ADSP-BF531_06 [ADI]

Blackfin Embedded Processor; Blackfin嵌入式处理器
ADSP-BF531_06
型号: ADSP-BF531_06
厂家: ADI    ADI
描述:

Blackfin Embedded Processor
Blackfin嵌入式处理器

文件: 总60页 (文件大小:3025K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Blackfin®  
Embedded Processor  
a
ADSP-BF531/ADSP-BF532  
External memory controller with glueless support for  
SDRAM, SRAM, FLASH, and ROM  
Flexible memory booting options from SPI® and  
external memory  
FEATURES  
Up to 400 MHz high performance Blackfin processor  
Two 16-bit MACs, two 40-bit ALUs, four 8-bit video ALUs,  
40-bit shifter  
PERIPHERALS  
RISC-like register and instruction model for ease of pro-  
gramming and compiler-friendly support  
Advanced debug, trace, and performance monitoring  
0.8 V to 1.2 V core VDD with on-chip voltage regulation  
1.8 V, 2.5 V, and 3.3 V compliant I/O  
Parallel peripheral interface PPI/GPIO, supporting  
ITU-R 656 video data formats  
Two dual-channel, full duplex synchronous serial ports, sup-  
porting eight stereo I2S channels  
12-channel DMA controller  
160-ball mini-BGA, 169-ball lead free PBGA, and 176-lead  
LQFP packages  
SPI-compatible port  
Three timer/counters with PWM support  
UART with support for IrDA®  
Event handler  
Real-time clock  
Watchdog timer  
Debug/JTAG interface  
On-chip PLL capable of 0.5
؋
 to 64
؋
 frequency multiplication  
Core timer  
MEMORY  
Up to 84K bytes of on-chip memory:  
16K bytes of instruction SRAM/Cache  
32K bytes of instruction SRAM  
32K bytes of data SRAM/Cache  
4K bytes of scratchpad SRAM  
Two dual-channel memory DMA controllers  
Memory management unit providing memory protection  
EVENT  
CONTROLLER/  
CORE TIMER  
JTAG TEST AND  
EMULATION  
WATCHDOG TIMER  
REAL-TIME CLOCK  
VOLTAGE  
REGULATOR  
B
UART PORT  
IrDA  
L1  
L1  
DATA  
MMU  
INSTRUCTION  
MEMORY  
MEMORY  
TIMER0, TIMER1,  
TIMER2  
CORE/SYSTEM BUS INTERFACE  
PPI / GPIO  
DMA  
CONTROLLER  
SERIAL PORTS (2)  
SPI PORT  
BOOT ROM  
EXTERNAL PORT  
FLASH, SDRAM  
CONTROL  
Figure 1. Functional Block Diagram  
Blackfin and the Blackfin logo are registered trademarks of Analog Devices, Inc.  
Rev. D  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
© 2006 Analog Devices, Inc. All rights reserved.  
ADSP-BF531/ADSP-BF532  
TABLE OF CONTENTS  
General Description ................................................. 4  
Portable Low Power Architecture ............................. 4  
System Integration ................................................ 4  
ADSP-BF531/ADSP-BF532 Processor Peripherals ........ 4  
Blackfin Processor Core .......................................... 4  
Memory Architecture ............................................ 5  
DMA Controllers .................................................. 8  
Real-Time Clock ................................................... 9  
Watchdog Timer .................................................. 9  
Timers ............................................................. 10  
Serial Ports (SPORTs) .......................................... 10  
Serial Peripheral Interface (SPI) Port ....................... 10  
UART Port ........................................................ 10  
Programmable Flags (PFx) .................................... 11  
Parallel Peripheral Interface ................................... 11  
Dynamic Power Management ................................ 12  
Voltage Regulation .............................................. 13  
Clock Signals ..................................................... 13  
Booting Modes ................................................... 14  
Instruction Set Description ................................... 14  
Development Tools ............................................. 15  
Designing an Emulator-Compatible Processor Board .. 16  
Related Documents ............................................. 16  
Pin Descriptions .................................................... 17  
Specifications ........................................................ 20  
Operating Conditions .......................................... 20  
Electrical Characteristics ....................................... 21  
Absolute Maximum Ratings .................................. 22  
Package Information ........................................... 22  
ESD Sensitivity ................................................... 22  
Timing Specifications .......................................... 23  
Clock and Reset Timing .................................... 24  
Asynchronous Memory Read Cycle Timing ........... 25  
Asynchronous Memory Write Cycle Timing .......... 26  
SDRAM Interface Timing .................................. 27  
External Port Bus Request and Grant Cycle Timing .. 28  
Parallel Peripheral Interface Timing ..................... 29  
Serial Ports ..................................................... 32  
Universal Asynchronous Receiver-Transmitter  
(UART) Port—Receive and Transmit Timing ...... 39  
Programmable Flags Cycle Timing ....................... 40  
Timer Cycle Timing .......................................... 41  
JTAG Test and Emulation Port Timing .................. 42  
Output Drive Currents ......................................... 43  
Power Dissipation ............................................... 45  
Test Conditions .................................................. 45  
Environmental Conditions .................................... 48  
160-Ball BGA Pinout ............................................... 50  
169-Ball PBGA Pinout ............................................. 53  
176-Lead LQFP Pinout ............................................ 56  
Outline Dimensions ................................................ 58  
Ordering Guide ..................................................... 60  
Serial Peripheral Interface (SPI) Port  
—Master Timing .......................................... 37  
Serial Peripheral Interface (SPI) Port  
—Slave Timing ............................................. 38  
Rev. D  
|
Page 2 of 60  
|
August 2006  
ADSP-BF531/ADSP-BF532  
REVISION HISTORY  
8/06—Revision D: Changed from Rev. C to Rev. D  
Added 1.8 V I/O to Features ....................................... 1  
Changed Text in Figure External Components for RTC .... 9  
Added Text to Serial Ports (SPORTs) ........................... 10  
Changed Font in Formula in Power Savings .................. 12  
Minor Edit to Figure Voltage Regulator Circuit .............. 13  
Complete Rewrite of Operating Conditions ................... 20  
Complete Rewrite of Electrical Characteristics ............... 21  
Added 1.8 V and 125°C Specifications  
to Multiple Tables of Timing Specifications .................. 23  
Edit to Asynchronous Memory Read Cycle Timing ......... 25  
Edit to Asynchronous Memory Write Cycle Timing ........ 26  
Changed Data in SDRAM Interface Timing .................. 27  
Changed Data in Parallel Peripheral Interface Timing ...... 29  
Changed Data in Serial Ports ..................................... 32  
Deleted References to Temperature in Figures  
in Output Drive Currents ......................................... 43  
Added 1.8 V Data to Output Drive Currents .................. 43  
Moved Data to Operating Conditions  
and Rewrote Power Dissipation ................................. 45  
Deleted References to Temperature in Figures  
in Test Conditions .................................................. 45  
Added 1.8 V References in Test Conditions ................... 45  
Added 1.8 V Characterization Data Capacitive Loading ... 45  
Changed Thermal Characteristics for BC-160 Package ..... 49  
Added Models to Ordering Guide ............................... 60  
Rev. D  
|
Page 3 of 60  
|
August 2006  
ADSP-BF531/ADSP-BF532  
GENERAL DESCRIPTION  
The ADSP-BF531/ADSP-BF532 processors are members of the  
Blackfin family of products, incorporating the Analog Devices/  
Intel Micro Signal Architecture (MSA). Blackfin processors  
combine a dual-MAC state-of-the-art signal processing engine,  
the advantages of a clean, orthogonal RISC-like microprocessor  
instruction set, and single instruction, multiple data (SIMD)  
multimedia capabilities into a single instruction set architecture.  
ADSP-BF531/ADSP-BF532 PROCESSOR  
PERIPHERALS  
The ADSP-BF531/ADSP-BF532 processor contains a rich set of  
peripherals connected to the core via several high bandwidth  
buses, providing flexibility in system configuration as well as  
excellent overall system performance (see the functional block  
diagram in Figure 1 on Page 1). The general-purpose peripher-  
als include functions such as UART, timers with PWM (pulse-  
width modulation) and pulse measurement capability, general-  
purpose flag I/O pins, a real-time clock, and a watchdog timer.  
This set of functions satisfies a wide variety of typical system  
support needs and is augmented by the system expansion capa-  
bilities of the part. In addition to these general-purpose  
The Blackfin processors are completely code and pin compati-  
ble, differing only with respect to their performance and on-  
chip memory. Specific performance and memory configura-  
tions are shown in Table 1.  
Table 1. Processor Comparison  
peripherals, the ADSP-BF531/ADSP-BF532 processor contains  
high speed serial and parallel ports for interfacing to a variety of  
audio, video, and modem codec functions; an interrupt control-  
ler for flexible management of interrupts from the on-chip  
peripherals or external sources; and power management control  
functions to tailor the performance and power characteristics of  
the processor and system to many application scenarios.  
ADSP-BF531  
ADSP-BF532  
Maximum Performance 400 MHz 800 MMACs 400 MHz 800 MMACs  
Instruction  
SRAM/Cache  
16K bytes  
16K bytes  
Instruction SRAM  
16K bytes  
16K bytes  
32K bytes  
32K bytes  
Data  
SRAM/Cache  
All of the peripherals, except for general-purpose I/O, real-time  
clock, and timers, are supported by a flexible DMA structure.  
There is also a separate memory DMA channel dedicated to  
data transfers between the processor’s various memory spaces,  
including external SDRAM and asynchronous memory. Multi-  
ple on-chip buses running at up to 133 MHz provide enough  
bandwidth to keep the processor core running along with activ-  
ity on all of the on-chip and external peripherals.  
Scratchpad  
4K bytes  
4K bytes  
By integrating a rich set of industry-leading system peripherals  
and memory, Blackfin processors are the platform of choice for  
next generation applications that require RISC-like program-  
mability, multimedia support, and leading-edge signal  
processing in one integrated package.  
The ADSP-BF531/ADSP-BF532 processor includes an on-chip  
voltage regulator in support of the ADSP-BF531/ADSP-BF532  
processor dynamic power management capability. The voltage  
regulator provides a range of core voltage levels from a single  
2.25 V to 3.6 V input. The voltage regulator can be bypassed at  
the user’s discretion.  
PORTABLE LOW POWER ARCHITECTURE  
Blackfin processors provide world-class power management  
and performance. Blackfin processors are designed in a low  
power and low voltage design methodology and feature  
dynamic power management—the ability to vary both the volt-  
age and frequency of operation to significantly lower overall  
power consumption. Varying the voltage and frequency can  
result in a substantial reduction in power consumption, com-  
pared with just varying the frequency of operation. This  
translates into longer battery life for portable appliances.  
BLACKFIN PROCESSOR CORE  
As shown in Figure 2 on Page 6, the Blackfin processor core  
contains two 16-bit multipliers, two 40-bit accumulators, two  
40-bit ALUs, four video ALUs, and a 40-bit shifter. The compu-  
tation units process 8-bit, 16-bit, or 32-bit data from the  
register file.  
SYSTEM INTEGRATION  
The ADSP-BF531/ADSP-BF532 processors are highly inte-  
grated system-on-a-chip solutions for the next generation of  
digital communication and consumer multimedia applications.  
By combining industry-standard interfaces with a high perfor-  
mance signal processing core, users can develop cost-effective  
solutions quickly without the need for costly external compo-  
nents. The system peripherals include a UART port, an SPI port,  
two serial ports (SPORTs), four general-purpose timers (three  
with PWM capability), a real-time clock, a watchdog timer, and  
a parallel peripheral interface.  
The compute register file contains eight 32-bit registers. When  
performing compute operations on 16-bit operand data, the  
register file operates as 16 independent 16-bit registers. All  
operands for compute operations come from the multiported  
register file and instruction constant fields.  
Each MAC can perform a 16-bit by 16-bit multiply in each  
cycle, accumulating the results into the 40-bit accumulators.  
Signed and unsigned formats, rounding, and saturation are  
supported.  
The ALUs perform a traditional set of arithmetic and logical  
operations on 16-bit or 32-bit data. In addition, many special  
instructions are included to accelerate various signal processing  
tasks. These include bit operations such as field extract and  
Rev. D  
|
Page 4 of 60  
|
August 2006  
ADSP-BF531/ADSP-BF532  
population count, modulo 232 multiply, divide primitives, satu-  
ration and rounding, and sign/exponent detection. The set of  
video instructions includes byte alignment and packing opera-  
tions, 16-bit and 8-bit adds with clipping, 8-bit average  
operations, and 8-bit subtract/absolute value/accumulate (SAA)  
operations. Also provided are the compare/select and vector  
search instructions.  
The Blackfin processor assembly language uses an algebraic syn-  
tax for ease of coding and readability. The architecture has been  
optimized for use in conjunction with the C/C++ compiler,  
resulting in fast and efficient software implementations.  
MEMORY ARCHITECTURE  
The ADSP-BF531/ADSP-BF532 processor views memory as a  
single unified 4G byte address space, using 32-bit addresses. All  
resources, including internal memory, external memory, and  
I/O control registers, occupy separate sections of this common  
address space. The memory portions of this address space are  
arranged in a hierarchical structure to provide a good cost/per-  
formance balance of some very fast, low latency on-chip  
memory as cache or SRAM, and larger, lower cost and perfor-  
mance off-chip memory systems. See Figure 3 on Page 7, and  
Figure 4 on Page 7.  
For certain instructions, two 16-bit ALU operations can be per-  
formed simultaneously on register pairs (a 16-bit high half and  
16-bit low half of a compute register). By also using the second  
ALU, quad 16-bit operations are possible.  
The 40-bit shifter can perform shifts and rotates and is used to  
support normalization, field extract, and field deposit  
instructions.  
The program sequencer controls the flow of instruction execu-  
tion, including instruction alignment and decoding. For  
program flow control, the sequencer supports PC relative and  
indirect conditional jumps (with static branch prediction), and  
subroutine calls. Hardware is provided to support zero-over-  
head looping. The architecture is fully interlocked, meaning that  
the programmer need not manage the pipeline when executing  
instructions with data dependencies.  
The L1 memory system is the primary highest performance  
memory available to the Blackfin processor. The off-chip mem-  
ory system, accessed through the external bus interface unit  
(EBIU), provides expansion with SDRAM, flash memory, and  
SRAM, optionally accessing up to 132M bytes of  
physical memory.  
The memory DMA controller provides high bandwidth data-  
movement capability. It can perform block transfers of code or  
data between the internal memory and the external  
memory spaces.  
The address arithmetic unit provides two addresses for simulta-  
neous dual fetches from memory. It contains a multiported  
register file consisting of four sets of 32-bit index, modify,  
length, and base registers (for circular buffering), and eight  
additional 32-bit pointer registers (for C-style indexed stack  
manipulation).  
Internal (On-Chip) Memory  
The ADSP-BF531/ADSP-BF532 processor has three blocks of  
on-chip memory providing high bandwidth access to the core.  
Blackfin processors support a modified Harvard architecture in  
combination with a hierarchical memory structure. Level 1 (L1)  
memories are those that typically operate at the full processor  
speed with little or no latency. At the L1 level, the instruction  
memory holds instructions only. The two data memories hold  
data, and a dedicated scratchpad data memory stores stack and  
local variable information.  
The first is the L1 instruction memory, consisting of up to  
48K bytes SRAM, of which 16K bytes can be configured as a  
four way set-associative cache. This memory is accessed at full  
processor speed.  
The second on-chip memory block is the L1 data memory, con-  
sisting of one bank of 32K bytes. The memory bank is  
configurable, offering both cache and SRAM functionality. This  
memory block is accessed at full processor speed.  
In addition, multiple L1 memory blocks are provided, offering a  
configurable mix of SRAM and cache. The memory manage-  
ment unit (MMU) provides memory protection for individual  
tasks that may be operating on the core and can protect system  
registers from unintended access.  
The third memory block is a 4K byte scratchpad SRAM which  
runs at the same speed as the L1 memories, but is only accessible  
as data SRAM and cannot be configured as cache memory.  
The architecture provides three modes of operation: user mode,  
supervisor mode, and emulation mode. User mode has  
restricted access to certain system resources, thus providing a  
protected software environment, while supervisor mode has  
unrestricted access to the system and core resources.  
External (Off-Chip) Memory  
The external bus interface can be used with both asynchronous  
devices such as SRAM, FLASH, EEPROM, ROM, and I/O  
devices, and synchronous devices such as SDRAMs. The bus  
width is always 16 bits. A1 is the least significant address of a  
16-bit word. 8-bit peripherals should be addressed as if they  
were 16-bit devices, where only the lower eight bits of data  
should be used.  
The Blackfin processor instruction set has been optimized so  
that 16-bit opcodes represent the most frequently used instruc-  
tions, resulting in excellent compiled code density. Complex  
DSP instructions are encoded into 32-bit opcodes, representing  
fully featured multifunction instructions. Blackfin processors  
support a limited multi-issue capability, where a 32-bit instruc-  
tion can be issued in parallel with two 16-bit instructions,  
allowing the programmer to use many of the core resources in a  
single instruction cycle.  
The PC133-compliant SDRAM controller can be programmed  
to interface to up to 128M bytes of SDRAM. The SDRAM con-  
troller allows one row to be open for each internal SDRAM  
bank, for up to four internal SDRAM banks, improving overall  
system performance.  
Rev. D  
|
Page 5 of 60  
|
August 2006  
ADSP-BF531/ADSP-BF532  
ADDRESS ARITHMETIC UNIT  
SP  
FP  
P5  
P4  
P3  
P2  
P1  
P0  
I3  
I2  
I1  
I0  
L3  
L2  
L1  
L0  
B3  
B2  
B1  
B0  
M3  
M2  
M1  
M0  
DAG1  
DAG0  
DA1  
DA0  
32  
32  
32  
PREG  
32  
RAB  
SD  
LD1  
LD0  
32  
32  
32  
ASTAT  
32  
32  
SEQUENCER  
R7.H  
R7.L  
R6.H  
R5.H  
R4.H  
R3.H  
R2.H  
R1.H  
R0.H  
R6.L  
R5.L  
R4.L  
R3.L  
R2.L  
R1.H  
R0.L  
ALIGN  
16  
16  
8
8
8
8
DECODE  
BARREL  
SHIFTER  
LOOP BUFFER  
40  
40  
40 40  
A0  
A1  
CONTROL  
UNIT  
32  
32  
DATA ARITHMETIC UNIT  
Figure 2. Blackfin Processor Core  
The asynchronous memory controller can be programmed to  
