDINT 1.43 V2, 3  
Parameter  
Min  
Max  
Min  
Max  
Unit  
Timing Characteristics  
tWL  
tWH  
tTIS  
tTIH  
Timer Pulse Width Input Low (Measured In SCLK Cycles)4  
Timer Pulse Width Input High (Measured In SCLK Cycles)4 1 × tSCLK  
1 × tSCLK  
1 × tSCLK  
1 × tSCLK  
5.0  
ns  
ns  
ns  
ns  
Timer Input Setup Time Before CLKOUT Low5  
Timer Input Hold Time After CLKOUT Low5  
5.5  
1.5  
1.5  
Switching Characteristics  
tHTO Timer Pulse Width Output (Measured In SCLK Cycles)  
tTOD Timer Output Update Delay After CLKOUT High  
1 × tSCLK  
(232–1) × tSCLK 1 × tSCLK  
6.5  
(232–1) × tSCLK ns  
6.0 ns  
1 Applies to all nonautomotive-grade devices when operated within either of these voltage ranges.  
2 Applies to all nonautomotive-grade devices when operated within these voltage ranges.  
3 All automotive-grade devices are within these specifications.  
4 The minimum pulse widths apply for TMRx signals in width capture and external clock modes. They also apply to the PF15 or PPI_CLK signals in PWM output mode.  
5 Either a valid setup and hold time or a valid pulse width is sufficient. There is no need to resynchronize programmable flag inputs.  
CLKOUT  
tTOD  
TMRx OUTPUT  
tTIS  
tTIH  
tHTO  
TMRx INPUT  
tWH,tWL  
Figure 28. Timer Cycle Timing  
Rev. J  
|
Page 45 of 68  
|
February 2014  
 
 
 
 
 
 
ADSP-BF534/ADSP-BF536/ADSP-BF537  
JTAG Test and Emulation Port Timing  
Table 39 and Figure 29 describe JTAG port operations.  
Table 39. JTAG Port Timing  
Parameter  
Min  
Max  
Unit  
Timing Parameters  
tTCK  
TCK Period  
20  
4
ns  
tSTAP  
tHTAP  
tSSYS  
tHSYS  
tTRSTW  
TDI, TMS Setup Before TCK High  
TDI, TMS Hold After TCK High  
System Inputs Setup Before TCK High1  
System Inputs Hold After TCK High1  
TRST Pulse Width2 (Measured in TCK Cycles)  
ns  
4
ns  
4
ns  
5
ns  
4
TCK  
Switching Characteristics  
tDTDO TDO Delay From TCK Low  
tDSYS  
System Outputs Delay After TCK Low3  
10  
12  
ns  
ns  
0
1 System Inputs = DATA15–0, BR, ARDY, SCL, SDA, TFS0, TSCLK0, RSCLK0, RFS0, DR0PRI, DR0SEC, PF15–0, PG15–0, PH15–0, MDIO, TCK, TRST, RESET, NMI, RTXI,  
BMODE2–0.  
2 50 MHz maximum.  
3 System Outputs = DATA15–0, ADDR19–1, ABE1–0, BG, BGH, AOE, ARE, AWE, AMS3–0, SRAS, SCAS, SWE, SCKE, CLKOUT, SA10, SMS, SCL, SDA, MDC, MDIO,  
TSCLK0, TFS0, RFS0, RSCLK0, DT0PRI, DT0SEC, PF15–0, PG15–0, PH15–0, RTXO, TDO, EMU, XTAL, VROUT1–0.  
tTCK  
TCK  
tSTAP  
tHTAP  
TMS  
TDI  
tDTDO  
TDO  
tSSYS  
tHSYS  
SYSTEM  
INPUTS  
tDSYS  
SYSTEM  
OUTPUTS  
Figure 29. JTAG Port Timing  
Rev. J  
|
Page 46 of 68  
|
February 2014  
 
 
ADSP-BF534/ADSP-BF536/ADSP-BF537  
10/100 Ethernet MAC Controller Timing  
Table 40 through Table 45 and Figure 30 through Figure 35  
describe the 10/100 Ethernet MAC controller operations. This  
feature is only available on the ADSP-BF536 and ADSP-BF537  
processors.  
Table 40. 10/100 Ethernet MAC Controller Timing: MII Receive Signal  
Parameter1  
Min  
Max  
Unit  
fERXCLK  
ERxCLK Frequency (fSCLK = SCLK Frequency)  
None  
25 + 1%  
MHz  
fSCLK + 1%  
tERXCLKW  
tERXCLKIS  
tERXCLKIH  
ERxCLK Width (tERxCLK = ERxCLK Period)  
tERxCLK × 35%  
tERxCLK × 65%  
ns  
ns  
ns  
Rx Input Valid to ERxCLK Rising Edge (Data In Setup)  
7.5  
7.5  
ERxCLK Rising Edge to Rx Input Invalid (Data In Hold)  
1 MII inputs synchronous to ERxCLK are ERxD3–0, ERxDV, and ERxER.  
Table 41. 10/100 Ethernet MAC Controller Timing: MII Transmit Signal  
Parameter1  
Min  
Max  
Unit  
fETXCLK  
ETxCLK Frequency (fSCLK = SCLK Frequency)  
None  
25 + 1%  
MHz  
fSCLK + 1%  
tETXCLKW  
tETXCLKOV  
tETXCLKOH  
ETxCLK Width (tETXCLK = ETxCLK Period)  
tETxCLK × 35%  
0
tETxCLK × 65%  
20  
ns  
ns  
ns  
ETxCLK Rising Edge to Tx Output Valid (Data Out Valid)  
ETxCLK Rising Edge to Tx Output Invalid (Data Out Hold)  
1 MII outputs synchronous to ETxCLK are ETxD3–0.  
Table 42. 10/100 Ethernet MAC Controller Timing: RMII Receive Signal  
Parameter1  
Min  
Max  
Unit  
fREFCLK  
REF_CLK Frequency (fSCLK = SCLK Frequency)  
None  
50 + 1%  
MHz  
2 × fSCLK + 1%  
tREFCLKW  
tREFCLKIS  
tREFCLKIH  
REF_CLK Width (tREFCLK = REFCLK Period)  
tREFCLK × 35%  
tREFCLK × 65%  
ns  
ns  
ns  
Rx Input Valid to RMII REF_CLK Rising Edge (Data In Setup)  
4
2
RMII REF_CLK Rising Edge to Rx Input Invalid (Data In Hold)  
1 RMII inputs synchronous to RMII REF_CLK are ERxD1–0, RMII CRS_DV, and ERxER.  
Table 43. 10/100 Ethernet MAC Controller Timing: RMII Transmit Signal  
Parameter1  
Min  
Max  
Unit  
ns  
tREFCLKOV  
RMII REF_CLK Rising Edge to Tx Output Valid (Data Out Valid)  
RMII REF_CLK Rising Edge to Tx Output Invalid (Data Out Hold)  
7.5  
tREFCLKOH  
2
ns  
1 RMII outputs synchronous to RMII REF_CLK are ETxD1–0.  
Rev. J  
|
Page 47 of 68  
|
February 2014  
 