control up to four banks of devices with very flexible timing  
parameters for a wide variety of devices. Each bank occupies a  
1M byte segment regardless of the size of the devices used, so  
that these banks will only be contiguous if each is fully popu-  
lated with 1M byte of memory.  
boot from boot ROM memory space, the processor starts exe-  
cuting from the on-chip boot ROM. For more information, see  
Booting Modes on Page 14.  
Event Handling  
The event controller on the ADSP-BF531/ADSP-BF532 proces-  
sor handles all asynchronous and synchronous events to the  
processor. The ADSP-BF531/ADSP-BF532 processor provides  
event handling that supports both nesting and prioritization.  
Nesting allows multiple event service routines to be active  
simultaneously. Prioritization ensures that servicing of a higher  
priority event takes precedence over servicing of a lower priority  
event. The controller provides support for five different types  
of events:  
I/O Memory Space  
Blackfin processors do not define a separate I/O space. All  
resources are mapped through the flat 32-bit address space.  
On-chip I/O devices have their control registers mapped into  
memory mapped registers (MMRs) at addresses near the top of  
the 4G byte address space. These are separated into two smaller  
blocks, one of which contains the control MMRs for all core  
functions, and the other of which contains the registers needed  
for setup and control of the on-chip peripherals outside of the  
core. The MMRs are accessible only in supervisor mode and  
appear as reserved space to on-chip peripherals.  
• Emulation – An emulation event causes the processor to  
enter emulation mode, allowing command and control of  
the processor via the JTAG interface.  
• Reset – This event resets the processor.  
Booting  
• Nonmaskable Interrupt (NMI) – The NMI event can be  
generated by the software watchdog timer or by the NMI  
input signal to the processor. The NMI event is frequently  
used as a power-down indicator to initiate an orderly shut-  
down of the system.  
The ADSP-BF531/ADSP-BF532 processor contains a small boot  
kernel, which configures the appropriate peripheral for booting.  
If the ADSP-BF531/ADSP-BF532 processor is configured to  
Rev. D  
|
Page 6 of 60  
|
August 2006  
ADSP-BF531/ADSP-BF532  
• Exceptions – Events that occur synchronously to program  
flow (i.e., the exception will be taken before the instruction  
is allowed to complete). Conditions such as data alignment  
violations and undefined instructions cause exceptions.  
0xFFFF FFFF  
0xFFE0 0000  
0xFFC0 0000  
0xFFB0 1000  
0xFFB0 0000  
0xFFA1 4000  
CORE MMR REGISTERS (2M BYTE)  
SYSTEM MMR REGISTERS (2M BYTE)  
RESERVED  
• Interrupts – Events that occur asynchronously to program  
flow. They are caused by input pins, timers, and other  
peripherals, as well as by an explicit software instruction.  
SCRATCHPAD SRAM (4K BYTE)  
RESERVED  
INSTRUCTION SRAM/CACHE (16K BYTE)  
INSTRUCTION SRAM (32K BYTE)  
Each event type has an associated register to hold the return  
address and an associated return-from-event instruction. When  
an event is triggered, the state of the processor is saved on the  
supervisor stack.  
0xFFA1 0000  
0xFFA0 8000  
0xFFA0 0000  
0xFF90 8000  
0xFF90 4000  
0xFF80 8000  
0xFF80 4000  
RESERVED  
RESERVED  
The ADSP-BF531/ADSP-BF532 processor event controller con-  
sists of two stages, the core event controller (CEC) and the  
system interrupt controller (SIC). The core event controller  
works with the system interrupt controller to prioritize and con-  
trol all system events. Conceptually, interrupts from the  
peripherals enter into the SIC, and are then routed directly into  
the general-purpose interrupts of the CEC.  
DATA BANK B SRAM/CACHE (16K BYTE)  
RESERVED  
DATA BANK A SRAM/CACHE (16K BYTE)  
RESERVED  
0xEF00 0000  
0x2040 0000  
0x2030 0000  
0x2020 0000  
0x2010 0000  
0x2000 0000  
0x0800 0000  
0x0000 0000  
RESERVED  
ASYNC MEMORY BANK 3 (1M BYTE)  
ASYNC MEMORY BANK 2 (1M BYTE)  
ASYNC MEMORY BANK 1 (1M BYTE)  
ASYNC MEMORY BANK 0 (1M BYTE)  
RESERVED  
Core Event Controller (CEC)  
The CEC supports nine general-purpose interrupts (IVG15–7),  
in addition to the dedicated interrupt and exception events. Of  
these general-purpose interrupts, the two lowest priority inter-  
rupts (IVG15–14) are recommended to be reserved for software  
interrupt handlers, leaving seven prioritized interrupt inputs to  
support the peripherals of theADSP-BF531/ADSP-BF532 pro-  
cessor. Table 2 describes the inputs to the CEC, identifies their  
names in the event vector table (EVT), and lists their priorities.  
SDRAM MEMORY (16M BYTE TO 128M BYTE)  
Figure 3. ADSP-BF532 Internal/External Memory Map  
0xFFFF FFFF  
Table 2. Core Event Controller (CEC)  
CORE MMR REGISTERS (2M BYTE)  
SYSTEM MMR REGISTERS (2M BYTE)  
RESERVED  
0xFFE0 0000  
0xFFC0 0000  
0xFFB0 1000  
0xFFB0 0000  
0xFFA1 4000  
Priority  
(0 is Highest)  
Event Class  
Emulation/Test Control EMU  
Reset RST  
Nonmaskable Interrupt NMI  
EVT Entry  
SCRATCHPAD SRAM (4K BYTE)  
RESERVED  
0
1
INSTRUCTION SRAM/CACHE (16K BYTE)  
RESERVED  
2
0xFFA1 0000  
0xFFA0 C000  
0xFFA0 8000  
0xFFA0 0000  
0xFF90 8000  
0xFF90 4000  
0xFF80 8000  
0xFF80 4000  
3
Exception  
EVX  
INSTRUCTION SRAM (16K BYTE)  
RESERVED  
4
Reserved  
5
Hardware Error  
IVHW  
IVTMR  
IVG7  
RESERVED  
6
Core Timer  
RESERVED  
7
General Interrupt 7  
General Interrupt 8  
General Interrupt 9  
General Interrupt 10  
General Interrupt 11  
General Interrupt 12  
General Interrupt 13  
General Interrupt 14  
General Interrupt 15  
RESERVED  
8
IVG8  
DATA BANK A SRAM/CACHE (16K BYTE)  
9
IVG9  
RESERVED  
10  
11  
12  
13  
14  
15  
IVG10  
IVG11  
IVG12  
IVG13  
IVG14  
IVG15  
0xEF00 0000  
0x2040 0000  
0x2030 0000  
0x2020 0000  
0x2010 0000  
0x2000 0000  
0x0800 0000  
0x0000 0000  
RESERVED  
ASYNC MEMORY BANK 3 (1M BYTE)  
ASYNC MEMORY BANK 2 (1M BYTE)  
ASYNC MEMORY BANK 1 (1M BYTE)  
ASYNC MEMORY BANK 0 (1M BYTE)  
RESERVED  
System Interrupt Controller (SIC)  
SDRAM MEMORY (16M BYTE TO 128M BYTE)  
The system interrupt controller provides the mapping and rout-  
ing of events from the many peripheral interrupt sources to the  
prioritized general-purpose interrupt inputs of the CEC.  
Figure 4. ADSP-BF531 Internal/External Memory Map  
Rev. D  
|
Page 7 of 60  
|
August 2006  
ADSP-BF531/ADSP-BF532  
Although the ADSP-BF531/ADSP-BF532 processor provides a  
default mapping, the user can alter the mappings and priorities  
of interrupt events by writing the appropriate values into the  
interrupt assignment registers (IAR). Table 3 describes the  
inputs into the SIC and the default mappings into the CEC.  
preventing the processor from servicing the event even  
though the event may be latched in the ILAT register. This  
register may be read or written while in supervisor mode.  
(Note that general-purpose interrupts can be globally  
enabled and disabled with the STI and CLI instructions,  
respectively.)  
Table 3. System Interrupt Controller (SIC)  
• CEC interrupt pending register (IPEND) – The IPEND  
register keeps track of all nested events. A set bit in the  
IPEND register indicates the event is currently active or  
nested at some level. This register is updated automatically  
by the controller but may be read while in supervisor mode.  
Peripheral Interrupt Event  
PLL Wakeup  
Default Mapping  
IVG7  
DMA Error  
IVG7  
PPI Error  
IVG7  
The SIC allows further control of event processing by providing  
three 32-bit interrupt control and status registers. Each register  
contains a bit corresponding to each of the peripheral interrupt  
events shown in Table 3.  
SPORT 0 Error  
IVG7  
SPORT 1 Error  
IVG7  
SPI Error  
IVG7  
• SIC interrupt mask register (SIC_IMASK) – This register  
controls the masking and unmasking of each peripheral  
interrupt event. When a bit is set in the register, that  
peripheral event is unmasked and will be processed by the  
system when asserted. A cleared bit in the register masks  
the peripheral event, preventing the processor from servic-  
ing the event.  
UART Error  
IVG7  
Real-Time Clock  
IVG8  
DMA Channel 0 (PPI)  
DMA Channel 1 (SPORT 0 Receive)  
DMA Channel 2 (SPORT 0 Transmit)  
DMA Channel 3 (SPORT 1 Receive)  
DMA Channel 4 (SPORT 1 Transmit)  
DMA Channel 5 (SPI)  
DMA Channel 6 (UART Receive)  
DMA Channel 7 (UART Transmit)  
Timer 0  
IVG8  
IVG9  
IVG9  
IVG9  
IVG9  
• SIC interrupt status register (SIC_ISR) – As multiple  
peripherals can be mapped to a single event, this register  
allows the software to determine which peripheral event  
source triggered the interrupt. A set bit indicates the  
peripheral is asserting the interrupt, and a cleared bit indi-  
cates the peripheral is not asserting the event.  
IVG10  
IVG10  
IVG10  
IVG11  
IVG11  
IVG11  
IVG12  
IVG12  
IVG13  
Timer 1  
• SIC interrupt wakeup enable register (SIC_IWR) – By  
enabling the corresponding bit in this register, a peripheral  
can be configured to wake up the processor, should the  
core be idled when the event is generated. (For more infor-  
mation, see Dynamic Power Management on Page 12.)  
Timer 2  
PF Interrupt A  
PF Interrupt B  
DMA Channels 8 and 9  
(Memory DMA Stream 1)  
Because multiple interrupt sources can map to a single general-  
purpose interrupt, multiple pulse assertions can occur simulta-  
neously, before or during interrupt processing for an interrupt  
event already detected on this interrupt input. The IPEND reg-  
ister contents are monitored by the SIC as the interrupt  
acknowledgement.  
DMA Channels 10 and 11  
(Memory DMA Stream 0)  
IVG13  
IVG13  
Software Watchdog Timer  
Event Control  
The appropriate ILAT register bit is set when an interrupt rising  
edge is detected (detection requires two core clock cycles). The  
bit is cleared when the respective IPEND register bit is set. The  
IPEND bit indicates that the event has entered into the proces-  
sor pipeline. At this point the CEC will recognize and queue the  
next rising edge event on the corresponding event input. The  
minimum latency from the rising edge transition of the general-  
purpose interrupt to the IPEND output asserted is three core  
clock cycles; however, the latency can be much higher, depend-  
ing on the activity within and the state of the processor.  
The ADSP-BF531/ADSP-BF532 processor provides the user  
with a very flexible mechanism to control the processing of  
events. In the CEC, three registers are used to coordinate and  
control events. Each register is 16 bits wide:  
• CEC interrupt latch register (ILAT) – The ILAT register  
indicates when events have been latched. The appropriate  
bit is set when the processor has latched the event and  
cleared when the event has been accepted into the system.  
This register is updated automatically by the controller, but  
it may be written only when its corresponding IMASK bit  
is cleared.  
DMA CONTROLLERS  
The ADSP-BF531/ADSP-BF532 processor has multiple, inde-  
pendent DMA controllers that support automated data transfers  
with minimal overhead for the processor core. DMA transfers  
can occur between the ADSP-BF531/ADSP-BF532 processor’s  
internal memories and any of its DMA-capable peripherals.  
• CEC interrupt mask register (IMASK) – The IMASK regis-  
ter controls the masking and unmasking of individual  
events. When a bit is set in the IMASK register, that event is  
unmasked and will be processed by the CEC when asserted.  
A cleared bit in the IMASK register masks the event,  
Rev. D  
|
Page 8 of 60  
|
August 2006  
ADSP-BF531/ADSP-BF532  
Additionally, DMA transfers can be accomplished between any  
of the DMA-capable peripherals and external devices connected  
to the external memory interfaces, including the SDRAM  
controller and the asynchronous memory controller. DMA-  
capable peripherals include the SPORTs, SPI port, UART, and  
PPI. Each individual DMA-capable peripheral has at least one  
dedicated DMA channel.  
When enabled, the alarm function generates an interrupt when  
the output of the timer matches the programmed value in the  
alarm control register. There are two alarms: The first alarm is  
for a time of day. The second alarm is for a day and time of  
that day.  
The stopwatch function counts down from a programmed  
value, with one second resolution. When the stopwatch is  
enabled and the counter underflows, an interrupt is generated.  
The ADSP-BF531/ADSP-BF532 processor DMA controller  
supports both 1-dimensional (1-D) and 2-dimensional (2-D)  
DMA transfers. DMA transfer initialization can be imple-  
mented from registers or from sets of parameters called  
descriptor blocks.  
Like other peripherals, the RTC can wake up the processor from  
sleep mode upon generation of any RTC wakeup event.  
Additionally, an RTC wakeup event can wake up the processor  
from deep sleep mode, and wake up the on-chip internal voltage  
regulator from a powered-down state.  
The 2-D DMA capability supports arbitrary row and column  
sizes up to 64K elements by 64K elements, and arbitrary row  
and column step sizes up to 32K elements. Furthermore, the  
column step size can be less than the row step size, allowing  
implementation of interleaved data streams. This feature is  
especially useful in video applications where data can be  
de-interleaved on the fly.  
Connect RTC pins RTXI and RTXO with external components  
as shown in Figure 5.  
RTXI  
RTXO  
R1  
X1  
Examples of DMA types supported by the ADSP-BF531/  
ADSP-BF532 processor DMA controller include:  
• A single, linear buffer that stops upon completion  
C1  
C2  
• A circular, autorefreshing buffer that interrupts on each  
full or fractionally full buffer  
• 1-D or 2-D DMA using a linked list of descriptors  
SUGGESTED COMPONENTS:  
X1 = ECLIPTEK EC38J (THROUGH-HOLE PACKAGE) OR  
• 2-D DMA using an array of descriptors, specifying only the  
base DMA address within a common page  
EPSON MC405 12 pF LOAD (SURFACE-MOUNT PACKAGE)  
C1 = 22 pF  
C2 = 22 pF  
R1 = 10 M  
In addition to the dedicated peripheral DMA channels, there are  
two memory DMA channels provided for transfers between the  
various memories of the ADSP-BF531/ADSP-BF532 processor  
system. This enables transfers of blocks of data between any of  
the memories—including external SDRAM, ROM, SRAM, and  
flash memory—with minimal processor intervention. Memory  
DMA transfers can be controlled by a very flexible descriptor-  
based methodology or by a standard register-based autobuffer  
mechanism.  
NOTE: C1 AND C2 ARE SPECIFIC TO CRYSTAL SPECIFIED FOR X1.  
CONTACT CRYSTAL MANUFACTURER FOR DETAILS. C1 AND C2  
SPECIFICATIONS ASSUME BOARD TRACE CAPACITANCE OF 3 pF.  
Figure 5. External Components for RTC  
WATCHDOG TIMER  
The ADSP-BF531/ADSP-BF532 processor includes a 32-bit  
timer that can be used to implement a software watchdog func-  
tion. A software watchdog can improve system availability by  
forcing the processor to a known state through generation of a  
hardware reset, nonmaskable interrupt (NMI), or general-pur-  
pose interrupt, if the timer expires before being reset by  
software. The programmer initializes the count value of the  
timer, enables the appropriate interrupt, then enables the timer.  
Thereafter, the software must reload the counter before it  
counts to zero from the programmed value. This protects the  
system from remaining in an unknown state where software,  
which would normally reset the timer, has stopped running due  
to an external noise condition or software error.  
REAL-TIME CLOCK  
The ADSP-BF531/ADSP-BF532 processor real-time clock  
(RTC) provides a robust set of digital watch features, including  
current time, stopwatch, and alarm. The RTC is clocked by a  
32.768 kHz crystal external to the ADSP-BF531/ADSP-BF532  
processor. The RTC peripheral has dedicated power supply pins  
so that it can remain powered up and clocked even when the  
rest of the processor is in a low power state. The RTC provides  
several programmable interrupt options, including interrupt  
per second, minute, hour, or day clock ticks, interrupt on pro-  
grammable stopwatch countdown, or interrupt at a  
If configured to generate a hardware reset, the watchdog timer  
resets both the core and the ADSP-BF531/ADSP-BF532 proces-  
sor peripherals. After a reset, software can determine if the  
watchdog was the source of the hardware reset by interrogating  
a status bit in the watchdog timer control register.  
programmed alarm time.  
The 32.768 kHz input clock frequency is divided down to a 1 Hz  
signal by a prescaler. The counter function of the timer consists  
of four counters: a 60 second counter, a 60 minute counter, a 24  
hour counter, and a 32,768 day counter.  
The timer is clocked by the system clock (SCLK), at a maximum  
frequency of fSCLK  
.
Rev. D  
|
Page 9 of 60  
|
August 2006  
ADSP-BF531/ADSP-BF532  
• Interrupts – Each transmit and receive port generates an  
interrupt upon completing the transfer of a data-word or  
after transferring an entire data buffer or buffers  
through DMA.  
TIMERS  
There are four general-purpose programmable timer units in  
the ADSP-BF531/ADSP-BF532 processor. Three timers have an  
external pin that can be configured either as a pulse-width mod-  
ulator (PWM) or timer output, as an input to clock the timer, or  
as a mechanism for measuring pulse widths and periods of  
external events. These timers can be synchronized to an external  
clock input to the PF1 pin, an external clock input to the  
PPI_CLK pin, or to the internal SCLK.  
• Multichannel capability – Each SPORT supports 128 chan-  
nels out of a 1,024-channel window and is compatible with  
the H.100, H.110, MVIP-90, and HMVIP standards.  
An additional 250 mV of SPORT input hysteresis can be  
enabled by setting Bit 15 of the PLL_CTL register. When this bit  
is set, all SPORT input pins have the increased hysteresis.  
The timer units can be used in conjunction with the UART to  
measure the width of the pulses in the data stream to provide an  
autobaud detect function for a serial channel.  
SERIAL PERIPHERAL INTERFACE (SPI) PORT  
The ADSP-BF531/ADSP-BF532 processor has an SPI-compati-  
ble port that enables the processor to communicate with  
multiple SPI-compatible devices.  
The timers can generate interrupts to the processor core provid-  
ing periodic events for synchronization, either to the system  
clock or to a count of external signals.  
The SPI interface uses three pins for transferring data: two data  
pins (master output-slave input, MOSI, and master input-slave  
output, MISO) and a clock pin (serial clock, SCK). An SPI chip  
select input pin (SPISS) lets other SPI devices select the proces-  
sor, and seven SPI chip select output pins (SPISEL7–1) let the  
processor select other SPI devices. The SPI select pins are recon-  
figured programmable flag pins. Using these pins, the SPI port  
provides a full-duplex, synchronous serial interface which sup-  
ports both master/slave modes and multimaster environments.  
In addition to the three general-purpose programmable timers,  
a fourth timer is also provided. This extra timer is clocked by the  
internal processor clock and is typically used as a system tick  
clock for generation of operating system periodic interrupts.  
SERIAL PORTS (SPORTs)  
The ADSP-BF531/ADSP-BF532 processor incorporates two  
dual-channel synchronous serial ports (SPORT0 and SPORT1)  
for serial and multiprocessor communications. The SPORTs  
support the following features:  
The baud rate and clock phase/polarities for the SPI port are  
programmable, and it has an integrated DMA controller, con-  
figurable to support transmit or receive data streams. The SPI  
DMA controller can only service unidirectional accesses at any  
given time.  
• I2S capable operation.  
• Bidirectional operation – Each SPORT has two sets of inde-  
pendent transmit and receive pins, enabling eight channels  
of I2S stereo audio.  
The SPI port clock rate is calculated as:  
• Buffered (8-deep) transmit and receive ports – Each port  
has a data register for transferring data words to and from  
other processor components and shift registers for shifting  
data in and out of the data registers.  
fSCLK  
SPI Clock Rate = --------------------------------  
2 × SPI_Baud  
Where the 16-bit SPI_Baud register contains a value of 2 to  
65,535.  
• Clocking – Each transmit and receive port can either use an  
external serial clock or generate its own, in frequencies  
ranging from (fSCLK/131,070) Hz to (fSCLK/2) Hz.  
During transfers, the SPI port simultaneously transmits and  
receives by serially shifting data in and out on its two serial data  
lines. The serial clock line synchronizes the shifting and sam-  
pling of data on the two serial data lines.  
• Word length – Each SPORT supports serial data words  
from 3 bits to 32 bits in length, transferred most-signifi-  
cant-bit first or least-significant-bit first.  
UART PORT  
• Framing – Each transmit and receive port can run with or  
without frame sync signals for each data word. Frame sync  
signals can be generated internally or externally, active high  
or low, and with either of two pulse widths and early or late  
frame sync.  
The ADSP-BF531/ADSP-BF532 processor provides a full-  
duplex universal asynchronous receiver/transmitter (UART)  
port, which is fully compatible with PC-standard UARTs. The  
UART port provides a simplified UART interface to other  
peripherals or hosts, supporting full-duplex, DMA-supported,  
asynchronous transfers of serial data. The UART port includes  
support for 5 data bits to 8 data bits, 1 stop bit or 2 stop bits, and  
none, even, or odd parity. The UART port supports two modes  
of operation:  
• Companding in hardware – Each SPORT can perform  
A-law or µ-law companding according to ITU recommen-  
dation G.711. Companding can be selected on the transmit  
and/or receive channel of the SPORT without additional  
latencies.  
• PIO (programmed I/O) – The processor sends or receives  
data by writing or reading I/O-mapped UART registers.  
The data is double-buffered on both transmit and receive.  
• DMA operations with single-cycle overhead – Each SPORT  
can automatically receive and transmit multiple buffers of  
memory data. The processor can link or chain sequences of  
DMA transfers between a SPORT and memory.  
• DMA (direct memory access) – The DMA controller trans-  
fers both transmit and receive data. This reduces the  
number and frequency of interrupts required to transfer  
Rev. D  
|
Page 10 of 60  
|
August 2006  
ADSP-BF531/ADSP-BF532  
data to and from memory. The UART has two dedicated  
DMA channels, one for transmit and one for receive. These  
DMA channels have lower default priority than most DMA  
channels because of their relatively low service rates.  
inputs can be configured to generate hardware interrupts,  
while output PFx pins can be triggered by software  
interrupts.  
• Flag interrupt sensitivity registers – The two flag interrupt  
sensitivity registers specify whether individual PFx pins are  
level- or edge-sensitive and specify—if edge-sensitive—  
whether just the rising edge or both the rising and falling  
edges of the signal are significant. One register selects the  
type of sensitivity, and one register selects which edges are  
significant for edge-sensitivity.  
The baud rate, serial data format, error code generation and sta-  
tus, and interrupts for the UART port are programmable.  
The UART programmable features include:  
• Supporting bit rates ranging from (fSCLK/1,048,576) bits per  
second to (fSCLK/16) bits per second.  
• Supporting data formats from seven bits to 12 bits per  
frame.  
PARALLEL PERIPHERAL INTERFACE  
The processor provides a parallel peripheral interface (PPI) that  
can connect directly to parallel A/D and D/A converters,  
ITU-R 601/656 video encoders and decoders, and other general-  
purpose peripherals. The PPI consists of a dedicated input clock  
pin, up to three frame synchronization pins, and up to 16 data  
pins. The input clock supports parallel data rates up to half the  
system clock rate.  
• Both transmit and receive operations can be configured to  
generate maskable interrupts to the processor.  
The UART port’s clock rate is calculated as:  
fSCLK  
UART Clock Rate = -----------------------------------------------  
16 × UART_Divisor  
Where the 16-bit UART_Divisor comes from the DLH register  
(most significant 8 bits) and DLL register (least significant  
8 bits).  
In ITU-R 656 modes, the PPI receives and parses a data stream  
of 8-bit or 10-bit data elements. On-chip decode of embedded  
preamble control and synchronization information is  
supported.  
In conjunction with the general-purpose timer functions,  
autobaud detection is supported.  
Three distinct ITU-R 656 modes are supported:  
The capabilities of the UART are further extended with support  
for the Infrared Data Association (IrDA) serial infrared physical  
layer link specification (SIR) protocol.  
• Active video only – The PPI does not read in any data  
between the end of active video (EAV) and start of active  
video (SAV) preamble symbols, or any data present during  
the vertical blanking intervals. In this mode, the control  
byte sequences are not stored to memory; they are filtered  
by the PPI.  
PROGRAMMABLE FLAGS (PFx)  
The ADSP-BF531/ADSP-BF532 processor has 16 bidirectional,  
general-purpose programmable flag (PF15–0) pins. Each pro-  
grammable flag can be individually controlled by manipulation  
of the flag control, status and interrupt registers:  
• Vertical blanking only – The PPI only transfers vertical  
blanking interval (VBI) data, as well as horizontal blanking  
information and control byte sequences on VBI lines.  
• Flag direction control register – Specifies the direction of  
each individual PFx pin as input or output.  
• Entire field – The entire incoming bitstream is read in  
through the PPI. This includes active video, control pream-  
ble sequences, and ancillary data that may be embedded in  
horizontal and vertical blanking intervals.  
• Flag control and status registers – The ADSP-BF531/  
ADSP-BF532 processor employs a “write one to modify”  
mechanism that allows any combination of individual flags  
to be modified in a single instruction, without affecting the  
level of any other flags. Four control registers are provided.  
One register is written in order to set flag values, one regis-  
ter is written in order to clear flag values, one register is  
written in order to toggle flag values, and one register is  
written in order to specify a flag value. Reading the flag sta-  
tus register allows software to interrogate the sense of the  
flags.  
Though not explicitly supported, ITU-R 656 output functional-  
ity can be achieved by setting up the entire frame structure  
(including active video, blanking, and control information) in  
memory and streaming the data out the PPI in a frame sync-less  
mode. The processor’s 2-D DMA features facilitate this transfer  
by allowing the static frame buffer (blanking and control codes)  
to be placed in memory once, and simply updating the active  
video information on a per-frame basis.  
• Flag interrupt mask registers – The two flag interrupt mask  
registers allow each individual PFx pin to function as an  
interrupt to the processor. Similar to the two flag control  
registers that are used to set and clear individual flag values,  
one flag interrupt mask register sets bits to enable interrupt  
function, and the other flag interrupt mask register clears  
bits to disable interrupt function. PFx pins defined as  
The general-purpose modes of the PPI are intended to suit a  
wide variety of data capture and transmission applications. The  
modes are divided into four main categories, each allowing up  
to 16 bits of data transfer per PPI_CLK cycle:  
• Data receive with internally generated frame syncs  
• Data receive with externally generated frame syncs  
• Data transmit with internally generated frame syncs  
• Data transmit with externally generated frame syncs  
Rev. D  
|
Page 11 of 60  
|
August 2006  
ADSP-BF531/ADSP-BF532  
These modes support ADC/DAC connections, as well as video  
communication with hardware signaling. Many of the modes  
support more than one level of frame synchronization. If  
desired, a programmable delay can be inserted between asser-  
tion of a frame sync and reception/transmission of data.  
Hibernate Operating Mode—Maximum Static Power  
Savings  
The hibernate mode maximizes static power savings by dis-  
abling the voltage and clocks to the processor core (CCLK) and  
to all the synchronous peripherals (SCLK). The internal voltage  
regulator for the processor can be shut off by writing b#00 to  
the FREQ bits of the VR_CTL register. This disables both CCLK  
and SCLK. Furthermore, it sets the internal power supply volt-  
age (VDDINT) to 0 V to provide the lowest static power dissipation.  
Any critical information stored internally (memory contents,  
register contents, etc.) must be written to a nonvolatile storage  
device prior to removing power if the processor state is to be  
preserved. Since VDDEXT is still supplied in this mode, all of the  
external pins three-state, unless otherwise specified. This allows  
other devices that may be connected to the processor to have  
power still applied without drawing unwanted current. The  
internal supply regulator can be woken up either by a real-time  
clock wakeup or by asserting the RESET pin.  
DYNAMIC POWER MANAGEMENT  
The ADSP-BF531/ADSP-BF532 processor provides five operat-  
ing modes, each with a different performance/power profile. In  
addition, dynamic power management provides the control  
functions to dynamically alter the processor core supply voltage,  
further reducing power dissipation. Control of clocking to each  
of the ADSP-BF531/ADSP-BF532 processor peripherals also  
reduces power consumption. See Table 5 for a summary of the  
power settings for each mode.  
Table 4. Power Domains  
Power Domain  
VDD Range  
VDDINT  
All internal logic, except RTC  
RTC internal logic and crystal I/O  
All other I/O  
Sleep Operating Mode—High Dynamic Power Savings  
VDDRTC  
The sleep mode reduces dynamic power dissipation by disabling  
the clock to the processor core (CCLK). The PLL and system  
clock (SCLK), however, continue to operate in this mode. Typi-  
cally an external event or RTC activity will wake up the  
processor. When in the sleep mode, assertion of wakeup will  
cause the processor to sense the value of the BYPASS bit in the  
PLL control register (PLL_CTL). If BYPASS is disabled, the pro-  
cessor will transition to the full-on mode. If BYPASS is enabled,  
the processor will transition to the active mode.  
VDDEXT  
Full-On Operating Mode—Maximum Performance  
In the full-on mode, the PLL is enabled and is not bypassed,  
providing capability for maximum operational frequency. This  
is the power-up default execution state in which maximum per-  
formance can be achieved. The processor core and all enabled  
peripherals run at full speed.  
When in the sleep mode, system DMA access to L1 memory is  
not supported.  
Active Operating Mode—Moderate Power Savings  
In the active mode, the PLL is enabled but bypassed. Because the  
PLL is bypassed, the processor’s core clock (CCLK) and system  
clock (SCLK) run at the input clock (CLKIN) frequency. In this  
mode, the CLKIN to CCLK multiplier ratio can be changed,  
although the changes are not realized until the full-on mode is  
entered. DMA access is available to appropriately configured L1  
memories.  
Deep Sleep Operating Mode—Maximum Dynamic Power  
Savings  
The deep sleep mode maximizes dynamic power savings by dis-  
abling the clocks to the processor core (CCLK) and to all  
synchronous peripherals (SCLK). Asynchronous peripherals,  
such as the RTC, may still be running but will not be able to  
access internal resources or external memory. This powered-  
down mode can only be exited by assertion of the reset interrupt  
(RESET) or by an asynchronous interrupt generated by the  
RTC. When in deep sleep mode, an RTC asynchronous inter-  
rupt causes the processor to transition to the active mode.  
Assertion of RESET while in deep sleep mode causes the proces-  
sor to transition to the full-on mode.  
In the active mode, it is possible to disable the PLL through the  
PLL control register (PLL_CTL). If disabled, the PLL must be  
re-enabled before transitioning to the full-on or sleep modes.  
Table 5. Power Settings  
Core  
Clock  
System  
Clock  
PLL  
Core  
Power Savings  
Mode  
Full-On  
Active  
PLL  
Bypassed (CCLK) (SCLK)  
Power  
As shown in Table 4, the ADSP-BF531/ADSP-BF532 processor  
supports three different power domains. The use of multiple  
power domains maximizes flexibility, while maintaining com-  
pliance with industry standards and conventions. By isolating  
the internal logic of the ADSP-BF531/ADSP-BF532 processor  
into its own power domain, separate from the RTC and other  
I/O, the processor can take advantage of dynamic power man-  
agement, without affecting the RTC or other I/O devices. There  
are no sequencing requirements for the various power domains.  
Enabled No  
Enabled Enabled On  
Enabled/ Yes  
Disabled  
Enabled Enabled On  
Sleep  
Enabled  
Disabled Enabled On  
Disabled Disabled On  
Disabled Disabled Off  
Deep Sleep Disabled  
Hibernate Disabled  
Rev. D  
|
Page 12 of 60  
|
August 2006  
ADSP-BF531/ADSP-BF532  
The power dissipated by a processor is largely a function of the  
clock frequency of the processor and the square of the operating  
voltage. For example, reducing the clock frequency by 25%  
results in a 25% reduction in dynamic power dissipation, while  
reducing the voltage by 25% reduces dynamic power dissipation  
by more than 40%. Further, these power savings are additive, in  
that if the clock frequency and supply voltage are both reduced,  
the power savings can be dramatic.  
VDDEX T  
100µF  
2.25V TO 3.6V  
INPUT VOLTAGE  
RANGE  
10µH  
VDDINT  
0.1µF  
ZHCS1000  
FDS9431A  
100µF  
1µF  
The dynamic power management feature of the ADSP-BF531/  
ADSP-BF532 processor allows both the processor’s input volt-  
age (VDDINT) and clock frequency (fCCLK) to be dynamically  
controlled.  
VROUT10  
EXTERNAL COMPONENT S  
The savings in power dissipation can be modeled using the  
power savings factor and % power savings calculations.  
NOTE: VROUT10 SHOULD BE TIED TOGETHER EXTERNALLY  
AND DESIGNER SHOULD MINIMIZE TRACE LENGTH TO FDS9431A.  
The power savings factor is calculated as:  
Figure 6. Voltage Regulator Circuit  
power savings factor  
If an external clock is used, it must not be halted, changed, or  
operated below the specified frequency during normal opera-  
tion. This signal is connected to the processor’s CLKIN pin.  
When an external clock is used, the XTAL pin must be left  
unconnected.  
2
fCCLKRED  
---------------------  
fCCLKNOM  
VDDINTRED  
--------------------------  
VDDINTNOM  
tRED  
----------  
tNOM  
=
×
×
where the variables in the equations are:  
f
CCLKNOM is the nominal core clock frequency  
CCLKRED is the reduced core clock frequency  
Alternatively, because the ADSP-BF531/ADSP-BF532 processor  
includes an on-chip oscillator circuit, an external crystal may be  
used. The crystal should be connected across the CLKIN and  
XTAL pins, with two capacitors connected as shown in Figure 7.  
Capacitor values are dependent on crystal type and should be  
specified by the crystal manufacturer. A parallel-resonant,  
fundamental frequency, microprocessor-grade crystal should  
be used.  
f
V
V
DDINTNOM is the nominal internal supply voltage  
DDINTRED is the reduced internal supply voltage  
t
NOM is the duration running at fCCLKNOM  
RED is the duration running at fCCLKRED  
t
The percent power savings is calculated as:  
% power savings = (1 power savings factor) × 100%  
VOLTAGE REGULATION  
XTAL  
CLKOUT  
CLKIN  
The Blackfin processor provides an on-chip voltage regulator  
that can generate processor core voltage levels 0.85 V to 1.2 V  
from an external 2.25 V to 3.6 V supply. Figure 6 shows the typ-  
ical external components required to complete the power  
management system.The regulator controls the internal logic  
voltage levels and is programmable with the voltage regulator  
control register (VR_CTL) in increments of 50 mV. To reduce  
standby power consumption, the internal voltage regulator can  
be programmed to remove power to the processor core while  
keeping I/O power (VDDEXT) supplied. While in hibernation,  
Figure 7. External Crystal Connections  
As shown in Figure 8 on Page 14, the core clock (CCLK) and  
system peripheral clock (SCLK) are derived from the input  
clock (CLKIN) signal. An on-chip PLL is capable of multiplying  
the CLKIN signal by a user programmable 0.5× to 64× multipli-  
cation factor (bounded by specified minimum and maximum  
VCO frequencies). The default multiplier is 10×, but it can be  
modified by a software instruction sequence. On-the-fly  
frequency changes can be effected by simply writing to the  
PLL_DIV register.  
V
DDEXT can still be applied, eliminating the need for external  
buffers. The voltage regulator can be activated from this power-  
down state either through an RTC wakeup or by asserting  
RESET, which will then initiate a boot sequence. The regulator  
can also be disabled and bypassed at the user’s discretion.  
CLOCK SIGNALS  
All on-chip peripherals are clocked by the system clock (SCLK).  
The system clock frequency is programmable by means of the  
SSEL3–0 bits of the PLL_DIV register. The values programmed  
The ADSP-BF531/ADSP-BF532 processor can be clocked by an  
external crystal, a sine wave input, or a buffered, shaped clock  
derived from an external clock oscillator.  
See EE-228: Switching Regulator Design Considerations for Blackfin Processors.  
Rev. D  
|
Page 13 of 60  
|
August 2006  
ADSP-BF531/ADSP-BF532  
BOOTING MODES  
“FINE” ADJUSTMENT  
REQUIRES PLL SEQUENCING  
COARSE” ADJUSTMENT  
ON-THE-FLY  
The ADSP-BF531/ADSP-BF532 processor has two mechanisms  
(listed in Table 8) for automatically loading internal L1 instruc-  
tion memory after a reset. A third mode is provided to execute  
from external memory, bypassing the boot sequence.  
÷ 1, 2, 4, 8  
CCLK  
SCLK  
PLL  
0.5× to 64×  
CLKIN  
VCO  
Table 8. Booting Modes  
÷ 1 to 15  
BMODE1–0  
Description  
00  
Executefrom16-bitexternalmemory(bypass  
boot ROM)  
SCLK CCLK  
SCLK 133 MHz  
01  
10  
11  
Boot from 8-bit or 16-bit FLASH  
Boot from SPI host slave mode  
Figure 8. Frequency Modification Methods  
Boot from SPI serial EEPROM (8-, 16-, or 24-bit  
address range)  
into the SSEL fields define a divide ratio between the PLL output  
(VCO) and the system clock. SCLK divider values are 1 through  
15. Table 6 illustrates typical system clock ratios.  
The BMODE pins of the reset configuration register, sampled  
during power-on resets and software-initiated resets, imple-  
ment the following modes:  
Table 6. Example System Clock Ratios  
• Execute from 16-bit external memory – Execution starts  
from address 0x2000 0000 with 16-bit packing. The boot  
ROM is bypassed in this mode. All configuration settings  
are set for the slowest device possible (3-cycle hold time;  
15-cycle R/W access times; 4-cycle setup).  
Example Frequency Ratios  
(MHz)  
VCO  
100  
Signal Name Divider Ratio  
SSEL3–0  
VCO/SCLK  
SCLK  
100  
0001  
1:1  
3:1  
0011  
400  
133  
• Boot from 8-bit or 16-bit external flash memory – The flash  
boot routine located in boot ROM memory space is set up  