ADSP-BF534/ADSP-BF536/ADSP-BF537  
Table 44. 10/100 Ethernet MAC Controller Timing: MII/RMII Asynchronous Signal  
Parameter1, 2  
Min  
Max  
Unit  
tECOLH  
COL Pulse Width High  
COL Pulse Width Low  
tETxCLK × 1.5  
tERxCLK × 1.5  
ns  
ns  
tECOLL  
tETxCLK × 1.5  
tERxCLK × 1.5  
ns  
ns  
tECRSH  
tECRSL  
CRS Pulse Width High  
CRS Pulse Width Low  
tETxCLK × 1.5  
ns  
tETxCLK × 1.5  
ns  
1 MII/RMII asynchronous signals are COL, CRS. These signals are applicable in both MII and RMII modes. The asynchronous COL input is synchronized separately to both  
the ETxCLK and the ERxCLK, and must have a minimum pulse width high or low at least 1.5 times the period of the slower of the two clocks.  
2 The asynchronous CRS input is synchronized to the ETxCLK, and must have a minimum pulse width high or low at least 1.5 times the period of ETxCLK.  
Table 45. 10/100 Ethernet MAC Controller Timing: MII Station Management  
Parameter1  
tMDIOS  
Min  
10  
Max  
Unit  
ns  
MDIO Input Valid to MDC Rising Edge (Setup)  
MDC Rising Edge to MDIO Input Invalid (Hold)  
MDC Falling Edge to MDIO Output Valid  
tMDCIH  
10  
ns  
tMDCOV  
25  
ns  
tMDCOH  
MDC Falling Edge to MDIO Output Invalid (Hold)  
–1  
ns  
1 MDC/MDIO is a 2-wire serial bidirectional port for controlling one or more external PHYs. MDC is an output clock whose minimum period is programmable as a multiple  
of the system clock SCLK. MDIO is a bidirectional data line.  
tERXCLK  
tERXCLKW  
ERx_CLK  
ERxD3–0  
ERxDV  
ERxER  
tERXCLKIS tERXCLKIH  
Figure 30. 10/100 Ethernet MAC Controller Timing: MII Receive Signal  
tETXCLK  
MIITxCLK  
tETXCLKW  
tETXCLKOH  
ETxD3–0  
ETxEN  
tETXCLKOV  
Figure 31. 10/100 Ethernet MAC Controller Timing: MII Transmit Signal  
Rev. J  
|
Page 48 of 68  
|
February 2014  
ADSP-BF534/ADSP-BF536/ADSP-BF537  
tREFCLK  
tREFCLKW  
RMII_REF_CLK  
ERxD1–0  
ERxDV  
ERxER  
tREFCLKIS tREFCLKIH  
Figure 32. 10/100 Ethernet MAC Controller Timing: RMII Receive Signal  
tREFCLK  
RMII_REF_CLK  
tREFCLKOH  
ETxD1–0  
ETxEN  
tREFCLKOV  
Figure 33. 10/100 Ethernet MAC Controller Timing: RMII Transmit Signal  
MIICRS, COL  
tECRSH  
tECOLH  
tECRSL  
tECOLL  
Figure 34. 10/100 Ethernet MAC Controller Timing: Asynchronous Signal  
MDC (OUTPUT)  
MDIO (OUTPUT)  
tMDCOH  
tMDCOV  
MDIO (INPUT)  
tMDIOS  
tMDCIH  
Figure 35. 10/100 Ethernet MAC Controller Timing: MII Station Management  
Rev. J  
|
Page 49 of 68  
|
February 2014  
ADSP-BF534/ADSP-BF536/ADSP-BF537  
OUTPUT DRIVE CURRENTS  
Figure 36 through Figure 47 show typical current-voltage char-  
acteristics for the output drivers of the processors. The curves  
represent the current drive capability of the output drivers as a  
function of output voltage. See Table 9 on Page 19 for informa-  
tion about which driver type corresponds to a particular pin.  
200  
150  
V
V
V
= 3.0V @ 95°C  
= 3.3V @ 25°C  
DDEXT  
DDEXT  
= 3.6V @ -40°C  
DDEXT  
100  
50  
V
OH  
120  
V
V
V
= 2.25V @ 95°C  
= 2.50V @ 25°C  
DDEXT  
DDEXT  
DDEXT  
100  
80  
0
= 2.75V @ -40°C  
-
50  
100  
150  
200  
60  
V
40  
20  
OH  
-
V
OL  
-
0
- 20  
- 40  
-
4.0  
3.0  
4.0  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
V
OL  
SOURCE VOLTAGE (V)  
- 60  
- 80  
Figure 39. Drive Current B (High VDDEXT  
)
- 100  
3.0  
0
0.5  
1.0  
1.5  
2.0  
2.5  
80  
60  
SOURCE VOLTAGE (V)  
V
= 2.25V @ 95°C  
= 2.50V @ 25°C  
DDEXT  
DDEXT  
Figure 36. Drive Current A (Low VDDEXT  
)
V
V
= 2.75V @ -40°C  
DDEXT  
150  
100  
50  
40  
20  
0
V
V
V
= 3.0V @ 95°C  
= 3.3V @ 25°C  
DDEXT  
DDEXT  
DDEXT  
V
OH  
= 3.6V @ -40°C  
V
OH  
-20  
0
V
OL  
-40  
-
50  
V
-60  
OL  
0
0.5  
1.0  
1.5  
2.0  
2.5  
-
100  
SOURCE VOLTAGE (V)  
-
150  
Figure 40. Drive Current C (Low VDDEXT  
)
4.0  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
SOURCE VOLTAGE (V)  
Figure 37. Drive Current A (High VDDEXT  
)
100  
80  
V
V
V
= 3.0V @ 95°C  
= 3.3V @ 25°C  
DDEXT  
DDEXT  
150  
100  
V
= 2.25V @ 95°C  
= 2.50V @ 25°C  
DDEXT  
= 3.6V @ -40°C  
DDEXT  
60  
V
DDEXT  
V
= 2.75V @ -40°C  
DDEXT  
40  
V
OH  
50  
0
20  
0
V
OH  
-
20  
40  
60  
80  
-
50  
-
V
OL  
V
OL  
-
-
100  
-
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
-150  
SOURCE VOLTAGE (V)  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
SOURCE VOLTAGE (V)  
Figure 41. Drive Current C (High VDDEXT  
)
Figure 38. Drive Current B (Low VDDEXT  
)
Rev. J  
|
Page 50 of 68  
|
February 2014  
 