using asynchronous memory bank 0. All configuration set-  
tings are set for the slowest device possible (3-cycle hold  
time; 15-cycle R/W access times; 4-cycle setup).  
The maximum frequency of the system clock is fSCLK. Note that  
the divisor ratio must be chosen to limit the system clock fre-  
quency to its maximum of fSCLK. The SSEL value can be changed  
dynamically without any PLL lock latencies by writing the  
appropriate values to the PLL divisor register (PLL_DIV).  
• Boot from SPI serial EEPROM (8-, 16-, or 24-bit  
addressable) – The SPI uses the PF2 output pin to select a  
single SPI EEPROM device, submits successive read com-  
mands at addresses 0x00, 0x0000, and 0x000000 until a  
valid 8-, 16-, or 24-bit addressable EEPROM is detected,  
and begins clocking data into the beginning of L1 instruc-  
tion memory.  
The core clock (CCLK) frequency can also be dynamically  
changed by means of the CSEL1–0 bits of the PLL_DIV register.  
Supported CCLK divider ratios are 1, 2, 4, and 8, as shown in  
Table 7. This programmable core clock capability is useful for  
fast core frequency modifications.  
For each of the boot modes, a 10-byte header is first read from  
an external memory device. The header specifies the number of  
bytes to be transferred and the memory destination address.  
Multiple memory blocks may be loaded by any boot sequence.  
Once all blocks are loaded, program execution commences from  
the start of L1 instruction SRAM.  
Table 7. Core Clock Ratios  
Example Frequency Ratios  
(MHz)  
Signal Name Divider Ratio  
CSEL1–0  
VCO/CCLK  
VCO  
300  
300  
400  
200  
CCLK  
300  
150  
100  
25  
00  
01  
10  
11  
1:1  
2:1  
4:1  
8:1  
In addition, Bit 4 of the reset configuration register can be set by  
application code to bypass the normal boot sequence during a  
software reset. For this case, the processor jumps directly to the  
beginning of L1 instruction memory.  
INSTRUCTION SET DESCRIPTION  
The Blackfin processor family assembly language instruction set  
employs an algebraic syntax designed for ease of coding and  
readability. The instructions have been specifically tuned to pro-  
vide a flexible, densely encoded instruction set that compiles to  
a very small final memory size. The instruction set also provides  
fully featured multifunction instructions that allow the pro-  
grammer to use many of the processor core resources in a single  
Rev. D  
|
Page 14 of 60  
|
August 2006  
ADSP-BF531/ADSP-BF532  
instruction. Coupled with many features more often seen on  
microcontrollers, this instruction set is very efficient when com-  
piling C and C++ source code. In addition, the architecture  
supports both user (algorithm/application code) and supervisor  
(O/S kernel, device drivers, debuggers, ISRs) modes of opera-  
tion, allowing multiple levels of access to core processor  
resources.  
Statistical profiling enables the programmer to nonintrusively  
poll the processor as it is running the program. This feature,  
unique to VisualDSP++, enables the software developer to pas-  
sively gather important code execution metrics without  
interrupting the real-time characteristics of the program. Essen-  
tially, the developer can identify bottlenecks in software quickly  
and efficiently. By using the profiler, the programmer can focus  
on those areas in the program that impact performance and take  
corrective action.  
The assembly language, which takes advantage of the proces-  
sor’s unique architecture, offers the following advantages:  
Debugging both C/C++ and assembly programs with the  
VisualDSP++ debugger, programmers can:  
• Seamlessly integrated DSP/CPU features are optimized for  
both 8-bit and 16-bit operations.  
• View mixed C/C++ and assembly code (interleaved source  
and object information).  
• A multi-issue load/store modified Harvard architecture,  
which supports two 16-bit MAC or four 8-bit ALU + two  
load/store + two pointer updates per cycle.  
• Insert breakpoints.  
• All registers, I/O, and memory are mapped into a unified  
4G byte memory space, providing a simplified program-  
ming model.  
• Set conditional breakpoints on registers, memory,  
and stacks.  
• Trace instruction execution.  
• Microcontroller features, such as arbitrary bit and bit-field  
manipulation, insertion, and extraction; integer operations  
on 8-, 16-, and 32-bit data types; and separate user and  
supervisor stack pointers.  
• Perform linear or statistical profiling of program execution.  
• Fill, dump, and graphically plot the contents of memory.  
• Perform source level debugging.  
• Code density enhancements, which include intermixing of  
16-bit and 32-bit instructions (no mode switching, no code  
segregation). Frequently used instructions are encoded in  
16 bits.  
• Create custom debugger windows.  
The VisualDSP++ IDDE lets programmers define and manage  
software development. Its dialog boxes and property pages let  
programmers configure and manage all of the Blackfin develop-  
ment tools, including the color syntax highlighting in the  
VisualDSP++ editor. This capability permits programmers to:  
DEVELOPMENT TOOLS  
The ADSP-BF531/ADSP-BF532 processor is supported with a  
complete set of CROSSCORE®software and hardware develop-  
ment tools, including Analog Devices emulators and  
• Control how the development tools process inputs and  
generate outputs  
VisualDSP++®development environment. The same emulator  
hardware that supports other Blackfin processors also fully  
emulates the ADSP-BF531/ADSP-BF532 processor.  
• Maintain a one-to-one correspondence with the tool’s  
command line switches  
The VisualDSP++ Kernel (VDK) incorporates scheduling and  
resource management tailored specifically to address the mem-  
ory and timing constraints of DSP programming. These  
capabilities enable engineers to develop code more effectively,  
eliminating the need to start from the very beginning, when  
developing new application code. The VDK features include  
threads, critical and unscheduled regions, semaphores, events,  
and device flags. The VDK also supports priority-based, pre-  
emptive, cooperative, and time-sliced scheduling approaches. In  
addition, the VDK was designed to be scalable. If the application  
does not use a specific feature, the support code for that feature  
is excluded from the target system.  
The VisualDSP++ project management environment lets pro-  
grammers develop and debug an application. This environment  
includes an easy to use assembler (which is based on an alge-  
braic syntax), an archiver (librarian/library builder), a linker, a  
loader, a cycle-accurate instruction level simulator, a C/C++  
compiler, and a C/C++ runtime library that includes DSP and  
mathematical functions. A key point for these tools is C/C++  
code efficiency. The compiler has been developed for efficient  
translation of C/C++ code to processor assembly. The processor  
has architectural features that improve the efficiency of com-  
piled C/C++ code.  
The VisualDSP++ debugger has a number of important fea-  
tures. Data visualization is enhanced by a plotting package that  
offers a significant level of flexibility. This graphical representa-  
tion of user data enables the programmer to quickly determine  
the performance of an algorithm. As algorithms grow in com-  
plexity, this capability can have increasing significance on the  
designer’s development schedule, increasing productivity.  
Because the VDK is a library, a developer can decide whether to  
use it or not. The VDK is integrated into the VisualDSP++  
development environment, but can also be used via standard  
command line tools. When the VDK is used, the development  
environment assists the developer with many error prone tasks  
and assists in managing system resources, automating the gen-  
eration of various VDK-based objects, and visualizing the  
system state, when debugging an application that uses the VDK.  
VCSE is Analog Devices technology for creating, using, and  
reusing software components (independent modules of sub-  
stantial functionality) to quickly and reliably assemble software  
CROSSCORE is a registered trademark of Analog Devices, Inc.  
VisualDSP++ is a registered trademark of Analog Devices, Inc.  
Rev. D  
|
Page 15 of 60  
|
August 2006  
ADSP-BF531/ADSP-BF532  
applications. Components can be downloaded from the Web  
and dropped into the application. Component archives can be  
published from within VisualDSP++. VCSE supports compo-  
nent implementation in C/C++ or assembly language.  
Reference on the Analog Devices website (www.analog.com)—  
use site search on “EE-68.” This document is updated regularly  
to keep pace with improvements to emulator support.  
RELATED DOCUMENTS  
Use the expert linker to visually manipulate the placement of  
code and data on the embedded system. View memory utiliza-  
tion in a color coded graphical form, easily move code and data  
to different areas of the processor or external memory with the  
drag of the mouse, and examine runtime stack and heap usage.  
The expert linker is fully compatible with existing linker defini-  
tion file (LDF), allowing the developer to move between the  
graphical and textual environments.  
The following publications that describe the ADSP-BF531/  
ADSP-BF532 processors (and related processors) can be  
ordered from any Analog Devices sales office or accessed elec-  
tronically on our website:  
Getting Started With Blackfin Processors  
ADSP-BF533 Blackfin Processor Hardware Reference  
ADSP-BF53x/BF56x Blackfin Processor Programming  
Reference  
Analog Devices emulators use the IEEE 1149.1 JTAG test access  
port of the ADSP-BF531/ADSP-BF532 processor to monitor  
and control the target board processor during emulation. The  
emulator provides full speed emulation, allowing inspection and  
modification of memory, registers, and processor stacks. Non-  
intrusive in-circuit emulation is assured by the use of the  
processor’s JTAG interface—the emulator does not affect target  
system loading or timing.  
ADSP-BF531/ADSP-BF532 Blackfin Processor Anomaly List  
In addition to the software and hardware development tools  
available from Analog Devices, third parties provide a wide  
range of tools supporting the Blackfin processor family. Hard-  
ware tools include Blackfin processor PC plug-in cards. Third  
party software tools include DSP libraries, real-time operating  
systems, and block diagram design tools.  
EZ-KIT Lite Evaluation Board  
For evaluation of ADSP-BF531/ADSP-BF532 processors, use  
the ADSP-BF531/ADSP-BF532 EZ-KIT Lite® board available  
from Analog Devices. Order part number ADDS-  
BF533-EZLITE. The board comes with on-chip emulation capa-  
bilities and is equipped to enable software development.  
Multiple daughter cards are available.  
DESIGNING AN EMULATOR-COMPATIBLE  
PROCESSOR BOARD  
The Analog Devices family of emulators are tools that every sys-  
tem developer needs to test and debug hardware and software  
systems. Analog Devices has supplied an IEEE 1149.1 JTAG test  
access port (TAP) on each JTAG processor. The emulator uses  
the TAP to access the internal features of the processor, allow-  
ing the developer to load code, set breakpoints, observe  
variables, observe memory, and examine registers. The proces-  
sor must be halted to send data and commands, but once an  
operation has been completed by the emulator, the processor  
system is set running at full speed with no impact on  
system timing.  
To use these emulators, the target board must include a header  
that connects the processor’s JTAG port to the emulator.  
For details on target board design issues including mechanical  
layout, single processor connections, multiprocessor scan  
chains, signal buffering, signal termination, and emulator pod  
logic, see the EE-68: Analog Devices JTAG Emulation Technical  
Rev. D  
|
Page 16 of 60  
|
August 2006  
ADSP-BF531/ADSP-BF532  
PIN DESCRIPTIONS  
ADSP-BF531/ADSP-BF532 processor pin definitions are listed  
in Table 9.  
If BR is active, then the memory pins are also three-stated. All  
unused I/O pins have their input buffers disabled with the  
exception of the pins that need pull-ups or pull-downs as noted  
in the table footnotes.  
All pins are three-stated during and immediately after reset,  
except the memory interface, asynchronous memory control,  
and synchronous memory control pins, which are driven high.  
In order to maintain maximum functionality and reduce pack-  
age size and pin count, some pins have dual, multiplexed  
functionality. In cases where pin functionality is reconfigurable,  
the default state is shown in plain text, while alternate function-  
ality is shown in italics.  
Table 9. Pin Descriptions  
Driver  
Pin Name  
Type Function  
Type1 Pull-Up/Down Requirement  
Memory Interface  
ADDR19–1  
O
Address Bus for Async/Sync Access  
A
A
None  
DATA15–0  
I/O Data Bus for Async/Sync Access  
None  
ABE1–0/SDQM1–0  
O
I
Byte Enables/Data Masks for Async/Sync Access A  
None  
BR  
Bus Request  
Bus Grant  
Pull-up Required If Function Not Used  
BG  
O
O
A
A
None  
None  
BGH  
Bus Grant Hang  
Asynchronous Memory Control  
AMS3–0  
O
I
Bank Select  
A
None  
ARDY  
Hardware Ready Control  
Output Enable  
Read Enable  
Pull-up Required If Function Not Used  
AOE  
O
O
O
A
A
A
None  
None  
None  
ARE  
AWE  
Write Enable  
Synchronous Memory Control  
SRAS  
SCAS  
O
O
O
O
O
O
O
Row Address Strobe  
Column Address Strobe  
Write Enable  
A
A
A
A
B
None  
None  
None  
None  
None  
None  
None  
SWE  
SCKE  
Clock Enable  
CLKOUT  
SA10  
Clock Output  
A10 Pin  
A
A
SMS  
Bank Select  
Timers  
TMR0  
I/O Timer 0  
C
C
C
None  
None  
None  
TMR1/PPI_FS1  
TMR2/PPI_FS2  
I/O Timer 1/PPI Frame Sync1  
I/O Timer 2/PPI Frame Sync2  
Rev. D  
|
Page 17 of 60  
|
August 2006  
ADSP-BF531/ADSP-BF532  
Table 9. Pin Descriptions (Continued)  
Driver  
Pin Name  
Type Function  
Type1 Pull-Up/Down Requirement  
Parallel Peripheral Interface Port/GPIO  
PF0/SPISS  
I/O Programmable Flag 0/SPI Slave Select Input  
C
C
None  
None  
PF1/SPISEL1/TMRCLK  
I/O Programmable Flag 1/SPI Slave Select  
Enable 1/External Timer Reference  
PF2/SPISEL2  
I/O Programmable Flag 2/SPI Slave Select Enable 2  
C
C
None  
None  
PF3/SPISEL3/PPI_FS3  
I/O Programmable Flag 3/SPI Slave Select  
Enable 3/PPI Frame Sync 3  
PF4/SPISEL4/PPI15  
PF5/SPISEL5/PPI14  
PF6/SPISEL6/PPI13  
PF7/SPISEL7/PPI12  
I/O Programmable Flag 4/SPI Slave Select  
C
C
C
C
None  
None  
None  
None  
Enable 4/PPI 15  
I/O Programmable Flag 5/SPI Slave Select  
Enable 5/PPI 14  
I/O Programmable Flag 6/SPI Slave Select  
Enable 6/PPI 13  
I/O Programmable Flag 7/SPI Slave Select  
Enable 7/PPI 12  
PF8/PPI11  
PF9/PPI10  
PF10/PPI9  
PF11/PPI8  
PF12/PPI7  
PF13/PPI6  
PF14/PPI5  
PF15/PPI4  
PPI3–0  
I/O Programmable Flag 8/PPI 11  
I/O Programmable Flag 9/PPI 10  
I/O Programmable Flag 10/PPI 9  
I/O Programmable Flag 11/PPI 8  
I/O Programmable Flag 12/PPI 7  
I/O Programmable Flag 13/PPI 6  
I/O Programmable Flag 14/PPI 5  
I/O Programmable Flag 15/PPI 4  
I/O PPI3–0  
C
C
C
C
C
C
C
C
C
C
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
PPI_CLK  
JTAG Port  
TCK  
I
PPI Clock  
I
JTAG Clock  
Internal Pull-down  
None  
TDO  
O
I
JTAG Serial Data Out  
JTAG Serial Data In  
JTAG Mode Select  
JTAG Reset  
C
TDI  
Internal Pull-down  
Internal Pull-down  
External Pull-down If JTAG Not Used  
None  
TMS  
I
TRST  
I
EMU  
O
Emulation Output  
C
SPI Port  
MOSI  
I/O Master Out Slave In  
I/O Master In Slave Out  
C
C
None  
MISO  
Pull HIGH Through a 4.7 kResistor  
if Booting via the SPI Port.  
SCK  
I/O SPI Clock  
D
None  
Rev. D  
|
Page 18 of 60  
|
August 2006  
ADSP-BF531/ADSP-BF532  
Table 9. Pin Descriptions (Continued)  
Driver  
Pin Name  
Serial Ports  
RSCLK0  
RFS0  
Type Function  
Type1 Pull-Up/Down Requirement  
I/O SPORT0 Receive Serial Clock  
I/O SPORT0 Receive Frame Sync  
D
C
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
DR0PRI  
DR0SEC  
TSCLK0  
TFS0  
I
I
SPORT0 Receive Data Primary  
SPORT0 Receive Data Secondary  
I/O SPORT0 Transmit Serial Clock  
I/O SPORT0 Transmit Frame Sync  
D
C
C
C
D
C
DT0PRI  
DT0SEC  
RSCLK1  
RFS1  
O
O
SPORT0 Transmit Data Primary  
SPORT0 Transmit Data Secondary  
I/O SPORT1 Receive Serial Clock  
I/O SPORT1 Receive Frame Sync  
DR1PRI  
DR1SEC  
TSCLK1  
TFS1  
I
I
SPORT1 Receive Data Primary  
SPORT1 Receive Data Secondary  
I/O SPORT1 Transmit Serial Clock  
I/O SPORT1 Transmit Frame Sync  
D
C
C
C
DT1PRI  
DT1SEC  
UART Port  
RX  
O
O
SPORT1 Transmit Data Primary  
SPORT1 Transmit Data Secondary  
I
UART Receive  
UART Transmit  
None  
None  
TX  
O
C
Real-Time Clock  
RTXI  
I
RTC Crystal Input  
Pull LOW when not used  
N/A  
RTXO  
O
RTC Crystal Output  
Clock  
CLKIN  
I
Clock/Crystal Input  
Crystal Output  
Needs to be at a Level or Clocking  
None  
XTAL  
O
Mode Controls  
RESET  
I
I
I
Reset  
Always Active if Core Power On  
Pull LOW when not used  
NMI  
Nonmaskable Interrupt  
Boot Mode Strap  
BMODE1–0  
Voltage Regulator  
VROUT1–0  
Supplies  
VDDEXT  
Pull-up or Pull-down Required  
O
External FET Drive  
N/A  
P
P
P
G
I/O Power Supply  
N/A  
N/A  
N/A  
N/A  
VDDINT  
Core Power Supply  
Real-Time Clock Power Supply  
External Ground  
VDDRTC  
GND  
1 Refer to Figure 28 on Page 43 to Figure 39 on Page 44.  
Rev. D  
|
Page 19 of 60  
|
August 2006  
ADSP-BF531/ADSP-BF532  
SPECIFICATIONS  
Component specifications are subject to change  
without notice.  
OPERATING CONDITIONS  
Parameter  
Conditions  
Min Nominal Max Unit  
VDDINT Internal Supply Voltage1, 2  
VDDINT Internal Supply Voltage1, 3  
VDDEXT External Supply Voltage2  
VDDEXT External Supply Voltage3, 4  
0.8 1.2  
0.95 1.2  
1.32  
1.32  
V
V
V
V
V
1.75 1.8/2.5/3.3 3.6  
2.7 3.3 3.6  
1.75 1.8/2.5/3.3 3.6  
VDDRTC Real-Time Clock  
Power Supply Voltage2  
VDDRTC Real-Time Clock  
Power Supply Voltage3, 4  
2.7 3.3  
3.6  
V
VIH  
VIH  
High Level Input Voltage5, 6 VDDEXT =1.85 V  
High Level Input Voltage5, 6 VDDEXT =Maximum  
VDDEXT =Maximum  
Low Level Input Voltage5, 8 VDDEXT =1.75 V  
Low Level Input Voltage5, 8 VDDEXT =2.25 V  
1.3  
1.85  
3.6  
V
V
V
V
V
2.0  
VIHCLKIN High Level Input Voltage7  
2.2  
3.6  
VIL  
VIL  
TJ  
TJ  
TJ  
TJ  
TJ  
–0.3  
–0.3  
+0.3  
+0.6  
Junction Temperature  
Junction Temperature  
Junction Temperature  
Junction Temperature  
Junction Temperature  
160-Ball Chip Scale Ball Grid Array (Mini-BGA) @ TAMBIENT = –40°C to +85°C –40  
160-Ball Chip Scale Ball Grid Array (Mini-BGA) @ TAMBIENT = –40°C to +105°C –40  
+100 °C  
+125 °C  
+100 °C  
+125 °C  
+100 °C  
169-Ball Plastic Ball Grid Array (PBGA) @ TAMBIENT = –40°C to +85°C  
169-Ball Plastic Ball Grid Array (PBGA) @ TAMBIENT = –40°C to +105°C  
176-Lead Quad Flatpack (LQFP) @ TAMBIENT = –40°C to +85°C  
–40  
–40  
–40  
1 The regulator can generate VDDINT at levels of 0.85 V to 1.2 V with –5 % to +10 % tolerance.  
2 Nonautomotive grade parts, see Ordering Guide on Page 60.  
3 Automotive grade parts, see Ordering Guide on Page 60.  
4 Automotive grade parts in 169-Ball Plastic Ball Grid Array (PBGA) package, see Ordering Guide on Page 60.  
5 The ADSP-BF531/ADSP-BF532 processors are 3.3 V tolerant (always accepts up to 3.6 V maximum VIH), but voltage compliance (on outputs, VOH) depends on the input  
V
DDEXT, becauseVOH (maximum)approximatelyequalsVDDEXT (maximum). This3.3Vtoleranceappliestobidirectionalpins(DATA15–0, TMR2–0, PF15–0, PPI3–0, RSCLK1–0,  
TSCLK1–0, RFS1–0, TFS1–0, MOSI, MISO, SCK) and input only pins (BR, ARDY, PPI_CLK, DR0PRI, DR0SEC, DR1PRI, DR1SEC, RX, RTXI, TCK, TDI, TMS, TRST,  
CLKIN, RESET, NMI, and BMODE1–0).  
6 Parameter value applies to all input and bidirectional pins except CLKIN.  
7 Parameter value applies to CLKIN pin only.  
8 Parameter value applies to all input and bidirectional pins.  
Rev. D  
|
Page 20 of 60  
|
August 2006  
ADSP-BF531/ADSP-BF532  
ELECTRICAL CHARACTERISTICS  
Parameter  
Test Conditions  
Min Typical Max Unit  
VOH  
VOH  
VOH  
VOL  
VOL  
IIH  
High Level Output Voltage1  
High Level Output Voltage1  
High Level Output Voltage1  
Low Level Output Voltage1  
Low Level Output Voltage1  
High Level Input Current2  
High Level Input Current JTAG3  
Low Level Input Current2  
@ VDDEXT = 1.75 V, IOH = –0.5 mA  
1.5  
1.9  
2.4  
V
V
V
V
V
@ VDDEXT = 2.25 V, IOH = –0.5 mA  
@ VDDEXT = 3.0 V, IOH = –0.5 mA  
@ VDDEXT = 1.75 V, IOL = 2.0 mA  
0.2  
0.4  
@ VDDEXT = 2.25 V/3.0 V, IOL = 2.0 mA  
@ VDDEXT = Maximum, VIN = VDD Maximum  
@ VDDEXT = Maximum, VIN = VDD Maximum  
@ VDDEXT = Maximum, VIN = 0 V  
10.0 µA  
50.0 µA  
10.0 µA  
10.0 µA  
10.0 µA  
IIHP  
4
IIL  
IOZH  
Three-State Leakage Current5  
Three-State Leakage Current5  
Input Capacitance6  
@ VDDEXT = Maximum, VIN = VDD Maximum  
@ VDDEXT = Maximum, VIN = 0 V  
4
IOZL  
CIN  
fIN = 1 MHz, TAMBIENT = 25°C, VIN = 2.5 V  
VDDEXT = 3.65 V with voltage regulator off (VDDINT = 0 V)  
VDDINT = 0.8 V, TJUNCTION = 25°C  
4
87  
pF  
IDDHIBERNATE  
VDDINT Current in Hibernate Mode  
VDDINT Current in Deep Sleep Mode  
VDDINT Current in Sleep Mode  
VDDINT Current Dissipation (Typical)  
VDDINT Current Dissipation (Typical)  
VDDRTC Current  
50  
7.5  
10  
20  
132  
20  
µA  
8
IDDDEEPSLEEP  
mA  
mA  
mA  
mA  
µA  
IDDSLEEP  
VDDINT = 0.8 V, TJUNCTION = 25°C  
8, 9  
IDD  
VDDINT = 0.8 V, fIN = 50 MHz, TJUNCTION = 25°C  
VDDINT = 1.14 V, fIN = 400 MHz, TJUNCTION = 25°C  
VDDRTC = 3.3 V, TJUNCTION = 25°C  
_
_
TYP  
TYP  
8, 9  
IDD  
IDDRTC  
1 Applies to output and bidirectional pins.  
2 Applies to input pins except JTAG inputs.  
3 Applies to JTAG input pins (TCK, TDI, TMS, TRST).  
4 Absolute value.  
5 Applies to three-statable pins.  
6 Applies to all signal pins.  
7 Guaranteed, but not tested.  
8 See Power Dissipation on Page 45.  
9 Processor executing 75% dual MAC, 25% ADD with moderate data bus activity.  
Rev. D  
|
Page 21 of 60  
|
August 2006  
ADSP-BF531/ADSP-BF532  
ABSOLUTE MAXIMUM RATINGS  
PACKAGE INFORMATION  
Stresses greater than those listed in the table may cause perma-  
nent damage to the device. These are stress ratings only.  
Functional operation of the device at these or any other condi-  
tions greater than those indicated in the operational sections of  
this specification is not implied. Exposure to absolute maximum  
rating conditions for extended periods may affect device  
reliability.  
The information presented in Figure 9 and Table 11 provides  
information about how to read the package brand and relate it  
to specific product features. For a complete listing of product  
offerings, see the Ordering Guide on Page 60.  
a
ADSP-BF531  
Parameter  
Rating  
tppZccc  
vvvvvv.x n.n  
Internal (Core) Supply Voltage (VDDINT  
)
–0.3 V to +1.4 V  
–0.5 V to +3.8 V  
–0.5 V to +3.8 V  
–0.5 V to VDDEXT +0.5 V  
200 pF  
External (I/O) Supply Voltage (VDDEXT  
)
yyww country_of_origin  
Input Voltage1  
B
Output Voltage Swing  
Figure 9. Product Information on Package  
Load Capacitance  
Storage Temperature Range  
Junction Temperature Under Bias  
–65°C to +150°C  
125°C  
Table 11. Package Brand Information  
Brand Key  
Field Description  
Temperature Range  
Package Type  
1 Applies to 100% transient duty cycle. For other duty cycles see Table 10.  
t
Table 10. Maximum Duty Cycle for Input Transient Voltage1  
pp  
Z
Lead Free Option (Optional)  
See Ordering Guide  
Assembly Lot Code  
Silicon Revision  
VIN Min (V)  
–0.50  
VIN Max (V)  
+3.80  
Maximum Duty Cycle  
ccc  
100%  
40%  
25%  
15%  
10%  
vvvvvv.x  
n.n  
–0.70  
+4.00  
–0.80  
+4.10  
yyww  
Date Code  
–0.90  
+4.20  
–1.00  
+4.30  
1 Applies to all signal pins with the exception of CLKIN, XTAL, VROUT1–0.  
ESD SENSITIVITY  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate  
on the human body and test equipment and can discharge without detection. Although the  
ADSP-BF531/ADSP-BF532 processor features proprietary ESD protection circuitry, permanent damage  
may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precau-  
tions are recommended to avoid performance degradation or loss of functionality.  
Rev. D  
|
Page 22 of 60  
|
August 2006  
ADSP-BF531/ADSP-BF532  
TIMING SPECIFICATIONS  
Table 12 through Table 14 describe the timing requirements for  
the ADSP-BF531/ADSP-BF532 processor clocks. Take care in  
selecting MSEL, SSEL, and CSEL ratios so as not to exceed the  
maximum core clock and system clock as described in Absolute  
Maximum Ratings on Page 22, and the voltage controlled oscil-  
lator (VCO) operating frequencies described in Table 13.  
Table 13 describes phase-locked loop operating conditions.  
Table 12. Core Clock Requirements  
TJUNCTION = 125°C  
Max  
All1 Other TJUNCTION  
Max  
Parameter  
Min  
2.50  
3.00  
3.39  
Min  
2.50  
2.75  
3.00  
3.57  
4.00  
Unit  
ns  
tCCLK Core Cycle Period (VDDINT =1.14 V minimum)  
tCCLK Core Cycle Period (VDDINT =1.045 V minimum)  
tCCLK Core Cycle Period (VDDINT =0.95 V minimum)  
tCCLK Core Cycle Period (VDDINT =0.85 V minimum)  
tCCLK Core Cycle Period (VDDINT =0.8 V )  
1 See Operating Conditions on Page 20.  
ns  
ns  
ns  
ns  
Table 13. Phase-Locked Loop Operating Conditions  
Parameter  
Min  
Max  
Unit  
fVCO Voltage Controlled Oscillator (VCO) Frequency  
50  
Maximum fCCLK  
MHz  
Table 14. Maximum SCLK Conditions  
Parameter1  
VDDEXT = 1.8 V  
VDDEXT = 2.5 V  
VDDEXT = 3.3 V  
Unit  
MBGA/PBGA  
fSCLK  
CLKOUT/SCLK Frequency (VDDINT 1.14 V)  
CLKOUT/SCLK Frequency (VDDINT < 1.14 V)  
100  
100  
133  
100  
133  
100  
MHz  
MHz  
fSCLK  
LQFP  
fSCLK  
CLKOUT/SCLK Frequency (VDDINT 1.14 V)  
CLKOUT/SCLK Frequency (VDDINT < 1.14 V)  
100  
83  
133  
83  
133  
83  
MHz  
MHz  
fSCLK  
1 tSCLK (= 1/fSCLK) must be greater than or equal to tCCLK  
.
Rev. D  
|
Page 23 of 60  
|
August 2006  
ADSP-BF531/ADSP-BF532  
Clock and Reset Timing  
Table 15 and Figure 10 describe clock and reset operations. Per  
Absolute Maximum Ratings on Page 22, combinations of  
CLKIN and clock multipliers must not select core/peripheral  
clocks in excess of 400 MHz/133 MHz.  
Table 15. Clock and Reset Timing  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tCKIN  
CLKIN Period  
25.0  
100.01  
ns  
ns  
ns  
ns  
tCKINL  
tCKINH  
tWRST  
CLKIN Low Pulse2  
CLKIN High Pulse1  
RESET Asserted Pulse Width Low3  
10.0  
10.0  
11 tCKIN  
1 If DF bit in PLL_CTL register is set, then the maximum tCKIN period is 50 ns.  
2 Applies to bypass mode and nonbypass mode.  
3 Applies after power-up sequence is complete. At power-up, the processor’s internal phase-locked loop requires no more than 2,000 CLKIN cycles, while RESET is asserted,  
assuming stable power supplies and CLKIN (not including start-up time of external clock oscillator).  
tCKIN  
CLKIN  
tCKINL  
tCKINH  
tWRST  
RESET  
Figure 10. Clock and Reset Timing  
Rev. D  
|
Page 24 of 60  
|
August 2006  
ADSP-BF531/ADSP-BF532  
Asynchronous Memory Read Cycle Timing  
Table 16. Asynchronous Memory Read Cycle Timing  
VDDEXT = 1.8 V VDDEXT = 2.5 V/3.3 V  
Parameter  
Min Max Min  
Max  
Unit  
Timing Requirements  
tSDAT  
DATA15–0 Setup Before CLKOUT  
DATA15–0 Hold After CLKOUT  
ARDY Setup Before CLKOUT  
ARDY Hold After CLKOUT  
2.1  
1.0  
4.0  
1.0  
2.1  
0.8  
4.0  
0.0  
ns  
ns  
ns  
ns  
tHDAT  
tSARDY  
tHARDY  
Switching Characteristics  
tDO  
tHO  
Output Delay After CLKOUT1  
Output Hold After CLKOUT 1  
6.0  
6.0  
ns  
ns  
1.0  
0.8  
1 Output pins include AMS3–0, ABE1–0, ADDR19–1, AOE, ARE.  
HOLD  
1 CYCLE  
SETUP  
2 CYCLES  
PROGRAMMED READ ACCESS  
4 CYCLES  
ACCESS EXTENDED  
3 CYCLES  
CLKOUT  
tDO  
tHO  
AMSx  
ABE1–0  
ABE, ADDRESS  
ADDR19–1  
AOE  
tDO  
tHO  
ARE  
tHARDY  
tSARDY  
tHARDY  
ARDY  
tSARDY  
tSDAT  
tHDAT  
DATA15–0  
READ  
Figure 11. Asynchronous Memory Read Cycle Timing  
Rev. D  
|
Page 25 of 60  
|
August 2006  
ADSP-BF531/ADSP-BF532  
Asynchronous Memory Write Cycle Timing  
Table 17. Asynchronous Memory Write Cycle Timing  
VDDEXT = 1.8 V VDDEXT = 2.5 V/3.3 V  
Parameter  
Min Max Min  
Max  
Unit  
Timing Requirements  
tSARDY  
tHARDY  
ARDY Setup Before CLKOUT  
ARDY Hold After CLKOUT  
4.0  
1.0  
4.0  
0.0  
ns  
ns  
Switching Characteristics  
tDDAT  
tENDAT  
tDO  
DATA15–0 Disable After CLKOUT  
6.0  
6.0  
6.0  
6.0  
ns  
ns  
ns  
ns  
DATA15–0 Enable After CLKOUT  
Output Delay After CLKOUT1  
Output Hold After CLKOUT 1  
1.0  
1.0  
1.0  
0.8  
tHO  
1 Output pins include AMS3–0, ABE1–0, ADDR19–1, DATA15–0, AOE, AWE.  
ACCESS  
EXTENDED  
1 CYCLE  
SETUP  
2 CYCLES  
HOLD  
1 CYCLE  
PROGRAMMED WRITE  
ACCESS 2 CYCLES  
CLKOUT  
AMSx  
tDO  
tHO  
ABE1–0  
ABE, ADDRESS  
ADDR19–1  
tDO  
tHO  
AWE  
tHARDY  
tSARDY  
ARDY  
tSARDY  
tENDAT  
tDDAT  
DATA15–0  
WRITE DATA  
Figure 12. Asynchronous Memory Write Cycle Timing  
Rev. D  
|
Page 26 of 60  
|
August 2006  
ADSP-BF531/ADSP-BF532  
SDRAM Interface Timing  
Table 18. SDRAM Interface Timing1  
VDDEXT = 1.8 V VDDEXT = 2.5 V/3.3 V  
Parameter  
Min Max Min  
Max  
Unit  
Timing Requirements  
tSSDAT  
tHSDAT  
DATA Setup Before CLKOUT  
DATA Hold After CLKOUT  
2.1  
0.0  
1.5  
0.8  
ns  
ns  
Switching Characteristics  
tSCLK  
CLKOUT Period2  
10.0  
2.5  
7.5  
2.5  
2.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tSCLKH  
tSCLKL  
tDCAD  
tHCAD  
tDSDAT  
tENSDAT  
CLKOUT Width High  
CLKOUT Width Low  
2.5  
Command, ADDR, Data Delay After CLKOUT3  
Command, ADDR, Data Hold After CLKOUT1  
Data Disable After CLKOUT  
Data Enable After CLKOUT  
6.0  
6.0  
4.0  
4.0  
1.0  
1.0  
1.0  
1.0  
1 SDRAM timing for TJUNCTION  
= 125°C is limited to 100 MHz.  
2 Refer to Table 14 on Page 23 for maximum fSCLK at various VDDINT  
.
3 Command pins include: SRAS, SCAS, SWE, SDQM, SMS, SA10, SCKE.  
tSCLK  
tSCLKH  
CLKOUT  
tSSDAT  
tSCLKL  
tHSDAT  
DATA(IN)  
tDCAD  
tDSDAT  
tENSDAT  
tHCAD  
DATA(OUT)  
tDCAD  
CMND ADDR  
(OUT)  
tHCAD  
NOTE: COMMAND = SRAS, SCAS, SWE, SDQM, SMS, SA10, SCKE.  
Figure 13. SDRAM Interface Timing  
Rev. D  
|
Page 27 of 60  
|
August 2006  
ADSP-BF531/ADSP-BF532  
External Port Bus Request and Grant Cycle Timing  
Table 19 and Figure 14 describe external port bus request and  
bus grant operations.  
Table 19. External Port Bus Request and Grant Cycle Timing  
VDDEXT = 1.8 V VDDEXT = 2.5 V/3.3 V  
Parameter  
Min Max Min  
Max  
Unit  
Timing Requirements  
tBS  
tBH  
BR Asserted to CLKOUT High Setup  
4.6  
1.0  
4.6  
0.0  
ns  
ns  
CLKOUT High to BR Deasserted Hold Time  
Switching Characteristics  
tSD  
CLKOUT Low to xMS, Address, and RD/WR Disable  
4.5  
4.5  
4.6  
4.6  
4.6  
4.6  
4.5  
4.5  
3.6  
3.6  
3.6  
3.6  
ns  
ns  
ns  
ns  
ns  
ns  
tSE  
CLKOUT Low to xMS, Address, and RD/WR Enable  
CLKOUT High to BG High Setup  
tDBG  
tEBG  
tDBH  
tEBH  
CLKOUT High to BG Deasserted Hold Time  
CLKOUT High to BGH High Setup  
CLKOUT High to BGH Deasserted Hold Time  
CLKOUT  
tBH  
tBS  
BR  
tSD  
tSE  
AMSx  
tSD  
tSE  
ADDR19-1  
ABE1-0  
tSD  
tSE  
AWE  
ARE  
tDBG  
tEBG  
BG  
tDBH  
tEBH  
BGH  
Figure 14. External Port Bus Request and Grant Cycle Timing  
Rev. D  
|
Page 28 of 60  
|
August 2006  
ADSP-BF531/ADSP-BF532  
Parallel Peripheral Interface Timing  
Table 20 and Figure 15 on Page 29 describe parallel peripheral  
interface operations.  
Table 20. Parallel Peripheral Interface Timing  
VDDEXT = 1.8 V VDDEXT = 2.5 V/3.3 V  
Parameter  
Min Max Min  
Max  
Unit  
Timing Requirements  
tPCLKW  
tPCLK  
PPI_CLK Width  
PPI_CLK Period1  
6.0  
6.0  
ns  
ns  
ns  
15.0  
6.0  
15.0  
4.0  
tSFSPE  
External Frame Sync Setup Before PPI_CLK Edge  
(Nonsampling Edge for Rx, Sampling Edge for Tx)  
tHFSPE  
tSDRPE  
tHDRPE  
External Frame Sync Hold After PPI_CLK  
Receive Data Setup Before PPI_CLK  
Receive Data Hold After PPI_CLK  
1.0  
3.5  
1.5  
1.0  
3.5  
1.5  
ns  
ns  
ns  
Switching Characteristics—GP Output and Frame Capture Modes  
tDFSPE  
tHOFSPE  
tDDTPE  
tHDTPE  
Internal Frame Sync Delay After PPI_CLK  
Internal Frame Sync Hold After PPI_CLK  
Transmit Data Delay After PPI_CLK  
Transmit Data Hold After PPI_CLK  
8.0  
9.0  
8.0  
9.0  
ns  
ns  
ns  
ns  
1.7  
1.8  
1.7  
1.8  
1 PPI_CLK frequency cannot exceed fSCLK/2  
FRAME  
SYNC IS  
DRIVEN  
OUT  
DATA0  
IS  
SAMPLED  
POLC = 0  
PPI_CLK  
PPI_CLK  
POLC = 1  
t
DFSPE  
t
HOFSPE  
POLS = 1  
PPI_FS1  
POLS = 0  
POLS = 1  
PPI_FS2  
POLS = 0  
t
t
SDRPE  
HDRPE  
PPI_DATA  
Figure 15. PPI GP Rx Mode with Internal Frame Sync Timing  
Rev. D  
|
Page 29 of 60  
|
August 2006  
ADSP-BF531/ADSP-BF532  
FRAME  
SYNC IS  
SAMPLED  
FOR  
DATA0 IS  
DATA1 IS  
SAMPLED  
DATA0  
SAMPLED  
PPI_CLK  
POLC = 0  
PPI_CLK  
POLC = 1  
t
HFSPE  
t
SFSPE  
POLS = 1  
POLS = 0  
PPI_FS1  
POLS = 1  
POLS = 0  
PPI_FS2  
t
t
SDRPE  
HDRPE  
PPI_DATA  
Figure 16. PPI GP Rx Mode with External Frame Sync Timing  
FRAME  
SYNC IS  
SAMPLED  
DATA0 IS  
DRIVEN  
OUT  
PPI_CLK  
POLC = 0  
PPI_CLK  
POLC = 1  
t
HFSPE  
t
SFSPE  
POLS = 1  
POLS = 0  
PPI_FS1  
POLS = 1  
POLS = 0  
PPI_FS2  
t
HDTPE  
PPI_DATA  
DATA0  
t
DDTPE  
Figure 17. PPI GP Tx Mode with External Frame Sync Timing  
Rev. D  
|
Page 30 of 60  
|
August 2006  
ADSP-BF531/ADSP-BF532  
FRAME  
SYNC IS  
DRIVEN  
OUT  
DATA0 IS  
DRIVEN  
OUT  
PPI_CLK  
POLC = 0  
PPI_CLK  
POLC = 1  
t
DFSPE  
t
HOFSPE  
POLS = 1  
POLS = 0  
PPI_FS1  
PPI_FS2  
POLS = 1  
POLS = 0  
t
DDTPE  
t
HDTPE  
PPI_DATA  
DATA0  
Figure 18. PPI GP Tx Mode with Internal Frame Sync Timing  
Rev. D  
|
Page 31 of 60  
|
August 2006  
ADSP-BF531/ADSP-BF532  
Serial Ports  
Table 21 on Page 32 through Table 24 on Page 33 and Figure 19  
on Page 34 through Figure 21 on Page 36 describe Serial Port  
operations.  
Table 21. Serial Ports—External Clock  
VDDEXT = 1.8 V VDDEXT = 2.5 V/3.3 V  
Parameter  
Min Max Min  
Max  
Unit  
Timing Requirements  
tSFSE  
tHFSE  
tSDRE  
tHDRE  
TFS/RFS Setup Before TSCLK/RSCLK1  
TFS/RFS Hold After TSCLK/RSCLK1  
Receive Data Setup Before RSCLK1  
Receive Data Hold After RSCLK1  
3.0  
3.0  
3.0  
3.0  
4.5  
15.0  
3.0  
3.0  
3.0  
3.0  
4.5  
15.0  
ns  
ns  
ns  
ns  
ns  
ns  
tSCLKEW TSCLK/RSCLK Width  
tSCLKE TSCLK/RSCLK Period  
Switching Characteristics  
tDFSE  
tHOFSE  
tDDTE  
tHDTE  
TFS/RFS Delay After TSCLK/RSCLK (Internally Generated TFS/RFS)2  
TFS/RFS Hold After TSCLK/RSCLK (Internally Generated TFS/RFS)1  
Transmit Data Delay After TSCLK1  
10.0  
10.0  
10.0  
10.0  
ns  
ns  
ns  
ns  
0.0  
0.0  
0.0  
0.0  
Transmit Data Hold After TSCLK1  
1 Referenced to sample edge.  
2 Referenced to drive edge.  
Table 22. Serial Ports—Internal Clock  
VDDEXT = 1.8 V VDDEXT = 2.5 V/3.3 V  
Parameter  
Min Max Min  
Max  
Unit  
Timing Requirements  
tSFSI  
tHFSI  
tSDRI  
tHDRI  
TFS/RFS Setup Before TSCLK/RSCLK1  
TFS/RFS Hold After TSCLK/RSCLK1  
Receive Data Setup Before RSCLK1  
Receive Data Hold After RSCLK1  
11.0  
2.0  
9.0  
9.0  
ns  
ns  
ns  
ns  
ns  
ns  
2.0  
9.0  
0.0  
0.0  
tSCLKEW TSCLK/RSCLK Width  
tSCLKE TSCLK/RSCLK Period  
Switching Characteristics  
4.5  
4.5  
15.0  
15.0  
tDFSI  
TFS/RFS Delay After TSCLK/RSCLK (Internally Generated TFS/RFS)2  
TFS/RFS Hold After TSCLK/RSCLK (Internally Generated TFS/RFS)1  
Transmit Data Delay After TSCLK1  
3.0  
3.0  
3.0  
3.0  
ns  
ns  
ns  
ns  
ns  
tHOFSI  
tDDTI  
tHDTI  
1.0  
1.0  
Transmit Data Hold After TSCLK1  
2.0  
2.0  
tSCLKIW TSCLK/RSCLK Width  
4.5  
4.5  
1 Referenced to sample edge.  
2 Referenced to drive edge.  
Rev. D  
|
Page 32 of 60  
|
August 2006  
ADSP-BF531/ADSP-BF532  
Table 23. Serial Ports—Enable and Three-State  
VDDEXT = 1.8 V VDDEXT = 2.5 V/3.3 V  
Parameter  
Min Max Min  
Max  
Unit  
Switching Characteristics  
tDTENE  
tDDTTE  
tDTENI  
tDDTTI  
Data Enable Delay from External TSCLK1  
Data Disable Delay from External TSCLK1  
Data Enable Delay from Internal TSCLK1  
Data Disable Delay from Internal TSCLK1  
0
0
ns  
ns  
ns  
ns  
10.0  
3.0  
10.0  
3.0  
2.0  
2.0  
1 Referenced to drive edge.  
Table 24. External Late Frame Sync  
VDDEXT = 1.8 V VDDEXT = 2.5 V/3.3 V  
Parameter  
Min Max Min  
Max  
Unit  
Switching Characteristics  
tDDTLFSE Data Delay from Late External TFS or External RFS with MCE = 1, MFD = 01, 2  
tDTENLFS Data Enable from Late FS or MCE = 1, MFD = 01,2  
10.0  
10.0  
ns  
ns  
0
0
1 MCE = 1, TFS enable and TFS valid follow tDTENLFS and tDDTLFSE  
.
2 If external RFS/TFS setup to RSCLK/TSCLK > tSCLKE/2, then tDDTE I and tDTENE I apply; otherwise tDDTLFSE and tDTENLFS apply.  
/
/
Rev. D  
|
Page 33 of 60  
|
August 2006  
ADSP-BF531/ADSP-BF532  
DATA RECEIVE—INTERNAL CLOCK  
DATA RECEIVE—EXTERNAL CLOCK  
DRIVE  
EDGE  
SAMPLE  
EDGE  
DRIVE  
EDGE  
SAMPLE  
EDGE  
tSCLKIW  
tSCLKEW  
RSCLK  
RSCLK  
tDFSE  
tDFSE  
tHOFSE  
RFS  
tSFSI  
tHFSI  
tHOFSE  
tSFSE  
tHFSE  
RFS  
tSDRI  
tHDRI  
tSDRE  
tHDRE  
DR  
NOTE: EITHER THE RISING EDGE OR FALLING EDGE OF RCLK OR TCLK CAN BE USED AS THE ACTIVE SAMPLING EDGE.  
DR  
DATA TRANSMIT—INTERNAL CLOCK  
DATA TRANSMIT—EXTERNAL CLOCK  
DRIVE  
EDGE  
SAMPLE  
EDGE  
DRIVE  
EDGE  
SAMPLE  
EDGE  
tSCLKIW  
tSCLKEW  
TSCLK  
TSCLK  
tDFSI  
tDFSE  
tHOFSI  
tSFSI  
tHFSI  
tHOFSE  
tSFSE  
tHFSE  
TFS  
DT  
TFS  
DT  
tDDTI  
tDDTE  
tHDTI  
tHDTE  
NOTE: EITHER THE RISING EDGE OR FALLING EDGE OF RCLK OR TCLK CAN BE USED AS THE ACTIVE SAMPLING EDGE.  
DRIVE  
EDGE  
DRIVE  
EDGE  
TSCLK (EXT)  
TFS ("LATE", EXT.)  
TSCLK / RSCLK  
tDDTTE  
tDTENE  
DT  
DRIVE  
EDGE  
DRIVE  
EDGE  
TSCLK (INT)  
TFS ("LATE", INT.)  
TSCLK / RSCLK  
tDTENI  
tDDTTI  
DT  
Figure 19. Serial Ports  
Rev. D  
|
Page 34 of 60  
|
August 2006  
ADSP-BF531/ADSP-BF532  
EXTERNAL RFS WITH MCE = 1, MFD = 0  
DRIVE  
SAMPLE  
DRIVE  
RSCLK  
RFS  
tHOFSE/I  
tSFSE/I  
tDDTE/I  
tDTENLFS  
tHDTE/I  
1ST BIT  
2ND BIT  
DT  
tDDTLFSE  
LATE EXTERNAL TFS  
DRIVE  
SAMPLE  
DRIVE  
TSCLK  
TFS  
tSFSE/I  
tHOFSE/I  
tDDTE/I  
tDTENLFS  
tHDTE/I  
DT  
1ST BIT  
2ND BIT  
tDDTLFSE  
Figure 20. External Late Frame Sync (Frame Sync Setup < tSCLKE/2)  
Rev. D  
|
Page 35 of 60  
|
August 2006  
ADSP-BF531/ADSP-BF532  
EXTERNAL RFS WITH MCE = 1, MFD = 0  
DRIVE  
SAMPLE  
DRIVE  
RSCLK  
RFS  
tSFSE/I  
tHOFSE/I  
tDDTE/I  
tHDTE/I  
tDTENLSCK  
1ST BIT  
DT  
2ND BIT  
tDDTLSCK  
LATE EXTERNAL TFS  
DRIVE  
SAMPLE  
DRIVE  
TSCLK  
TFS  
tSFSE/I  
tHOFSE/I  
tDDTE/I  
tHDTE/I  
tDTENLSCK  
DT  
1ST BIT  
2ND BIT  
tDDTLSCK  
Figure 21. External Late Frame Sync (Frame Sync Setup > tSCLKE/2)  
Rev. D  
|
Page 36 of 60  
|
August 2006  
ADSP-BF531/ADSP-BF532  
Serial Peripheral Interface (SPI) Port  
—Master Timing  
Table 25 and Figure 22 describe SPI port master operations.  
Table 25. Serial Peripheral Interface (SPI) Port—Master Timing  
VDDEXT = 1.8 V VDDEXT = 2.5 V/3.3 V  
Parameter  
Min  
Max Min  
Max Unit  
Timing Requirements  
tSSPIDM  
tHSPIDM  
Data Input Valid to SCK Edge (Data Input Setup)  
SCK Sampling Edge to Data Input Invalid  
8.5  
7.5  
ns  
ns  
–1.5  
–1.5  
Switching Characteristics  
tSDSCIM  
tSPICHM  
tSPICLM  
tSPICLK  
SPISELx Low to First SCK Edge (x=0 or x=1)  
2tSCLK –1.5  
2tSCLK 1.5  
2tSCLK 1.5  
4tSCLK 1.5  
2tSCLK 1.5  
2tSCLK 1.5  
0
2tSCLK –1.5  
ns  
ns  
ns  
ns  
ns  
ns  
Serial Clock High Period  
2tSCLK 1.5  
2tSCLK 1.5  
4tSCLK 1.5  
2tSCLK 1.5  
2tSCLK 1.5  
0
Serial Clock Low Period  
Serial Clock Period  
tHDSM  
Last SCK Edge to SPISELx High (x=0 or x=1)  
Sequential Transfer Delay  
tSPITDM  
tDDSPIDM  
tHDSPIDM  
SCK Edge to Data Out Valid (Data Out Delay)  
SCK Edge to Data Out Invalid (Data Out Hold)  
6
6
ns  
ns  
–1.0  
+4.0 –1.0  
+4.0  
SPISELx  
(OUTPUT)  
tSPICLK  
tHDSM  
tSPITDM  
tSDSCIM  
tSPICHM  
tSPICLM  
SCK  
(CPOL = 0)  
(OUTPUT)  
tSPICLM  
tSPICHM  
SCK  
(CPOL = 1)  
(OUTPUT)  
tDDSPIDM  
tHDSPIDM  
MOSI  
(OUTPUT)  
MSB  
LSB  
CPHA = 1  
tSSPIDM  
tHSPIDM  
tSSPIDM  
tHSPIDM  
MISO  
(INPUT)  