ADSP-BF534/ADSP-BF536/ADSP-BF537  
100  
80  
80  
V
V
= 2.25V @ 95°C  
= 2.50V @ 25°C  
DDEXT  
DDEXT  
V
V
= 3.0V @ 95°C  
= 3.3V @ 25°C  
DDEXT  
DDEXT  
60  
40  
20  
0
V
= 2.75V @ -40°C  
DDEXT  
60  
V
= 3.6V @ -40°C  
DDEXT  
40  
V
OH  
V
20  
0
OH  
-
20  
40  
60  
80  
-
20  
40  
60  
80  
-
-
V
OL  
V
OL  
-
-
-
-
4.0  
3.0  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
SOURCE VOLTAGE (V)  
SOURCE VOLTAGE (V)  
Figure 42. Drive Current D (Low VDDEXT  
)
Figure 45. Drive Current E (High VDDEXT)  
0
150  
100  
V
V
= 3.0V @ 95°C  
= 3.3V @ 25°C  
DDEXT  
DDEXT  
V
= 2.25V @ 95°C  
= 2.50V @ 25°C  
DDEXT  
DDEXT  
DDEXT  
V
V
-
10  
V
= 3.6V @ -40°C  
DDEXT  
= 2.75V @ -40°C  
-
20  
50  
0
V
OH  
-30  
V
OL  
-40  
-50  
V
OL  
-50  
-100  
-150  
-60  
4.0  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
SOURCE VOLTAGE (V)  
SOURCE VOLTAGE (V)  
Figure 43. Drive Current D (High VDDEXT  
)
Figure 46. Drive Current F (Low VDDEXT)  
0
10  
20  
30  
40  
50  
60  
70  
80  
50  
40  
30  
20  
10  
0
V
V
V
= 2.25V @ 95°C  
= 2.50V @ 25°C  
V
V
= 3.0V @ 95°C  
= 3.3V @ 25°C  
DDEXT  
DDEXT  
DDEXT  
DDEXT  
DDEXT  
-
= 2.75V @ -40°C  
V
= 3.6V @ -40°C  
DDEXT  
-
V
-
OH  
-
V
OL  
-
10  
20  
30  
40  
50  
-
-
-
-
V
OL  
-
-
-
-
4.0  
3.0  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0.5  
1.0  
1.5  
2.0  
2.5  
0
SOURCE VOLTAGE (V)  
SOURCE VOLTAGE (V)  
Figure 44. Drive Current E (Low VDDEXT  
)
Figure 47. Drive Current F (High VDDEXT)  
Rev. J  
|
Page 51 of 68  
|
February 2014  
ADSP-BF534/ADSP-BF536/ADSP-BF537  
Output Disable Time  
TEST CONDITIONS  
Output pins are considered to be disabled when they stop driv-  
ing, go into a high impedance state, and start to decay from their  
output high or low voltage. The time for the voltage on the bus  
to decay by V is dependent on the capacitive load, CL, and the  
load current, IL. This decay time can be approximated by  
the equation:  
All timing parameters appearing in this data sheet were  
measured under the conditions described in this section.  
Figure 48 shows the measurement point for ac measurements  
(other than output enable/disable). The measurement point is  
VMEAS = VDDEXT/2.  
INPUT  
OR  
OUTPUT  
tDECAY = CLV  IL  
V
V
MEAS  
MEAS  
The output disable time tDIS is the difference between tDIS_MEA-  
SURED and tDECAY as shown in Figure 49. The time tDIS_MEASURED is  
the interval from when the reference signal switches to when the  
output voltage decays V from the measured output-high or  
output-low voltage. The time tDECAY is calculated with the test  
loads CL and IL, and with V equal to 0.5 V.  
Figure 48. Voltage Reference Levels for AC Measurements (Except  
Output Enable/Disable)  
Output Enable Time  
Output pins are considered to be enabled when they have made  
a transition from a high impedance state to the point when they  
start driving. The output enable time tENA is the interval from  
the point when a reference signal reaches a high or low voltage  
level to the point when the output starts driving as shown in the  
Output Enable/Disable diagram (Figure 49). The time tENA_MEA-  
SURED is the interval from when the reference signal switches to  
when the output voltage reaches 2.0 V (output high) or 1.0 V  
(output low). Time tTRIP is the interval from when the output  
starts driving to when the output reaches the 1.0 V or 2.0 V trip  
voltage. Time tENA is calculated as shown in  
REFERENCE  
SIGNAL  
tDIS_MEASURED  
tENA_MEASURED  
tDIS  
tENA  
V
OH  
V
(MEASURED)  
OH  
(MEASURED)  
V
(MEASURED) ꢁ ꢂV  
(MEASURED) + V  
OH  
V
(HIGH)  
TRIP  
V
(LOW)  
V
V
TRIP  
OL  
V
OL  
(MEASURED)  
OL  
(MEASURED)  
tDECAY  
tTRIP  
the equation:  
OUTPUT STOPS DRIVING  
OUTPUT STARTS DRIVING  
HIGH IMPEDANCE STATE  
tENA = tENA_MEASURED tTRIP  
If multiple pins (such as the data bus) are enabled, the measure-  
ment value is that of the first pin to start driving.  
Figure 49. Output Enable/Disable  
Example System Hold Time Calculation  
To determine the data output hold time in a particular system,  
first calculate tDECAY using the equation given above. Choose V  
to be the difference between the processor’s output voltage and  
the input threshold for the device requiring the hold time. A  
typical V is 0.4 V. CL is the total bus capacitance (per data line),  
and IL is the total leakage or three-state current (per data line).  
The hold time is tDECAY plus the minimum disable time (for  
example, tDSDAT for an SDRAM write cycle).  
Rev. J  
|
Page 52 of 68  
|
February 2014  
 
 
ADSP-BF534/ADSP-BF536/ADSP-BF537  
Capacitive Loading  
14  
Output delays and holds are based on standard capacitive loads:  
30 pF on all pins (see Figure 50). Figure 51 through Figure 60 on  
Page 55 show how output rise time varies with capacitance. The  
delay and hold specifications given should be derated by a factor  
derived from these figures. The graphs in these figures may not  
be linear outside the ranges shown.  
12  
RISE TIME  
10  
8
FALL TIME  
6
4
TESTER PIN ELECTRONICS  
50Ω  
V
LOAD  
T1  
DUT  
OUTPUT  
2
0
45Ω  
70Ω  
0
50  
100  
150  
200  
250  
LOAD CAPACITANCE (pF)  
ZO = 50Ω (impedance)  
TD = 4.04 1.18 ns  
50Ω  
0.5pF  
4pF  
Figure 51. Typical Output Delay or Hold for Driver A at VDDEXT Min  
2pF  
400Ω  
12  
10  
NOTES:  
RISE TIME  
THE WORST CASE TRANSMISSION LINE DELAY IS SHOWN AND CAN BE USED  
FOR THE OUTPUT TIMING ANALYSIS TO REFELECT THE TRANSMISSION LINE  
EFFECT AND MUST BE CONSIDERED.THE TRANSMISSION LINE (TD) IS FOR  
LOAD ONLY AND DOES NOT AFFECT THE DATA SHEET TIMING SPECIFICATIONS.  
8
FALL TIME  
6
4
2
0
ANALOG DEVICES RECOMMENDS USING THE IBIS MODEL TIMING FOR A GIVEN  
SYSTEM REQUIREMENT. IF NECESSARY, A SYSTEM MAY INCORPORATE  
EXTERNAL DRIVERS TO COMPENSATE FOR ANY TIMING DIFFERENCES.  
Figure 50. Equivalent Device Loading for AC Measurements  
(Includes All Fixtures)  
0
50  
100  
150  
200  
250  
LOAD CAPACITANCE (pF)  
Figure 52. Typical Output Delay or Hold for Driver A at VDDEXT Max  
Rev. J  
|
Page 53 of 68  
|
February 2014  
 
 
ADSP-BF534/ADSP-BF536/ADSP-BF537  
12  
20  
18  
16  
14  
10  
RISE TIME  
RISE TIME  
8
12  
10  
FALL TIME  
FALL TIME  
6
8
6
4
2
0
4
2
0
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
LOAD CAPACITANCE (pF)  
LOAD CAPACITANCE (pF)  
Figure 53. Typical Output Delay or Hold for Driver B at VDDEXT Min  
Figure 56. Typical Output Delay or Hold for Driver C at VDDEXT Max  
10  
18  
16  
9
8
RISE TIME  
7
14  
RISE TIME  
6
12  
FALL TIME  
5
4
3
2
1
0
10  
FALL TIME  
8
6
4
2
0
0
50  
100  
150  
200  
250  
LOAD CAPACITANCE (pF)  
0
50  
100  
150  
200  
250  
LOAD CAPACITANCE (pF)  
Figure 54. Typical Output Delay or Hold for Driver B at VDDEXT Max  
Figure 57. Typical Output Delay or Hold for Driver D at VDDEXT Min  
30  
25  
14  
12  
RISE TIME  
20  
RISE TIME  
10  
FALL TIME  
15  
8
FALL TIME  
6
4
2
0
10  
5
0
0
50  
100  
150  
200  
250  
LOAD CAPACITANCE (pF)  
0
50  
100  
150  
200  
250  
LOAD CAPACITANCE (pF)  
Figure 55. Typical Output Delay or Hold for Driver C at VDDEXT Min  
Figure 58. Typical Output Delay or Hold for Driver D at VDDEXT Max  
Rev. J  
|
Page 54 of 68  
|
February 2014  
ADSP-BF534/ADSP-BF536/ADSP-BF537  
36  
36  
32  
32  
28  
28  
RISE TIME  
RISE TIME  
24  
20  
24  
20  
16  
12  
8
FALL TIME  
16  
FALL TIME  
12  
8
4
0
4
0
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
LOAD CAPACITANCE (pF)  
LOAD CAPACITANCE (pF)  
Figure 59. Typical Output Delay or Hold for Driver E at VDDEXT Min  
Figure 61. Typical Output Delay or Hold for Driver F at VDDEXT Min  
36  
32  
36  
32  
28  
28  
RISE TIME  
RISE TIME  
24  
20  
24  
20  
16  
16  
FALL TIME  
FALL TIME  
12  
12  
8
4
0
8
4
0
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
LOAD CAPACITANCE (pF)  
LOAD CAPACITANCE (pF)  
Figure 62. Typical Output Delay or Hold for Driver F at VDDEXT Max  
Figure 60. Typical Output Delay or Hold for Driver E at VDDEXT Max  
Rev. J  
|
Page 55 of 68  
|
February 2014  
ADSP-BF534/ADSP-BF536/ADSP-BF537  
Table 46. Thermal Characteristics (182-Ball BGA)  
THERMAL CHARACTERISTICS  
To determine the junction temperature on the application  
printed circuit board use:  
Parameter Condition Typical Unit  
JA  
0 Linear m/s Airflow  
32.80  
29.30  
28.00  
20.10  
7.92  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
JMA  
JMA  
JB  
1 Linear m/s Airflow  
2 Linear m/s Airflow  
TJ = TCASE + JT PD  
where:  
JC  
TJ = Junction temperature (°C)  
JT  
JT  
JT  
0 Linear m/s Airflow  
1 Linear m/s Airflow  
2 Linear m/s Airflow  
0.19  
T
CASE = Case temperature (°C) measured by customer at top  
0.35  
center of package.  
0.45  
JT = From Table 46  
Table 47. Thermal Characteristics (208-Ball BGA without  
Thermal Vias in PCB)  
PD = Power dissipation (see the power dissipation discussion  
and the tables on Page 27 for the method to calculate PD).  
Values of JA are provided for package comparison and printed  
circuit board design considerations. JA can be used for a first  
order approximation of TJ by the equation:  
Parameter Condition  
Typical Unit  
JA  
0 Linear m/s Airflow  
23.30  
20.20  
19.20  
13.05  
6.92  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
JMA  
JMA  
JB  
1 Linear m/s Airflow  
2 Linear m/s Airflow  
TJ = TA + JA PD  
JC  
where:  
JT  
JT  
JT  
0 Linear m/s Airflow  
1 Linear m/s Airflow  
2 Linear m/s Airflow  
0.18  
TA = Ambient temperature (°C)  
0.27  
0.32  
Values of JC are provided for package comparison and printed  
circuit board design considerations when an external heat sink  
is required. Values of JB are provided for package comparison  
and printed circuit board design considerations.  
Table 48. Thermal Characteristics (208-Ball BGA with  
Thermal Vias in PCB)  
In Table 46 through Table 48, airflow measurements comply  
with JEDEC standards JESD51-2 and JESD51-6, and the junc-  
tion-to-board measurement complies with JESD51-8. Test  
board and thermal via design comply with JEDEC standards  
JESD51-9 (BGA). The junction-to-case measurement complies  
with MIL-STD-883 (Method 1012.1). All measurements use a  
2S2P JEDEC test board.  
Parameter Condition  
Typical Unit  
JA  
0 Linear m/s Airflow  
22.60  
19.40  
18.40  
13.20  
6.85  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
JMA  
JMA  
JB  
1 Linear m/s Airflow  
2 Linear m/s Airflow  
JC  
Industrial applications using the 208-ball BGA package require  
thermal vias, to an embedded ground plane, in the PCB. Refer to  
JEDEC standard JESD51-9 for printed circuit board thermal  
ball land and thermal via design information.  
JT  
JT  
JT  
0 Linear m/s Airflow  
1 Linear m/s Airflow  
2 Linear m/s Airflow  
0.16  
0.27  
0.32  
Rev. J  
|
Page 56 of 68  
|
February 2014  
 