MSB VALID  
LSB VALID  
tDDSPIDM  
tHDSPIDM  
MOSI  
(OUTPUT)  
MSB  
LSB  
CPHA = 0  
tSSPIDM  
tHSPIDM  
MISO  
(INPUT)  
MSB VALID  
LSB VALID  
Figure 22. Serial Peripheral Interface (SPI) Port—Master Timing  
Rev. D  
|
Page 37 of 60  
|
August 2006  
ADSP-BF531/ADSP-BF532  
Serial Peripheral Interface (SPI) Port  
—Slave Timing  
Table 26 and Figure 23 describe SPI port slave operations.  
Table 26. Serial Peripheral Interface (SPI) Port—Slave Timing  
VDDEXT = 1.8 V  
VDDEXT = 2.5 V/3.3 V  
Parameter  
Min  
Max  
Min  
Max  
Unit  
Timing Requirements  
tSPICHS  
tSPICLS  
tSPICLK  
tHDS  
Serial Clock High Period  
2tSCLK 1.5  
2tSCLK 1.5  
4tSCLK 1.5  
2tSCLK 1.5  
2tSCLK 1.5  
2tSCLK 1.5  
1.6  
2tSCLK 1.5  
2tSCLK 1.5  
4tSCLK 1.5  
2tSCLK 1.5  
2tSCLK 1.5  
2tSCLK 1.5  
1.6  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Serial Clock Low Period  
Serial Clock Period  
Last SCK Edge to SPISS Not Asserted  
Sequential Transfer Delay  
tSPITDS  
tSDSCI  
tSSPID  
tHSPID  
SPISS Assertion to First SCK Edge  
Data Input Valid to SCK Edge (Data Input Setup)  
SCK Sampling Edge to Data Input Invalid  
1.6  
1.6  
Switching Characteristics  
tDSOE  
SPISS Assertion to Data Out Active  
0
0
0
0
9
0
0
0
0
8
ns  
ns  
ns  
ns  
tDSDHI  
tDDSPID  
tHDSPID  
SPISS Deassertion to Data High Impedance  
SCK Edge to Data Out Valid (Data Out Delay)  
SCK Edge to Data Out Invalid (Data Out Hold)  
9
8
10  
10  
10  
10  
SPISS  
(INPUT)  
tSPICHS  
tSPICLS  
tSPICLK  
tHDS  
tSPITDS  
SCK  
(CPOL = 0)  
(INPUT)  
tSDSCI  
tSPICLS  
tSPICHS  
SCK  
(CPOL = 1)  
(INPUT)  
tDSOE  
tDDSPID  
tHDSPID  
MSB  
tDDSPID  
tDSDHI  
LSB  
MISO  
(OUTPUT)  
tHSPID  
tSSPID  
CPHA = 1  
tSSPID  
tHSPID  
MOSI  
(INPUT)  
MSB VALID  
LSB VALID  
tDSOE  
tDDSPID  
tDSDHI  
MISO  
(OUTPUT)  
MSB  
LSB  
tHSPID  
CPHA = 0  
tSSPID  
MOSI  
(INPUT)  
MSB VALID  
LSB VALID  
Figure 23. Serial Peripheral Interface (SPI) Port—Slave Timing  
Rev. D  
|
Page 38 of 60  
|
August 2006  
ADSP-BF531/ADSP-BF532  
Universal Asynchronous Receiver-Transmitter  
(UART) Port—Receive and Transmit Timing  
Figure 24 describes UART port receive and transmit operations.  
The maximum baud rate is SCLK/16. As shown in Figure 24  
there is some latency between the generation internal UART  
interrupts and the external data operations. These latencies are  
negligible at the data transmission rates for the UART.  
CLKOUT  
(SAMPLE CLOCK)  
RXD  
DATA[8:5]  
STOP  
RECEIVE  
INTERNAL  
UART RECEIVE  
INTERRUPT  
UART RECEIVE BIT SET BY DATA STOP;  
CLEARED BY FIFO READ  
START  
TXD  
DATA[8:5]  
STOP[2:1]  
TRANSMIT  
INTERNAL  
UART TRANSMIT  
INTERRUPT  
UART TRANSMIT BIT SET BY PROGRAM;  
CLEARED BY WRITE TO TRANSMIT  
Figure 24. UART Port—Receive and Transmit Timing  
Rev. D  
|
Page 39 of 60  
|
August 2006  
ADSP-BF531/ADSP-BF532  
Programmable Flags Cycle Timing  
Table 27 and Figure 25 describe programmable flag operations.  
Table 27. Programmable Flags Cycle Timing  
VDDEXT = 1.8 V VDDEXT = 2.5 V/3.3 V  
Parameter  
Min  
Max Min  
Max  
Unit  
ns  
Timing Requirement  
tWFI  
Switching Characteristic  
tDFO Flag Output Delay from CLKOUT Low  
Flag Input Pulse Width  
tSCLK + 1  
tSCLK + 1  
6
6
ns  
CLKOUT  
tDFO  
PF (OUTPUT)  
FLAG OUTPUT  
FLAG INPUT  
tWFI  
PF (INPUT)  
Figure 25. Programmable Flags Cycle Timing  
Rev. D  
|
Page 40 of 60  
|
August 2006  
ADSP-BF531/ADSP-BF532  
Timer Cycle Timing  
Table 28 and Figure 26 describe timer expired operations. The  
input signal is asynchronous in width capture mode and exter-  
nal clock mode and has an absolute maximum input frequency  
of fSCLK/2 MHz.  
Table 28. Timer Cycle Timing  
VDDEXT = 1.8 V VDDEXT = 2.5 V/3.3 V  
Parameter  
Min Max  
Min  
Max  
Unit  
Timing Characteristics  
tWL  
Timer Pulse Width Input Low1 (Measured in SCLK Cycles)  
1
1
1
1
SCLK  
SCLK  
tWH Timer Pulse Width Input High1 (Measured in SCLK Cycles)  
Switching Characteristic  
tHTO Timer Pulse Width Output2 (Measured in SCLK Cycles)  
1
(232–1)  
1
(232–1)  
SCLK  
1 The minimum pulse widths apply for TMRx input pins in width capture and external clock modes. They also apply to the PF1 or PPI_CLK input pins in PWM output mode.  
2 The minimum time for tHTO is one cycle, and the maximum time for tHTO equals (232–1) cycles.  
CLKOUT  
tHTO  
TMRx  
(PWM OUTPUT MODE)  
TMRx  
tWL  
tWH  
(WIDTH CAPTURE AND  
EXTERNAL CLOCK MODES)  
Figure 26. Timer PWM_OUT Cycle Timing  
Rev. D  
|
Page 41 of 60  
|
August 2006  
ADSP-BF531/ADSP-BF532  
JTAG Test and Emulation Port Timing  
Table 29 and Figure 27 describe JTAG port operations.  
Table 29. JTAG Port Timing  
VDDEXT = 1.8 V VDDEXT = 2.5 V/3.3 V  
Parameter  
Min Max Min  
Max  
Unit  
Timing Requirements  
tTCK  
TCK Period  
20  
4
20  
4
ns  
tSTAP  
tHTAP  
tSSYS  
tHSYS  
tTRSTW  
TDI, TMS Setup Before TCK High  
TDI, TMS Hold After TCK High  
System Inputs Setup Before TCK High1  
System Inputs Hold After TCK High1  
TRST Pulse Width2 (Measured in TCK Cycles)  
ns  
4
4
ns  
4
4
ns  
5
5
ns  
4
4
TCK  
Switching Characteristics  
tDTDO TDO Delay from TCK Low  
tDSYS  
System Outputs Delay After TCK Low3  
10  
12  
10  
12  
ns  
ns  
0
0
1 System Inputs = DATA15–0, ARDY, TMR2–0, PF15–0, PPI_CLK, RSCLK0–1, RFS0–1, DR0PRI, DR0SEC, TSCLK0–1, TFS0–1, DR1PRI, DR1SEC, MOSI, MISO, SCK, RX,  
RESET, NMI, BMODE1–0, BR, PP3–0.  
2 50 MHz maximum  
3 System Outputs = DATA15–0, ADDR19–1, ABE1–0, AOE, ARE, AWE, AMS3–0, SRAS, SCAS, SWE, SCKE, CLKOUT, SA10, SMS, TMR2–0, PF15–0, RSCLK0–1, RFS0–1,  
TSCLK0–1, TFS0–1, DT0PRI, DT0SEC, DT1PRI, DT1SEC, MOSI, MISO, SCK, TX, BG, BGH, PPI3–0.  
tTCK  
TCK  
tSTAP  
tHTAP  
TMS  
TDI  
tDTDO  
TDO  
tSSYS  
tHSYS  
SYSTEM  
INPUTS  
tDSYS  
SYSTEM  
OUTPUTS  
Figure 27. JTAG Port Timing  
Rev. D  
|
Page 42 of 60  
|
August 2006  
ADSP-BF531/ADSP-BF532  
OUTPUT DRIVE CURRENTS  
150  
100  
50  
Figure 28 through Figure 39 show typical current-voltage char-  
acteristics for the output drivers of the ADSP-BF531/  
ADSP-BF532 processor. The curves represent the current drive  
capability of the output drivers as a function of output voltage.  
VDDEXT = 2.75V  
VDDEXT = 2.50V  
VDDEXT = 2.25V  
150  
0
–50  
VOH  
VDDEXT = 2.75V  
VDDEXT = 2.50V  
100  
50  
VDDEXT = 2.25V  
–100  
–150  
VOL  
0
–50  
VOH  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
SOURCE VOLTAGE (V)  
Figure 31. Drive Current B (VDDEXT = 2.5 V)  
VOL  
–100  
–150  
80  
60  
V
V
= 1.9V  
= 1.8V  
= 1.7V  
DDEXT  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
DDEXT  
DDEXT  
V
40  
SOURCE VOLTAGE (V)  
Figure 28. Drive Current A (VDDEXT = 2.5 V)  
20  
0
80  
60  
V
V
= 1.9V  
= 1.8V  
= 1.7V  
-20  
-40  
-60  
-80  
DDEXT  
DDEXT  
DDEXT  
V
40  
20  
0
0
0.5  
1.0  
1.5  
2.0  
SOURCE VOLTAGE (V)  
-20  
-40  
-60  
-80  
Figure 32. Drive Current B (VDDEXT = 1.8 V)  
150  
100  
50  
VDDEXT = 3.65V  
VDDEXT = 2.95V  
0
0.5  
1.0  
1.5  
2.0  
SOURCE VOLTAGE (V)  
VDDEXT = 3.30V  
Figure 29. Drive Current A (VDDEXT = 1.8 V)  
150  
100  
50  
0
VDDEXT = 3.65V  
DDEXT = 3.30V  
VOH  
V
VDDEXT = 2.95V  
–50  
–100  
–150  
VOL  
0
VOH  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
–50  
–100  
–150  
SOURCE VOLTAGE (V)  
Figure 33. Drive Current B (VDDEXT = 3.3 V)  
VOL  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
SOURCE VOLTAGE (V)  
Figure 30. Drive Current A (VDDEXT = 3.3 V)  
Rev. D  
|
Page 43 of 60  
|
August 2006  
ADSP-BF531/ADSP-BF532  
60  
40  
20  
100  
VDDEXT = 2.75V  
VDDEXT = 2.50V  
VDDEXT = 2.25V  
VDDEXT = 2.75V  
VDDEXT = 2.50V  
VDDEXT = 2.25V  
80  
60  
40  
20  
0
0
–20  
–40  
–60  
VOH  
VOH  
–20  
–40  
–60  
VOL  
VOL  
80  
–100  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
SOURCE VOLTAGE (V)  
SOURCE VOLTAGE (V)  
Figure 34. Drive Current C (VDDEXT = 2.5 V)  
Figure 37. Drive Current D (VDDEXT = 2.5 V)  
30  
60  
40  
20  
0
V
V
= 1.9V  
DDEXT  
= 1.8V  
DDEXT  
DDEXT  
20  
V
= 1.9V  
= 1.8V  
= 1.7V  
DDEXT  
DDEXT  
V
= 1.7V  
V
V
10  
0
DDEXT  
-10  
-20  
-20  
-40  
-30  
-40  
-60  
0
0
0.5  
1.0  
1.5  
2.0  
0.5  
1.0  
1.5  
2.0  
SOURCE VOLTAGE (V)  
SOURCE VOLTAGE (V)  
Figure 38. Drive Current D (VDDEXT = 1.8 V)  
Figure 35. Drive Current C (VDDEXT = 1.8 V)  
150  
100  
50  
100  
80  
60  
40  
20  
V
V
DDEXT = 3.65V  
DDEXT = 3.30V  
V
DDEXT = 3.65V  
VDDEXT = 3.30V  
VDDEXT = 2.95V  
VDDEXT = 2.95V  
0
VOH  
0
–20  
–40  
–60  
VOH  
–50  
VOL  
–100  
VOL  
–150  
80  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
–100  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
SOURCE VOLTAGE (V)  
SOURCE VOLTAGE (V)  
Figure 39. Drive Current D (VDDEXT = 3.3 V)  
Figure 36. Drive Current C (VDDEXT = 3.3 V)  
Rev. D  
|
Page 44 of 60  
|
August 2006  
ADSP-BF531/ADSP-BF532  
The time for the voltage on the bus to decay by V is dependent  
on the capacitive load CL and the load current II. This decay time  
can be approximated by the equation:  
POWER DISSIPATION  
Many operating conditions can affect power dissipation. System  
designers should refer to EE-229: Estimating Power for  
ADSP-BF531/ADSP-BF532/ADSP-BF533 Blackfin Processors on  
the Analog Devices website (www.analog.com)—use site search  
on “EE-229.” This document provides detailed information for  
optimizing your design for lowest power.  
tDECAY = (CLV) ⁄ IL  
The time tDECAY is calculated with test loads CL and IL, and with  
V equal to 0.1 V for VDDEXT (nominal) = 1.8 V or 0.5 V for  
V
DDEXT (nominal) = 2.5 V/3.3 V.  
See the ADSP-BF53x Blackfin Processor Hardware Reference  
Manual for definitions of the various operating modes and for  
instructions on how to minimize system power.  
The time tDIS_MEASURED is the interval from when the reference  
signal switches, to when the output voltage decays V from the  
measured output high or output low voltage.  
TEST CONDITIONS  
Example System Hold Time Calculation  
All timing parameters appearing in this data sheet were mea-  
sured under the conditions described in this section. Figure 40  
shows the measurement point for ac measurements (except out-  
put enable/disable). The measurement point VMEAS is 0.95 V for  
VDDEXT (nominal) = 1.8 V, and 1.5 V for  
To determine the data output hold time in a particular system,  
first calculate tDECAY using the equation given above. Choose V  
to be the difference between the ADSP-BF531/ADSP-BF532  
processor’s output voltage and the input threshold for the  
device requiring the hold time. CL is the total bus capacitance  
(per data line), and IL is the total leakage or three-state current  
(per data line). The hold time will be tDECAY plus the various out-  
put disable times as specified in the Timing Specifications on  
Page 23 (for example tDSDAT for an SDRAM write cycle as shown  
in SDRAM Interface Timing on Page 27).  
V
DDEXT (nominal) = 2.5 V/3.3 V.  
INPUT  
OR  
OUTPUT  
VMEAS  
VMEAS  
Figure 40. Voltage Reference Levels for AC  
Measurements (Except Output Enable/Disable)  
REFERENCE  
SIGNAL  
Output Enable Time Measurement  
tDIS_MEASURED  
tENA_MEASURED  
Output pins are considered to be enabled when they have made  
a transition from a high impedance state to the point when they  
start driving.  
tDIS  
tENA  
VOH  
VOH(MEASURED)  
(MEASURED)  
VOH (MEASURED) ؊V  
VOL (MEASURED) + V  
VTRIP(HIGH)  
VTRIP(LOW)  
The output enable time tENA is the interval from the point when a  
reference signal reaches a high or low voltage level to the point  
when the output starts driving as shown on the right side of  
Figure 41.  
VOL  
VOL(MEASURED)  
(MEASURED)  
tDECAY  
tTRIP  
The time tENA MEASURED is the interval, from when the reference sig-  
nal switches,_to when the output voltage reaches VTRIP(high) or  
VTRIP (low). For VDDEXT (nominal) = 1.8 V—VTRIP (high) is 1.3 V  
and VTRIP (low) is 0.7 V. For VDDEXT (nominal) = 2.5 V/3.3 V—  
OUTPUT STOPS DRIVING  
OUTPUT STARTS DRIVING  
HIGH IMPEDANCE STATE  
V
TRIP (high) is 2.0 V and VTRIP (low) is 1.0 V . Time tTRIP is the  
Figure 41. Output Enable/Disable  
interval from when the output starts driving to when the output  
reaches the VTRIP (high) or VTRIP (low) trip voltage.  
50  
TO  
OUTPUT  
PIN  
V
LOAD  
Time tENA is calculated as shown in the equation:  
tENA = tENA_MEASURED tTRIP  
30pF  
If multiple pins (such as the data bus) are enabled, the measure-  
ment value is that of the first pin to start driving.  
Figure 42. Equivalent Device Loading for AC Measurements  
(Includes All Fixtures)  
Output Disable Time Measurement  
Output pins are considered to be disabled when they stop driv-  
ing, go into a high impedance state, and start to decay from their  
output high or low voltage. The output disable time tDIS is the  
difference between tDIS_MEASURED and tDECAY as shown on the left  
Capacitive Loading  
Output delays and holds are based on standard capacitive loads:  
30 pF on all pins (see Figure 42). VLOAD is 0.95 V for VDDEXT  
(nominal) = 1.8 V, and 1.5 V for VDDEXT (nominal) =  
2.5 V/3.3 V. Figure 43 on Page 46 through Figure 54 on Page 48  
show how output rise time varies with capacitance. The delay  
side of Figure 40.  
tDIS = tDIS_MEASURED tDECAY  
Rev. D  
|
Page 45 of 60  
|
August 2006  
ADSP-BF531/ADSP-BF532  
and hold specifications given should be derated by a factor  
derived from these figures. The graphs in these figures may not  
be linear outside the ranges shown.  
ABE0 (133MHz DRIVER), VDDEXT (MAX) = 3.65V  
12  
10  
8
RISE TIME  
ABEB0 (133MHz DRIVER), V  
RISE TIME  
= 1.7V  
DDEXT  
16  
14  
12  
10  
8
FALL TIME  
6
4
FALL TIME  
2
6
0
0
50  
100  
150  
200  
250  
4
2
0
LOAD CAPACITANCE (pF)  
Figure 45. Typical Rise and Fall Times (10% to 90%) versus Load Capacitance  
for Driver A at VDDEXT = 3.65 V  
0
50  
100  
150  
200  
250  
LOAD CAPACITANCE (pF)  
CLKOUT (CLKOUT DRIVER), V  
DDEXT  
= 1.7V  
14  
12  
10  
8
Figure 43. Typical Rise and Fall Times (10% to 90%) versus Load Capacitance  
for Driver A at VDDEXT = 1.8 V  
ABE_B0 (133MHz DRIVER), VDDEXT (MIN) = 2.25V  
RISE TIME  
14  
12  
RISE TIME  
FALL TIME  
10  
6
FALL TIME  
8
4
6
4
2
0
0
50  
100  
150  
200  
250  
2
0
LOAD CAPACITANCE (pF)  
Figure 46. Typical Rise and Fall Times (10% to 90%) versus Load Capacitance  
for Driver B at VDDEXT = 1.8 V  
0
50  
100  
150  
200  
250  
LOAD CAPACITANCE (pF)  
Figure 44. Typical Rise and Fall Times (10% to 90%) versus Load Capacitance  
for Driver A at VDDEXT = 2.25 V  
Rev. D  
|
Page 46 of 60  
|
August 2006  
ADSP-BF531/ADSP-BF532  
TMR0 (33MHz DRIVER), V  
DDEXT  
= 1.7V  
CLKOUT (CLKOUT DRIVER), VDDEXT (MIN) = 2.25V  
30  
25  
20  
15  
10  
5
12  
10  
RISE TIME  
RISE TIME  
8
6
4
2
0
FALL TIME  
FALL TIME  
0
50  
100  
150  
200  
250  
0
LOAD CAPACITANCE (pF)  
0
50  
100  
150  
200  
250  
LOAD CAPACITANCE (pF)  
Figure 47. Typical Rise and Fall Times (10% to 90%) versus Load Capacitance  
for Driver B at VDDEXT = 2.25 V  
Figure 49. Typical Rise and Fall Times (10% to 90%) versus Load Capacitance  
for Driver C at VDDEXT = 1.8 V  
CLKOUT (CLKOUT DRIVER), VDDEXT (MAX) = 3.65V  
10  
TMR0 (33MHz DRIVER), VDDEXT (MIN) = 2.25V  
30  
9
8
25  
RISE TIME  
7
RISE TIME  
20  
6
FALL TIME  
5
15  
FALL TIME  
4
3
2
1
0
10  
5
0
50  
100  
150  
200  
250  
0
LOAD CAPACITANCE (pF)  
0
50  
100  
150  
200  
250  
LOAD CAPACITANCE (pF)  
Figure 48. Typical Rise and Fall Times (10% to 90%) versus Load Capacitance  
for Driver B at VDDEXT = 3.65 V  
Figure 50. Typical Rise and Fall Times (10% to 90%) versus Load Capacitance  
for Driver C at VDDEXT = 2.25 V  
Rev. D  
|
Page 47 of 60  
|
August 2006  
ADSP-BF531/ADSP-BF532  
SCK (66MHz DRIVER), VDDEXT (MAX) = 3.65V  
TMR0 (33MHz DRIVER), VDDEXT (MAX) = 3.65V  
14  
20  
18  
12  
10  
8
16  
RISE TIME  
RISE TIME  
14  
12  
FALL TIME  
FALL TIME  
10  
8
6
4
2
0
6
4
2
0
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
LOAD CAPACITANCE (pF)  
LOAD CAPACITANCE (pF)  
Figure 54. Typical Rise and Fall Times (10% to 90%) versus Load Capacitance  
for Driver D at VDDEXT = 3.65 V  
Figure 51. Typical Rise and Fall Times (10% to 90%) versus Load Capacitance  
for Driver C at VDDEXT = 3.65 V  
ENVIRONMENTAL CONDITIONS  
SCK (66MHz DRIVER), V  
DDEXT  
= 1.7V  
18  
16  
14  
12  
10  
8
To determine the junction temperature on the application  
printed circuit board use:  
RISE TIME  
TJ = TCASE + JT × PD)  
where:  
FALL TIME  
TJ = junction temperature (؇C).  
T
CASE = case temperature (؇C) measured by customer at top  
center of package.  
6
ΨJT = from Table 30 through Table 32.  
4
PD = power dissipation (see Power Dissipation on Page 45 for  
the method to calculate PD).  
2
Values of θJA are provided for package comparison and printed  
circuit board design considerations. θJA can be used for a first  
order approximation of TJ by the equation:  
0
0
50  
100  
150  
200  
250  
LOAD CAPACITANCE (pF)  
Figure 52. Typical Rise and Fall Times (10% to 90%) versus Load Capacitance  
for Driver D at VDDEXT = 1.8 V  
TJ = TA + JA × PD)  
where:  
TA = ambient temperature (؇C).  
SCK (66MHz DRIVER), VDDEXT (MIN) = 2.25V  
18  
In Table 30 through Table 32, airflow measurements comply  
with JEDEC standards JESD51–2 and JESD51–6, and the junc-  
tion-to-board measurement complies with JESD51–8. The  
junction-to-case measurement complies with MIL-STD-883  
(Method 1012.1). All measurements use a 2S2P JEDEC test  
board.  
16  
14  
RISE TIME  
12  
10  
FALL TIME  
8
6
4
2
0
0
50  
100  
150  
200  
250  
LOAD CAPACITANCE (pF)  
Figure 53. Typical Rise and Fall Times (10% to 90%) versus Load Capacitance  
for Driver D at VDDEXT = 2.25 V  
Rev. D  
|
Page 48 of 60  
|
August 2006  
ADSP-BF531/ADSP-BF532  
Thermal resistance θJA in Table 30 through Table 32 is the figure  
of merit relating to performance of the package and board in a  
convective environment. θJMA represents the thermal resistance  
under two conditions of airflow. ΨJT represents the correlation  
between TJ and TCASE  
Table 30. Thermal Characteristics for BC-160 Package  
Parameter Condition Typical Unit  
.
θJA  
0 Linear m/s Airflow  
27.1  
23.85  
22.7  
7.26  
0.14  
0.26  
0.35  
؇C/W  
؇C/W  
؇C/W  
؇C/W  
؇C/W  
؇C/W  
؇C/W  
θJMA  
θJMA  
θJC  
1 Linear m/s Airflow  
2 Linear m/s Airflow  
Not Applicable  
ΨJT  
ΨJT  
ΨJT  
0 Linear m/s Airflow  
1 Linear m/s Airflow  
2 Linear m/s Airflow  
Table 31. Thermal Characteristics for ST-176-1 Package  
Parameter Condition Typical Unit  
θJA  
0 Linear m/s Airflow  
34.9  
33.0  
32.0  
0.50  
0.75  
1.00  
؇C/W  
؇C/W  
؇C/W  
؇C/W  
؇C/W  
؇C/W  
θJMA  
θJMA  
ΨJT  
ΨJT  
ΨJT  
1 Linear m/s Airflow  
2 Linear m/s Airflow  
0 Linear m/s Airflow  
1 Linear m/s Airflow  
2 Linear m/s Airflow  
Table 32. Thermal Characteristics for B-169 Package  
Parameter Condition Typical Unit  
θJA  
0 Linear m/s Airflow  
22.8  
20.3  
19.3  
10.39  
0.59  
0.88  
1.37  
؇C/W  
؇C/W  
؇C/W  
؇C/W  
؇C/W  
؇C/W  
؇C/W  
θJMA  
θJMA  
θJC  
1 Linear m/s Airflow  
2 Linear m/s Airflow  
Not Applicable  
ΨJT  
ΨJT  
ΨJT  
0 Linear m/s Airflow  
1 Linear m/s Airflow  
2 Linear m/s Airflow  
Rev. D  
|
Page 49 of 60  
|
August 2006  
ADSP-BF531/ADSP-BF532  
160-BALL BGA PINOUT  
Table 33 lists the BGA pinout by signal. Table 34 on Page 51  
lists the BGA pinout by ball number.  
Table 33. 160-Ball Mini-BGA Ball Assignment (Alphabetically by Signal)  
Signal  
ABE0  
Ball No.  
H13  
H12  
J14  
Signal  
DATA4  
DATA5  
DATA6  
DATA7  
DATA8  
DATA9  
DATA10  
DATA11  
DATA12  
DATA13  
DATA14  
DATA15  
DR0PRI  
DR0SEC  
DR1PRI  
DR1SEC  
DT0PRI  
DT0SEC  
DT1PRI  
DT1SEC  
EMU  
Ball No.  
N8  
Signal  
GND  
GND  
GND  
GND  
GND  
GND  
MISO  
MOSI  
NMI  
Ball No.  
L6  
Signal  
SCK  
Ball No.  
D1  
ABE1  
P8  
L8  
SCKE  
B13  
C13  
D13  
D12  
P2  
ADDR1  
ADDR2  
ADDR3  
ADDR4  
ADDR5  
ADDR6  
ADDR7  
ADDR8  
ADDR9  
ADDR10  
ADDR11  
ADDR12  
ADDR13  
ADDR14  
ADDR15  
ADDR16  
ADDR17  
ADDR18  
ADDR19  
AMS0  
M7  
N7  
L10  
M4  
M10  
P14  
E2  
SMS  
K14  
L14  
J13  
SRAS  
P7  
SWE  
M6  
N6  
TCK  
K13  
L13  
K12  
L12  
M12  
M13  
M14  
N14  
N13  
N12  
M11  
N11  
P13  
P12  
P11  
E14  
F14  
F13  
G12  
G13  
E13  
G14  
H14  
P10  
N10  
N4  
TDI  
M3  
N3  
P6  
D3  
B10  
D2  
C1  
TDO  
M5  
N5  
TFS0  
H3  
PF0  
TFS1  
E1  
P5  
PF1  
TMR0  
L2  
P4  
PF2  
C2  
TMR1  
M1  
K2  
K1  
PF3  
C3  
TMR2  
J2  
PF4  
B1  
TMS  
N2  
G3  
PF5  
B2  
TRST  
N1  
F3  
PF6  
B3  
TSCLK0  
TSCLK1  
TX  
J1  
H1  
PF7  
B4  
F1  
H2  
PF8  
A2  
A3  
A4  
A5  
B5  
K3  
F2  
PF9  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDINT  
VDDINT  
VDDINT  
VDDINT  
VDDINT  
VDDINT  
VDDRTC  
VROUT0  
VROUT1  
XTAL  
A1  
E3  
PF10  
PF11  
PF12  
PF13  
PF14  
PF15  
PPI_CLK  
PPI0  
PPI1  
PPI2  
PPI3  
RESET  
RFS0  
RFS1  
RSCLK0  
RSCLK1  
RTXI  
RTXO  
RX  
C7  
M2  
A10  
A14  
B11  
C4  
C12  
D5  
GND  
AMS1  
GND  
B6  
D9  
AMS2  
GND  
A6  
C6  
F12  
G4  
AMS3  
GND  
AOE  
GND  
C5  
C9  
J4  
ARDY  
GND  
C11  
D4  
C8  
J12  
L7  
ARE  
GND  
B8  
AWE  
GND  
D7  
A7  
B7  
L11  
P1  
BG  
GND  
D8  
BGH  
GND  
D10  
D11  
F4  
C10  
J3  
D6  
BMODE0  
BMODE1  
BR  
GND  
E4  
P3  
GND  
G2  
L1  
E11  
J11  
L4  
D14  
A12  
B14  
M9  
GND  
F11  
G11  
H4  
CLKIN  
GND  
G1  
A9  
A8  
L3  
CLKOUT  
DATA0  
DATA1  
DATA2  
DATA3  
GND  
L9  
GND  
H11  
K4  
B9  
N9  
GND  
A13  
B12  
A11  
P9  
GND  
K11  
L5  
SA10  
SCAS  
E12  
C14  
M8  
GND  
Rev. D  
|
Page 50 of 60  
|
August 2006  
ADSP-BF531/ADSP-BF532  
Table 34. 160-Ball Mini-BGA Ball Assignment (Numerically by Ball Number)  
Ball No.  
A1  
Signal  
VDDEXT  
PF8  
Ball No.  
C13  
C14  
D1  
Signal  
SMS  
Ball No.  
H1  
Signal  
DT0PRI  
DT0SEC  
TFS0  
Ball No.  
M3  
M4  
M5  
M6  
M7  
M8  
M9  
M10  
M11  
M12  
M13  
M14  
N1  
Signal  
TDI  
A2  
SCAS  
H2  
GND  
A3  
PF9  
SCK  
H3  
DATA12  
DATA9  
DATA6  
DATA3  
DATA0  
GND  
A4  
PF10  
PF11  
PF14  
PPI2  
D2  
PF0  
H4  
GND  
A5  
D3  
MOSI  
GND  
H11  
H12  
H13  
H14  
J1  
GND  
A6  
D4  
ABE1  
A7  
D5  
VDDEXT  
VDDINT  
GND  
ABE0  
A8  
RTXO  
RTXI  
D6  
AWE  
A9  
D7  
TSCLK0  
DR0SEC  
RFS0  
ADDR15  
ADDR9  
ADDR10  
ADDR11  
TRST  
A10  
A11  
A12  
A13  
A14  
B1  
GND  
D8  
GND  
J2  
XTAL  
CLKIN  
VROUT0  
GND  
D9  
VDDEXT  
GND  
J3  
D10  
D11  
D12  
D13  
D14  
E1  
J4  
VDDEXT  
VDDINT  
VDDEXT  
ADDR4  
ADDR1  
DR0PRI  
TMR2  
GND  
J11  
J12  
J13  
J14  
K1  
SWE  
N2  
TMS  
PF4  
SRAS  
N3  
TDO  
B2  
PF5  
BR  
N4  
BMODE0  
DATA13  
DATA10  
DATA7  
DATA4  
DATA1  
BGH  
B3  
PF6  
TFS1  
N5  
B4  
PF7  
E2  
MISO  
DT1SEC  
VDDINT  
VDDINT  
SA10  
K2  
N6  
B5  
PF12  
PF13  
PPI3  
E3  
K3  
TX  
N7  
B6  
E4  
K4  
GND  
N8  
B7  
E11  
E12  
E13  
E14  
F1  
K11  
K12  
K13  
K14  
L1  
GND  
N9  
B8  
PPI1  
ADDR7  
ADDR5  
ADDR2  
RSCLK0  
TMR0  
N10  
N11  
N12  
N13  
N14  
P1  
B9  
VDDRTC  
NMI  
ARDY  
AMS0  
TSCLK1  
DT1PRI  
DR1SEC  
GND  
ADDR16  
ADDR14  
ADDR13  
ADDR12  
VDDEXT  
TCK  
B10  
B11  
B12  
B13  
B14  
C1  
GND  
VROUT1  
SCKE  
CLKOUT  
PF1  
F2  
L2  
F3  
L3  
RX  
F4  
L4  
VDDINT  
GND  
P2  
F11  
F12  
F13  
F14  
G1  
GND  
L5  
P3  
BMODE1  
DATA15  
DATA14  
DATA11  
DATA8  
DATA5  
DATA2  
BG  
C2  
PF2  
VDDEXT  
AMS2  
AMS1  
RSCLK1  
RFS1  
L6  
GND  
P4  
C3  
PF3  
L7  
VDDEXT  
GND  
P5  
C4  
GND  
L8  
P6  
C5  
GND  
L9  
VDDINT  
GND  
P7  
C6  
PF15  
VDDEXT  
PPI0  
G2  
L10  
L11  
L12  
L13  
L14  
M1  
M2  
P8  
C7  
G3  
DR1PRI  
VDDEXT  
GND  
VDDEXT  
ADDR8  
ADDR6  
ADDR3  
TMR1  
P9  
C8  
G4  
P10  
P11  
P12  
P13  
P14  
C9  
PPI_CLK  
RESET  
GND  
G11  
G12  
G13  
G14  
ADDR19  
ADDR18  
ADDR17  
GND  
C10  
C11  
C12  
AMS3  
AOE  
VDDEXT  
ARE  
EMU  
Rev. D  
|
Page 51 of 60  
|
August 2006  
ADSP-BF531/ADSP-BF532  
Figure 55 lists the top view of the BGA ball configuration.  
Figure 56 lists the bottom view of the BGA ball configuration.  
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
A
B
C
D
E
F
G
H
J
K
L
M
N
P
KEY:  
VDDINT  
VDDEXT  
VDDRTC  
VROUT  
GND  
I/O  
Figure 55. 160-Ball Mini-BGA Ground Configuration (Top View)  
14 13 12 11 10  
9
8
7
6
5
4
3
2
1
A
B
C
D
E
F
G
H
J
K
L
M
N
P
KEY:  
VDDINT  
VDDRTC  
VROUT  
GND  
VDDEXT  
I/O  
Figure 56. 160-Ball Mini-BGA Ground Configuration (Bottom View)  
Rev. D  
|
Page 52 of 60  
|
August 2006  
ADSP-BF531/ADSP-BF532  
169-BALL PBGA PINOUT  
Table 35 lists the PBGA pinout by signal. Table 36 on Page 54  
lists the PBGA pinout by ball number.  
Table 35. 169-Ball PBGA Ball Assignment (Alphabetically by Signal)  
Signal  
ABE0  
Ball No.  
H16  
H17  
J16  
Signal  
DATA4  
DATA5  
DATA6  
DATA7  
DATA8  
DATA9  
DATA10  
DATA11  
DATA12  
DATA13  
DATA14  
DATA15  
DR0PRI  
DR0SEC  
DR1PRI  
DR1SEC  
DT0PRI  
DT0SEC  
DT1PRI  
DT1SEC  
EMU  
Ball No.  
U12  
U11  
T10  
U10  
T9  
Signal  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
MISO  
MOSI  
NMI  
Ball No.  
K9  
Signal  
RTXI  
Ball No.  
A10  
A11  
T1  
Signal  
Ball No.  
K6  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VROUT0  
VROUT1  
XTAL  
ABE1  
K10  
K11  
L7  
RTXO  
RX  
L6  
ADDR1  
ADDR2  
ADDR3  
ADDR4  
ADDR5  
ADDR6  
ADDR7  
ADDR8  
ADDR9  
ADDR10  
ADDR11  
ADDR12  
ADDR13  
ADDR14  
ADDR15  
ADDR16  
ADDR17  
ADDR18  
ADDR19  
AMS0  
M6  
J17  
SA10  
SCAS  
SCK  
B15  
A16  
D1  
M7  
K16  
K17  
L16  
L17  
M16  
M17  
N17  
N16  
P17  
P16  
R17  
R16  
T17  
U15  
T15  
U16  
T14  
D17  
E16  
E17  
F16  
F17  
C16  
G16  
G17  
T13  
U17  
U5  
L8  
M8  
U9  
L9  
T2  
T8  
L10  
L11  
M9  
T16  
E2  
SCKE  
SMS  
B14  
A17  
A15  
B17  
U4  
B12  
B13  
A13  
U8  
U7  
SRAS  
SWE  
T7  
U6  
TCK  
T6  
E1  
TDI  
U3  
M2  
M1  
H1  
B11  
D2  
C1  
TDO  
T4  
PF0  
TFS0  
L1  
PF1  
TFS1  
G2  
H2  
PF2  
B1  
TMR0  
TMR1  
TMR2  
TMS  
R1  
K2  
PF3  
C2  
P2  
K1  
PF4  
A1  
A2  
B3  
P1  
F1  
PF5  
T3  
F2  
PF6  
TRST  
U2  
U1  
PF7  
A3  
B4  
TSCLK0  
TSCLK1  
TX  
L2  
GND  
B16  
F11  
G7  
PF8  
G1  
AMS1  
GND  
PF9  
A4  
B5  
R2  
AMS2  
GND  
PF10  
PF11  
PF12  
PF13  
PF14  
PF15  
PPI_CLK  
PPI0  
VDD  
F12  
G12  
H12  
J12  
K12  
L12  
M10  
M11  
M12  
B2  
AMS3  
GND  
G8  
A5  
VDD  
AOE  
GND  
G9  
A6  
VDD  
ARDY  
GND  
G10  
G11  
H7  
B6  
VDD  
ARE  
GND  
A7  
B7  
VDD  
AWE  
GND  
VDD  
BG  
GND  
H8  
B10  
B9  
VDD  
BGH  
GND  
H9  
VDD  
BMODE0  
BMODE1  
BR  
GND  
H10  
H11  
J7  
PPI1  
A9  
VDD  
T5  
GND  
PPI2  
B8  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
C17  
A14  
D16  
U14  
T12  
U13  
T11  
GND  
PPI3  
A8  
F6  
CLKIN  
GND  
J8  
RESET  
RFS0  
RFS1  
RSCLK0  
RSCLK1  
RTCVDD  
A12  
N1  
J1  
F7  
CLKOUT  
DATA0  
DATA1  
DATA2  
DATA3  
GND  
J9  
F8  
GND  
J10  
J11  
K7  
F9  
GND  
N2  
J2  
G6  
GND  
H6  
GND  
K8  
F10  
J6  
Rev. D  
|
Page 53 of 60  
|
August 2006  
ADSP-BF531/ADSP-BF532  
Table 36. 169-Ball PBGA Ball Assignment (Numerically by Ball Number)  
Ball No.  
A1  
Signal  
PF4  
Ball No.  
D16  
D17  
E1  
Signal  
CLKOUT  
AMS0  
MOSI  
Ball No.  
J2  
Signal  
RSCLK1  
VDDEXT  
GND  
Ball No.  
M12  
M16  
M17  
N1  
Signal  
VDD  
Ball No.  
U9  
Signal  
DATA9  
DATA7  
DATA5  
DATA4  
DATA2  
DATA0  
ADDR16  
ADDR18  
BGH  
A2  
PF5  
J6  
ADDR7  
ADDR8  
RFS0  
U10  
U11  
U12  
U13  
U14  
U15  
U16  
U17  
A3  
PF7  
J7  
A4  
PF9  
E2  
MISO  
J8  
GND  
A5  
PF11  
PF12  
PF14  
PPI3  
E16  
E17  
F1  
AMS1  
AMS2  
DT1PRI  
DT1SEC  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
RTCVDD  
GND  
J9  
GND  
N2  
RSCLK0  
ADDR10  
ADDR9  
TMR2  
A6  
J10  
J11  
J12  
J16  
J17  
K1  
GND  
N16  
N17  
P1  
A7  
GND  
A8  
F2  
VDD  
A9  
PPI1  
F6  
ADDR1  
ADDR2  
DT0SEC  
DT0PRI  
VDDEXT  
GND  
P2  
TMR1  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
B1  
RTXI  
RTXO  
RESET  
XTAL  
CLKIN  
SRAS  
SCAS  
SMS  
F7  
P16  
P17  
R1  
ADDR12  
ADDR11  
TMR0  
F8  
F9  
K2  
F10  
F11  
F12  
F16  
F17  
G1  
K6  
R2  
TX  
K7  
R16  
R17  
T1  
ADDR14  
ADDR13  
RX  
VDD  
K8  
GND  
AMS3  
AOE  
K9  
GND  
K10  
K11  
K12  
K16  
K17  
L1  
GND  
T2  
VDDEXT  
TMS  
PF2  
TSCLK1  
TFS1  
GND  
T3  
B2  
VDDEXT  
PF6  
G2  
VDD  
T4  
TDO  
B3  
G6  
VDDEXT  
GND  
ADDR3  
ADDR4  
TFS0  
T5  
BMODE1  
DATA15  
DATA13  
DATA10  
DATA8  
DATA6  
DATA3  
DATA1  
BG  
B4  
PF8  
G7  
T6  
B5  
PF10  
PF13  
PF15  
PPI2  
G8  
GND  
T7  
B6  
G9  
GND  
L2  
TSCLK0  
VDDEXT  
GND  
T8  
B7  
G10  
G11  
G12  
G16  
G17  
H1  
GND  
L6  
T9  
B8  
GND  
L7  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
U1  
B9  
PPI0  
VDD  
L8  
GND  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
C1  
PPI_CLK  
NMI  
ARE  
L9  
GND  
AWE  
L10  
L11  
L12  
L16  
L17  
M1  
M2  
M6  
M7  
M8  
M9  
M10  
M11  
GND  
VROUT0  
VROUT1  
SCKE  
SA10  
GND  
SWE  
DR1PRI  
DR1SEC  
VDDEXT  
GND  
GND  
ADDR19  
ADDR17  
GND  
H2  
VDD  
H6  
ADDR5  
ADDR6  
DR0SEC  
DR0PRI  
VDDEXT  
VDDEXT  
VDDEXT  
GND  
H7  
ADDR15  
EMU  
H8  
GND  
H9  
GND  
U2  
TRST  
PF1  
H10  
H11  
H12  
H16  
H17  
J1  
GND  
U3  
TDI  
C2  
PF3  
GND  
U4  
TCK  
C16  
C17  
D1  
ARDY  
BR  
VDD  
U5  
BMODE0  
DATA14  
DATA12  
DATA11  
ABE0  
U6  
SCK  
ABE1  
VDD  
U7  
D2  
PF0  
RFS1  
VDD  
U8  
Rev. D  
|
Page 54 of 60  
|
August 2006  
ADSP-BF531/ADSP-BF532  
A1 BALL PAD CORNER  
A
B
C
D
E
F
KEY  
V
G
H
J
GND  
I/O  
NC  
V
DDINT  
K
L
V
DDEXT  
ROUT  
M
N
P
R
T
U
2
4
6
8
10  
12  
14  
16  
1
3
5
7
9
11  
13  
15  
17  
TOP VIEW  
Figure 57. 169-Ball PBGA Ground Configuration (Top View)  
A1 BALL PAD CORNER  
A
B
C
D
KEY:  
V
V
GND  
I/O  
NC  
DDINT  
E
F
V
DDEXT  
ROUT  
G
H
J
K
L
M
N
P
R
T
U
17  
15  
13  
11  
9
7
5
3
1
16  
14  
12  
10  
8
6
4
2
BOTTOM VIEW  
Figure 58. 169-Ball PBGA Ground Configuration (Bottom View)  
Rev. D  
|
Page 55 of 60  
|
August 2006  
ADSP-BF531/ADSP-BF532  
176-LEAD LQFP PINOUT  
Table 37 lists the LQFP pinout by signal. Table 38 on Page 57  
lists the LQFP pinout by lead number.  
Table 37. 176-Lead LQFP Pin Assignment (Alphabetically by Signal)  
Signal  
ABE0  
Lead No.  
151  
150  
149  
148  
147  
146  
142  
141  
140  
139  
138  
137  
136  
135  
127  
126  
125  
124  
123  
122  
121  
161  
160  
159  
158  
154  
162  
153  
152  
119  
120  
96  
Signal  
DATA3  
DATA4  
DATA5  
DATA6  
DATA7  
DATA8  
DATA9  
DATA10  
DATA11  
DATA12  
DATA13  
DATA14  
DATA15  
DR0PRI  
DR0SEC  
DR1PRI  
DR1SEC  
DT0PRI  
DT0SEC  
DT1PRI  
DT1SEC  
EMU  
Lead No.  
113  
112  
110  
109  
108  
105  
104  
103  
102  
101  
100  
99  
Signal  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
MISO  
MOSI  
NMI  
Lead No.  
88  
Signal  
PPI_CLK  
PPI0  
Lead No.  
21  
Signal  
Lead No.  
71  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDINT  
VDDINT  
VDDINT  
VDDINT  
VDDINT  
VDDINT  
VDDINT  
VDDINT  
VDDRTC  
VROUT0  
VROUT1  
XTAL  
ABE1  
89  
22  
93  
ADDR1  
ADDR2  
ADDR3  
ADDR4  
ADDR5  
ADDR6  
ADDR7  
ADDR8  
ADDR9  
ADDR10  
ADDR11  
ADDR12  
ADDR13  
ADDR14  
ADDR15  
ADDR16  
ADDR17  
ADDR18  
ADDR19  
AMS0  
90  
PPI1  
23  
107  
118  
134  
145  
156  
171  
25  
91  
PPI2  
24  
92  
PPI3  
26  
97  
RESET  
RFS0  
13  
106  
117  
128  
129  
130  
131  
132  
133  
144  
155  
170  
174  
175  
176  
54  
75  
RFS1  
64  
RSCLK0  
RSCLK1  
RTXI  
76  
65  
52  
17  
66  
RTXO  
RX  
16  
80  
98  
82  
111  
143  
157  
168  
18  
74  
SA10  
SCAS  
SCK  
164  
166  
53  
73  
63  
62  
SCKE  
173  
172  
167  
165  
94  
68  
SMS  
5
67  
SRAS  
SWE  
4
59  
11  
58  
TCK  
83  
55  
TDI  
86  
AMS1  
GND  
1
14  
TDO  
87  
AMS2  
GND  
2
PF0  
51  
TFS0  
69  
AMS3  
GND  
3
PF1  
50  
TFS1  
60  
AOE  
GND  
7
PF2  
49  
TMR0  
TMR1  
TMR2  
TMS  
79  
ARDY  
GND  
8
PF3  
48  
78  
ARE  
GND  
9
PF4  
47  
77  
AWE  
GND  
15  
PF5  
46  
85  
BG  
GND  
19  
PF6  
38  
TRST  
84  
BGH  
GND  
30  
PF7  
37  
TSCLK0  
TSCLK1  
TX  
72  
BMODE0  
BMODE1  
BR  
GND  
39  
PF8  
36  
61  
95  
GND  
40  
PF9  
35  
81  
163  
10  
GND  
41  
PF10  
PF11  
PF12  
PF13  
PF14  
PF15  
34  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
VDDEXT  
6
CLKIN  
GND  
42  
33  
12  
CLKOUT  
DATA0  
DATA1  
DATA10  
169  
116  
115  
103  
GND  
43  
32  
20  
GND  
44  
29  
31  
GND  
56  
28  
45  
GND  
70  
27  
57  
Rev. D  
|
Page 56 of 60  
|
August 2006  
ADSP-BF531/ADSP-BF532  
Table 38. 176-Lead LQFP Pin Assignment (Numerically by Lead Number)  
Lead No.  
1
Signal  
GND  
Lead No.  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
Signal  
GND  
Lead No.  
81  
Signal  
TX  
Lead No.  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
Signal  
ADDR19  
ADDR18  
ADDR17  
ADDR16  
ADDR15  
ADDR14  
ADDR13  
GND  
Lead No.  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
Signal  
AMS0  
ARDY  
BR  
2
GND  
GND  
82  
RX  
3
GND  
GND  
83  
EMU  
4
VROUT1  
VROUT0  
VDDEXT  
GND  
GND  
84  
TRST  
SA10  
SWE  
5
VDDEXT  
PF5  
85  
TMS  
6
86  
TDI  
SCAS  
SRAS  
VDDINT  
CLKOUT  
GND  
7
PF4  
87  
TDO  
8
GND  
PF3  
88  
GND  
9
GND  
PF2  
89  
GND  
GND  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
CLKIN  
XTAL  
VDDEXT  
RESET  
NMI  
PF1  
90  
GND  
GND  
PF0  
91  
GND  
GND  
VDDEXT  
SMS  
VDDINT  
SCK  
92  
GND  
GND  
93  
VDDEXT  
TCK  
GND  
SCKE  
GND  
MISO  
94  
VDDEXT  
ADDR12  
ADDR11  
ADDR10  
ADDR9  
ADDR8  
ADDR7  
ADDR6  
ADDR5  
VDDINT  
GND  
GND  
MOSI  
95  
BMODE1  
BMODE0  
GND  
GND  
RTXO  
RTXI  
GND  
96  
GND  
VDDEXT  
DT1SEC  
DT1PRI  
TFS1  
97  
VDDRTC  
GND  
98  
DATA15  
DATA14  
DATA13  
DATA12  
DATA11  
DATA10  
DATA9  
DATA8  
GND  
99  
VDDEXT  
PPI_CLK  
PPI0  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
TSCLK1  
DR1SEC  
DR1PRI  
RFS1  
PPI1  
PPI2  
VDDINT  
PPI3  
RSCLK1  
VDDINT  
DT0SEC  
DT0PRI  
TFS0  
VDDEXT  
ADDR4  
ADDR3  
ADDR2  
ADDR1  
ABE1  
PF15  
VDDEXT  
DATA7  
DATA6  
DATA5  
VDDINT  
DATA4  
DATA3  
DATA2  
DATA1  
DATA0  
GND  
PF14  
PF13  
GND  
GND  
VDDEXT  
PF12  
VDDEXT  
TSCLK0  
DR0SEC  
DR0PRI  
RFS0  
ABE0  
AWE  
PF11  
ARE  
PF10  
AOE  
PF9  
GND  
PF8  
RSCLK0  
TMR2  
TMR1  
TMR0  
VDDINT  
VDDEXT  
VDDINT  
AMS3  
PF7  
PF6  
VDDEXT  
BG  
GND  
AMS2  
GND  
BGH  
AMS1  
Rev. D  
|
Page 57 of 60  
|
August 2006  
ADSP-BF531/ADSP-BF532  
OUTLINE DIMENSIONS  
Dimensions in the outline dimension figures are shown in  
millimeters.  
26.00 BSC SQ  
24.00 BSC SQ  
0.75  
0.60  
0.45  
133  
132  
176  
1
PIN 1  
0.27  
0.22  
0.17  
SEATING  
PLANE  
0.08 MAX LEAD  
COPLANARITY  
0.15  
0.05  
89  
88  
1.45  
1.40  
44  
45  
1.35  
1.60 MAX  
0.50 BSC  
LEAD PITCH  
DETAIL A  
DETAIL A  
TOP VIEW (PINS DOWN)  
NOTES  
1. DIMENSIONS IN MILLIMETERS  
2. ACTUAL POSITION OF EACH LEAD IS WITHIN 0.08 OF ITS  
IDEAL POSITION, WHEN MEASURED IN THE LATERAL DIRECTION.  
3. CENTER DIMENSIONS ARE NOMINAL  
Figure 59. Quad Flatpack (LQFP) ST-176-1  
12.00 BSC SQ  
A1 CORNER  
INDEX AREA  
1
14 12 10  
13 11  
8
6
4
2
9
7
5
3
A
B
C
D
E
F
G
H
J
BALL A1  
INDICATOR  
10.40  
BSC  
SQ  
K
L
M
N
P
TOP VIEW  
0.80 BSC  
BALL PITCH  
BOTTOM VIEW  
1.31  
1.21  
1.11  
1.70  
MAX  
DETAIL A  
SEATING  
PLANE  
0.12  
MAX  
COPLANARITY  
0.50  
0.45  
0.40  
0.40 NOM  
(NOTE 3)  
NOTES  
1. DIMENSIONS ARE IN MILLIMETERS.  
BALL DIAMETER  
2. COMPLIES WITH JEDEC REGISTERED OUTLINE  
MO-205, VARIATION AE WITH EXCEPTION OF  
THE BALL DIAMETER.  
DETAIL A  
3. MINIMUM BALL HEIGHT 0.25.  
Figure 60. Chip Scale Package Ball Grid Array (Mini-BGA) BC-160  
Rev. D  
|
Page 58 of 60  
|
August 2006  
ADSP-BF531/ADSP-BF532  
BOTTOM VIEW  
A1 BALL PAD CORNER  
19.00 BSC SQ  
16.00 BSC SQ  
1.00 BSC  
BALL PITCH  
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
16 14 12 10  
8
6
4
2
17 15 13 11  
9
7
5
3
1
TOP VIEW  
0.40 MIN  
2.50  
2.23  
1.97  
SIDE VIEW  
0.20 MAX  
COPLANARITY  
DETAIL A  
SEATING PLANE  
0.70  
0.60  
0.50  
DETAIL A  
BALL DIAMETER  
NOTES  
1. DIMENSIONS ARE IN MILLIMETERS.  
2. COMPLIES WITH JEDEC REGISTERED OUTLINE  
MS-034, VARIATION AAG-2  
.
3. MINIMUM BALL HEIGHT 0.40  
Figure 61. Plastic Ball Grid Array (PBGA) B-169  
SURFACE MOUNT DESIGN  
Table 39 is provided as an aid to PCB design. For industry-  
standard design recommendations, refer to IPC-7351,  
Generic Requirements for Surface Mount Design and Land Pat-  
tern Standard.  
Table 39. BGA Data for Use with Surface Mount Design  
Package  
Ball Attach Type  
Solder Mask Opening  
0.40 mm diameter  
0.43 mm diameter  
Ball Pad Size  
Chip Scale Package Ball Grid Array (Mini-BGA) BC-160  
Plastic Ball Grid Array (PBGA) B-169  
Solder Mask Defined  
Solder Mask Defined  
0.55 mm diameter  
0.56 mm diameter  
Rev. D  
|
Page 59 of 60  
|
August 2006  
ADSP-BF531/ADSP-BF532  
ORDERING GUIDE  
Temperature  
Package Instruction Operating Voltage  
Option Rate (Max) (Nom)  
Model  
Range1  
Package Description  
ADSP-BF532SBBC400  
–40°C to +85°C 160-Ball Chip Scale Package  
Ball Grid Array (Mini-BGA)  
BC-160 400 MHz  
BC-160 400 MHz  
BC-160 400 MHz  
BC-160 400 MHz  
1.2 V internal,  
1.8 V, 2.5 V or 3.3 V I/O  
ADSP-BF532SBBCZ4002  
–40°C to +85°C 160-Ball Chip Scale Package  
Ball Grid Array (Mini-BGA)  
1.2 V internal,  
1.8 V, 2.5 V or 3.3 V I/O  
ADSP-BF532WBBCZ-4A2, 3 –40°C to +85°C 160-Ball Chip Scale Package  
Ball Grid Array (Mini-BGA)  
ADSP-BF532WYBCZ-4A2, 3 –40°C to +105°C 160-Ball Chip Scale Package  
Ball Grid Array (Mini-BGA)  
1.2 V internal, 3.0 V or 3.3 V I/O  
1.2 V internal, 3.0 V or 3.3 V I/O  
ADSP-BF532SBST400  
ADSP-BF532SBSTZ4002  
ADSP-BF532WBSTZ-4A2, 3 –40°C to +85°C 176-Lead Quad Flatpack (LQFP)  
–40°C to +85°C 176-Lead Quad Flatpack (LQFP)  
–40°C to +85°C 176-Lead Quad Flatpack (LQFP)  
ST-176-1 400 MHz  
ST-176-1 400 MHz  
ST-176-1 400 MHz  
1.2 V internal, 2.5 V or 3.3 V I/O  
1.2 V internal, 2.5 V or 3.3 V I/O  
1.2 V internal, 3.0 V or 3.3 V I/O  
1.2 V internal, 2.5 V or 3.3 V I/O  
1.2 V internal, 2.5 V or 3.3 V I/O  
1.2 V internal, 3.0 V or 3.3 V I/O  
1.2 V internal, 3.0 V or 3.3 V I/O  
ADSP-BF532SBB400  
ADSP-BF532SBBZ4002  
–40°C to +85°C 169-Ball Plastic Ball Grid Array (PBGA) B-169  
400 MHz  
400 MHz  
400 MHz  
400 MHz  
–40°C to +85°C 169-Ball Plastic Ball Grid Array (PBGA) B-169  
ADSP-BF532WBBZ-4A2, 3 –40°C to +85°C 169-Ball Plastic Ball Grid Array (PBGA) B-169  
ADSP-BF532WYBZ-4A2, 3 –40°C to +105°C 169-Ball Plastic Ball Grid Array (PBGA) B-169  
ADSP-BF531SBBC400  
–40°C to +85°C 160-Ball Chip Scale Package  
Ball Grid Array (Mini-BGA)  
BC-160 400 MHz  
BC-160 400 MHz  
BC-160 400 MHz  
BC-160 400 MHz  
1.2 V internal,  
1.8 V, 2.5 V or 3.3 V I/O  
ADSP-BF531SBBCZ4002  
–40°C to +85°C 160-Ball Chip Scale Package  
Ball Grid Array (Mini-BGA)  
1.2 V internal,  
1.8 V, 2.5 V or 3.3 V I/O  
ADSP-BF531WBBCZ-4A2, 3 –40°C to +85°C 160-Ball Chip Scale Package  
Ball Grid Array (Mini-BGA)  
ADSP-BF531WYBCZ-4A2, 3 –40°C to +105°C 160-Ball Chip Scale Package  
Ball Grid Array (Mini-BGA)  
1.2 V internal, 3.0 V or 3.3 V I/O  
1.2 V internal, 3.0 V or 3.3 V I/O  
ADSP-BF531SBST400  
ADSP-BF531SBSTZ4002  
ADSP-BF531WBSTZ-4A2, 3 –40°C to +85°C 176-Lead Quad Flatpack (LQFP)  
–40°C to +85°C 176-Lead Quad Flatpack (LQFP)  
ST-176-1 400 MHz  
ST-176-1 400 MHz  
ST-176-1 400 MHz  
1.2 V internal, 2.5 V or 3.3 V I/O  
1.2 V internal, 2.5 V or 3.3 V I/O  
1.2 V internal, 3.0 V or 3.3 V I/O  
1.2 V internal, 2.5 V or 3.3 V I/O  
1.2 V internal, 2.5 V or 3.3 V I/O  
1.2 V internal, 3.0 V or 3.3 V I/O  
1.2 V internal, 3.0 V or 3.3 V I/O  
–40°C to +85°C 176-Lead Quad Flatpack (LQFP)  
ADSP-BF531SBB400  
ADSP-BF531SBBZ4002  
–40°C to +85°C 169-Ball Plastic Ball Grid Array (PBGA) B-169  
400 MHz  
400 MHz  
400 MHz  
400 MHz  
–40°C to +85°C 169-Ball Plastic Ball Grid Array (PBGA) B-169  
ADSP-BF531WBBZ-4A2, 3 –40°C to +85°C 169-Ball Plastic Ball Grid Array (PBGA) B-169  
ADSP-BF531WYBZ-4A2, 3 –40°C to +105°C 169-Ball Plastic Ball Grid Array (PBGA) B-169  
1 Referenced temperature is ambient temperature.  
2 Z = Pb-free part.  
3 Automotive grade part.  
©2006 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D03728-0-8/06(D)  
Rev. D  
|
Page 60 of 60  
|
August 2006  