 
ADSP-BF534/ADSP-BF536/ADSP-BF537  
182-BALL CSP_BGA BALL ASSIGNMENT  
Table 49 lists the CSP_BGA ball assignment by signal mne-  
monic. Table 50 on Page 58 lists the CSP_BGA ball assignment  
by ball number.  
Table 49. 182-Ball CSP_BGA Ball Assignment (Alphabetically by Signal Mnemonic)  
Mnemonic Ball No.  
Mnemonic Ball No.  
Mnemonic Ball No.  
Mnemonic Ball No.  
Mnemonic Ball No.  
ABE0  
H13  
H12  
J14  
CLKOUT  
DATA0  
DATA1  
DATA10  
DATA11  
DATA12  
DATA13  
DATA14  
DATA15  
DATA2  
DATA3  
DATA4  
DATA5  
DATA6  
DATA7  
DATA8  
DATA9  
EMU  
B14  
M9  
N9  
N6  
P6  
GND  
GND  
GND  
GND  
GND  
GND  
NMI  
PF0  
L6  
PG8  
PG9  
PH0  
PH1  
PH10  
PH11  
PH12  
PH13  
PH14  
PH15  
PH2  
PH3  
PH4  
PH5  
PH6  
PH7  
PH8  
PH9  
PJ0  
E3  
SRAS  
SWE  
D13  
D12  
P2  
ABE1  
L8  
E4  
ADDR1  
ADDR10  
ADDR11  
ADDR12  
ADDR13  
ADDR14  
ADDR15  
ADDR16  
ADDR17  
ADDR18  
ADDR19  
ADDR2  
ADDR3  
ADDR4  
ADDR5  
ADDR6  
ADDR7  
ADDR8  
ADDR9  
AMS0  
L10  
M4  
M10  
P14  
B10  
M1  
L1  
C2  
TCK  
M13  
M14  
N14  
N13  
N12  
M11  
N11  
P13  
P12  
P11  
K14  
L14  
J13  
C3  
TDI  
M3  
N3  
B6  
TDO  
M5  
N5  
P5  
A2  
A3  
A4  
A5  
A6  
C4  
TMS  
N2  
TRST  
N1  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDINT  
VDDINT  
VDDINT  
VDDINT  
VDDINT  
VDDINT  
VDDINT  
VDDRTC  
VROUT0  
VROUT1  
XTAL  
A1  
P4  
PF1  
C12  
E6  
P9  
PF10  
PF11  
PF12  
PF13  
PF14  
PF15  
PF2  
J2  
M8  
N8  
P8  
J3  
E11  
F4  
H1  
H2  
H3  
H4  
L2  
C5  
C6  
F12  
H5  
M7  
N7  
P7  
B1  
B2  
H10  
J11  
J12  
K7  
B3  
K13  
L13  
K12  
L12  
M12  
E14  
F14  
F13  
G12  
G13  
E13  
G14  
H14  
P10  
N10  
N4  
M6  
M2  
A10  
A14  
D4  
E7  
PF3  
L3  
B4  
PF4  
L4  
B5  
GND  
PF5  
K1  
K2  
K3  
K4  
J1  
C7  
K9  
GND  
PF6  
PJ1  
B7  
L7  
GND  
PF7  
PJ10  
PJ11  
PJ2  
D10  
D11  
B11  
C11  
D7  
D8  
C8  
L9  
GND  
PF8  
L11  
P1  
AMS1  
GND  
E9  
PF9  
AMS2  
GND  
F5  
PG0  
PG1  
PG10  
PG11  
PG12  
PG13  
PG14  
PG15  
PG2  
PG3  
PG4  
PG5  
PG6  
PG7  
G1  
G2  
D1  
D2  
D3  
D5  
D6  
C1  
G3  
F1  
PJ3  
E5  
AMS3  
GND  
F6  
PJ4  
E8  
AOE  
GND  
F10  
F11  
G4  
G5  
G11  
H11  
J4  
PJ5  
E10  
G10  
K5  
ARDY  
GND  
PJ6  
ARE  
GND  
PJ7  
B8  
AWE  
GND  
PJ8  
D9  
C9  
K8  
BG  
GND  
PJ9  
K10  
B9  
BGH  
GND  
RESET  
RTXO  
RTXI  
SA10  
SCAS  
SCKE  
SMS  
C10  
A8  
A9  
E12  
C14  
B13  
C13  
BMODE0  
BMODE1  
BMODE2  
BR  
GND  
A13  
B12  
A11  
P3  
GND  
J5  
L5  
GND  
J9  
F2  
D14  
A7  
GND  
J10  
K6  
F3  
CLKBUF  
CLKIN  
GND  
E1  
A12  
GND  
K11  
E2  
Rev. J  
|
Page 57 of 68  
|
February 2014  
 
ADSP-BF534/ADSP-BF536/ADSP-BF537  
Table 50. 182-Ball CSP_BGA Ball Assignment (Numerically by Ball Number)  
Ball No.  
A1  
Mnemonic Ball No.  
Mnemonic Ball No.  
Mnemonic Ball No.  
Mnemonic Ball No.  
Mnemonic  
DATA0  
GND  
VDDEXT  
PH11  
PH12  
PH13  
PH14  
PH15  
CLKBUF  
RTXO  
RTXI  
GND  
XTAL  
CLKIN  
VROUT0  
GND  
PH5  
C10  
C11  
C12  
C13  
C14  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
D10  
D11  
D12  
D13  
D14  
E1  
RESET  
PJ3  
F5  
GND  
GND  
GND  
GND  
VDDEXT  
AMS2  
AMS1  
PG0  
J14  
K1  
ADDR1  
PF5  
M9  
M10  
M11  
M12  
M13  
M14  
N1  
A2  
F6  
A3  
VDDEXT  
SMS  
SCAS  
PG10  
PG11  
PG12  
GND  
PG13  
PG14  
PJ4  
F10  
F11  
F12  
F13  
F14  
G1  
K2  
PF6  
ADDR15  
ADDR9  
ADDR10  
ADDR11  
TRST  
A4  
K3  
PF7  
A5  
K4  
PF8  
A6  
K5  
VDDINT  
GND  
A7  
K6  
A8  
K7  
VDDEXT  
VDDINT  
VDDEXT  
VDDINT  
GND  
N2  
TMS  
A9  
G2  
PG1  
K8  
N3  
TDO  
A10  
A11  
A12  
A13  
A14  
B1  
G3  
PG2  
K9  
N4  
BMODE0  
DATA13  
DATA10  
DATA7  
DATA4  
DATA1  
BGH  
G4  
GND  
GND  
VDDINT  
GND  
AMS3  
AOE  
K10  
K11  
K12  
K13  
K14  
L1  
N5  
G5  
N6  
PJ5  
G10  
G11  
G12  
G13  
G14  
H1  
ADDR7  
ADDR5  
ADDR2  
PF1  
N7  
PJ8  
N8  
PJ10  
PJ11  
SWE  
SRAS  
BR  
N9  
B2  
PH6  
N10  
N11  
N12  
N13  
N14  
P1  
B3  
PH7  
ARE  
L2  
PF2  
ADDR16  
ADDR14  
ADDR13  
ADDR12  
VDDEXT  
B4  
PH8  
PF12  
PF13  
PF14  
PF15  
VDDEXT  
VDDEXT  
GND  
ABE1  
ABE0  
AWE  
PF9  
L3  
PF3  
B5  
PH9  
H2  
L4  
PF4  
B6  
PH10  
PJ1  
PG6  
H3  
L5  
BMODE2  
GND  
B7  
E2  
PG7  
H4  
L6  
B8  
PJ7  
E3  
PG8  
H5  
L7  
VDDEXT  
GND  
P2  
TCK  
B9  
VDDRTC  
NMI  
E4  
PG9  
H10  
H11  
H12  
H13  
H14  
J1  
L8  
P3  
BMODE1  
DATA15  
DATA14  
DATA11  
DATA8  
DATA5  
DATA2  
BG  
B10  
B11  
B12  
B13  
B14  
C1  
E5  
VDDINT  
VDDEXT  
GND  
VDDINT  
GND  
VDDINT  
VDDEXT  
SA10  
ARDY  
AMS0  
PG3  
L9  
VDDEXT  
GND  
P4  
PJ2  
E6  
L10  
L11  
L12  
L13  
L14  
M1  
M2  
M3  
M4  
M5  
M6  
M7  
M8  
P5  
VROUT1  
SCKE  
CLKOUT  
PG15  
PH0  
E7  
VDDEXT  
ADDR8  
ADDR6  
ADDR3  
PF0  
P6  
E8  
P7  
E9  
P8  
E10  
E11  
E12  
E13  
E14  
F1  
J2  
PF10  
PF11  
GND  
GND  
GND  
GND  
VDDEXT  
VDDEXT  
ADDR4  
P9  
C2  
J3  
P10  
P11  
P12  
P13  
P14  
C3  
PH1  
J4  
EMU  
ADDR19  
ADDR18  
ADDR17  
GND  
C4  
PH2  
J5  
TDI  
C5  
PH3  
J9  
GND  
C6  
PH4  
J10  
J11  
J12  
J13  
DATA12  
DATA9  
DATA6  
DATA3  
C7  
PJ0  
F2  
PG4  
C8  
PJ6  
F3  
PG5  
C9  
PJ9  
F4  
VDDEXT  
Rev. J  
|
Page 58 of 68  
|
February 2014  
ADSP-BF534/ADSP-BF536/ADSP-BF537  
Figure 63 shows the top view of the CSP_BGA  
ball configuration. Figure 64 shows the bottom view of the CSP_  
BGA ball configuration.  
14 13 12 11 10  
9
8
7
6
5
4
3
2
1
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
A
B
C
D
E
F
A
B
C
D
E
F
G
H
J
G
H
J
K
L
K
L
M
N
P
M
N
P
KEY:  
KEY:  
V
V
V
GND  
I/O  
DDINT  
DDRTC  
V
V
GND  
I/O  
DDINT  
DDRTC  
V
DDEXT  
ROUT  
V
V
DDEXT  
ROUT  
Figure 64. 182-Ball CSP_BGA Configuration (Bottom View)  
Figure 63. 182-Ball CSP_BGA Configuration (Top View)  
Rev. J  
|
Page 59 of 68  
|
February 2014  
 
 
ADSP-BF534/ADSP-BF536/ADSP-BF537  
208-BALL CSP_BGA BALL ASSIGNMENT  
Table 51 lists the CSP_BGA ball assignment by signal mne-  
monic. Table 52 on Page 61 lists the CSP_BGA ball assignment  
by ball number.  
Table 51. 208-Ball CSP_BGA Ball Assignment (Alphabetically by Signal Mnemonic)  
Mnemonic Ball No.  
Mnemonic Ball No.  
Mnemonic Ball No.  
Mnemonic Ball No.  
Mnemonic Ball No.  
ABE0  
P19  
P20  
R19  
W18  
Y18  
W17  
Y17  
W16  
Y16  
W15  
Y15  
W14  
Y14  
T20  
T19  
U20  
U19  
V20  
V19  
W20  
Y19  
M20  
M19  
G20  
G19  
N20  
J19  
DATA12  
DATA13  
DATA14  
DATA15  
DATA2  
DATA3  
DATA4  
DATA5  
DATA6  
DATA7  
DATA8  
DATA9  
EMU  
Y4  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
NMI  
PF0  
M13  
N9  
N10  
N11  
N12  
N13  
P11  
V2  
PG6  
PG7  
PG8  
PG9  
PH0  
PH1  
PH10  
PH11  
PH12  
PH13  
PH14  
PH15  
PH2  
PH3  
PH4  
PH5  
PH6  
PH7  
PH8  
PH9  
PJ0  
E2  
TDI  
V1  
ABE1  
W4  
Y3  
D1  
TDO  
Y2  
ADDR1  
ADDR10  
ADDR11  
ADDR12  
ADDR13  
ADDR14  
ADDR15  
ADDR16  
ADDR17  
ADDR18  
ADDR19  
ADDR2  
ADDR3  
ADDR4  
ADDR5  
ADDR6  
ADDR7  
ADDR8  
ADDR9  
AMS0  
D2  
TMS  
U2  
W3  
Y9  
C1  
TRST  
U1  
B4  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDINT  
VDDINT  
VDDINT  
VDDINT  
VDDINT  
VDDINT  
VDDINT  
VDDINT  
VDDINT  
VDDINT  
VDDINT  
VDDINT  
VDDRTC  
VROUT0  
VROUT1  
XTAL  
G7  
W9  
Y8  
A5  
G8  
B9  
G9  
W8  
Y7  
A10  
B10  
A11  
B11  
A12  
B5  
G10  
H7  
W2  
W19  
Y1  
W7  
Y6  
H8  
J7  
W6  
T1  
Y13  
Y20  
C20  
T2  
J8  
K7  
GND  
A1  
A6  
K8  
GND  
A13  
A20  
B2  
B6  
L7  
GND  
PF1  
R1  
A7  
L8  
GND  
PF10  
PF11  
PF12  
PF13  
PF14  
PF15  
PF2  
L2  
B7  
M7  
M8  
N7  
GND  
G11  
H9  
K1  
A8  
GND  
K2  
B8  
GND  
H10  
H11  
H12  
H13  
J9  
J1  
A9  
N8  
GND  
J2  
B12  
B13  
B19  
C19  
D19  
E19  
B18  
A19  
B15  
B16  
B17  
B20  
D20  
A15  
A14  
L20  
K20  
H20  
J20  
K19  
L19  
W1  
P7  
GND  
H1  
R2  
PJ1  
P8  
AMS1  
GND  
PJ10  
PJ11  
PJ2  
P9  
AMS2  
GND  
PF3  
P1  
P10  
G12  
G13  
G14  
H14  
J14  
K14  
L14  
M14  
N14  
P12  
P13  
P14  
A16  
E20  
F20  
A17  
AMS3  
GND  
J10  
J11  
J12  
J13  
K9  
PF4  
P2  
AOE  
GND  
PF5  
N1  
N2  
M1  
M2  
L1  
PJ3  
ARDY  
GND  
PF6  
PJ4  
ARE  
N19  
R20  
Y11  
Y12  
W13  
W12  
W11  
F19  
B14  
A18  
H19  
Y10  
W10  
Y5  
GND  
PF7  
PJ5  
AWE  
GND  
PF8  
PJ6  
BG  
GND  
K10  
K11  
K12  
K13  
L9  
PF9  
PJ7  
BGH  
GND  
PG0  
H2  
G1  
C2  
PJ8  
BMODE0  
BMODE1  
BMODE2  
BR  
GND  
PG1  
PJ9  
GND  
PG10  
PG11  
PG12  
PG13  
PG14  
PG15  
PG2  
RESET  
RTXO  
RTXI  
SA10  
SCAS  
SCKE  
SMS  
SRAS  
SWE  
TCK  
GND  
B1  
GND  
L10  
L11  
L12  
L13  
M9  
M10  
M11  
M12  
A2  
A3  
B3  
CLKBUF  
CLKIN  
GND  
GND  
CLKOUT  
DATA0  
DATA1  
DATA10  
DATA11  
GND  
A4  
G2  
F1  
GND  
GND  
PG3  
GND  
PG4  
F2  
W5  
GND  
PG5  
E1  
Rev. J  
|
Page 60 of 68  
|
February 2014  
 