相关型号:

ADSP-BF531_07

Blackfin㈢ Embedded Processor
ADI

ADSP-BF531_15

Blackfin Embedded Processor
ADI

ADSP-BF532

Blackfin Embedded Processor
ADI

ADSP-BF532SBB400

Blackfin Embedded Processor
ADI

ADSP-BF532SBBC-400

16-BIT, 40 MHz, OTHER DSP, PBGA160, MO-205AE, CSBGA-160
ROCHESTER

ADSP-BF532SBBC400

Blackfin Embedded Processor
ADI

ADSP-BF532SBBC400

16-BIT, 40 MHz, OTHER DSP, PBGA160, ROHS COMPLIANT, MO-205AE, CSBGA-160
ROCHESTER

ADSP-BF532SBBC400X

IC 16-BIT, 33.33 MHz, OTHER DSP, PBGA160, PLASTIC, MO-025AE, BGA-160, Digital Signal Processor
ADI

ADSP-BF532SBBCZ400

Blackfin Embedded Processor
ADI

ADSP-BF532SBBCZ400

16-BIT, 40 MHz, OTHER DSP, PBGA160, ROHS COMPLIANT, MO-205AE, CSBGA-160
ROCHESTER

ADSP-BF532SBBZ400

Blackfin Embedded Processor
ADI

ADSP-BF532SBBZ400

16-BIT, 40 MHz, OTHER DSP, PBGA169, ROHS COMPLIANT, PLASTIC, MO-034AAG-2, BGA-169
ROCHESTER