ADSP-BF534/ADSP-BF536/ADSP-BF537  
Table 52 lists the CSP_BGA ball assignment by ball number.  
Table 51 on Page 60 lists the CSP_BGA ball assignment by sig-  
nal mnemonic.  
Table 52. 208-Ball CSP_BGA Ball Assignment (Numerically by Ball Number)  
Ball No.  
A1  
Mnemonic Ball No.  
Mnemonic Ball No.  
Mnemonic Ball No.  
Mnemonic Ball No.  
Mnemonic  
TCK  
GND  
PG12  
PG13  
PG15  
PH1  
C19  
C20  
D1  
PJ11  
J9  
GND  
GND  
GND  
GND  
GND  
VDDINT  
ARDY  
SMS  
M19  
M20  
N1  
AMS1  
AMS0  
PF5  
W1  
W2  
W3  
W4  
W5  
W6  
W7  
W8  
W9  
W10  
W11  
W12  
W13  
W14  
W15  
W16  
W17  
W18  
W19  
W20  
Y1  
A2  
NMI  
J10  
J11  
J12  
J13  
J14  
J19  
J20  
K1  
GND  
A3  
PG7  
DATA15  
DATA13  
DATA11  
DATA9  
DATA7  
DATA5  
DATA3  
DATA1  
BMODE2  
BMODE1  
BMODE0  
ADDR18  
ADDR16  
ADDR14  
ADDR12  
ADDR10  
GND  
A4  
D2  
PG8  
N2  
PF6  
A5  
D19  
D20  
E1  
PJ2  
N7  
VDDEXT  
VDDEXT  
GND  
GND  
GND  
GND  
GND  
VDDINT  
ARE  
A6  
PH3  
RESET  
PG5  
N8  
A7  
PH5  
N9  
A8  
PH7  
E2  
PG6  
N10  
N11  
N12  
N13  
N14  
N19  
N20  
P1  
A9  
PH9  
E19  
E20  
F1  
PJ3  
PF11  
PF12  
VDDEXT  
VDDEXT  
GND  
GND  
GND  
GND  
GND  
VDDINT  
SRAS  
SCAS  
PF9  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
B1  
PH11  
PH13  
PH15  
GND  
RTXI  
RTXO  
VDDRTC  
XTAL  
CLKIN  
PJ5  
VROUT0  
PG3  
K2  
K7  
F2  
PG4  
K8  
F19  
F20  
G1  
BR  
K9  
VROUT1  
PG1  
K10  
K11  
K12  
K13  
K14  
K19  
K20  
L1  
AOE  
PF3  
G2  
PG2  
P2  
PF4  
G7  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
GND  
VDDINT  
VDDINT  
VDDINT  
AMS3  
AMS2  
PF15  
PG0  
P7  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
GND  
VDDINT  
VDDINT  
VDDINT  
ABE0  
ABE1  
PF1  
G8  
P8  
G9  
P9  
GND  
PG11  
GND  
PG14  
PH0  
G10  
G11  
G12  
G13  
G14  
G19  
G20  
H1  
P10  
P11  
P12  
P13  
P14  
P19  
P20  
R1  
ADDR8  
GND  
B2  
L2  
PF10  
VDDEXT  
VDDEXT  
GND  
GND  
GND  
GND  
GND  
VDDINT  
SWE  
Y2  
TDO  
B3  
L7  
Y3  
DATA14  
DATA12  
DATA10  
DATA8  
DATA6  
DATA4  
DATA2  
DATA0  
BG  
B4  
L8  
Y4  
B5  
PH2  
L9  
Y5  
B6  
PH4  
L10  
L11  
L12  
L13  
L14  
L19  
L20  
M1  
M2  
M7  
M8  
M9  
M10  
M11  
M12  
M13  
M14  
Y6  
B7  
PH6  
Y7  
B8  
PH8  
H2  
R2  
PF2  
Y8  
B9  
PH10  
PH12  
PH14  
PJ0  
H7  
VDDEXT  
VDDEXT  
GND  
GND  
GND  
GND  
GND  
VDDINT  
CLKOUT  
SCKE  
PF13  
PF14  
VDDEXT  
VDDEXT  
R19  
R20  
T1  
ADDR1  
AWE  
Y9  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
B20  
C1  
H8  
Y10  
Y11  
Y12  
Y13  
Y14  
Y15  
Y16  
Y17  
Y18  
Y19  
Y20  
H9  
EMU  
H10  
H11  
H12  
H13  
H14  
H19  
H20  
J1  
SA10  
PF7  
T2  
PF0  
BGH  
PJ1  
T19  
T20  
U1  
ADDR3  
ADDR2  
TRST  
TMS  
GND  
CLKBUF  
PJ6  
PF8  
ADDR19  
ADDR17  
ADDR15  
ADDR13  
ADDR11  
ADDR9  
GND  
VDDEXT  
VDDEXT  
GND  
GND  
GND  
GND  
GND  
VDDINT  
PJ7  
U2  
PJ8  
U19  
U20  
V1  
ADDR5  
ADDR4  
TDI  
PJ4  
PJ10  
PJ9  
J2  
V2  
GND  
ADDR7  
ADDR6  
PG9  
J7  
V19  
V20  
C2  
PG10  
J8  
Rev. J  
|
Page 61 of 68  
|
February 2014  
 
ADSP-BF534/ADSP-BF536/ADSP-BF537  
Figure 65 shows the top view of the CSP_BGA ball configura-  
tion. Figure 66 shows the bottom view of the CSP_BGA ball  
configuration.  
20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
A
B
C
D
E
F
A
B
C
D
E
F
G
H
J
G
H
J
K
L
K
L
M
N
P
R
T
M
N
P
R
T
U
V
W
Y
U
V
W
Y
KEY:  
KEY:  
V
V
V
GND  
I/O  
DDINT  
DDRTC  
V
V
V
GND  
I/O  
DDINT  
DDRTC  
ROUT  
V
DDEXT  
ROUT  
V
DDEXT  
Figure 66. 208-Ball CSP_BGA Configuration (Bottom View)  
Figure 65. 208-Ball CSP_BGA Configuration (Top View)  
Rev. J  
|
Page 62 of 68  
|
February 2014  
 
 
ADSP-BF534/ADSP-BF536/ADSP-BF537  
OUTLINE DIMENSIONS  
Dimensions in Figure 67 and Figure 68 are shown in  
millimeters.  
A1 CORNER  
INDEX AREA  
12.00 BSC SQ  
14 13 12 11 10  
9 8 7 6 5 4 3 2 1  
A
B
C
D
E
F
G
H
J
PIN A1  
INDICATOR  
LOCATION  
10.40  
BSC  
SQ  
0.80  
BSC  
TYP  
K
L
M
N
P
TOP VIEW  
BOTTOM VIEW  
1.31  
1.21  
1.10  
DETAIL A  
1.70 MAX  
0.25 MIN  
0.50  
0.45  
0.40  
0.12  
COPLANARITY  
SEATING  
PLANE  
NOTES:  
1. COMPLIANT TO JEDEC STANDARD MO-205-AE,  
EXCEPT FOR BALL DIAMETER.  
(BALL  
DIAMETER)  
2. CENTER DIMENSIONS ARE NOMINAL.  
3.THE ACTUAL POSITION OF THE BALL GRID IS  
WITHIN 0.15 OF ITS IDEAL POSITION RELATIVE  
TO THE PACKAGE EDGES  
DETAIL A  
Figure 67. 182-Ball Chip Scale Package Ball Grid Array [CSP_BGA]  
(BC-182)  
Dimensions shown in millimeters  
Rev. J  
|
Page 63 of 68  
|
February 2014  
 
ADSP-BF534/ADSP-BF536/ADSP-BF537  
17.10  
17.00 SQ  
16.90  
A1 CORNER  
INDEX AREA  
20 18 16 14 12 10  
19 17 15 13 11  
8
6
4
2
9
7
5
3
1
A
B
C
D
E
F
A1 BALL  
CORNER  
G
H
J
15.20  
BSC SQ  
K
L
M
N
P
R
T
0.80  
BSC  
U
V
W
Y
TOP VIEW  
DETAIL A  
BOTTOM VIEW  
*
1.36  
1.26  
1.16  
1.75  
1.61  
1.46  
DETAIL A  
0.35 NOM  
0.30 MIN  
*
0.50  
0.45  
0.40  
COPLANARITY  
0.12  
SEATING  
PLANE  
BALL  
DIAMETER  
*
COMPLIANT TO JEDEC STANDARDS MO-205-AM WITH  
EXCEPTION TO PACKAGE HEIGHT AND BALL DIAMETER.  
Figure 68. 208-Ball Chip Scale Package Ball Grid Array [CSP_BGA]  
(BC-208-2)  
Dimensions shown in millimeters  
Rev. J  
|
Page 64 of 68  
|
February 2014  
ADSP-BF534/ADSP-BF536/ADSP-BF537  
SURFACE-MOUNT DESIGN  
The following table is provided as an aid to PCB design. For  
industry-standard design recommendations, refer to IPC-7351,  
Generic Requirements for Surface Mount Design and Land Pat-  
tern Standard.  
Package Solder Mask  
Opening  
Package  
Package Ball Attach Type  
Package Ball Pad Size  
0.55 mm diameter  
0.55 mm diameter  
182-Ball CSP_BGA (BC-182)  
208-Ball CSP_BGA (BC-208-2)  
Solder Mask Defined  
Solder Mask Defined  
0.40 mm diameter  
0.40 mm diameter  
Rev. J  
|
Page 65 of 68  
|
February 2014  
ADSP-BF534/ADSP-BF536/ADSP-BF537  
AUTOMOTIVE PRODUCTS  
The ADBF534W model is available with controlled manufactur-  
ing to support the quality and reliability requirements of  
automotive applications. Note that these automotive models  
may have specifications that differ from the commercial models  
and designers should review the Specifications section of this  
data sheet carefully. Only the automotive grade products shown  
in Table 53 are available for use in automotive applications.  
Contact your local ADI account representative for specific  
product ordering information and to obtain the specific Auto-  
motive Reliability reports for these models.  
Table 53. Automotive Products  
Package  
Option  
Product Family1,2  
Temperature Range3  
–40°C to +85°C  
Speed Grade (Max) Package Description  
ADBF534WBBCZ4Axx  
ADBF534WBBCZ4Bxx  
ADBF534WYBCZ4Bxx  
400 MHz  
400 MHz  
400 MHz  
182-Ball CSP_BGA  
208-Ball CSP_BGA  
208-Ball CSP_BGA  
BC-182  
–40°C to +85°C  
BC-208-2  
BC-208-2  
–40°C to +105°C  
1 Z = RoHS compliant part.  
2 xx denotes silicon revision.  
3 Referenced temperature is ambient temperature.  
Rev. J  
|
Page 66 of 68  
|
February 2014  
 
ADSP-BF534/ADSP-BF536/ADSP-BF537  
ORDERING GUIDE  
In the following table CSP_BGA = Chip Scale Package Ball Grid  
Array.  
Package  
Option  
Model 1  
Temperature Range2  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +105°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
0°C to +70°C  
Speed Grade (Max)  
400 MHz  
400 MHz  
500 MHz  
500 MHz  
400 MHz  
400 MHz  
500 MHz  
300 MHz  
300 MHz  
400 MHz  
400 MHz  
300 MHz  
300 MHz  
400 MHz  
500 MHz  
500 MHz  
500 MHz  
533 MHz  
533 MHz  
600 MHz  
600 MHz  
Package Description  
182-Ball CSP_BGA  
182-Ball CSP_BGA  
182-Ball CSP_BGA  
182-Ball CSP_BGA  
208-Ball CSP_BGA  
208-Ball CSP_BGA  
208-Ball CSP_BGA  
182-Ball CSP_BGA  
182-Ball CSP_BGA  
182-Ball CSP_BGA  
182-Ball CSP_BGA  
208-Ball CSP_BGA  
ADSP-BF534BBC-4A  
ADSP-BF534BBCZ-4A  
ADSP-BF534BBC-5A  
ADSP-BF534BBCZ-5A  
ADSP-BF534BBCZ-4B  
ADSP-BF534YBCZ-4B  
ADSP-BF534BBCZ-5B  
ADSP-BF536BBC-3A  
ADSP-BF536BBCZ-3A  
ADSP-BF536BBC-4A  
ADSP-BF536BBCZ-4A  
ADSP-BF536BBCZ-3B  
ADSP-BF536BBCZ3BRL  
ADSP-BF536BBCZ-4B  
ADSP-BF537BBC-5A  
ADSP-BF537BBCZ-5A  
ADSP-BF537BBCZ-5B  
ADSP-BF537BBCZ-5AV  
ADSP-BF537BBCZ-5BV  
ADSP-BF537KBCZ-6AV  
ADSP-BF537KBCZ-6BV  
1 Z = RoHS compliant part.  
BC-182  
BC-182  
BC-182  
BC-182  
BC-208-2  
BC-208-2  
BC-208-2  
BC-182  
BC-182  
BC-182  
BC-182  
BC-208-2  
208-Ball CSP_BGA, 13" Tape and Reel BC-208-2  
208-Ball CSP_BGA  
182-Ball CSP_BGA  
182-Ball CSP_BGA  
208-Ball CSP_BGA  
182-Ball CSP_BGA  
208-Ball CSP_BGA  
182-Ball CSP_BGA  
208-Ball CSP_BGA  
BC-208-2  
BC-182  
BC-182  
BC-208-2  
BC-182  
BC-208-2  
BC-182  
0°C to +70°C  
BC-208-2  
2 Referenced temperature is ambient temperature. The ambient temperature is not a specification. Please see Operating Conditions on Page 23 for junction temperature (TJ)  
specification which is the only temperature specification.  
Rev. J  
|
Page 67 of 68  
|
February 2014  
ADSP-BF534/ADSP-BF536/ADSP-BF537  
©2014 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D05317-0-2/14(J)  
Rev. J  
|
Page 68 of 68  
|
February 2014  

相关型号:

ADSP-BF536_15

Blackfin Embedded Processor
ADI

ADSP-BF537

Blackfin Embedded Processor
ADI

ADSP-BF537BBC-5A

Blackfin Embedded Processor
ADI

ADSP-BF537BBC-5A1

IC 16-BIT, 40 MHz, OTHER DSP, PBGA182, MO-205AE, MBGA-182, Digital Signal Processor
ADI

ADSP-BF537BBCZ-5A

Blackfin Embedded Processor
ADI

ADSP-BF537BBCZ-5A1

IC 16-BIT, 40 MHz, OTHER DSP, PBGA182, LEAD FREE, MO-205AE, MBGA-182, Digital Signal Processor
ADI

ADSP-BF537BBCZ-5AV

Blackfin Embedded Processor
ADI

ADSP-BF537BBCZ-5B

Blackfin Embedded Processor
ADI

ADSP-BF537BBCZ-5B1

IC 16-BIT, 40 MHz, OTHER DSP, PBGA208, LEAD FREE, MO-205AM, MBGA-208, Digital Signal Processor
ADI

ADSP-BF537BBCZ-5BV

Blackfin Embedded Processor
ADI

ADSP-BF537KBC-6A

Blackfin Embedded Processor
ADI

ADSP-BF537KBC-6A1

IC 16-BIT, 40 MHz, OTHER DSP, PBGA182, MO-205AE, MBGA-182, Digital Signal Processor
ADI